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ABSTRACT

The purpose of this note is to estimate

N
S(N) = :E. qi
R

where q, denotes the smallest denominator possessed by a rational fraction

which lies in the interval (Egla-ﬁﬂ‘ We prove that the estimates
32 L gy < 2.33 W72

1.20 N

are valid for N sufficiently large.
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1. INTRODUCTION.

The Farey Series F.. of order N is the sequence of fractions h/k with

N
(h k) = ] and 1 £ h £ k £ N arranged in 1ncre331ng order between 0 and 1.

There are ¢ (k) fractions with denomlnator k 1n-FN and thus the number of

terms in L. 1s
ay RON) = 6(1) + 6(2) + ..+ $(N) = =5 N2 + O(NLogh)
. : ,Tf

(see Theorem 330 of [2]). The purpose of this note is to estimate

S(N) = ) q,
i=1

where q; denotes the smallest denominator possessed by a fraction fram F..

N
wnich lles in the interval ( Nl, ;]
- We‘flxst observe that
(2) S(N) =L N3/2 + O0(NlogN) |
. } 3/' . -

for therelgan be at most ¢ (k) qi's of size k_in S(N) and thns

- .
(3) s 2 ) ko¢(k)
k=]

fur all t such that ¢(1) + ¢(2) * vea F ¢(t) < N. (Note that 3/“ is about

urr-"."-‘

l 21 ) On choosing t'maXImally we have by (1),

(4) e = N+ 0 (log N).
Ry + qqg

Furthermore

' | ~1 ' =7 |
Z k ¢(k) = t Z $(k) = ( Z b (k) + Z BCk) + .o + $(1))
- k=1 - - k=1



and thué;'again by (1), this

(5) | #-i% t3 + O(tzlog t).

T
And (2) now follows on cumblnlng (3), (4) and (5). A.E. Brauwer and J. van
de Lune checked by means of a computer the value of S(N)/NB/ for a number
of integers in the range 1,000 to 2500 and they found in all cases that
sy /N> 2
We shall prove

was less than ].64 and larger than 1.58.

THEOREM., For N suffictently large

S(N) < 2.33 NO/2.

We remark that we would expect the theorem to hold for all positive

integers N, We in fact establish a result of the form

3/2 7/5

S(N) < 2.328 N o+ Q(N log N)

where the constant implicit in the 0 term is computable and thus the wvalid-

ity of the theorem for all integers N can be determined, in principle, by
a finite amount of computation. We also observe that with some additional
work our argument would doubtless yield.a somewhat more preclse estimate
for the constant which precedes the main term in our estimate. Our pyoof
of the above theorem depends upon two results of R.R. Hall concerning the
distribution and the second moments of gapé in the Farey series. .
The problem of ubtaining.appropriata estimates for the size of S(N)
arose in connection with a problem of D. Kruyswijk_and C. Schaap in com-
binatorial group theory.ﬂlndependently of ﬁhe author, D. Kruyswijk and

H.G. Meijer have abtained;ﬁuresult of the form S(N) = 0(N3/2

) and theix
argument, which is apparently entirely different from that given here, will
be submitted for publication shortly. Lastly I would like to acknowledge
the several useful observations concerning this work, made by Jan van de
Lune,'who flrst brought the above problem to my attention, and also by

Jaap van der Woude.



2. PRELIMINARIES

We shall record here the two results of Hall which we require. We sghall
denote the difference between the r-th and r-1 —st terms in the N-th Farey
'geries by Rr with the convention that 2, = 1/N. Hall proves, theorem 1 of

]
(1], that

LEMMA 1. For some positive constant Cy, and for N z 2,

R(N) |

% Rz < C0 N 2 log N.
r=1'_r_
Further he denﬂtes by ¢ (t), the number of R from.FN for which 2 > t/Nz,
and sets 6N(t) = (t)/R(N) Hall proves that 3 (t) is a dlstrlbutlﬂn

function. More prec1se1y he proves

LEMMA 2, If 4 s t S Nand w= w(t) <8 the smaller root of the equation W’ =
t(w-1), then ﬁ

=1~ o2

(6) GN(t) 2t (l-w+2103w) +0 (¢t 'N logN + N" 7),

where o satisfies

E t(n) -~ xlogx - x(2y~1) = O(XG), -
nsx

t(n) denotes the number of divisors of n and y i8 Eulers' constant.

The work of a number of authors, Voronoi, Van der Corput, and more

recently Chih and Kolesnik has resulted in a reduction of the exponent 1in

the error term for Dirichlet’s divisor problem from the elementary result

= 4  gee Theorem 320 of Hardy and Wright-[23, tc o =-%% + é for any € > 0.
To preserve the elementary character of our work we shall take a = } in
Lemma 2 even though this results in a brﬂaf of our theorem which is slightly
more complicated than that required when o is assumed to be < 3.

We shall not apply Lemma 2 directly but shall instead use it to prove




~.LEMMA 3. For 4 < t s N we have

fGN(t) £-g%-(210g2-1)(%) + 0t iNlogN + Ni).
] |

-

PROOF, For t = 4 the w occurfing‘in (6)Jhas the form

v = (t=t(1=4/e) 1y /2

where the positive value of the square root is taken. We shall first show

that
g(t) = t(Zlogw-(w~l))_

is a decreasing function of t for t 2z 4., This is equivalent to showing that

the derivative g'(t) is < 0 for.t 2 4. We have
|

2 logw ~(w-1) + (%—1)*(1:%/

g'(t)

= 2 logw =(w-1) +. 2mw + (w-2)/(w(1-_—-%)£)

2 logw ~2w + 2

and on observing that log(i+x) s x for x 2'0, and putting x = w-1 we con-

clude that
g'(t) < 2(w-1) ~ 2w + 2 = 0

whenever w > 1. But

- C

we=1 + +—22-+...+
t

5 |
+

1
t

—

L

where the C_ are positive numbers and thus w is certainly 2 1 for t 2 4.

n
Therefore g(t) is a decreasing function of t for t = 4 and so



(}¥w+210gw) S 4(210g2—1)t—1

whence, by Lemma 2 with o = }, we have

-3/2

-7 .) E

1(7) 5ﬁ(t) < 8(21032—1)t + 0(t IN logN + N

for 4 < t S N. The lemma now follows frém (1) and (7) since
GN(t) = R(N) aN(t),

3. PROOF OF THEOREM

We shall split the sum S(N) 1nto three parts which we shall estimate
in turn"S1 the sum of those q; /—' 53 the sum of the t largest ql 8,
where t will be SPElelEd later and S2 the sum of the remaining q.

We first establish an upper bound for Sl. Put V = [/Hj. We observe

]

that if-%-and-%T-are two terms in the Farey series Fy then

-t

|———-—--| > (kk') ) N

| . . : i-1 1
and thus no two fractions from FV are in the same interval ( ﬁi for any 1.

Thus to each fraction h/k in Fo there corresponds an interval ( %} in

which it is the fraction fremfFN with smallest denominator and thus fﬂr

which qs = k. Now by the definition of the Farey series all the qs of

size s /Fﬂmust correspond to denominators of fractions framFV We therefore

have

| v
Sl = z 9; = z k ¢ (k)
qig,/ﬁ k=]

and by (5) this

(8) 3/2

i%-ﬂ + 0(Nlogh).




Furthermore, it follows from (1) that Sl is the sum over the

-V  3 | P
(2) ) o(k) = 5 N + 0(N"logN)
k=1 T

smallest qi's in the sum S{N).
We shall estimate S,, the sum of the t largest qi‘s, next. Let O(M)

1am .=

‘denote the number of qi's in the sum S(N) which are lérger than M. It is

readily verified that

83 S Mt + (M) + O(M+1) + ... + O(N)

where M is the value of the smallest q; in Sqe Furthermore ©(M+k) + ... + O(N)

is certainly less than 84 where

5, = 1 9
M+k < g,
- 1
s0 that

Now @(M) 1s a decreasing function of M hence

S3 < (M+r)t + O(M+r) + ... + e(M?rk) + 54 _

for any positive integer r and thus

| M+k
(10) 83. < (M+r)t + JM+r—1 o(M) dM + 54_.

The parameters t, M + r and M + k which we shall employ in (10) in order to

minimize our estimate for S(N) depend on the estimate from above which we

shall now obtain for o (M).
In order to bound 6 (M) from above it suffices to determine estimates

from above for the number of gaps in Ly of size larger than j/N for



3= ly0aa,k Wh&t&*%*ﬂ?%'<'3§lj note that there can be no gaps of size
> Mfl in Fape The number of gaps in Fy of size larger than j/N is precisely

UM(t) mﬂﬁﬂl*t/Mz = /N, in other words when t = jM2/N. Further we observe

that

0(M) < aM(Mz/Nj +-aM(2M2/N)'+ e+ GM(RMZ/N).

\

But now by Lemma 3 we have, for M = 2 YN.

y) .
N ] i NloghM 1 1 )
O (M) < CO -;2- (1+£+-§-+._.+:2-) + v (1+§+3+”.+k) + kM%)

where CO =-%%(210g2—1). Thus

2 .2
N, Q(E];D%M}ﬂ%k + kMi)
6 2 M |

'Q(M) < C,

and since, by defintion, k < N/M,

' 2
(i1) (M) < 4(2log2-1) N—?_ + O(E-E-&Qw + —NI)
M ~ M

>

fnr all M = 2vN. Therefore, for some constant C 8(2VN) < (2log2-1)N +

+ CIN%'

We now set

1!

(12) t = (2log2~1)N + CIN%

s0 that in (10), M, the value of the smallest q; in 33, is < 2VN. On putting
M+r= [Zfﬁjhf ] and choosing k so that M + k £ N4/5
from (10) that

<M+ k + 1 we find
H4/5

(13) 33 < ([2/N]+1) t + J G(M) dM + S4

[2VN]



where 5, is the sum over those qi's 2 NQ/S.

Now by (11), the integral in (13) is

/3
< J 4(21032—15 FE- + O(M@E + =p) dM
\2 M .;;I
[ 2/N]

which, upon evaluation, is found to be
(14) < 2(21ugz—1)m3/2 + 0(3?’5).
Thﬁs from (12), (13) and (14) we see that

{15) < 4(210g2~1)_N3/2 + 0(N7/5) % S

83 4"

To complete our estimation of S, we must determine an upper bound for S,.

7/510gN). If T is the

number of terms q; in 54 then there must be T sections 6f length Hnl in the
| 415

 Accordingly, we shall now prove that S4 = O(N

unit interval which contain no fractions from EM for M = [N ‘71. Therefore

there must exist differences £ ,...,% in F, for which we can find positive

S1,...,5, and such that k, + .., + ks

. | . ] .
integers kl,...,kS'W1th 2. z_ki/N,_l |

> T. Thus we certainly havé
(16) A T N 2.

On the other hand, by Lemma 1,

RQD -2
- < C, M " log M
r 0
r=1 - -
which is
(17) < C N“S/S-lag N



= o e I L W

‘NUW 54 is plainly < N+T and thus O(N

for a positive constant Cz. A comparison of (16) and (17) reveals that

T < lq2/5

9 log N.

7/5103N).‘It follows from (15), there-

fore, that

(18) _S £ 4(210g2—1)N3/2 + 0(N7(5103N)1

3

We are left now with 32’ the sum of those. q; 's which are not in elther

3/4,
S1 or 83. )

.
q; s 1n 32 where

It follows from (9) and (12) that there are at most C3H + O(N

(19) Cy = 1 - {(2Log2-1) + -:—2 } .

Further, by construction, all of these q. 's lie between vN and 2/N. A trivial
upper bound for 82 is plainly 2vVN(C N+0(N%)) We shall give an estimate for

this sum which is only marginally less crude. Put x = [2YN]. We have

X
(20) 5, < )} k ¢(k)
k=u

for some integer u satisfying

p. 4 ' :
(21) I 600 = c,N + o(wh).
k=u

Now

u-—l
Y} 4(k)

b4 p. 4
Yok =} ¢(k) -
= . k=1

k=u - k=1

which is, by (1),

=-£%(x2~u2) + O(xlogx).
T



Therefqre,.it fﬂliOWS from (21) that
. 2

m § 3 :
(22) u = (4f-§~c3) CN* o+ O(NY).

Furthermore we have by (5)

] k() = g(xmu?) + 0(xlogw)
k=u | T |

and thuS'we'may deduce from (20) and (22) that

- 2
6 2 ,, 3/2

312 L o

and by (19) this 1is

3/2 /4

+ O(N5

T (23 < +5783 N ) .

Finally we have

+S. + 8

S() = 8; +5, + 8y

|
which by (8), (18) and (23) is

_£(£%{+ 4(2log2-1) + .5783)N3/2 + U(N7f5lﬂgﬂ)
T - ' |

3/2

< 2.328 N + O(N?Islogﬂ).

The theorem now follows directly.
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Remark: M.R. Best has computed values af-S(H).fnr N up to 5,000,000 and his
3/2 '
N

suspiciously close to (4/w)2.

data suggést that %iE;S(N)/ exists and is equal to 1.62 ..., a value




