A NOTE ON THE FERMAT EQUATION

C. L. STEWART

Let x, y, z and n denote positive integers with $x<y<z$ and $(x, y, z)=1$. The purpose of this note is to prove two theorems, the first of which is

Theorem 1. If $y-x<C_{0} z^{1-(1 / \sqrt{ } n)}$ for some positive number C_{0}, and if

$$
\begin{equation*}
x^{n}+y^{n}=z^{n} \tag{1}
\end{equation*}
$$

then n is less than C, a number which is effectively computable in terms of C_{0}.
Thus if $y-x$ is small compared to z there are at most finitely many positive integers n for which the equation (1) admits solutions. We remark that the function $1 / \sqrt{ } n$ in the exponent of z above was chosen for neatness; it may be replaced by a function which tends to 0 more rapidly with n. The proof of Theorem 1 depends upon a straightforward application of a lower bound, due to Baker [3], for certain linear forms in logarithms. It yields a value for C of $S^{2}(4 \log S)^{6}$ where $S=32^{401}+$ $\log C_{0}{ }^{\prime}$ and $C_{0}{ }^{\prime}=\max \left\{e, C_{0}\right\}$. Sharper numerical bounds can certainly be obtained for C, however, by reworking the argument of [3] for the case of the particular linear form which arises in the proof of Theorem 1. We note for comparison that Wagstaff [7] has shown that equation (1) has no solutions for n in the range

$$
3 \leqslant n \leqslant 10^{5}
$$

That (1) has only a finite number of solutions x, y and z with $y-x<C_{0}$, for n a fixed odd prime, was proved by Everett [5] by means of the Thue-Siegel-Roth theorem. Recently Inkeri (see Theorem 4 of [6]) generalized the work of Everett. He used estimates due to Baker [2] for the size of solutions of the hyperelliptic equation to show that, if $n \geqslant 3$, (1) holds and either $y-x$ or $z-y$ is less than C_{0}, then x, y and z are less than a number which is effectively computable in terms of n and C_{0} only. It follows from Theorem 1 that if $y-x<C_{0}$ then n is bounded in terms of C_{0}. Applying the result of Inkeri we see that in this case x, y and z are also bounded in terms of C_{0}. Therefore we have

Theorem 2. If $n \geqslant 3, y-x$ is less than a positive number C_{0} and

$$
x^{n}+y^{n}=z^{n}
$$

then x, y, z and n are all less than C, a number which is effectively computable in terms of C_{0}.

Thus, in principle, all the solutions of (1) such that x and y differ by a given number may be explicitly determined. The bound for C in Theorem 2 depends upon the estimates obtained in [2], however, and is so large that a direct computation of the solution set for a given C_{0} does not seem feasible. We remark, see below, that Theorem 2 remains valid if the condition $y-x<C_{0}$ is replaced by

$$
2<z-y<C_{0}
$$

If $z-y=1$, when the problem is related to Abel's conjecture (see $\S 3$ of [6]), or if n is even and $z-y=2$, then the argument given here does not apply.

Before beginning the proof of Theorem 1 I should like to thank M. Mauclaire for suggesting to me, at the Journées Arithmétique in Caen, that the methods of Baker might be applicable in this context.

Since $(x, y, z)=1$ we may deduce from [4] or Lemma 1 of [1] that if (1) holds then for some positive integers a and b,

$$
\begin{equation*}
z-x=2^{\varepsilon_{1}} d_{1}^{-1} a^{n} \text { and } z-y=2^{\varepsilon_{2}} d_{2}^{-1} b^{n}, \tag{2}
\end{equation*}
$$

where ε_{1}, similarly ε_{2}, is either 0 or 1 and where d_{1} and d_{2} are positive divisors of n. (Both ε_{1} and ε_{2} are zero if n is odd.) From (2) we see that if $z-y>2$ then it is necessarily also $\geqslant 2^{n} / n$ and so if $2<z-y<C_{0}$ then n is bounded in terms of C_{0}. Therefore, by [6], Theorem 2 holds with this condition in place of $y-x<C_{0}$. Subtracting $z-y$ from $z-x$ gives

$$
\begin{equation*}
2^{\varepsilon_{1}} d_{1}^{-1} a^{n}-2^{\varepsilon_{2}} d_{2}^{-1} b^{n}=y-x \tag{3}
\end{equation*}
$$

We shall now assume that the conditions of Theorem 1 apply, so that (1) holds and

$$
\begin{equation*}
y-x<C_{0} z^{1-(1 / \sqrt{ } n)} \tag{4}
\end{equation*}
$$

and we shall prove that this implies n is bounded in terms of C_{0}. Further we shall assume that $C_{0} \geqslant e$ and that $n>4^{6}\left(\log C_{0}\right)^{2}$; clearly this involves no loss of generality.

We first observe that $z-x>2$. For if $z-x=2$ then

$$
x^{n}+(x+1)^{n}=(x+2)^{n}
$$

hence certainly $2<(1+2 / x)^{n}$; and since $\log (1+r)<r$ for $r>0$, we have $\log 2<2 n / x$ and thus $x<3 n$. But for $n>6$ there exist, by Theorems 1 and 5 of [4], primes p_{1}, p_{2} and p_{3} congruent to $1(\bmod n)$ which divide $x, x+1$ and $x+2$ respectively, and therefore $x>3 n$, giving a contradiction. Thus $z-x>2$ and as a consequence $a \geqslant 2$. Furthermore since $x<y<z$ we have $2 x^{n}<z^{n}$ and thus $x<2^{-1 / n} z$ whence, since $n>4^{6}, z-x>\left(1-2^{-1 / n}\right) z>z / 2 n$. From (4) we deduce that

$$
y-x<2 n C_{0}(z-x)^{1-(1 / \sqrt{ } n)}
$$

and since $n-(\log n / \log a)>\frac{1}{2} n$ for $n>8$, we have from (2) that,

$$
\begin{equation*}
(y-x) /(z-x)<2 n C_{0} a^{-\frac{1}{2} V_{n}} . \tag{5}
\end{equation*}
$$

Since $a \geqslant 2$ and $n>4^{6}\left(\log C_{0}\right)^{2}$ we find that $(y-x) /(z-x)<\frac{1}{2}$. Further, from (2) and (3) we have

$$
\begin{equation*}
1-(y-x) /(z-x)=2^{\varepsilon_{2}-\varepsilon_{1}}\left(d_{1} / d_{2}\right)(b / a)^{n} . \tag{6}
\end{equation*}
$$

Therefore using the inequality $|\log (1-r)|<2 r$, which is valid for $0<r<\frac{1}{2}$, with $r=(y-x) /(z-x)$ we conclude from (5) and (6) that

$$
|\log s+n \log (b / a)|<4 n C_{0} a^{-\frac{1}{2} \sqrt{ } n},
$$

where $s=2^{\varepsilon_{2}-\varepsilon_{1}} d_{1} / d_{2}$. Denoting the left hand side of the above inequality by T and taking logarithms yields

$$
\begin{equation*}
\log T<\log 4 n C_{0}-\frac{1}{2} \sqrt{ } n \log a \tag{7}
\end{equation*}
$$

Recently Baker [3] proved that, if b_{1} and b_{2} are integers with absolute values at most $B(\geqslant 4)$, if a_{1} and a_{2} are rational numbers the numerators and denominators of which are in absolute value at most $A_{1}(\geqslant 4)$ and $A_{2}(\geqslant 4)$ respectively and if $b_{1} \log a_{1} \neq-b_{2} \log a_{2}$, then

$$
\begin{equation*}
\log \left|b_{1} \log a_{1}+b_{2} \log a_{2}\right|>-C_{1} \log B \log A_{1} \log A_{2} \log \log A_{2} \tag{8}
\end{equation*}
$$

for $C_{1}=32^{400}$. Since $y-x>0$ we have $\log s \neq-n \log (b / a)$ and thus we may use (8) to obtain a lower bound for $\log T$. Putting $a_{1}=b / a, a_{2}=s$, $b_{1}=n$ and $b_{2}=1$ we conclude from (8), since $B=n, A_{1} \leqslant \max \{4, a, b\}$ and $A_{2} \leqslant 2 n$, that

$$
\log T>-2 C_{1}(\log n)^{3} \log (\max \{a, b\})
$$

By (6) we have $(a / b)^{n}>d_{1} / 2 d_{2} \geqslant 1 / 2 n \geqslant 2^{-n}$ from which it follows that $2 a>b$.

Therefore

$$
\begin{equation*}
\log T>-4 C_{1}(\log n)^{3} \log a \tag{9}
\end{equation*}
$$

Comparing (7) and (9) we find

$$
\sqrt{ } n \log a<8 C_{1}(\log n)^{3} \log a+2 \log 4 n C_{0}
$$

and thus, recall that $C_{1}=32^{400}$ and $n>4^{6}\left(\log C_{0}\right)^{2}$,

$$
\sqrt{ } n(\log n)^{-3}<32^{401}+\log C_{0} .
$$

On setting the right hand side of the above inequality equal to S we conclude that

$$
n<S^{2}(4 \log S)^{6}
$$

as required. This completes the proof of Theorem 1.
Theorem 2 follows as a consequence of Theorem 1.
Note added in proof: Independently of the author, K. Inkeri and A. van der Poorten have jointly obtained results of a similar character to those of this note. In particular, they have proved Theorem 2 for the case that n is a prime.

References

1. E. Artin. "The orders of the linear groups ", Comm. Pure Appl. Math., 8 (1955), 355-366.
2. A. Baker. "Bounds for the solutions of the hyperelliptic equation", Proc. Camb. Phil. Soc., 65 (1969), 439-444.
3. A. Baker. "The theory of linear forms in logarithms ", Transcendence Theory: Advances and Applications (Acadenic Press, London and New York, 1977).
4. G. D. Birkhoff and H. S. Vandiver. "On the integral divisors of $a^{n}-b^{n}$ ", Ann. of Math., (2), 5 (1904), 173-180.
5. C. J. Everett. " Fermat's conjecture, Roth's theorem, Pythagorean triangles and Pell's equation ", Duke Math. J., 40 (1973), 801-804.
6. K. Inkeri. "A note on Fermat's conjecture ", Acta Arith, 29 (1976), 251-256.
7. S. S. Wagstaff. "Fermat's last theorem is true for any exponent less than 100,000 ", Notices Amer. Math. Soc., 23 (1976), A-53.

Mathematisch Centrum, Amsterdam, The Netherlands.

10B15: NUMBER THEORY; Diophantine equations; Higher degree equations.

Received on the 22nd of February, 1977.

