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A NOTE ON THE FERMAT EQUATION

C. L. STEWART

Let x, y, z and n denote positive integers with x < y < z and (x, y, z) = 1.
The purpose of this note is to prove two theorems, the first of which is

THEOREM 1. If y — x < Coz1"* 1^ for some positive number Co, and if

xn + / = z", (1)

then n is less than C, a number which is effectively computable in terms of Co.

Thus if y — x is small compared to z there are at most finitely many positive
integers n for which the equation (1) admits solutions. We remark that the function
1/V« in the exponent of z above was chosen for neatness; it may be replaced by a
function which tends to 0 more rapidly with n. The proof of Theorem 1 depends
upon a straightforward application of a lower bound, due to Baker [3], for certain
linear forms in logarithms. It yields a value for C of S2(4 log Sf where S = 32401 +
log Co' and Co' = max {e, Co}. Sharper numerical bounds can certainly be obtained
for C, however, by reworking the argument of [3] for the case of the particular
linear form which arises in the proof of Theorem 1. We note for comparison that
Wagstaff [7] has shown that equation (1) has no solutions for n in the range

3 < n ^ 105.

That (1) has only a finite number of solutions x, y and z with y — x < Co, for
n a fixed odd prime, was proved by Everett [5] by means of the Thue-Siegel-Roth
theorem. Recently Inkeri (see Theorem 4 of [6]) generalized the work of Everett.
He used estimates due to Baker [2] for the size of solutions of the hyperelliptic equation
to show that, if  « > 3, (1) holds and either y — x or z — y is less than Co, then x, y
and z are less than a number which is effectively computable in terms of n and Co
only. It follows from Theorem 1 that if y — x < Co then n is bounded in terms of
Co. Applying the result of Inkeri we see that in this case x, y and z are also bounded
in terms of Co. Therefore we have

THEOREM 2. If n ^ 3, y — x is less than a positive number Co and

x" + y" = z",

then x, y, z and n are all less than C, a number which is effectively computable in terms
ofC0.

Thus, in principle, all the solutions of (1) such that x and y differ by a given
number may be explicitly determined. The bound for C in Theorem 2 depends
upon the estimates obtained in [2], however, and is so large that a direct computation
of the solution set for a given Co does not seem feasible. We remark, see below,
that Theorem 2 remains valid if  the condition y — x < Co is replaced by

2 < z - y < Co.
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If z — y = 1, when the problem is related to Abel's conjecture (see §3 of [6]), or if n
is even and z — y = 2, then the argument given here does not apply.

Before beginning the proof of Theorem 1 I should like to thank M. Mauclaire
for suggesting to me, at the Journees Arithmetique in Caen, that the methods of
Baker might be applicable in this context.

Since (x, y,z) = 1 we may deduce from [4] or Lemma 1 of [1] that if (1) holds
then for some positive integers a and b,

z - x = 2e'dr1 a" and z - y= 2e2d2~
1 bn, (2)

where eu similarly e2, is either 0 or 1 and where dt and d2 are positive divisors of n.
(Both l̂ and e2 are zero if n is odd.) From (2) we see that if z — y > 2 then it is
necessarily also > 2"/n and so if 2 < z — y < Co then n is bounded in terms of Co.
Therefore, by [6], Theorem 2 holds with this condition in place of y - x < Co.
Subtracting z — y from z — x gives

2"d1~
1 cC - 2eid2-

1 b" = y - x. (3)

We shall now assume that the conditions of Theorem 1 apply, so that (1) holds and

y - x < Coz1-™**  (4)

and we shall prove that this implies n is bounded in terms of Co. Further we shall
assume that Co > e and that n > 46 (log Co)

2; clearly this involves no loss of
generality.

We first observe that z — x > 2. For if z — x = 2 then

x" + (x + 1)" = (x + 2)",

hence certainly 2 < (1 + 2/x)n; and since log (I + r) < r for r > 0, we have
log 2 < 2n/x and thus x < 3«. But for « > 6 there exist, by Theorems 1 and 5 of
[4], primes pu p2 and p3 congruent to 1 (mod n) which divide x, x + 1 and x + 2
respectively, and therefore x > In, giving a contradiction. Thus z — x > 2 and as
a consequence a ^ 2. Furthermore since x < y < z we have 2 x" < z" and thus
x < 2~1/nz whence, since n > 46, z - x > (1 - 2~1/")z > z/2«. From (4) we
deduce that

y - x < 2 « C0 ( Z - J C )1 - ( 1 / V " )

and since n — (log «/log a) > \n for n > 8, we have from (2) that,

(y -x)/(z -x) < 2«Cofl~
iV ". (5)

Since a > 2 and « > 46(log C0)
2 we find that (y - x)/(z - x) < \. Further,

from (2) and (3) we have

1 - (y - x)/(z - x) = ?>-"(dJd2) (bfay. (6)

Therefore using the inequality jlog (1 - r)\ < 2r, which is valid for 0 < r < \,
with r = (y — x)/(z - x) we conclude from (5) and (6) that

|log 5 + n log (b/a)\ < An Co a~^\

where s = 2e2~£1 dx\d2. Denoting the left hand side of the above inequality by T
and taking logarithms yields

log T < log An Co - $y/n log a. (7)
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Recently Baker [3] proved that, if bt and b2 are integers with absolute values at
most B (> 4), if ax and a2 are rational numbers the numerators and denominators
of which are in absolute value at most Ax O 4) and A2 (> 4) respectively and if

5* - b2loga2, then

+ b2loga2\ > - C1logBlogA1logA2\oglogA2, (8)

for Cj = 32400. Since y — x > 0 we have logs # - nlog(b/a) and thus we
may use (8) to obtain a lower bound for log T. Putting av = b/a, a2 = s,
bx = n and b2 = 1 we conclude from (8), since B = n, Ax <£ max {4, a, b}
and A2 < 2«, that

log T > - 2C1(log«)3 log (max {a, b}).

By (6) we have (a/b)n > dJ2d2 > l/2n > 2~" from which it follows that
2a > b.

Therefore
log T > - 4Ct (log n)3 log a. (9)

Comparing (7) and (9) we find

Vnloga < SCjClogn^logo + 21og4«C0,

and thus, recall that Ct = 32400 and n > 46(log C0)
2,

V«(log«)"3 < 32401 +logC0.

On setting the right hand side of the above inequality equal to S we conclude that

n < S2(41ogS)6,

as required. This completes the proof of Theorem 1.
Theorem 2 follows as a consequence of Theorem 1.

Note added in proof: Independently of the author, K. Inkeri and A. van der
Poorten have jointly obtained results of a similar character to those of this note.
In particular, they have proved Theorem 2 for the case that n is a prime.
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