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A NOTE ON THE FERMAT EQUATION

C. L. STEWART

Let x, ¥, z and n denote positive integers with x <y <z and (x,y,z) = 1.
The purpose of this note is to prove two theorems, the first of which is

THEOREM 1. If y — x < Coz' "™ for some positive number C,, and if
x4yt = 2", (N

then n is less than C, a number which is effectively computable in terms of C,.

Thus if y — x is small compared to z there are at most finitely many positive
integers n for which the equation (1) admits solutions. We remark that the function
1/</n in the exponent of z above was chosen for neatness; it may be replaced by a
function which tends to 0 more rapidly with #n. The proof of Theorem 1 depends
upon a straightforward application of a lower bound, due to Baker [3], for certain
linear forms in logarithms. It yields a value for C of S%(4log S)® where § = 3240 4+
log Cy' and Cy’ = max {e, C,}. Sharper numerical bounds can certainly be obtained
for C, however, by reworking the argument of [3] for the case of the particular
linear form which arises in the proof of Theorem 1. We note for comparison that
Wagstaff [7] has shown that equation (1) has no solutions for » in the range

3<n< 105

That (1) has only a finite number of solutions x, y and z with y — x < C,, for
n a fixed odd prime, was proved by Everett [5] by means of the Thue-Siegel-Roth
theorem. Recently Inkeri (see Theorem 4 of [6]) generalized the work of Everett.
He used estimates due to Baker [2] for the size of solutions of the hyperelliptic equation
to show that, if n > 3, (1) holds and either y — x or z — y is less than C,, then x, y
and z are less than a number which is effectively computable in terms of # and C,
only. It follows from Theorem 1 that if y — x < C, then »n is bounded in terms of
C,. Applying the result of Inkeri we see that in this case x, y and z are also bounded
in terms of C,. Therefore we have

THEOREM 2. [fn = 3, y — xis less than a positive number C, and
x" + yn o Z",
then x, y, z and n are all less than C, a number which is effectively computable in terms

of Cy.

Thus, in principle, all the solutions of (1) such that x and y differ by a given
number may be explicitly determined. The bound for C in Theorem 2 depends
upon the estimates obtained in [2], however, and is so large that a direct computation
of the solution set for a given C, does not seem feasible. We remark, see below,
that Theorem 2 remains valid if the condition y — x < C, is replaced by

2<z—y<C,.
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Ifz —y = 1, when the problem is related to Abel’s conjecture (see §3 of [6]), or if n
is even and z — y = 2, then the argument given here does not apply.

Before beginning the proof of Theorem 1 I should like to thank M. Mauclaire
for suggesting to me, at the Journées Arithmétique in Caen, that the methods of
Baker might be applicable in this context.

Since (x, y,z) = 1 we may deduce from [4] or Lemma 1 of [1] that if (1) holds

then for some positive integers a and b,

z—x=2"d,"'a" and z—y =22d,7'bp", : ¥))

where &, similarly ¢,, is either 0 or 1 and where d, and d, are positive divisors of n.
(Both &, and &, are zero if # is odd.) From (2) we see that if z — y > 2 then it is
necessarily also > 2"/nand so if 2 < z — y < C, then n is bounded in terms of C,,.
Therefore, by [6], Theorem 2 holds with this condition in place of y — x < C,.
Subtracting z — y from z — x gives

261d, 71" — 224,71 " =y~ x. 3)
We shall now assume that the conditions of Theorem 1 apply, so that (1) holds and
y—x < Cozt ~QIVW @

and we shall prove that this implies # is bounded in terms of C,. Further we shall
assume that C, > e and that n > 4° (log C,)?; clearly this involves no loss of
generality.

We first observe thatz — x > 2. Forifz — x = 2 then

X"+ (x+ 1) = (x + 2),

hence certainly 2 < (1 + 2/x)"; and since log(l +r) < r for r > 0, we have
log2 < 2n/x and thus x < 3n. But for n > 6 there exist, by Theorems 1 and 5 of
[4], primes p,, p, and p; congruent to 1 (mod n) which divide x, x + 1 and x + 2
respectively, and therefore x > 3n, giving a contradiction. Thusz — x > 2 and as
a consequence g > 2. Furthermore since x < y < z we have 2x" < z" and thus
x < 27Y"z whence, since n > 45 z— x> (1 — 2"z > z/2n. From (4) we
deduce that
y—x < 2nCy(z — x)1~WVm

and since n — (logn/loga) > 4n for n > 8, we have from (2) that,
(v —x))(z — x) < 2nCqya~ ¥, Q)

Since @ > 2 and n > 4%(logCy)* we find that (y — x)/(z — x) < . Further,
from (2) and (3) we have

1 - (v =)z —x) = 227%(d,/d;) (bla)". (6)

Therefore using the inequality [log (1 — )| < 2r, which is valid for 0 < r < %,

with r = (y — x)/(z ~ x) we conclude from (5) and (6) that
[logs + nlog (b/a)] < 4n Cya™ V7,

where s = 275 4,/d,. Denoting the left hand side of the above inequality by T
and taking logarithms yields

logT < logd4nCy, — 3/nloga. (7)
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Recently Baker [3] proved that, if b, and b, are integers with absolute values at
most B (= 4), if a, and a, are rational numbers the numerators and denominators
of which are in absolute value at most 4, (> 4) and 4, (> 4) respectively and if
byloga, # — b,loga,, then

log|b,loga, + b,loga,| > — C,logBlog A, logA,loglog A,, ®

for C, = 32%°°. Since y —x > 0 we have logs # — nlog(b/a) and thus we
may use (8) to obtain a lower bound for log T. Putting a; = b/a, a, = s,
b, =n and b, =1 we conclude from (8), since B =n, 4, < max{4,a, b}
and 4, < 2n, that

log T > — 2C,(logn)?® log (max {a, b}).

By (6) we have (a/b)® > df2d, = 1/2n = 27" from which it follows that
2a > b. '
Therefore
log T > — 4C,(logn)loga. )

Comparing (7) and (9) we find
Jnloga < 8C,(logn)*loga + 2log4nC,,
and thus, recall that C; = 32%°° and n > 4%(log C,)?,
Jn(logn)™3 < 3240 1 log C,.
On setting the right hand side of the above inequality equal to S we conclude that
n < S%*(4log S)S,

as required. This completes the proof of Theorem 1.
Theorem 2 follows as a consequence of Theorem 1.

Note added in proof: Independently of the author, K. Inkeri and A. van der
Poorten have jointly obtained results of a similar character to those of this note.
In particular, they have proved Theorem 2 for the case that n is a prime.
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