Pure Mathematics Analysis Comprehensive Exam

May 15, 2018, MC5417, 1:00-4:00pm

Examiners: A. Nica \& N. Spronk
This exam has 8 questions; attempt all of them. Point values are given. Justify all of your answers and clearly indicate any major theorems which are used in your proofs or calculations.
[12] 1. (a) Let \mathbb{R} be viewed as a vector space over \mathbb{Q}. By using Zorn's Lemma, prove that there exists a basis B of \mathbb{R} over \mathbb{Q} such that $1, \sqrt{2} \in B$.
(b) Prove that the basis B found in part (a) has to be an infinite uncountable set.

For the remainder of the question, we will use the following definition: a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be additive when it has the property that

$$
f(s+t)=f(s)+f(t), \quad \forall s, t \in \mathbb{R}
$$

(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function. Prove that $f(q t)=q f(t)$ for all $q \in \mathbb{Q}$ and $t \in \mathbb{R}$.
(d) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function such that $f(1)=2$. Suppose moreover that f is continuous at $\sqrt{2}$. Prove that $f(\sqrt{2})=2 \sqrt{2}$.
(e) Does there exist an additive function $g: \mathbb{R} \rightarrow \mathbb{R}$ (not required to satisfy any continuity conditions) such that $g(1)=2$ and $g(\sqrt{2})=3$?
[10] 2. Let $X=[0,1]^{[0,1]}:=\{f \mid f:[0,1] \rightarrow[0,1]\}$, be endowed with the topology \mathcal{T} of pointwise convergence.
(a) Write a basis of open sets for the topological space (X, \mathcal{T}). Explain why this is a compact Hausdorff space.
(b) For every $n \in \mathbb{N}$, consider the function $f_{n} \in X$ defined by the following formula:

$$
f_{n}(t)=10^{n} t-\left\lfloor 10^{n} t\right\rfloor, \quad \forall t \in[0,1]
$$

(where $\lfloor s\rfloor \in \mathbb{Z}$ denotes the "floor", or "integer part" of a number $s \in$ \mathbb{R}). Prove the following: it is not possible to find some indices $n(1)<$ $n(2)<\cdots<n(k)<\cdots$ in \mathbb{N} such that the sequence $\left(f_{n(k)}\right)_{k=1}^{\infty}$ is pointwise convergent.
(c) Is the space (X, \mathcal{T}) metrizable?
[10] 3. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of Lebesgue integrable functions from $[0,1]$ to \mathbb{R} which satisfy $\int_{0}^{1}\left|f_{n}(x)\right| d x \leq 1$ for each n.
(a) Show, for each n, that

$$
g_{n}(t)=\int_{0}^{1} \sqrt{1+t+x} f_{n}(x) d x
$$

defines a continuous function on $[0,1]$.
(b) Prove the following: there exist $n(1)<n(2)<\cdots<n(k)<\cdots$ in \mathbb{N} and a continuous function $g:[0,1] \rightarrow \mathbb{R}$ such that $\lim _{k \rightarrow \infty} g_{n(k)}=g$ uniformly on $[0,1]$.
[15] 4. Let a parameter $0<\alpha \leq 1$ be given. We construct a Cantor-type set $C_{\alpha} \subset[0,1]$ as follows.
Let $C_{1}=[0,1]$. Inductively, C_{n} is a disjoint union of 2^{n-1} pairwise disjoint closed intervals. We obtain C_{n+1} from C_{n} by removing the open middle interval, of length $\frac{\alpha}{3^{n}}$, from each of the constituent intervals of C_{n}. Let $C_{\alpha}=\bigcap_{n=1}^{\infty} C_{n}$.
(a) Explain why C_{α} is a non-empty, nowhere dense, compact set.
(b) Compute the Lebesgue measure, $m\left(C_{\alpha}\right)$.
(c) Show that there exists a continuous surjection, $\varphi: C_{\alpha} \rightarrow[0,1]$.
(d) Can φ, above, be arranged to be both continuous and invertible?
[15] 5. For $n \in \mathbb{Z}$, let $e_{n}:[-\pi, \pi] \rightarrow \mathbb{C}$ be defined by $e_{n}(t)=e^{i n t}$. We let $C[-\pi, \pi]$ denote the space of continuous \mathbb{C}-valued functions on the interval $[-\pi, \pi]$.
(a) Explain why the \mathbb{C}-linear span of the functions $\left\{e_{n}: n \in \mathbb{Z}\right\}$ is uniformly dense in the space $\{f \in C[-\pi, \pi]: f(\pi)=f(-\pi)\}$.
(b) Explain why the set $\left\{\frac{1}{\sqrt{2 \pi}} e_{n}: n \in \mathbb{Z}\right\}$ is an orthonormal basis for the space $L^{2}[-\pi, \pi]$ of square integrable functions (with respect to Lebesgue measure).
(c) Compute the inner product $\left\langle f, \frac{1}{\sqrt{2 \pi}} e_{n}\right\rangle$, for f given by $f(t):=\cosh (t)=$ $\frac{1}{2}\left(e^{t}+e^{-t}\right),-\pi \leq t \leq \pi$.
(d) Compute the value of the series $\sum_{n=1}^{\infty} \frac{1}{\left(1+n^{2}\right)^{2}}$.
(e) Compute the value of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+n^{2}}$.
6. (a) Let

$$
D:=\{z \in \mathbb{C}:|z|<1\} \text { and } T:=\{z \in \mathbb{C}:|z|=1\} .
$$

Let $f: \Omega \rightarrow \mathbb{C}$ be analytic on an open set $\Omega \supset D \cup T$, and suppose moreover that $f(z) \neq 0, \forall z \in T$. Let $N_{D}(f)$ be the number of zeroes of f in D, counted with multiplicities. Indicate a closed path $\gamma:[0,1] \rightarrow \mathbb{C}$ for which $N_{D}(f)$ is equal to the winding number of γ around 0 .
(b) Let D, T, Ω be as in (a), and let $f, g: \Omega \rightarrow \mathbb{C}$ be analytic and satisfy that

$$
|f(z)+g(z)|<|f(z)|+|g(z)|, \quad \forall z \in T
$$

Fix a $z_{o} \in T$, and let S denote the closed line segment in \mathbb{C} which has endpoints at $f\left(z_{o}\right)$ and at $-g\left(z_{o}\right)$. Prove that $0 \notin S$.
(c) Let D, T, Ω and $f, g: \Omega \rightarrow \mathbb{C}$ be as in (b). Prove that $N_{D}(f)=N_{D}(g)$.
[15] 7. (a) Let $U=\mathbb{C} \backslash\{i t: t \leq 0$ in $\mathbb{R}\}$ and let $L: U \rightarrow \mathbb{C}$ be the branch of logarithm given by

$$
L(z)=\int_{\gamma} \frac{d w}{w}, \quad z \in U
$$

where $\gamma:[a, b] \rightarrow U$ is any piecewise smooth curve with $\gamma(a)=1$ and $\gamma(b)=z$. Show that for $r>0$ and $-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$ we have

$$
L\left(r e^{i \theta}\right)=\log r+i \theta .
$$

(b) Given $0<s<1$ calculate the value of the improper Riemann integral

$$
H(s)=\int_{0}^{\infty} \frac{t^{s}}{1+t^{2}} d t
$$

(c) Explain why, or why not, the following derivative formula makes sense:

$$
H^{\prime}(s)=\int_{0}^{\infty} \frac{t^{s} \log t}{1+t^{2}} d t
$$

[12] 8. Given a non-empty set X and a transformation $T: X \rightarrow X$, we denote by $T^{(n)}: X \rightarrow X$ the transformation which is obtained by composing T with itself n times. An element $x \in X$ is said to be periodic for T when there exists $p_{x} \in \mathbb{N}$ such that $T^{\left(p_{x}\right)}(x)=x$. For such an $x \in X$, the number p_{x} is called a period of x under the transformation T.
(a) Let X be a normed vector space over \mathbb{R} and let Y be a closed linear subspace of X, where $Y \neq X$. Prove that Y is nowhere dense in X.
(b) Let X be a Banach space over \mathbb{R}, and let $T: X \rightarrow X$ be a continuous linear operator for which every x in X is periodic for T. Prove that there exists a $p_{o} \in \mathbb{N}$ which is a common period under T for all the vectors in X (i.e. $T^{\left(p_{o}\right)}(x)=x$ for all x in X).
(c) Show that for the sequence space $c_{o o}$, consisting of sequences of real numbers $x=\left(x_{1}, x_{2}, \ldots\right)$ which are 0 for all but finitely many entries x_{k}, that there is a linear operator $T: c_{o o} \rightarrow c_{o o}$ for which

- every x in $c_{o o}$ is periodic for T,
- T is continuous when $c_{o o}$ is given the norm $\|x\|_{\infty}=\max _{k=1,2, \ldots}\left|x_{k}\right|$; and
- there is no common period p_{o} for all x in $c_{o o}$.

Hence the assumption of completeness for X is essential for part (b), above.

