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Abstract. In this paper, we give several asymptotic formulas for
the number of multiplicatively dependent vectors of algebraic num-
bers of fixed degree, or within a fixed number field, and bounded
height.

1. Introduction

1.1. Background. Let n be a positive integer, G be a multiplicative
group and let ννν = (ν1, . . . , νn) be in Gn. We say that ννν is multiplica-
tively dependent if there is a non-zero vector k = (k1, . . . , kn) ∈ Zn for
which

(1.1) νννk = νk11 · · · νknn = 1.

We denote by Mn(G) the set of multiplicatively dependent vectors in
Gn.

For instance, the set Mn(C∗) of multiplicatively dependent vectors
in (C∗)n is of Lebesgue measure zero, since it is a countable union of sets
of measure zero. Further, if we fix an exponent vector k the subvariety
of (C∗)n determined by (1.1) is an algebraic subgroup of (C∗)n.

For multiplicatively dependent vectors of algebraic numbers there
are two kinds of questions which have been extensively studied. The
first question concerns the exponents in (1.1). Given a multiplica-
tively dependent vector ννν it follows from the work of Loxton and van
der Poorten [14, 21], Matveev [18], and Loher and Masser [13, Corol-
lary 3.2] (attributed to K. Yu) that there is a relation of the form (1.1)
with a non-zero vector k with small coordinates. The second question
is to find comparison relations among the heights of the coordinates.
For example, Stewart [26, Theorem 1] has given an inequality for the
heights of the coordinates of such a vector (of low multiplicative rank,
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in the terminology of Section 1.2), and a lower bound for the sum of
the heights of the coordinates is implied in [27].

In this paper, we obtain several asymptotic formulas for the number
of multiplicatively dependent n-tuples whose coordinates are algebraic
numbers of fixed degree, or within a fixed number field, and bounded
height. Equivalently, see [23], we count n-tuples of algebraic numbers
in a fixed algebraic number field, or of fixed degree, and given height
which occur in some proper algebraic subgroup of the algebraic group
Gn
m, where Gm is the multiplicative group of an algebraic closure of Q.

Aside from the results mentioned above, to the best of our knowledge,
this natural question has never been addressed in the literature.

We remark that the above question is interesting in its own right, but
is also partially motivated by the works [20, 24], where multiplicatively
independent vectors play an important role.

1.2. Rank of multiplicative independence. The following notion
plays a crucial role in our argument, and is also of independent interest.

Let Q be an algebraic closure of the rational numbers Q. For each ννν
in (Q∗)n, we define s, the multiplicative rank of ννν, in the following way.
If ννν has a coordinate which is a root of unity, we put s = 0; otherwise
let s be the largest integer with 1 ≤ s ≤ n for which any s coordinates
of ννν form a multiplicatively independent vector. Notice that

(1.2) 0 ≤ s ≤ n− 1,

whenever ννν is multiplicatively dependent.

1.3. Conventions and notation. For any algebraic number α, let

f(x) = adx
d + · · ·+ a1x+ a0

be the minimal polynomial of α over the integers Z (so with content 1
and positive leading coefficient). Suppose that f is factored as

f(x) = ad(x− α1) · · · (x− αd)
over the complex numbers C. The naive height H0(α) of α is given by

H0(α) = max{|ad|, . . . , |a1|, |a0|},
and H(α), the height of α, also known as the absolute Weil height of
α, is defined by

H(α) =

(
ad

d∏
i=1

max{1, |αi|}

)1/d

.

Let K be a number field of degree d (over Q). We use the following
standard notation:
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• r1 and r2 for the number of real and pairs of complex conjugate
embeddings of K, respectively, and put r = r1 + r2 − 1;
• D, h,R and ζK for the discriminant, class number, regulator

and Dedekind zeta function of K, respectively;
• w for the number of roots of unity in K.

Note that r is exactly the rank of the unit group of the ring of algebraic
integers of K. As usual, let ζ(s) be the Riemann zeta function.

For any real number x, let dxe denote the smallest integer greater
than or equal to x, and let bxc denote the greatest integer less than or
equal to x.

We always implicitly assume that H is large enough, in particular so
that the logarithmic expressions logH and log logH are well-defined.

In the sequel, we use the Landau symbols O and o and the Vino-
gradov symbol�. We recall that the assertions U = O(V ) and U � V
are both equivalent to the inequality |U | ≤ cV with some positive con-
stant c, while U = o(V ) means that U/V → 0. We also use the
asymptotic notation ∼.

For a finite set S we use |S| to denote its cardinality.
Throughout the paper, the implied constants in the symbols O and
� only depend on the given number field K, the given degree d, or the
dimension n.

1.4. Counting vectors within a number field. Let K be a number
field of degree d. Denote the set of algebraic integers of K of height at
most H by BK(H) and the set of algebraic numbers of K of height at
most H by B∗K(H). Set

BK(H) = |BK(H)| and B∗K(H) = |B∗K(H)| .
Put

C1(K) =
2r1(2π)r2dr

|D|1/2r!
.

It follows directly from the work of Widmer [30, Theorem 1.1] (taking
n = e = 1 there) that

(1.3) BK(H) = C1(K)Hd(logH)r +O
(
Hd(logH)r−1

)
.

If r = 0, then (1.3) can be improved to (see [2, Theorem 1.1])

(1.4) BK(H) = C1(K)Hd +O(Hd−1).

We remark that the estimate in (1.3) is stated in [12, Chapter 3, The-
orem 5.2] without the explicit constant C1(K), and moreover Bar-
roero [3] has obtained similar estimates for the number of algebraic
S-integers with fixed degree and bounded height.
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Define

C2(K) =
22r1(2π)2r22rhR

|D|wζK(2)
.

Schanuel [22, Corollary to Theorem 3] proved in 1979 (see also [17,
Equation (1.5)]) that

(1.5) B∗K(H) = C2(K)H2d +O
(
H2d−1(logH)σ(d)

)
,

where σ(1) = 1 and σ(d) = 0 for d > 1. Note that the height in [22] is
our height to the power d.

For any positive integer n, we denote by Ln,K(H) the number of
multiplicatively dependent n-tuples whose coordinates are algebraic
integers of height at most H, and we denote by L∗n,K(H) the number
of multiplicatively dependent n-tuples whose coordinates are algebraic
numbers of height at most H.

Put

C3(n,K) =
n(n+ 1)

2
wC1(K)n−1.

Theorem 1.1. Let K be a number field of degree d over Q and let n
be an integer with n ≥ 2. We have

Ln,K(H) = C3(n,K)Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
;

(1.6)

if furthermore K = Q or is an imaginary quadratic field, we have

(1.7) Ln,K(H) = C3(n,K)Hd(n−1) +O
(
Hd(n−3/2)) .

We remark that when K = Q a better error term than that given
in (1.7) is stated in Theorem 1.4 below, more precisely, see (1.16).

We estimate L∗n,K(H) next. Put

C4(n,K) = n2wC2(K)n−1.

Theorem 1.2. Let K be a number field of degree d, and let n be an
integer with n ≥ 2. Then, we have

(1.8) L∗n,K(H) = C4(n,K)H2d(n−1) +O
(
H2d(n−1)−1g(H)

)
,

where

g(H) =

 logH if d = 1 and n = 2
exp(c logH/ log logH) if d = 1 and n > 2
1 if d > 1 and n ≥ 2,

and c is a positive number depending only on n.
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We now outline the strategy of the proofs. Given a number field K,
we define Ln,K,s(H) and L∗n,K,s(H) to be the number of multiplicatively
dependent n-tuples of multiplicative rank s whose coordinates are alge-
braic integers in BK(H) and algebraic numbers in B∗K(H) respectively.
It follows from (1.2) that

(1.9)

 Ln,K(H) = Ln,K,0(H) + · · ·+ Ln,K,n−1(H)

L∗n,K(H) = L∗n,K,0(H) + · · ·+ L∗n,K,n−1(H).

The main term in (1.6) comes from the contributions of Ln,K,0(H) and
Ln,K,1(H) in (1.9), and the main term in Theorem 1.2 comes from
the contributions of L∗n,K,0(H) and L∗n,K,1(H) in (1.9). To prove Theo-
rems 1.1 and 1.2, we make use of (1.9) and the following result.

Proposition 1.3. Let K be a number field of degree d. Let n and s
be integers with n ≥ 2 and 0 ≤ s ≤ n − 1. Then, there exist positive
numbers c1 and c2 which depend on n and K, such that

(1.10) Ln,K,s(H) < Hd(n−1)−d(d(s+1)/2e−1) exp(c1 logH/ log logH)

and

(1.11) L∗n,K,s(H) < H2d(n−1)−d(d(s+1)/2e−1) exp(c2 logH/ log logH).

In Section 5, we show that when s = n − 1 (1.10) cannot be im-
proved by much; see Theorems 5.2 and 5.4. In particular, it does
not hold with exp(c1 logH/ log logH) replaced by a quantity which is

o((logH)(k−1)
2
), where K = Q and n = 2k.

1.5. Counting vectors of fixed degree. Let d be a positive integer,
and let Ad(H), respectively A∗d(H), be the set of algebraic integers of
degree d (over Q), respectively algebraic numbers of degree d, of height
at most H. We set

Ad(H) = |Ad(H)| and A∗d(H) = |A∗d(H)| .

Put

C5(d) = d2d
b(d−1)/2c∏

j=1

d(2j)d−2j−1

(2j + 1)d−2j

and

C6(d) =
d2d

ζ(d+ 1)

b(d−1)/2c∏
j=1

(d+ 1)(2j)d−2j

(2j + 1)d−2j+1
.
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It follows from the work of Barroero [2, Theorem 1.1] that (see also [2,
Equation (1.2)] for a previous estimate with a weaker error term which
follows from [6, Theorem 6])

(1.12) Ad(H) = C5(d)Hd2 +O
(
Hd(d−1)(logH)ρ(d)

)
,

where ρ(2) = 1 and ρ(d) = 0 for any d 6= 2.
Further, Masser and Vaaler [16, Equation (7)] have shown that (see

also [17, Equation (1.5)])

(1.13) A∗d(H) = C6(d)Hd(d+1) +O
(
Hd2(logH)ϑ(d)

)
,

where ϑ(1) = ϑ(2) = 1 and ϑ(d) = 0 for any d ≥ 3.
For any positive integer n, we denote by Mn,d(H) the number of mul-

tiplicatively dependent n-tuples whose coordinates are algebraic inte-
gers in Ad(H), and we denote by M∗

n,d(H) the number of multiplica-
tively dependent n-tuples whose coordinates are algebraic numbers in
A∗d(H).

For each positive integer d, we define w0(d) to be the number of
roots of unity of degree d. Let ϕ denote Euler’s totient function. Since
ϕ(k)� k/ log log k for any integer k ≥ 3, it follows that

(1.14) w0(d)� d2 log log d,

where d ≥ 3 and the implied constant is absolute. We remark that
w0(d) can be zero, such as for an odd integer d > 1.

Given positive integers n and d, we define C7(n, d) and C8(n, d) as

C7(n, d) = (nw0(d) + n(n− 1))C5(d)n−1

and

C8(n, d) = (nw0(d) + 2n(n− 1))C6(d)n−1.

Theorem 1.4. Let d and n be positive integers with n ≥ 2. Then, the
following hold.

(i) We have

(1.15) Mn,d(H) = C7(n, d)Hd2(n−1) +O
(
Hd2(n−1)−d/2

)
;

furthermore if d = 2 or d is odd, we have

Mn,d(H) = C7(n, d)Hd2(n−1)

+O
(
Hd2(n−1)−d exp(c0 logH/ log logH)

)(1.16)

and

(1.17) M2,d(H) = C7(2, d)Hd2 +O
(
Hd2−d(logH)ρ(d)

)
,



MULTIPLICATIVELY DEPENDENT VECTORS 7

where c0 is a positive number which depends only on n and d,
and ρ(d) has been defined in (1.12).

(ii) We have

(1.18) M∗
n,d(H) = C8(n, d)Hd(d+1)(n−1) +O

(
Hd(d+1)(n−1)−d/2 logH

)
;

furthermore if d = 2 or d is odd, we have

M∗
n,d(H) = C8(n, d)Hd(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d exp(c logH/ log logH)

)(1.19)

and

(1.20) M∗
2,d(H) = C8(2, d)Hd(d+1) +O

(
Hd2(logH)ϑ(d)

)
,

where c is a positive number which depends only on n and d,
and ϑ(d) is defined in (1.13).

We remark that the case when d = 1 actually has been included in
Theorems 1.1 and 1.2. However, in this case the error term in (1.16) is
Hn−2+o(1), which is better than that in (1.7) taken with d = 1.

The strategy to prove Theorem 1.4 is similar to that in proving The-
orems 1.1 and 1.2. For each integer s with 0 ≤ s ≤ n − 1, we define
Mn,d,s(H) and M∗

n,d,s(H) to be the number of multiplicatively depen-
dent n-tuples of multiplicative rank s whose coordinates are algebraic
integers in Ad(H) and algebraic numbers in A∗d(H) respectively. Just
as in (1.9) we have

(1.21)

 Mn,d(H) = Mn,d,0(H) + · · ·+Mn,d,n−1(H)

M∗
n,d(H) = M∗

n,d,0(H) + · · ·+M∗
n,d,n−1(H).

For the proof of Theorem 1.4, we make use of (1.21) and the following
result.

Proposition 1.5. Let d, n and s be integers with d ≥ 1, n ≥ 2 and
0 ≤ s ≤ n − 1. Then, there exist positive numbers c1 and c2, which
depend on n and d, such that

(1.22) Mn,d,s(H) < Hd2(n−1)−d(d(s+1)/2e−1) exp(c1 logH/ log logH)

and

M∗
n,d,s(H) < Hd(d+1)(n−1)−d(d(s+1)/2e−1)

exp(c2 logH/ log logH).
(1.23)

We remark that the estimate (1.22) yields an improvement on the

upper bound of Hd2(n−1) and (1.23) yields an improvement of the upper
bound Hd(d+1)(n−1) for s at least 2.
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2. Preliminaries

2.1. Weil height. We first record a well-known result about the ab-
solute Weil height; see [12, Chapter 3]. Let α be a non-zero algebraic
number, and let k be an integer. Then

(2.1) H(αk) = H(α)|k|.

There is also an well-known comparison between the naive height H0

and the absolute Weil height H; see [15, Equation (6)]. Let α be an
algebraic number of degree d. Then

(2.2) H0(α) ≤ (2H(α))d .

For the proofs of Theorems 1.1 and 1.2, we need the following result.

Lemma 2.1. Let α be an algebraic number of degree d, and let a be
the leading coefficient of the minimal polynomial of α over the integers.
Then

H(aα) ≤ 2d−1H(α)d.

Proof. By definition, we have

H(α) =

(
a

d∏
i=1

max{1, |αi|}

)1/d

,

where α1, . . . , αd are the roots of the minimal polynomial of α. Then,
aα is an algebraic integer, and

H(aα) =

(
d∏
i=1

max{1, |aαi|}

)1/d

.

Thus

H(aα)d ≤ ad
d∏
i=1

max{1, |αi|} = ad−1H(α)d,

which, together with (2.2), implies that

H(aα)d ≤ (2H(α))d(d−1) H(α)d = 2d(d−1)H(α)d
2

,

and so

H(aα) ≤ 2d−1H(α)d

as required. �
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2.2. Multiplicative structure of algebraic numbers. Let K be
a number field, and let H be a positive real number. We denote by
UK(H) the number of units in the ring of algebraic integers of K of
height at most H.

Lemma 2.2. Let K be a number field, and let r be the rank of the unit
group as defined in Section 1.3. Then, there exists a positive number
c, depending on K, such that

UK(H) < c(logH)r.

Proof. This is [12, Part (ii) of Theorem 5.2 of Chapter 3]. �

The next result shows that if algebraic numbers α1, . . . , αn are mul-
tiplicatively dependent, then we can find a relation as (1.1), where the
exponents are not too large. Such a result has found application in
transcendence theory, see for example [1, 18, 21, 25].

Lemma 2.3. Let n ≥ 2, and let α1, . . . , αn be multiplicatively depen-
dent non-zero algebraic numbers of degree at most d and height at most
H. Then, there is a positive number c, which depends only on n and
d, and there are rational integers k1, . . . , kn, not all zero, such that

αk11 · · ·αknn = 1

and

max
1≤i≤n

|ki| < c(logH)n−1.

Proof. This follows from [21, Theorem 1]. For an explicit constant c,
we refer to [13, Corollary 3.2]. �

Let x and y be positive real numbers with y larger than 2, and let
ψ(x, y) denote the number of positive integers not exceeding x which
contain no prime factors greater than y. Put

Z =

(
log

(
1 +

y

log x

))
log x

log y
+

(
log

(
1 +

log x

y

))
y

log y

and

u = (log x)/(log y).

Lemma 2.4. For 2 < y ≤ x, we have

ψ(x, y)

= exp
(
Z
(
1 +O((log y)−1) +O((log log x)−1) +O((u+ 1)−1)

))
.

Proof. This is [4, Theorem 1]. �



10 F. PAPPALARDI, M. SHA, I. E. SHPARLINSKI, AND C. L. STEWART

2.3. Counting special algebraic numbers. In this section, we count
two special kinds of algebraic numbers.

Lemma 2.5. Let K be a number field of degree d, and let u and v
be non-zero integers with u > 0. Then, there is a positive number
c, which depends on K, such that the number of elements α in K of
height at most H, whose minimal polynomial has leading coefficient u
and constant coefficient v, is at most

exp(c logH/ log logH).

Proof. Let c1, c2, . . . denote positive numbers depending on K. Let
NK/Q be the norm function from K to Q. Suppose that α is an ele-
ment of K of height at most H whose minimal polynomial has leading
coefficient u and constant coefficient v. Then, we see that uα is an
algebraic integer in K, and

NK/Q(α) = (−1)dv/u and NK/Q(uα) = (−1)dud−1v.

By Lemma 2.1, we further have H(uα) ≤ 2d−1Hd. Note that u is
fixed, so the number of such α does not exceed the number of algebraic
integers β ∈ K of height at most 2d−1Hd and satisfying

(2.3) NK/Q(β) = (−1)dud−1v.

We say that two algebraic integers β1 and β2 inK are equivalent if the
principal integral ideals 〈β1〉 and 〈β2〉 are equal. We note that, using [5,
Chapter 3, Equation (7.8)], the number E of equivalence classes of
solutions of (2.3) is at most τ(|ud−1v|)d, where, for any positive integer
k, τ(k) denotes the number of positive integers which divide k. By
Wigert’s Theorem, see [11, Theorem 317],

(2.4) E < exp (c1 log(3|uv|)/ log log(3|uv|)) .

Further by (2.2) u and v are at most (2H)d in absolute value, hence

(2.5) E < exp(c2 logH/ log logH).

Besides, if two solutions β1 and β2 of (2.3) are equivalent, then β1/β2
is a unit η in the ring of algebraic integers of K. But

H(η) ≤ H(β1)H((β2)
−1) ≤ 22(d−1)H2d.

By Lemma 2.2 the number of such units is at most

(2.6) UK(22(d−1)H2d) ≤ c3(logH)r.

Our result now follows from (2.5) and (2.6). �
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We remark that if we set u = 1, then Lemma 2.5 gives an upper
bound for the number of algebraic integers in K of norm ±v and of
height at most H.

Given integer d ≥ 1, let C∗d(H) be the set of algebraic numbers α of
degree d and height at most H such that αη is also of degree d for some
root of unity η 6= ±1, and let Cd(H) be the set of algebraic integers
contained in C∗d(H). Here, we want to estimate the sizes of Cd(H) and
C∗d(H).

For this we need some preparations. Given a polynomial f = adX
d+

· · · + a1X + a0 ∈ Q[X] of degree d, we call it degenerate if it has two
distinct roots whose quotient is a root of unity. Besides, we define its
height as

H(f) = max{|ad|, . . . , |a1|, |a0|},
and we denote by Gf the Galois group of the splitting field of f over
Q. Let Sd be the full symmetric group on d symbols.

Define

Ed(H) = {monic f ∈ Z[X] of degree d : H(f) ≤ H and Gf 6= Sd}

and

E∗d (H) = {f ∈ Z[X] of degree d : H(f) ≤ H and Gf 6= Sd}.

The study of the sizes of Ed(H) and E∗d (H) was initiated by van der
Waerden [28]. Here, we recall a recent result due to Dietmann [8,
Theorem 1]:

(2.7) |Ed(H)| � Hd−1/2.

Besides, by a result of Cohen [7, Theorem 1] (taking K = Q, s = n+ 1
and r = 1 there), we directly have

(2.8) |E∗d (H)| � Hd+1/2 logH.

We also put

Fd(H) = {monic f ∈ Z[X] of degree d : H(f) ≤ H, f is degenerate}

and

F∗d (H) = {f ∈ Z[X] of degree d : H(f) ≤ H, f is degenerate}.

Applying [10, Theorems 1 and 4], we have

(2.9) |Fd(H)| � Hd−1 and |F∗d (H)| � Hd.

We are now ready to prove the following lemma.

Lemma 2.6. We have:
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(i) for any integer d ≥ 1,

|Cd(H)| � Hd(d−1/2) and |C∗d(H)| � Hd(d+1/2) logH;

(ii) for d = 2 or for d odd,

|Cd(H)| � Hd(d−1) and |C∗d(H)| � Hd2 .

Proof. Pick an arbitrary element α ∈ Cd(H). We let f be its minimal
polynomial over Z, and let the d roots of f be α1, . . . , αd with α1 = α.
Since α is of height at most H, by (2.2) we have

H(f) ≤ (2H)d.

By definition, there is a root of unity η 6= ±1 such that αη is also
of degree d. If η ∈ Q(α), then under an isomorphism sending α to
αi, η is mapped to one of its conjugates ηi in Q(αi), which implies
that η ∈ Q(αi) for any 1 ≤ i ≤ d. Indeed, the image ηi of η in Q(αi)
multiplicatively generates the same group as η, and thus η is a power of
ηi, so η ∈ Q(αi). Hence,

⋂d
i=1 Q(αi) 6= Q, then we must have Gf 6= Sd,

that is,

(2.10) f ∈ Ed((2H)d).

Furthermore, since f is irreducible, in this case d 6= 2. We also note
that since η is of even degree ϕ(k), where k > 2 is the smallest positive
integer with ηk = 1, this case does not happen when d is odd.

Now, we assume that η 6∈ Q(α). Let K = Q(η, α1, . . . , αd), and let G
be the Galois group Gal(K/Q), where K is indeed a Galois extension

over Q. We construct a disjoint union G =
⋃d
i=1Gi, where

Gi = {φ ∈ G : φ(α) = αi}.
So, for each 1 ≤ i ≤ d

Giαη = {φ(αη) : φ ∈ Gi} = {αiφ(η) : φ ∈ Gi}.
Since αη is of degree d, we have

(2.11)

∣∣∣∣∣
d⋃
i=1

Giαη

∣∣∣∣∣ = d.

Note that α1 = α, then G1 = Gal(K/Q(α)). Since η 6∈ Q(α), there
exist two morphisms φ1, φ2 ∈ G1 such that φ1(η) 6= φ2(η). That is,
|G1αη| ≥ 2. Trivially, |Giαη| ≥ 1 for 2 ≤ i ≤ d. We now see from (2.11)
that there are two distinct indices i, j such that Giαη∩Gjαη 6= ∅, which
implies that αi/αj is a root of unity and thus f is degenerate, that is,

(2.12) f ∈ Fd((2H)d).
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Hence, if α ∈ Cd(H), then we have either (2.10) or (2.12). So, comb-
ing (2.7) with (2.9), we derive the first inequality in (i). If d = 2 or
d is odd, by the above discussion we always have (2.12), and thus the
first inequality in (ii) follows from (2.9). Similar arguments also apply
to estimate |C∗d(H)| by using (2.8) and (2.9). �

3. Proofs of Propositions 1.3 and 1.5

3.1. Proof of Proposition 1.3. Let c3, c4, . . . denote positive num-
bers depending on n and K. Let ννν = (ν1, . . . , νn) be a multiplicatively
dependent vector of multiplicative rank s whose coordinates are from
K and have height at most H. Set m = s + 1. Then, there are m
distinct integers j1, . . . , jm from {1, . . . , n} for which νj1 , . . . , νjm are
multiplicatively dependent and there are non-zero integers kj1 , . . . , kjm
for which

(3.1) ν
kj1
j1
· · · νkjmjm

= 1,

and further by Lemma 2.3, we can assume that

(3.2) max{|kj1 |, . . . , |kjm|} < c3(logH)m−1.

Let P be the set of indices i for which ki is positive, and let N be the
set of indices i for which ki is negative. Then

(3.3)
∏
i∈P

νkii =
∏
i∈N

ν−kii .

Plainly, either |P | or |N | is at least dm/2e.
Let I = {j1, . . . , jm}, and let I0 be the subset of I consisting of the

indices i for which ki is positive if |P | ≥ dm/2e, and otherwise let I0
be the subset of I consisting of the indices i for which ki is negative.
Note that

(3.4) |I0| ≥
⌈m

2

⌉
.

It follows from (3.3) that

(3.5)
∏
i∈I0

ν
|ki|
i =

∏
i∈I\I0

ν
|ki|
i .

For each coordinate νi, i ∈ I, let ai be the leading coefficient of
the minimal polynomial of νi over the integers. Note that aiνi is an
algebraic integer, and we can rewrite (3.5) as

(3.6)
∏
i∈I0

(aiνi)
|ki| =

∏
i∈I0

a
|ki|
i

∏
i∈I\I0

ν
|ki|
i .
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We first establish (1.10). Accordingly, we fix non-zero algebraic in-
tegers νi ∈ BK(H) for i from {1, . . . , n}\I0 and estimate the number
of solutions of (3.5) in algebraic integers νi, i ∈ I0, from BK(H). Ob-
serve that the number of cases when we consider an equation of the
form (3.5) is, by (3.2), at most(

n

m

)(
2c3(logH)(m−1)

)m
BK(H)n−|I0|,

and, by (1.3) and (3.4), is at most

(3.7) c4H
d(n−dm/2e)(logH)c5 .

Let q1, . . . , qt be the primes which divide∏
i∈I\I0

NK/Q(νi),

where NK/Q is the norm from K to Q. Since the height of νi is at most
H, it follows from (2.2) that

(3.8) |NK/Q(νi)| ≤ (2H)d, i = 1, 2, . . . , n,

and since |I\I0| ≤ n, we see that

(3.9)

∣∣∣∣∣∣
∏
i∈I\I0

NK/Q(νi)

∣∣∣∣∣∣ ≤ (2H)dn.

Let p1, . . . , pk be the first k primes, where k satisfies

p1 · · · pk ≤

∣∣∣∣∣∣
∏
i∈I\I0

NK/Q(νi)

∣∣∣∣∣∣ < p1 · · · pk+1.

Let T denote the number of positive integers up to (2H)d which are
composed only of primes from {q1, . . . , qt}. We see that T is bounded
from above by the number of positive integers up to (2H)d which are
composed of primes from {p1, . . . , pk}. By (3.9), we obtain∑

prime p ≤ pk

log p� logH,

which, combined with the prime number theorem, yields

pk < c6 logH.

Therefore we have

T ≤ ψ
(
(2H)d, c6 logH

)
,
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and thus by Lemma 2.4,

(3.10) T < exp(c7 logH/ log logH).

It follows that if (νi, i ∈ I0) is a solution of (3.5), then |NK/Q(νi)| is
composed only of primes from {q1, . . . , qt}, and so NK/Q(νi) is one of
at most 2T integers of absolute value at most (2H)d. Let a be one of
those integers.

By Lemma 2.5, the number of algebraic integers α from K of height
at most H for which

(3.11) NK/Q(α) = a

is at most exp(c8 logH/ log logH). Therefore, by (3.10), and (3.11),
the number of |I0|-tuples (νi, i ∈ I0) which give a solution of (3.5) is
at most exp(c9 logH/ log logH). Recalling m = s+ 1, we see that our
bound (1.10) now follows from (3.7).

We now establish (1.11). We first remark by (2.2) and Lemma 2.1
that

(3.12) 0 < ai ≤ (2H)d

and

(3.13) H(aiνi) ≤ 2d−1Hd,

for i = 1, . . . , n. Moreover, without loss of generality we can assume
that I \ I0 is not empty. Indeed, if I \ I0 is empty, then we can replace
an arbitrary coordinate νi, i ∈ I, by its inverse ν−1i .

In view of (3.6), we proceed by fixing ai for i in I0 and νi for i in
{1, . . . , n}\I. Since I\I0 is non-empty, say that it contains i1. We
further fix νi for i in I\I0 with i 6= i1, and then the corresponding
leading coefficient ai is also fixed. Let

β =
∏
i∈I0

a
|ki|
i

∏
i∈I\I0
i 6=i1

(aiνi)
|ki|,

which is actually a fixed non-zero algebraic integer, then NK/Q(β) is
a fixed non-zero integer. Note that the left-hand side of (3.6) is an
algebraic integer, so βνi1 is an algebraic integer, and then NK/Q(βνi1)
is also an algebraic integer. Thus, the leading coefficient ai1 divides
NK/Q(β). It follows that the prime factors of ai1 divide∏

i∈I0

ai
∏
i∈I\I0
i 6=i1

NK/Q(aiνi).

Since the heights of ν1, . . . , νn are at most H, we see, as in the proof
of the estimate (3.10), that there are at most exp(c10 logH/ log logH)
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possibilities for the leading coefficient ai1 . Note that by (2.2) there are
at most 2(2H)d possibilities for the constant coefficient of the minimal
polynomial of νi1 . Thus, by Lemma 2.5, there are at most

(3.14) Hd exp(c11 logH/ log logH)

possible values of νi1 that we need to consider. In total we have,
by (1.5), (3.12) and (3.14), at most(

n

m

)(
2c3(logH)(m−1)

)m
(2H)d|I0|H2d(n−|I0|−1)Hd

exp(c11 logH/ log logH)

equations of the form (3.6). Since |I0| ≥ dm2 e, the number of such
equations is at most

(3.15) H2dn−d(dm
2
e+1) exp(c12 logH/ log logH).

Let us put

(3.16) γ0 =
∏
i∈I0

a
|ki|
i

∏
i∈I\I0

(aiνi)
|ki|

and
γ1 =

∏
i∈I\I0

a
|ki|
i .

Notice that once νi is fixed for i in I\I0, so is ai and thus γ1 is fixed.
Then, (3.6) can be rewritten as

(3.17) γ1
∏
i∈I0

(aiνi)
|ki| = γ0,

and we seek an estimate for the number of solutions of (3.17) in alge-
braic numbers νi from B∗K(H) with leading coefficient ai for i ∈ I0.

Note that γ0 is an algebraic integer and γ1 is an integer. Let q1, . . . , qt
be the prime factors of ∏

i∈I0

ai
∏
i∈I\I0

NK/Q(aiνi).

Then, by (3.16) and (3.17), for each index i ∈ I0 the prime factors
of NK/Q(aiνi) are from {q1, . . . , qt}. It follows from (3.12), (3.13) and
(2.2) that∣∣∣∣∣∣

∏
i∈I0

ai
∏
i∈I\I0

NK/Q(aiνi)

∣∣∣∣∣∣ ≤ (2H)d|I0|(2dHd)d|I\I0| ≤ (2H)d
2n.

We can now argue as in our proof of (1.10) that the number of
solutions of (3.17) in algebraic integers aiνi, i ∈ I0, from K of height
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at most 2d−1Hd is at most exp(c13 logH/ log logH). The result (1.11)
now follows from (3.15).

3.2. Proof of Proposition 1.5. Let c3, c4, . . . denote positive num-
bers depending on n and d. Let ννν = (ν1, . . . , νn) be a multiplicatively
dependent vector of multiplicative rank s whose coordinates are from
A∗d(H). Set m = s + 1. Then, there are m distinct integers j1, . . . , jm
from {1, . . . , n} for which νj1 , . . . , νjm are multiplicatively dependent
and there are non-zero integers kj1 , . . . , kjm for which (3.1) holds, and
by Lemma 2.3, we can suppose that (3.2) holds. Let I = {j1, . . . , jm}
and I0 be defined as in the proof of Proposition 1.3, so that (3.4)
and (3.5) hold.

We first establish (1.22). Fixing non-zero algebraic integers νi ∈
Ad(H) for i ∈ {1, . . . , n}\I0, we want to estimate the number of solu-
tions of (3.5) in algebraic integers νi ∈ Ad(H) for i ∈ I0. The number
of cases when we consider an equation of the form (3.5) is, by (3.2), at
most (

n

m

)(
2c3(logH)m−1

)m
Ad(H)n−|I0|,

which, by (1.12), is at most

(3.18) c4H
d2(n−|I0|)(logH)m(m−1).

For each i ∈ I0, by (3.5) the prime factors of NQ(νi)/Q(νi) divide∏
j∈I\I0

NQ(νj)/Q(νj).

Exactly as in the proof of Proposition 1.3, we can apply (2.2) and
Lemma 2.4 to conclude that, for i ∈ I0, NQ(νi)/Q(νi) is one of at most
T integers, where, as in (3.10),

T < exp(c5 logH/ log logH).

Then, estimating the number of possible choices of the minimal poly-
nomial of νi over the integers by using (2.2), we see that there are at
most

(3.19) d
(
2(2H)d + 1

)d−1
exp(c5 logH/ log logH)

possible values of each νi for i ∈ I0. We now fix |I0| − 1 of the terms
νi with i in I0. Let i0 ∈ I0 denote the index of the term which is not
fixed. Then, νi0 is a solution of

(3.20) x|ki0 | = η0,
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where

η0 =
∏
i∈I0
i 6=i0

ν
−|ki|
i

∏
i∈I\I0

ν
|ki|
i .

If νi0 and µi0 are two solutions of (3.20) from Ad(H), then νi0/µi0 is a
|ki0|-th root of unity. But the degree of νi0/µi0 is at most d2, and so
there are at most c6 possibilities for νi0/µi0 when d is fixed. It follows
from (3.19) that each equation (3.5) has at most

(3.21) Hd(d−1)(|I0|−1) exp(c7 logH/ log logH)

solutions. Thus by (3.18) and (3.21), we have

(3.22) Mn,d,s(H) < Hd2(n−|I0|)+d(d−1)(|I0|−1) exp(c8 logH/ log logH).

Further, by (3.4),

(3.23) d2(n− |I0|) + d(d− 1)(|I0| − 1) ≤ d2(n− 1)− d
(⌈m

2

⌉
− 1
)
.

Now, (1.22) follows from (3.22) and (3.23).
We next establish (1.23). For each i ∈ I, let ai denote the leading

coefficient of the minimal polynomial of νi over the integers. Without
loss of generality, we can assume that I \ I0 is not empty. Indeed, if
I \ I0 is empty, then we can replace an arbitrary coordinate νi, i ∈ I,
by its inverse ν−1i .

In view of (3.6), we proceed by first fixing positive integers ai for
i ∈ I0. Since I\I0 is non-empty, say that it contains i1. We next fix νi
for i in i ∈ {1, . . . , n}\I0 with i 6= i1, and then the corresponding ai is
also fixed. Let

β =
∏
i∈I0

a
|ki|
i

∏
i∈I\I0
i 6=i1

(aiνi)
|ki|,

which is a fixed non-zero algebraic integer. Notice that the left-hand
side of (3.6) is an algebraic integer, so βνi1 is also an algebraic integer,
and thus as in the proof of (1.11) the prime factors of the leading
coefficient ai1 divide ∏

i∈I0

ai
∏
i∈I\I0
i 6=i1

NQ(νi)/Q(aiνi).

Since the heights of ν1, . . . , νn are at most H and their degrees are
all equal to d, we see, as in the proof of (3.10), that there are at
most exp(c9 logH/ log logH) possibilities for the leading coefficient ai1 .
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Then, combining this result with (2.2), we know that the number of
the possibilities for the minimal polynomial of νi1 is at most

Hd2 exp(c10 logH/ log logH).

Thus, there are at most

(3.24) Hd2 exp(c11 logH/ log logH)

possible values of νi1 that we need to consider.
Hence, the number of cases of the equation (3.6) to be considered is,

by (3.2), (3.12) and (3.24), at most(
n

m

)(
2c3(logH)m−1

)m
(2H)d|I0|A∗d(H)n−|I0|−1Hd2

exp(c11 logH/ log logH),

which, by (1.13), is at most

(3.25) Hd(d+1)(n−|I0|−1)+d|I0|+d2 exp(c12 logH/ log logH).

We now estimate the number of solutions of (3.6) in algebraic num-
bers νi ∈ A∗d(H) for i ∈ I0 with minimal polynomial having leading
coefficient ai. It follows from (3.6) that for each i ∈ I0 the prime
factors of NQ(νi)/Q(aiνi) divide∏

j∈I0

aj
∏
j∈I\I0

NQ(νj)/Q(ajνj).

Thus, by (2.2), Lemma 2.1 and Lemma 2.4, as in the proof of (3.10),
there is a set of at most T integers, where

T < exp(c13 logH/ log logH),

and NQ(νi)/Q(aiνi) belongs to that set. Since ai is fixed, the norm
NQ(νi)/Q(νi) also belongs to a set of cardinality at most T for i ∈ I0.
Notice that for the minimal polynomial of νi, i ∈ I0, if NQ(νi)/Q(νi) is
fixed, then the constant coefficient is also fixed, because the leading
coefficient ai has already been fixed. Hence, counting possible choices
of the minimal polynomial of νi by using (2.2), we see that there are
at most

(3.26) Hd(d−1) exp(c14 logH/ log logH)

possible values of νi for i ∈ I0. We now fix |I0| − 1 of the coordinates
νi with i ∈ I0 and argue as before to conclude from (3.26) that each
equation (3.6) has at most

(3.27) Hd(d−1)(|I0|−1) exp(c15 logH/ log logH)
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solutions. Thus, by (3.25) and (3.27), we obtain

M∗
n,d,s(H) < Hd(d+1)(n−|I0|−1)+d|I0|+d2+d(d−1)(|I0|−1)

exp(c16 logH/ log logH).
(3.28)

Observing that

d(d+ 1)(n− |I0| − 1) + d |I0|+ d2 + d(d− 1)(|I0| − 1)

= d(d+ 1)(n− 1)− d(|I0| − 1),

our result (1.23) now follows from (3.4) and (3.28).

4. Proof of Main Results

4.1. Proof of Theorem 1.1. By (1.9) and (1.10), there is a positive
number c which depends on n and K such that

Ln,K(H) = Ln,K,0(H) + Ln,K,1(H)

+O(Hd(n−1)−d exp(c logH/ log logH)).
(4.1)

Each such vector ννν of multiplicative rank 0 has an index i0 for which
νi0 is a root of unity. Accordingly, we have

nw(BK(H)− w − 1)n−1 ≤ Ln,K,0(H) ≤ nwBK(H)n−1,

and thus by (1.3)

Ln,K,0(H) = nwC1(K)n−1Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
.

(4.2)

We next estimate Ln,K,1(H). Each such vector ννν of rank 1 has a pair
of indices (i0, i1), two coordinates νi0 and νi1 from BK(H) and non-zero

integers ki0 and ki1 such that ν
ki0
i0
ν
ki1
i1

= 1. There are n(n− 1)/2 pairs
(i0, i1). By Lemma 2.3, the number of such vectors associated with two
distinct such pairs (i0, i1) and (i2, i3) is

(4.3) O
(
BK(H)n−2(logH)4

)
.

We now estimate the number of n-tuples ννν whose coordinates are
from BK(H) for which

ν
ki0
i0
ν
ki1
i1

= 1

with (ki0 , ki1) equal to (t, t) or (t,−t) for some non-zero integer t. We
have (BK(H) − w − 1)n−2 choices for the coordinates of ννν associated
with indices different from i0 and i1, because they are non-zero and
not roots of unity. Also there are BK(H)− w − 1 choices for the i0-th
coordinate, and once it is determined, say νi0 , then the i1-th coordinate



MULTIPLICATIVELY DEPENDENT VECTORS 21

is of the form ηνi0 or ην−1i0 , where η is a root of unity from K. Note
that

H(ηνi0) = H(νi0) = H(ην−1i0 ),

and that ην−1i0 is only counted when νi0 is a unit in the ring of algebraic
integers of K. Thus, we have

(4.4) (BK(H)− w − 1)n−2 ((BK(H)− w − 1)w + (UK(H)− w)w)

such vectors of rank 1 associated with (i0, i1). So, by (1.3), (4.3), (4.4)
and Lemma 2.2, the number of such vectors of rank 1 associated with
an exponent vector k with ki0 = t, ki1 = ±t for t a non-zero integer is

n(n− 1)

2
wC1(K)n−1Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
.

(4.5)

It remains to estimate the number of such vectors of multiplicative
rank 1 associated with an exponent vector k with ki0 = t1 and ki1 = t2
with t1 6= ±t2 and t1 and t2 non-zero integers. Let ν1, ν2 ∈ BK(H) be
associated with t1,−t2 respectively. In this case

νt11 = νt22 .

We first consider the case when t1 and t2 are of opposite signs. Then,
ν1 and ν2 are units in the ring of algebraic integers of K, and so by
Lemma 2.2 the number of such vectors is

(4.6) O
(
(logH)2rBK(H)n−2

)
.

It remains to consider the case when t1 and t2 are both positive.
Without loss of generality, we assume that 0 < t1 < t2, and also
t2 � logH by Lemma 2.3.

If t2 = 2t1, then ν1 is determined by ν22 up to a root of unity contained
in K, and also we have H(ν2) ≤ H1/2. So, the number of such pairs
(ν1, ν2) is O(Hd/2(logH)r) by using (1.3), and thus the number of such
vectors of rank 1 is

(4.7) O
(
Hd/2(logH)rBK(H)n−2

)
.

If t1 divides t2 and t2/t1 ≥ 3, then we have H(ν2) ≤ H1/3, and so as
the above the number of such vectors of rank 1 is

(4.8) O
(
Hd/3(logH)r+1BK(H)n−2

)
.

Now, we assume that t1 does not divide t2. Let t be the greatest
common divisor of t1 and t2. Note that t1/t ≥ 2 and t2/t ≥ 3. Put

(4.9) γ = νt11 = νt22 ,
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and let β be a root of xt1t2 − γ. Observe that

βt1 = η1ν2 and βt2 = η2ν1

for some t1t2-th roots of unity η1 and η2. There exist integers u and v
with ut1 + vt2 = t, and so

βt = βt1uβt2v = ηu1ν
u
2 η

v
2ν

v
1 = ηα

for η a t1t2-th root of unity and α an algebraic integer of K. Therefore

(4.10) (ηα)t2/t = βt2 = η2ν1,

and so

(4.11) H(α)t2/t = H(ν1).

Since H(ν1) ≤ H, we see, from (4.10) and (4.11), that ν1 is determined
up to a t1t2-th root of unity, by an algebraic integer of K of height at
most H t/t2 ≤ H1/3. Thus, by (1.3) and Lemma 2.3, the number of such
pairs (ν1, ν2) is O(Hd/3(logH)r+3), hence the number of such vectors
of rank 1 is

(4.12) O
(
Hd/3(logH)r+3BK(H)n−2

)
.

Thus, by (1.3), (4.5), (4.6), (4.7), (4.8) and (4.12), we get

Ln,K,1(H) =
n(n− 1)

2
wC1(K)n−1Hd(n−1)(logH)r(n−1)

+O
(
Hd(n−1)(logH)r(n−1)−1

)
.

(4.13)

The estimate (1.6) now follows from (4.1), (4.2) and (4.13).
Finally, assume thatK is the rational number field Q or an imaginary

quadratic field. Then, r = 0, and so BK(H) = C1(K)Hd + O(Hd−1)
by (1.4). Repeating the above process, we obtain

Ln,K,0(H) = nwC1(K)n−1Hd(n−1) +O(Hd(n−1)−1)

and

Ln,K,1(H) =
n(n− 1)

2
wC1(K)n−1Hd(n−1) +O

(
Hd(n−3/2)) ,

where the second error term comes from (4.7) (and also (4.4) when
d = 2). Hence, noticing (4.1) and d = 1 or 2, we obtain (1.7).
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4.2. Proof of Theorem 1.2. By (1.9) and (1.11), we have

L∗n,K(H) = L∗n,K,0(H) + L∗n,K,1(H)

+O
(
H2d(n−1)−d exp(c2 logH/ log logH)

)
.

(4.14)

As in the proof of Theorem 1.1, we obtain, by using (1.5) in place
of (1.3),

(4.15) L∗n,K,0(H) = nwC2(K)n−1H2d(n−1)+O
(
H2d(n−1)−1(logH)σ(d)

)
,

where σ(1) = 1 and σ(d) = 0 for d > 1.
Similarly, we find that

L∗n,K,1(H) = n(n− 1)wC2(K)n−1H2d(n−1)

+O
(
H2d(n−1)−1(logH)σ(d)

)
,

(4.16)

where the main difference from the proof of (4.13) is that the contri-
bution from the exponent vectors (ki0 , ki1) equal to (t, t) is the same as
when (ki0 , ki1) is equal to (t,−t).

The desired result now follows from (4.14), (4.15) and (4.16) by
noticing that

L∗2,K(H) = L∗2,K,0(H) + L∗2,K,1(H).

4.3. Proof of Theorem 1.4. We first establish (1.15). By (1.21)
and (1.22), we have

Mn,d(H) = Mn,d,0(H) +Mn,d,1(H)

+O
(
Hd2(n−1)−d exp(c1 logH/ log logH)

)
.

(4.17)

Note that each such vector ννν of multiplicative rank 0 has a coordinate
which is a root of unity of degree d. So, in view of the definition of
w0(d) in (1.14) we have

nw0(d) (Ad(H)− w0(d))n−1 ≤Mn,d,0(H) ≤ nw0(d)Ad(H)n−1,

and thus by (1.12) and (1.14),

Mn,d,0(H) = nw0(d)C5(d)n−1Hd2(n−1)

+O
(
Hd2(n−1)−d(logH)ρ(d)

)
.

(4.18)

We remark that Mn,d,0(H) = 0 if w0(d) = 0.
Moreover, arguing as in the proof of Theorem 1.1, we find that the

main contribution to Mn,d,1(H) comes from vectors associated with an
exponent vector k which has two non-zero components one of which is
t and the other of which is ±t with t a non-zero integer. Notice that
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the number Ud(H) of algebraic integers which are units of degree d and
height at most H satisfies (by using (2.2))

(4.19) Ud(H) = O
(
Hd(d−1)) .

We then deduce from (1.12), (1.14), (4.19) and Lemma 2.6 that

(4.20) Mn,d,1(H) = n(n− 1)C5(d)n−1Hd2(n−1) +O
(
Hd2(n−1)−d/2

)
;

if furthermore d = 2 or d is odd, then

(4.21) Mn,d,1(H) = n(n−1)C5(d)n−1Hd2(n−1)+O
(
Hd2(n−1)−d logH

)
.

Here, we need to note that for an algebraic integer α of degree d and a
root of unity η 6= ±1, αη might not be of degree d.

The desired asymptotic formula (1.15) now follows from (4.17), (4.18)
and (4.20). In order to show (1.16), we use (4.21) instead of (4.20).
Besides, (1.17) follows from (4.18) and (4.21) by noticing that

M2,d(H) = M2,d,0(H) +M2,d,1(H).

Finally, we prove (1.18), (1.19) and (1.20). By (1.21) and (1.23), we
have

M∗
n,d(H) =M∗

n,d,0(H) +M∗
n,d,1(H)

+O
(
Hd(d+1)(n−1)−d exp(c2 logH/ log logH)

)
.

(4.22)

As before, we have, by using (1.13),

M∗
n,d,0(H) = nw0(d)C6(d)n−1Hd(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d(logH)ϑ(d)

)
.

(4.23)

As in (4.20) and (4.21), we find that

M∗
n,d,1(H) = 2n(n− 1)C6(d)n−1Hd(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d/2 logH

)
;

(4.24)

if furthermore d = 2 or d is odd, we have

M∗
n,d,1(H) = 2n(n− 1)C6(d)n−1Hd(d+1)(n−1)

+O
(
Hd(d+1)(n−1)−d(logH)ϑ(d)

)
.

(4.25)

So, (1.18) follows from (4.22), (4.23) and (4.24); then using (4.25)
instead of (4.24) gives (1.19). In order to deduce (1.20), we apply (4.23)
and (4.25) and notice that

M∗
2,d(H) = M∗

2,d,0(H) +M∗
2,d,1(H).
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5. Lower Bound

In this section, we prove that (1.10) is sharp, apart from a factor
Ho(1), when n = s+ 1 is even.

In order to estabish the case K = Q, we need the following slight
extension of [19, Lemma 2.3].

Lemma 5.1. Let k and q be integers with k ≥ 2 and q ≥ 2. Let
γγγ = (γ1, . . . , γk) with γ1, . . . , γk positive real numbers. Then, there
exists a positive number Γ(q,γγγ) such that for T →∞, we have∑

. . .
∑

a1···ak=b1···bk
gcd(aibi,q)=1
1≤ai,bi≤T γi
i=1,...,k

1 ∼ Γ(q,γγγ)T γ(log T )(k−1)
2

,

where γ = γ1 + · · ·+ γk.

Proof. The proof proceeds along the same lines as in the proof of [19,
Lemma 2.3]. The only difference is that the primes p which divide q
are now excluded from the Euler products that appear in [19]. �

We show that apart from the factor exp(c1 logH/ log logH) the es-
timate (1.10) in Proposition 1.3 is sharp when n is even, s = n− 1 and
K = Q.

Theorem 5.2. Let n = 2k, where k is an integer with k > 1. Then,
for sufficiently large H, there exists a positive number c depending only
on n such that

Ln,Q,n−1(H) ≥ cHk(logH)(k−1)
2

.

Proof. Fix n− 2 distinct odd primes pi, qi, i = 2, . . . , k. Given positive
integers a1, . . . , ak, b1, . . . , bk, we first set

ν1 = 2p2 · · · pka1 and νk+1 = 2q2 · · · qkb1.

After this we set

νi = qiai and νk+i = pibi, i = 2, . . . , k.

Clearly, if a1 · · · ak = b1 · · · bk with gcd(aibi, 2p2q2 · · · pkqk) = 1 for any
2 ≤ i ≤ k, then the integer vector ννν = (ν1, . . . , νn) is multiplicatively
dependent of rank n − 1 by noticing that ν1 · · · νk = νk+1 · · · νn and
that there is no non-empty subset {i1, . . . , im} of {1, . . . , n} of size less
than n for which

ν
ji1
i1
· · · νjimim = 1,

with ji1 , . . . , jim non-zero integers.
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For sufficiently large H, we choose such integers ai, bi ≤ c1H for
some positive number c1 depending only on the above fixed primes
such that we have |νi| ≤ H for each 1 ≤ i ≤ n. Then, each such vector
ννν contributes to Ln,Q,n−1(H). Now applying Lemma 5.1 to count such
vectors (taking T = c1H and γi = 1 for each i = 1, . . . , k), we derive

Ln,Q,n−1(H) ≥ cHk(logH)(k−1)
2

,

where c is a positive number depending on n. �

To get a more general result, we need the following result, which
might be of independent interest.

Lemma 5.3. Let K be a number field of degree d, and m a positive
integer. Assume that m has t distinct prime factors and each prime
factor of m is greater than dt. Then, for sufficiently large H, there
exists a positive number c depending only on m and K such that

|{α ∈ BK(H) : gcd(α,m) = 1}| ≥ cHd(logH)r,

where r is the rank of the unit group of K.

Proof. Applying (1.3), it suffices to show that for each α ∈ BK(H)
with gcd(α,m) 6= 1, there is a uniform way to construct an element
β ∈ BK(cH) with gcd(β,m) = 1, where the constant c depends only
on m and K.

Now, given α ∈ BK(H) with gcd(α,m) 6= 1, let αi = α + i for i =
0, 1, . . . , dt. Assume that for each 0 ≤ i ≤ dt, we have gcd(αi,m) 6= 1.
Note that in the prime decomposition of the ideal 〈m〉 in K there are
at most dt distinct prime ideals, but the number of such αi is dt+1. So,
there exist 0 ≤ i < j ≤ dt such that the two ideals 〈αi〉 and 〈αj〉 have
a common prime factor, say p, which corresponds to a prime factor of
m, say p. Then, αi, αj ∈ p, and then αj − αi = j − i ∈ p, and thus
p | j − i, which contradicts the assumption p > dt.

Therefore, there must exist 0 ≤ j ≤ dt such that gcd(α + j,m) = 1.
This in fact completes the proof. �

Using Lemma 5.3 instead of Lemma 5.1, we can get a slightly weaker
but more general result.

Theorem 5.4. Let n = 2k, where k is an integer with k > 1, and let
K be a number field of degree d. Then, for sufficiently large H, there
exists a positive number c depending on n and K such that

Ln,K,n−1(H) ≥ cHdk(logH)rk.
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Proof. Following the strategy in the proof of Theorem 5.2 and letting
ai = bi ∈ BK(H) for each 1 ≤ i ≤ k, one can directly get the desired
result by choosing sufficiently large primes pi, qi and using Lemma 5.3.

�

Similarly, to understand the tightness of (1.22), we need the following
simple statement:

Lemma 5.5. Let d and m be two positive integers. Assume that the
prime factors of m are all sufficiently large. Then, for sufficiently large
H, there exists a positive number c depending only on d and m such
that

|{α ∈ Ad(H) : gcd(α,m) = 1}| ≥ cHd2 .

Proof. Let the prime factors of m be `1, . . . , `t. Given α ∈ Ad(H), let
xd + ad−1x

d−1 + . . .+ a1x+ a0 be the minimal polynomial of α over Z.
By (2.2), we have

|ai| ≤ (2H)d, i = 0, 1, . . . , d− 1.

If gcd(α,m) 6= 1, then there exists a prime factor, say `j, of m such
that `j | a0. So, counting related minimal polynomials we obtain

|{α ∈ Ad(H) : gcd(α,m) 6= 1}|

≤
t∑

j=1

d
(
2(2H)d + 1

)d−1 · 2(2H)d/`j.
(5.1)

Note that when `1, . . . , `t are all sufficiently large, the coefficient of
Hd2 in the right-hand side of (5.1) is less than C5(d) defined in (1.12).
Combining (5.1) with (1.12) completes the proof. �

Now, we are ready to get a partial comparison for (1.22).

Theorem 5.6. Let n = 2k, where k is an integer with k > 1, and let
d be a positive integer. Then, for sufficiently large H, there exists a
positive number c depending on n and d such that

Mn,d,n−1(H) ≥ cHd2k.

Proof. Following the strategy in the proof of Theorem 5.2 and letting
ai = bi ∈ Ad(H) for each 1 ≤ i ≤ k, we can obtain the desired result
by choosing sufficiently large primes pi, qi and using Lemma 5.5. �

Notice that from (1.22) and under the assumption in Theorem 5.6,
we have

Mn,d,n−1(H) ≤ Hd2(2k−1)−d(k−1)+o(1),
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which is still much larger than the lower bound in Theorem 5.6. This
suggests that the optimal exponent of H in (1.22) might be

d2(n− 1)− d2(d(s+ 1)/2e − 1),

which would show that the lower bound in Theorem 5.6 is sharp up to
a factor Ho(1).

6. Comments

It might be of interest to investigate in more detail how tight our
bounds are in Propositions 1.3 and 1.5. In Section 5 we have taken an
initial step in this direction.

It would be interesting to study multiplicatively dependent vectors
of polynomials over finite fields. In this case the degree plays the role of
the height. While we expect that most of our results can be translated
to this case many tools need to be developed and this should be of
independent interest.
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Séminaire de Théorie des Nombres de Paris 1993-94, London Math. Soc. Lec-
ture Note Ser. 235, S. David, ed., Cambridge University Press, Cambridge,
1996, 157–187,

[24] J. H. Silverman and B. Viray, On a uniform bound for the number of excep-
tional linear subvarieties in the dynamical Mordell-Lang conjecture, Math. Res.
Letters 20 (2013), 547–566.

[25] H. M. Stark, Further advances in the theory of linear forms in logarithms,
Diophantine approximation and its applications, 255–293, Academic Press,
New York, London, 1973.

[26] C. L. Stewart, On heights of multiplicatively dependent algebraic numbers, Acta
Arith. 133 (2008), 97–108.

[27] J. D. Vaaler, Heights of groups and small multiplicative dependencies, Trans.
Amer. Math. Sci. 366 (2014), 3295–3323.



30 F. PAPPALARDI, M. SHA, I. E. SHPARLINSKI, AND C. L. STEWART

[28] B. L. van der Waerden, Die Seltenheit der reduziblen Gleichungen und der
Gleichungen mit Affekt, Monatshefte für Matematik und Physik 43 (1936),
133–147.

[29] M. Widmer, Counting points of fixed degree and bounded height, Acta Arith.
140 (2009), 145–168.

[30] M. Widmer, Integral points of fixed degree and bounded height, Int. Math. Res.
Notices, 2016 (2016), 3906–3943.

Dipartimento di Matematica e Fisica, Università Roma Tre, Roma,
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