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1 Introduction

Let F (x, y) be a binary form with integer coefficients of degree n ≥ 3 and let
S = {p1, . . . , ps} be a set of prime numbers. In 1984 Evertse [5] proved that if
the binary form F is divisible by at least three pairwise linearly independent
linear forms in some algebraic number field then the number of solutions of

F (x, y) = pz11 · · · pzss ,(1)

in coprime integers x and y and integers z1, . . . , zs is at most

2× 7n
3(2s+3).(2)

Equation (1) is known as a Thue-Mahler equation. Estimates for the number
of solutions of (1) had been given earlier by Mahler [11] and Lewis and
Mahler [10]. Recently Bombieri [1] proved that if F is of degree at least 6
and is without multiple factors then the number of solutions of (1) in coprime
integers x and y and integers z1, . . . , zs is at most

(4(s+ 1))2(4n)26(s+1).(3)

If we fix y as 1 in (1) we obtain a Ramanujan-Nagell equation. In [4]
Erdös, Stewart and Tijdeman proved that the exponential dependence on
s in estimates (2) and (3) is not far from the truth by giving examples
of Ramanujan-Nagell equations with many solutions. Let ε be a positive
number, let 2 = p1, p2, . . . be the sequence of prime numbers and let n be
an integer with n ≥ 2. They proved that there exists a number s0, which is
effectively computable in terms of ε and n, such that if s is an integer with
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s ≥ s0 then there exists a monic polynomial F of degree n with distinct roots
and rational integer coefficients for which the equation

F (x) = pz11 · · · pzss(4)

has at least
exp{(n2 − ε)s1/n/(log s)1−1/n}

solutions in non-negative integers x, z1, . . . , zs. The polynomials F con-
structed in [4], for which (4) has many solutions, have the special property
that all their zeros are rational integers. The problem of proving a compara-
ble result with F irreducible over the rationals was posed in [4]. The purpose
of this paper is to establish such a result.

Theorem 1 Let K be a field of degree n over lQ, ε be a positive number
and 2 = p1, p2, . . . be the sequence of prime numbers. There exists a number
s0(ε,K), which depends on ε and K only, such that if s is an integer with
s ≥ s0(ε,K) then there exists an irreducible monic polynomial F in ZZ [x] of
degree n and with a root in K for which the equation

F (x) = pz11 · · · pzss ,(5)

has at least
exp{(n− ε)s1/n/(log s)1−1/n}(6)

solutions in integers x, z1, · · · , zs.

Let K be a field of degree n over lQ and let F be a monic irreducible
polynomial in ZZ [x] of degree n and such that a root of F generates K
over lQ . Let πF (x) denote the number of primes p with p ≤ x for which
F (x) ≡ 0(modp) has a solution. It follows from the Chebotarev density
theorem (see Theorems 1.3 and 1.4 of [8]) that

πF (x) = C(K)(1 + oK(1))
x

log x
,(7)

where C(K) is a positive number which depends on K only. Further 1/n ≤
C(K) ≤ 1 and if K is normal then C(K) = 1/n. On restricting the primes
occurring on the right hand side of (4) to those primes p for which there is
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a solution of F (x) ≡ 0(modp), and appealing to (7) we obtain the following
corollary of Theorem 1.

Corollary Let K be a field of degree n over lQ and let ε be a positive number.
There exists a number s1(ε,K), which depends on ε and K only, such that
if s is an integer with s ≥ s1(ε,K) then there exists an irreducible monic
polynomial F in ZZ [x] of degree n and with a root in K and there exist primes
q1, . . . , qs for which the equation

F (x) = qz11 · · · qzss(8)

has at least
exp{(C(K))−1/n(n− ε)s1/n/(log s)1−1/n}(9)

solutions in integers x, z1, . . . , zs.

In order to prove Theorem 1 we require an estimate from below for
ψK(x, y), the number of ideals in the ring of algebraic integers of K with
norm at most x all of whose prime ideal divisors have norm at most y. Let
log2 x denote log log x. For the proof of Theorem 1 we shall appeal to the
following result.

Theorem 2 Let K be a field of finite degree over lQ. There exists a positive
number C1 = C1(K), which depends upon K, such that for all x ≥ 1 and
u ≥ 3,

ψK(x, x1/u) ≥ x exp

−u
log u+ log2 u− 1 +

log2 u− 1

log u
+ C1

(
log2 u

log u

)2
 .

Canfield, Erdös and Pomerance [3] proved this result in the case that K =
lQ . We shall show that Theorem 2 follows from straightforward generalization
of their argument.

The Dickman-de Bruijn function ρ(u) is a positive, continuous, non-
increasing function on [0,∞) defined recursively by

ρ(u) = 1 for 0 ≤ u ≤ 1,

and, for N = 1, 2, . . .,

ρ(u) = ρ(N)−
∫ u

N
v−1ρ(v − 1)dv for N < u ≤ N + 1.
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In 1951 de Bruijn [2] proved that for u ≥ 3,

(10)

ρ(u) = exp

−u
log u+ log2 u− 1 +

log2 u− 1

log u
+O

( log2 u

log u

)2
 .

U. Krause [12] has recently proved, apparently by generalizing Theorem 2 of
[7], that for x ≥ 1, u ≥ 1 and ε > 0,

log

(
ψK(x, x1/u)

x

)
≥ log ρ(u) +OK,ε(u exp(−c (log u)3/5−ε)),

for c a positive constant. Combined with (10) this will give an alternative
proof of Theorem 2.

We remark that for the proof of Theorem 1 we do not require the full
strength of Theorem 2. The weaker estimate

ψK(x, x1/u) ≥ x exp{−u(log u+ log2 u− 1 + oK(1))}

would suffice.

2 Proof of Theorem 2

Let K be a finite extension of lQ with ring of algebraic integers OK . For each
ideal a in OK let Na denote the norm of a. Let πK(x) denote the number
of prime ideals p of OK with Np at most x. By Landau’s Primidealsatz [9,
Satz 191], for x ≥ 2,

πK(x) = li x+OK(x exp(−c1(log x)1/2)),(11)

where c1 is a positive number which depends on K only. Further, it follows
from (11) by Abel summation that for x ≥ 3,

∑
Np≤x

1

Np
= log2 x+ c2 +OK(exp(−c1(log x)1/2))(12)

where c2 is a number which depends on K only.
In [6, 1.14] Hazlewood gave the following estimate for ψK(x, x1/u).
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Lemma 1 For 2 < u ≤ (log x)1/3

ψK(x, x1/u) = c3xρ(u) +OK(xu2ρ(u)/ log x),

where c3 is a positive number which depends on K only.

Following Canfield, Erdös and Pomerance we first establish a crude lower
bound for ψK(x, x1/u).

Lemma 2 There is a number c4, which depends on K, such that if u ≥ c4

and x ≥ 1 then
ψK(x, x1/u) > x/u4u.(13)

Proof Since ψK(x, x1/u) ≥ 1 the result is trivial if u4u > x and so we may
assume that x ≥ u4u. Thus, by Lemma 1 and (10), (13) holds provided that
u is at most (log x)1/3 and u is sufficiently large. Therefore we may suppose
that u > (log x)1/3.

Put π′K(x) = max{1, πK(x)}, log+ x = max{1, log x} and

γ = inf
x≥1

π′K(x)/(x/ log+ x).

Note that γ > 0, by (11). Now put m = [u] and ϑ = u− [u]. We have

ψK(x, x1/u) ≥ (π′K(x1/u))mπ′K(xϑ/u)

(m+ 1)!

≥
(

γx1/u

log+(x1/u)

)m (
γxϑ/u

log+(xϑ/u)

)
((m+ 1)!)−1.

Thus for u sufficiently large,

ψK(x, x1/u) ≥
(
γux1/u

log x

)m (
γxϑ/u

log x

)
u−m

≥ x exp{−(u+ 1)(log2 x− log γ)}.
Since 3 log u > log2 x the result follows.

Proof of Theorem 2 The proof of Theorem 2 is very similar to the
proof of Theorem 3.1 of [3]. We shall now indicate the modifications to the
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proof of Theorem 3.1 of [3] which are required to transform it to a proof of
Theorem 2.

We replace ψ(x, y) by ψK(x, y) and D(u) by DK(u) where

DK(u) = inf
x≥1

1

x
ψK(x, x1/u).

Next let mj,1,mj,2, . . ., now denote the norms of the different ideals com-
posed of exactly [αju], not necessarily distinct, prime ideals with norms in
Ij. Notice that in contrast to the case K = lQ some mj,k

′s might be equal.
Let m1,m2, . . . denote the integers of the form m1,i1 ,m2,i2 , . . . ,mk,ik ; here
again same values might occur repeatedly. In place of (3.5) of [3] we have
the fundamental inequality

ψK(x, x1/u) ≥
∑
i

ψK(x/mi, w), w = x(1/u)(1−(k/(log u)3)).

Further in place of
∑
p∈Ij 1/p in expressions (3.11) and (3.12) of [3] we put∑

Np∈Ij 1/Np and to establish the analogue of (3.12) we appeal to (12). Note
also that the constants implied by the symbols O may now depend on K.
With these changes all inequalities and formulae up to and including (3.15)
of [3] remain valid. We now appeal to Lemma 2 and (3.9) to deduce that for
large u

logDK(v) ≥ −4v log v ≥ −4u.

This replaces the estimates logD(v) ≥ −3u but this change does not affect
the subsequent argument and the result follows as in [3].

3 Proof of Theorem 1

Throughout this section let K be an algebraic number field with [K : lQ ] = n
and let N( ) denote the norm from K to lQ . We shall assume n > 1 since
Theorem 1 plainly holds when n = 1. We define the function gK(y) for y in
IR by

gK(y) = max
x≥1

ψK(x, y)

x1−1/n
.

Observe that gK(y) is well defined since

ψK(x, y) ≤
∏
Np≤y

(
log x

logNp
+ 1

)
.
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Lemma 3 Let ε > 0. There is a number c5 which depends on K and ε such
that if y ≥ c5 then

gK(y) ≥ exp{(n− ε)y1/n/ log y}.

Proof Put x1 = exp(ny1/n) and u = ny1/n/ log y. Then certainly

gK(y) ≥ ψK(x1, y)

x
1−1/n
1

.(14)

Further,

log u = log n+
log y

n
− log2 y(15)

and
log2 u = log2 y − log n+ o(1).(16)

Thus, by Theorem 2, (15) and (16),

ψK(x1, y) ≥ exp

{
ny1/n − ny1/n

log y

(
log y

n
− 1 + oK(1)

)}
.

Therefore, by (14),

gK(y) ≥ exp

{(
ny1/n

log y

)
(1 + oK(1))

}
,

and the lemma follows.

Let x and c be positive real numbers with x ≥ 1. We define V (x, c) by

V (x, c) = {v = (v1, . . . , vn) ∈ ZZ n | |vi| ≤ cx1/n for i = 1, . . . , n}.

Lemma 4 Let {1, α2, . . . , αn} be an integral basis for OK. Let A be a subset
of V (x, c). The number of pairs (u,v) with u = (u1, 0, . . . , 0) ∈ V (x, c) and
v ∈ A such that lQ(u1 − (v1 + v2α2 + · · ·+ vnαn)) = K is at least

(2[cx1/n] + 1)|A| − c0x
1/2+1/n,
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where c0 is computable in terms of c and K.

Proof Let c6, c7, c8 denote positive numbers which depend on c and K.
The number of pairs (u,v) with u = (u1, 0, . . . , 0) ∈ V (x, c) and v ∈ A
is (2[cx1/n] + 1)|A|. Thus it suffices to show that there are at most c6x

1/2

elements v ∈ V (x, c) with lQ(v1 + v2α2 + · · ·+ vnαn) 6= K.
There are at most c7 proper subfields of K and each is of degree at most

n/2. Suppose that K ′ is a proper subfield of K of degree m over lQ and that
{β1, β2, . . . , βm} is an integral basis for OK′ . We may express the elements
of this basis in terms of the integral basis {1, α2, . . . , αn} to get

βi = b1,i + b2,iα2 + · · ·+ bn,iαn, for i = 1, . . . ,m.

The vectors (b1,i, . . . , bn,i) for i = 1, . . . ,m generate a sublattice of V (x, c)
with at most c8x

m/n points. Since m ≤ n/2 and there are at most c7 such
subfields the result follows.

Proof of Theorem 1 Let c9, c10, . . . be numbers which are computable in
terms of K. Let σ1, . . . , σn denote the lQ-isomorphisms of K into lC and for
any ϑ ∈ K put σi(ϑ) = ϑ(i) for i = 1, . . . , n. Let 1, α2, . . . , αn be an integral
basis for OK for which

max{|α(i)
j | | 1 ≤ j ≤ n, 1 ≤ i ≤ n}

is minimal. Thus
max
i,j
|α(i)
j | < c9.

Let h be the class number of K and let H be a set of ideals of OK with
exactly one ideal from each ideal class of the ideal class group. Choose the
ideals in H to have minimal norm. Then the norm of an ideal from H is
at most c10. Next let x and y be real numbers with x ≥ y ≥ c10. For each
ideal a of OK we denote the greatest norm of a prime ideal divisor of a by
Pa with the convention that P (0) = P (1) = 1. To each ideal a of OK of
norm at most x with Pa ≤ y we associate the principal ideal (α) obtained
by multiplying a by the appropriate member of H. Then N(α) ≤ c10x and
P (α) ≤ y. Further, every principal ideal (δ) with N(δ) ≤ c10x and P (δ) ≤ y
occurs in this manner at most h times. Thus the number of principal ideals
in OK of norm at most c10x and free of prime ideal divisors of norm greater
than y is at least ψK(x, y)/h.
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For each principal ideal a in OK there is a γ in OK with a = (γ) and such
that

|γ(i)| ≤ c11N(γ)1/n, for i = 1, . . . , n,

see for example Lemma A.15 of [13]. Thus there are at least ψK(x, y)/h
numbers γ in OK such that

|γ(i)| ≤ c11(c10x)1/n, for i = 1, . . . , n,

with N(γ) ≤ c10x and P (γ) ≤ y. We now express these numbers γ in terms
of the integral basis {1, α2, . . . , αn} of OK . We have

γ(i) = v1 + v2α
(i)
2 + · · ·+ vnα

(i)
n ,

for i = 1, . . . , n with vi ∈ ZZ for i = 1, . . . , n. By Cramer’s rule

|vi| < c12x
1/n, for i = 1, . . . , n.

Let A = A(x, y, c12) be the set of elements v = (v1, . . . , vn) ∈ V (x, c12) for
which N(v1 + v2α2 + · · ·+ vnαn) does not contain prime divisors larger than
y. Then |A| ≥ ψK(x, y)/h. Thus by Lemma 4 the number of pairs (u, v)
with u = (u1, 0, . . . , 0) ∈ V (x, c12) and v ∈ A for which lQ(u1 − (v1 + v2α2 +
· · ·+ vnαn)) = K is at least

(2[c12x
1/n] + 1)ψK(x, y)/h− c13x

1/2+1/n

and the number of differences u− v with u, v as above is at most

(4c12x
1/n + 1)(2c12x

1/n + 1)n−1 ≤ c14x.

Thus there is a difference d = (d1, . . . , dn) ∈ ZZ n for which lQ(d1 + d2α2 +
· · ·+ dnαn) = K and for which there are at least

c15
ψK(x, y)

x1−1/n
− c16(17)

solutions of the equation u − v = d with u = (u1, 0, . . . , 0) ∈ V (x, c12)
and v ∈ A. We now take y = ps and choose x so that ψK(x, y)/x1−1/n is
maximized. Let ε > 0. Then by the prime number theorem ps ∼ s log s
and so by (17) and Lemma 3 there exists a number s0(ε,K), which depends
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on ε and K, such that for each s with s > s0(ε,K) there is a d ∈ ZZ with
lQ(d1 + d2α2 + · · ·+ dnαn) = K and for which the equation

u− v = d,(18)

with u = (u1, 0, . . . , 0) ∈ V (x, c12) and v ∈ A(x, ps, c12), has at least

exp{(n− ε)s1/n/(log s)1−1/n}

solutions. For each s > s0(ε,K) we define F (= Fs) in ZZ [z] by F (z) =
N(z− (d1 + d2α2 + · · ·+ dnαn)). Note that F is monic, irreducible of degree
n and has a root in K. Further for each solution (u, v) of (18), z = u1 yields
a solution of (5) since N(v1 + v2α2 + · · · + vnαn) does not contain prime
factors larger than y, and the result follows.
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