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last ﬁve yeara. It is- 1mpﬂsslb1e to cover a.ll a.pplma.tmns within the scope |
of this paper, but the wide range of applications illustrates how funda-
mental these developments are. The. developments are still going on and
several of the mentioned results are new.

In §1 we introduce natatmn which will be used thmughaut the pa-
per. In §§2-5 five theorems on S-unit equations are treated. The Main
~ Theorem on S-Unit Equations (Theurem 1), which deals with general

S-unit equations
To + :1:1 +...+ 2z, =0 in .S'-units T01T1y. ey Tmy (0.1)

is sta.ted in §2 and its deduction from the Subspace Theorem is sketched
in §4. Theorem 1' is a version of Theorem 1 dealing with arbitrary finitely
‘generated multiplicative subgroups of C\ {0}, Theurems 2—5 stated in
§3 deal with S-unit equations in two variables, |

o121 + ooy =1 in S-units 1,32 | (0.2)

where o3 and a3 are constants. Theorem 2 gives an upper bound for the
number of solutions of (0.2). A proof of it, this time not derived from
the theory of hypergeometric functions, but from a variant of Roth’s
theorem, is given in §4. Theorem 3 was proved during the conference
in Durham. It says that apart from finitely many equivalence classes
- of equatmns only, equation (0.2) has at most two solutions. Its proof-
% is sketched in §5. Theorems 1-3 are ineffective and hence the methods
do not yield upper bounds for the sizes of the solutions. In contrast,
Theorems 4 and 5 are effective. They are based on Baker’s method
‘concerning linear forms in logarithms of algebraic numbers. Theorem 4
gives an upper bound for the sizes of the solutions of (0.2). Theorem
5, which is new, is an effective, but weaker version of Theorem 3. The
i proofs of Theorems 4 and 5 in the rational case are given in §5. The
& -formulations of Theorems 1-5 in the case of rational integers are given
/&1 as Corollaries 1.3 and 2-5. Both §6 and §6 deal with rational integers
= and can be read independently of the rest of the paper. They are meant
& . for those readers who want to understand and apply the results on S-unit
B equatwns for rational integers only.

In §§6-9 a.pphca,tmns of Theorems 1-5 are given which are more
or less straightforward. Theorems 6 and 7 in §6 are new. Theorem 7
"""’resnlves a conjecture of D. Newman on the number of representations of

e a.n mteger in the form 237 +2""+35 where a, B, v and § are non-—negatlve

Era
.......
-
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Theorem 9 in §8 is an extension of a result of Evertse [20]. It implies
several known results on recurrence sequences as is shown in §38, 9.

The more classical applications of S-unit equations are mentioned
in §§10-12. There is a strong connection between the theory of S-unit
equations and the theory of decomposable form equations (which covers
the Thue-Mahler equations). The two theories are in fact equivalent (cf.
§11). Siegel proved the finiteness of the number of solutions of unit equa-
tions in two variables via Thue equations. The opposite approach has
also proved applicable, even for decomposable form equations in more
than two unknowns. There are several consequences of unit equations -
which can be deduced via complicated systems of unit equations. All
these results can be proved by using the same “intermediate” results,
Theorems 10 and 11, which are applications of Theorems 4 and 2 and
are presented in §10. The versions of Theorems 10 and 11 presented
here had only appeared in Hungarian [42] before. These results are im-
provements of results in Gyory {35]. Theorem 12 in §10 is an application
of Theorem 11 to irreducibility of polynomials. Theorems 13-15 in §11
provide general finiteness results for decomposable form equations which
imply several known results on Thue equations, Thue-Mahler equations,
norm form equations, discriminant form equations and index form equa-
tions. Theorems 1618 in §12 give finiteness results for algebraic integers
and polynomials with a given non-zero discriminant. They have many
applications in algebraic number theory. |
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Finally, in §13, a remarkable application of the Main Thenrem on
S-unit Equations to algebraic independence of function values due to
Nishioka {60, 61] is mentioned. Nishioka solved in this way a conjecture
of D. W. Masser and a more general problem which had been open fﬂr' _.
several years.

For more information on S-unit equatmns a;ud their a,pphcatmns
see [25], [36], [51] and [77].

authors to d1scuss mathematics and to work together. 2
thank F. Beukers and P. Erdés for valuable discussions a.nd Lla,nxmii'_
Wang for remarks on an early draft of the paper.

§1. Notation and simple observations

The notation introduced in this paragraph will be used thrﬂugh
the paper without further mention. Let K be an algebraic number fiel¢
with ring of integers Ok . Let d, hx, rx and Ry denote the degree';{;;__;__ <
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number, unit rank and regulator of K, respectively. Let My be the set of
places on K (i.e. equivalence classes of multiplicative valuations on K). -
A place v is called finite if v contains only non-archimedean valuations
and infinite otherwise. K has only finitely many infinite places. The
rational number field Q has only one infinite place oo, containing the
ordinary absolute value, and a finite place for each prime number p. In oo

" we choose a representative | . |oo Which is equal to the ordinary absolute

‘value. In the place corresponding to p (which is also denoted by p) we
choose the valuation |.], such that |p|, = p™* as representative. In each
place v of M we choose & valuation |. |, as follows. Let p € Mq be such

" that v|p (i.e. the restrictions to Q of the valuations in v belong to p; in
particular v is infinite if and only if v|oo). We put dy = [Ky : Q,), where
K, and Q, denote the completions of K at v and Q at p, respectively.
In v we choose the valuation |. |, satisfying "

| laely == |.G:|;“/-d foreach ain @. - (1.1)
By these choices for the valuations we have the Product Formule

IT lalo=1 for a € K. | (1.2)
vEMg

Jere and elsewhere we put V* = V'\ {0} for any set V. Put

- 0 if v is a finite place,
s(v) =< 1/d if K, =R,
| 2/d if K, =C.

Then 3 enm, $(v) =1 and |
oy + ...+ arly r"(")-max(lcmv, o larle) o (1.3)

for a1,...,0, € K and v € Mk.

The height function h(.) on K is defined by
}h(.:r:) - H max(1,|al,)  for @ € K.
veMx

. This height depends only on a, and not on the choice of the algebraic
number field K. The following elementary properties of A can be proved.

hla™) =hla) - for a € K*,
hlay...ap) < A{ag) L h(an)  forag,...,ar€ K,  (1.4)
(e +...+ o) Srh(en).. h(ar)  fores,...oc €K,

aAH
-y e

h(a)=1  if and only if & = 0 or a root of uﬁity.
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Other heights of algebraic numbers a which are often used in diophan- ;
tine approximation, are [&! (the maximum of the absolute values of the
conjugates of & over Q) and H(«) (the maximum of the absolute values
of the coefficients of the minimal polynomial of « over Z). If a is an

algebraic number of degree m, then

lal < (h(a))m :<_i ﬁ:fl"‘, if @ is an 'é.lgebfaic integer,
ol ~™H(a) < (h(cu))m < vm+1H(e), if «is an arbitrary (1.5)

algebraic number.

The first inequality is obvious, while the second follows from Lang {51]
Ch. 3, Theorem 2.8. Consequently, for each positive number C there
are only finitely many « in K with h(e) < € and these belong to an
eﬂ'ectwely determinable finite subset of K.

Let S. be the set of all infinite places on K, and let S be a finite
subset of My containing Soo. Let 3 denote the cardinality of 5. An
element o of K is called an S-unit if |a|, = 1 for each v ¢ § (l.e.
v € Mg \S). The S-units form a finitely generated multiplicative group
of rank s —1 which is denoted by Us. If § contains no finite places, then
Usg is just the group of units, Uk, of Ok. Note that if o € Ug, then, by
(1.2) and (1.4),

DoAY
o LI
xT i

[Tledo=1, h@)=[]max(t,lel).  (L6)

yeS | vES

Suppose that the finite places in S ‘correspond to the prime ideals
©1,...,p: and that these prime ideals lie above rational primes not ex- &
ceeding P(> 2). An element o of K is called an S-integer if |a|, < 1 for .3
all v ¢ S. The S-integers form a ring which is denoted by Os. If e € K
then the principal ideal (af) can be written uniquely as a product of two. 2
‘ideals A;, A; where A; is composed of p1,...,p: and Ag is ﬂﬂmpﬂﬂﬂd
solely of prime ideals different from gps,..., p;. We de:me Ns(«), which 3§
is sometimes called the S-norm of «, by Ng(a) = N K/Q(Ag) Thl'ﬁ
function Ng has several useful properties. We have |

Ns(a) = (H o, ) for all @ in K.
vES |

Further Ns 1a mu1t1phca.twe, Ns{(a) > 1 if a € Og, and Ns(a:) --
o € Us. Finally we note that if § = S, then Ng(a) = ‘NKKQ(C”)[;F: -
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We shall deal with the (general homogeneous) S-unit equation
oLy + ...+ 0nZn=0 1n a:u,:i:l,..;,:cn € Us (1.7)

where ag, a1, ..., an € K*. In the study of this equation we can identify
pairwise linearly dependent non-zero points in K™t that is, consider
solutions in the n-dimensional projective space P*(K). Points in P*{K),

so-called projective points, are denoted by X = (2o : ®1 : ... : Zy), where
the homogeneous coordinates are in K, and are determined up to a
multiplicative factor in K. Alternatively we can divide all coefficients «;
by ao and all variables z; by —zo and study the mhomageneam S-unit
equation -

alml +.-.+ﬂnmﬂ=1 inml}ngltljmﬂeUSi

Since Ug is finitely generated, §-unit equations are in fact exponential'
diophantine equations. Most of our attention will be focussed on the
_(-mhamageneﬂua) S-unit equation in two variables,

a1m+agy=1 jnmyeU-s* (18)'

It is implicit in the work of Mahler [56] and explicitly stated by Lang
[50] that (1.8) has only finitely many solutions. Denote the number c;f
solutions of (1.8) by v(oy, a2).

In §3. we shall give upper béunds for ma,x(h(a:) h(y)) and for
v(ay, ) when z, y satisfy (1.8). In view of the symmetry in (1.7)
we can- distinguish equivalence classes of equations such that the sets
of solutions of twa'equatiuns from the same class are isomorphic: two

tuples (&g, 1,...,&s) and (Bo, B1,...,Pn) in (K*)**! (resp. the corre-
spondmg homogeneous S-unit equations) are called S-equivelent if there

is a permutation o of {0,1,...,n},a A € K* and S- umts Eu,t‘:‘l,.“,ﬁn
such that

Bi = A€iq(s) fori=0,,... n.

Observe that the solution (e,-1(0y&0 : €r-1()%1 ¢ ... : e,-x(n)f&n) of
L Qoo +a321+ ...+ apitn = 0 corresponds to the solution (:c.,(o) Ep(1) °

S Eany) Of Bozo + P171 + ... + Pan = 0 so that there is indeed a
s simple bijection between the solutions of both equations. Transferring
+ - the concept of S-equivalence to the inhomogeneous case, we find that the
. S-equivalence class of equation (1.8) consists of the following six classes
w"“‘nf mhomc-geneous S-unit equations: -

Q€1 + agéay =1,
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a11a251m+a1 ey = 1,

oy Y ez + o ey = 1, | (1.9)

261 % + ay 62y = 1,

-1 -1 e 1
a6+ oy azey =1,

105 et + ag ey = 1,

where ¢; and ¢; are arbitrary S-units,

- We now show that if Us is infinite (which is the case if 5 > 1), then
there are infinitely many S-equivalence classes of S-unit equations with
at least two distinct solutions. Lét ¢ € Us, € # 1. For each 5 in Ug with
n#é’,n#lwedeﬁneal, oy by

o 71 -u: ¢ 1

e

Then (1.1) and (£, n) ave distinct solutions of ayz + a2y = 1in 2,y €
Us. The equations a1z + a2y = 1 constructed in this way must belong
to infinitely many S-equivalence classes, since the number of equations
constructed in this way is infinite, but each S-equivalence class contains
only finitely many equations with solution (1,1). ’I‘his last fact follows
from applying Lang’s result to {(1.9) with ¢ = y = 1, a1 and a ﬁxed
and €1, €2 € Usg variables. L

,
Ll . -
L T e A i, Y S i By S R S e . .
) R N R T S S [ ] | T e - . ) ; ) L - - L.
pirks R Lo L L L T et A A S S R YR S

§2. The General Case: The Main Theorem on S-Unit Equatiq_nﬁ

In this paragraph we deal with equa.tinns (1.7). The results in:
this paragraph are all based on p-adic versions of the Thue-S1egel-Roth-
Schmidt method. Both Schlickewei [68], (69], [70] and Dubois and Rhm?:
[14] gave such a p-adic version and used it to prove that, for any: gwe
set of prime numbers T’ = {p1 N 7 the equation.

Zo+21+...+2,=0 inzg,21,...,%5 €1 .5f§?
has only finitely many solutions x4, 21, ..., £, each composed nf pr1
from T such that i

ged(zi, z5) =1 for 2 # 5. B T
Actually they proved the following more general result. Let A, 5 be

constants with A > 0, 0 € § < 1. Then the number of solutwns aﬁ (
satisfying (2.2} and | 3

n

[T (1ol T i) < A(mex(lzal, 1m1|,..i,fmn|>) E

k=0 peT
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is finite. The restriction of pmrmse capnmahty may be too severe, but |
some restriction is needed in view of the equation 2o + 21 +...+ 25 =0
with T' = {2, 3} which has the solution ¢¢ = 28!, 3; = 2%, 2, = —3.2%,
g = 238%, 24 = 3¢, 25 = =357 for all positive integers k, . |
Van der Poorten and Schlickewel [67] proved that (2.1) has only

finitely many solutions .‘L‘g, :::1, ..y &y each composed of primes from T
“such that - S | |

gcd(:nu, a‘:n) = ] and no proper non-empty subsum

i, + ...+, of zg + 23 + T, vanishes. (2.4)

Condition (2.4) is necessary and sufficient. Their result holds for alge-

- braic number fields (cf. Corollary 1.1) and even for finitely generated

subgroups of C* (¢f. Theorem 1'), but they have not yet published the

~ complete proofs of their claim. Independently of van der Poorten and -

Schlickewei, Evertse [20] proved that (2.1) has only finitely many so-

lutions satisfying (2.3) and (2.4) and extended this result to algebraic

number fields. By using these results of van der Poorten and Schlickewei

- and Evertse, a further extension for subgroups of C* of finite rank was

given by Laurent [52]. |

| To state Evertse’s result in full generality we need some more no-

tation. For any projective point x = (=g : @1 : ... : &y) in P*K) and

for any v € My we put ]xlﬂ = max([:colu,...,|mn| ). We define the
projective height') of x as.

Hx)= [T Ixls- - (2.5)

veMp

This height is well-defined, since it is independent of the multiplicative *
factor by the Product Formula. There is a simple relation between the
height h and the projective height H, namely

hla) = 'H(l a)  forac K. (2.6)

Let, as always, S be a finite subset of Mk containing all infinite places.
= Let A, § be real constants with A > 0, § > 0. A projective point
- xXE€ F‘“(K ) is called (A, 8, §):admissible?) if its homogeneous coordinates
-:: -can be chosen such that | |

________ ‘1) The valuation |.llv in [20] 18 not the same as i;he valuation |.|,.
The relation between them is given by |la|l, = |a|¢ for & € K. Hence
- the notation of (4,4, S )- adm1ss1b111ty here correspunds with (ﬁd §,8)-
adm1ss1b1hty in Evertse’s paper.



b ey Ny ] D L] -ty AT g e D e R e T L LT L N 1

g - S.UNIT EQUATIONS

- ¥ S "
ETLERd L T ]

. -I "u N |
PR R Py

(i) all zx are Suintegers S I . . . 4
and | ”
Gi) [] H |k |y < ﬁ(H(K))
vES k=

Clearly the homogeneous cﬂﬂrdma_,tes of (1,0, 5)-admissible projective
points can all be chosen to be S-units.

L e I LTI L
o B e e e A T T RS ) i e b

-
-

Tl i

Theorem 1. (The Main Theorem on S-Unit Equations for Algebraic'
Number Fields) (Evertse [20]). )

Let A > 0,0 < 6 < 1. There are anly finttely many (4,4, S)-
admissiblé projective points X = (wo : @y : ... : Tn) € P*(K) satisfying

zo+T1+...+Ta=0 | (27) |
bul

i + ...+ i, # 0 for each proper, non-empty subset
{i.].? »oo 1ik} ﬂf {0: 1,... :n'} (28)

We express (2. 8) succinctly by saying that no subsum of kg + ...+ 2n
vanishes. When we use the word ‘subsum we exclude the full and empty

51.1111.

For general homogeneous S-unit equations (1.7) we derive the fal-
lowing: consequence of Theorem 1.

Corollary 1.1. Let a, '3’11 ey Ol G K*. There are only finitely ma

projective points X = (2o : 1...: o) € P*(K) with 20,21,...,2a € Ufs“%

such that apzo+ayxy+...+ antn = 0, but no subsum of aozo -E-al"g;f-' :
.+ 0nTy vanishes. _, :

This implies for mhﬂmngeneous S-unit equa,tmns*

-u,._.

der Poorten a,nd Schlickewei [67]).
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Let G be a ﬁﬁitély generated multiplicative subgroup of C*. There
are only finitely many projective points X = (wg : @y ¢ ... 1 2,) € PH@)
satisfying (2.7) and (2.8). -. -

Laurent [52] proved Theorem 1’ in the more general case of multi-
plicative subgroups of C* of finite rank. He used it to prove a special

case of a conjecture of S. Lang which is an assertion on commutative
algebraic groups. |

83. Upper bounds in the two variables case

In this section we deal with the S-unit equation in two variables
a;ﬁ: + gy =1 in ¢,y € Ug, ‘ (1.8)

where a3,a2 € K”. It is implicit in the work of Siegel [78, 79] that
equations of the form (1.8) have only finitely many solutions in units z,
y, and mplicit in the work of Mahler [56] that {1.8) has only finitely
many solutions (in S-units z, y). As remarked before, Lang [50] proved
this result explicitly. Siegel developed the so-called Thue-Siegel method
involving hypergeometric functions. By combining his method with ideas .
of Mahler about p-adic approximation of algebraic numbers, Evertse
proved the following result on the number of solutions v(ay, &g ) of (1.8).

Theorem 2. (Evertse [19]).

V(Etl,ﬂ:z) ﬂ 3 X 7d+2".

-~ This bound has the remarkable feature of being dependent only on the
" degree of K and the cardinality of S. Theorem 2 is a considerable im-
%upmvement and generalisation of a result of Lewis and Mahler {54] who
+~ derived an upper bound for v{1,1) in the rational case which depends
DIl the primes involved in $ and not only on their number. Indepen-
* dently of Evertse, and by a different method, Silverman [81] showed

Iy ..-'
i . Y ]
N f‘r"-'\-\. En
e g AP e
s Tt
Lt ok i
' Th 3 [}
AT
oy =t T

=——1(1,1) < C x 2%0¢, Here and elsewhere C is a constant, the value of .

- P

~

Wluch may be different at each occurrence. Later, Evertse and Gydory
’w:f,_ﬂi

f[22] derived an upper bound for the number of solutions of (1.8) inde-
:gﬁejndent of @; and a; in the general case that the variables z, y belong

: “ﬁﬂ a finitely generated multiplicative subgroup of C*.
- .

i =

§ ‘The dependence of Evertse’s bound on the degree of K and the

i

cardinality of 5 is necessary. Nagell [59] proved that for d > 5 there

o i
TR

s ﬂts a number field K of degree d such that z +y = 1 has at least

L
-

'F"‘;" =R
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3(2d — 3) solutions in units @, y of K. Erdds, Stewart and Tijdeman
[17] proved that in the case K = Q the equation 2 +y = 1 can have
more than exp(Cs'/?/logs) solutions z, y € Us. This implies that
the best improvement of Theorem 2 one can hope for is (a1, a2) <
exp(s'/?). According to a conjecture which Stewart presented during the
conference, the exponent & should be replaced by Z, In great contrast to

_ 2 | |
this result is the observation made during the conference that for most

pairs ay, ap we have v{ay,a2) S 2.

HN __'_.,._'. ER " e
PRI o L L A B Y ol R R

Theorem 3 (Evertse, Gyt'ﬁi‘y, Stewart, Tijdeman [26]).

There are only finitely many S-equivalence classes of equations (1.8)
with more than two solutions. |

As observed at the end of §1 there are infinitely many S-equivalence
clagses of equations (1.8) with two solutions. The proof of Theorem 3 is |
based on Corollary 1.1. Its principle will be explained in §5. Theorem 3
can be extended to finitely generated multiplicative subgroups of C*.

Up to now all the upper bounds we have mentioned were proved
by ineffective methods. This has the important disadvantage that it is -
impossible to derive upper bounds for the solutions themselves or to de-
cide from the proof that for given oy, a2 (1.8) has no more than two
solutions. ‘Skolem [83], using Skolem’s method, and Cassels. [9], using
Gelfond’s results, showed how certain classes of S-unit equations in ra-
tionals can be solved effectively, at least in principle. The important
breakthrough was Baker’s method for estimating linear forms in loga~
rithms and its p-adic analogue by Coates. Implicitly in Coates’ work on i
the Thue-Mahler equation. [11] there are S-unit equations in two vari-:; :
ables and upper bounds for their solutions. The first explicit mention
of such an application is in Sprindzhuk [84]. Gydry [34] worked out.ar
explicit upper bound for the heights of the solutions of (1.8). We state:
" his result in a slightly different and less precise form. To state his.zes
sult we transform (1.8) into an equivalent equation. By multiplying. oyt
and ay by the product of their denominators, (1.8) transforms into ang
equivalent equation of the form - S

R . P A .
E gl et A T L T R L I
1 H R 7 L L HIEET L T A,
I R L LA R F Lt

ML + QY =y 11 T,y < US

where oy, g, Qg € OK\{U}.

I
sLRTRAT e
; Joaad

Theorem 4 (Gydry [34]). Let € > 0. Every solution (2,4) of 3

Sﬂrtivnsﬂﬂﬂ . | o | S :
max(h(z), h(y)) < exp(sCEO PHelogd)
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" where A = max(h(al), h(ﬂ'g) h(ﬂfu), ) and C(K,e) i3 an empresszon,
explicitly given in [34], involving the parameters d, hx, Tk and Ry af
K and e. -

It is most likely that the right-hand side of (3.2) cannot be improved
on in an essential way ‘when we use the presently available estimates for
linear forms in logarithms of algebraic numbers. However, if we assume
that (3.1) has at least s + 2 solutions, then it is possible, after having
replaced (i, a2, @) by an appropriate S-equivalent triple, to derive a
result similar to (3.2) with a bound independent of A. A first step
in this direction was made by Gyéry.” Recall the definition of N S(CE)
given in §1. Gydry [34] proved the following statement in & more precise

form. Here and in the sequel we use C(K) for an effectively computable
number depending only on K which may have a different value at ea.ch

occurrence.
Let 0 < e < 1 For eu.ch triple (al,az,au) of elemenis in OK\{U}
with

min(Ns{e), Ns(ag)) < N;_:;(«':t:;;.)l'"'IE | (3.3)
such that (3.1) has at least s + 3t + 1 solutions, we have |

Ns{ap) < exp {e"’l SI?(K)“P‘E+1 log 2’_} :

o An upper bound fﬂ?‘ Ns(ap) of the same farm can be given if
"% m&X(lﬂg Ns(ay),log N S(ﬂdz)) < (lﬂg Ns(ﬂ!u)) ° and there are at least
gt 4 1 solutions.

S | . | .

There are 1nﬁmtely m&ny'S-equwalence classes which haﬁ.re a repre-

; #ﬁﬂl'arge positive integers a the triples (Pa +1,2Pa — 1,2Pa + 1) will be
“‘.’ﬂ*”" 4bf~*1pa.1rﬁnse S -1nequ1valent and thay do not sa,tmfy (3. 3) )

:-}j_' ifl.iﬂﬂl'em 5 (Evertse, Gyory, Stewart ledeman [26]) For each
_’f%?-(ﬂlyﬂz,ﬂtu) € (O \{0})® such that (3.1) has at least s + 2 solutions,
: ’*‘thﬁ?"ﬂ exists an’ S-equivalent triple (B, B2, B0) € (O x V\{0})® such that

L max(h(By), h(B2), h(Bo)) < exp{sCUO P, (3.4

D nee there are only finitely many S-equivalence classes which have a
'?fpresent&twe satisfying (3.4) (<f. (1.5)), this result implies that (3.1)
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hes at most s + 1 solutions for all but .th.e_. finitely maﬁylseeqﬁivalence
classes determined by (3.4). It follows from Theorem 4 that the solutions
of 1z + B2y = Po in x,y € Us subject to (3.4) satisfy

max(h(z), h(y)) < exp{sCF)ep2litl}, (3.5)

§4. On the proofs of Theorenﬁs 1 _}lnd 2

In this section we shall describé some ideas behind the proofs of
Theorems 1 and 2. o | |

Theorem 1 (the Main Theorem on S-Unit Equations) is a conse-
quence of the Subspace Theorem of Schmidt and Schlickewei, stated be-
low. We use the notation introduced in §§1, 2. By a projective mb.space
we shall mean a set of the type |

(x=(20:... 7)€ PYK): £1(x) =... = £:(x) = 0}

where £1,..., ¢, are linear forms in K[.Xu._.'. oy Xanls

Subspace Theorem. Let K be an algebraic number field, S a finite set
of places on K with Soo © 5, and n 2> 1 an integer. For éach v in S, let
{Liv}i2, be a collection of Imeur forms in K[Xo,...,Xp] of rank ny +1;
thus ny, < n for v € S. Then for every ¢ > 0 and € > 0, the solutions of 4
the inequality |

111 Liollle ¢ epx)m=1=¢ nxePr(K) (41)

are contained in finitely many proper, prajectwe subspaces of P"(K ) i

This theorem was proved by Schmidt [73 74] in case that S cﬂntmn ¥
~ only infinite places, and by Schllckewezt [69] in full generality. . 0o

We remark that Schlickewei’s formulation of the Subspace Theorea_'
~ is different, frﬂm ours. Schlmkewe1 considered the inequality

r .
H ngiﬂ(xnv Scllz]l™ inxe€ QE-H g ( .
eSS 1=0

where [|x|| = maxlcrj(m,)l and ©o1,...,04 are the dlﬁ'erent
t,J7 | -

isomorphisms of K. Inequality (4.1) is easily reduced to an meq ;i
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of type (4 2) and vice versa, by obaewmg that there are positive mte—-
gers ¢1, Ca, ¢z depending on K only, such that each x € P*K) can be
represented by homogeneaus coordinates (xo : 21 : ... : #,) for which

mﬁ,;tq}mﬂ E@K,

NK}Q((&:U: teey a"'ﬂ)) <,
caf|x|] < H(x) < esllx.

Sketch of proof of Theorem 1. We shall proceed by induction on n.
Forn =1, Theorem 1 is trivial. Suppose that Theorem 1 has been proved
for equations xo + ... + 2 = 0 with n’ < n (induction hypothesis):
Consider the equation - - |

Zo + &1 + ...+ &p = 0 in S-integers z¢,%1,...,Zn (4.3)

satyidfying
1 H |zily < &H(x)l'“* B (4.4)
- vES =0

where 5 is a finite subset of My containing all mﬁmte places, fz\ > 0
a,nd ¢ =1~ 6, Now (4.4) can be rewritten as

r

| H (|mﬂ]ﬂ...lmn..1| 210 -I-.”+a:n-1|v) < EH(X)—H--E - (4.5)

s %[

‘, . where % = (o : ...t &ny) € PPHK) and ¢ = nA. Cunsid;er the
” sﬂlutmns of (4.5) with |5E:|1, = ]m,-(v)h, where ((v)) e 18 any ﬁxed tuple

1 H _’E“'(x)’” < eH(R) ™ (4§6)

oyathe subspace Theorem, the solutn:-ns of (4 6) in X € P“‘I(K ) are
tamed in finitely many proper projective subspaces of P*~1(K). This

"'l
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implies that the salutmns of (4.3) sa.tmfymg (4.4) are contmned in ﬁmtely
many linear subspaces of K™ of the type .

{:B & Kﬂ+1 ' ﬂ!nmu -+ 121 + ... Xp-ilpn—1 = U.}

where ag,...,0n—1 € K and (a0,...,an-1) # (0,...,0). Fix
Qg -+ .y On—1, X a non-empty subset J 'Df {0,...,n — 1}, and consider

all solutions of (4.3) Eat1sfy1ng

Zajm, = 0 but no subsum of Y, i vanishes.
jEJ jed

By the induction hypothesis, there is a finite number of tuples (ﬁj )ieJ
such that each z; (§ € J) can be written as z; = {B; where { is some
S-integer. By substituting this into (4.3) we obtain

(Zﬂj)ﬁ + >, w=0

jeJ je{ﬂ,m,n}\i

Prp e et et aee 3 . - .
ey, B T L T U L o

By applying the induction: hypothesis agmn we conclude that there are
only finitely many possible projective solutions (£ : z;,,: ... : 2;,) where
{31,...,3¢} = {0,...,n}\J. Combining this with the facts that the
/' numbers of possible tuples (ag,...,an-1), sets J and tuples §; (5 € J)
are finite, we obtain that the total number of solutions c:-f (4.3) subject
to (4.4) is finite. n

ot b e et WL b e R e R e e e Bl 2L TRl b

We shall now sketch the ideas behind the proof of Theorem 2. We
use the notation of §§1-3. For ¢ = 1,2,... let ¢;(...) denote effectively ..
computable numbers depending only on the parameters wr1tten mthm
the parentheses. Hence ¢s and ¢13 are absolute constants. AT

Equation (1.8) can be rewritten as
Yo +y1 +v2 = 01in (yo : y1 1 y2) € PH(K)
with v /v; S-units for i = 0,1, 2,

where vy, vy, 19 € K™ are fixed. Put

A=1] |vgv1v2|v x H{max(\ym,]yﬂﬂ,m[ )}

vES - vgS

A straightforward cc:-mputa.tion shows

_ = AM(y .
};S' {max(lyulﬂ, v1ls y2l0)}® ( ) RN
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where y = (yo : v yg) Let (i(v)) ES be subscnpts such that

Iyi(ﬂ)!tr == mln(lyﬂlvslyllﬂ:'yﬂlﬂ) If |y1(tr)|u < |yj(tl)'t.! 5 |yk(u)!'u with-
{i(”):j(”):k(”)} = {1,2,3}, then |yi()lo < 2° Wy v by (1.3). Hence

I Wiwle < 5 4p(y)s, ' (4.8)
vES lylv .

One possible way to deal with inequalities of type (4.8) is to use a quan-
~ titative version of Roth’s theorem of the type below. If 4(Xp,X;) =
apXo + a1 X;, we put 18], = max(|cuq|1,, s fo )

Roth’s Theorem. Let K be an algebraic number field of degree d.Let
S C Mg be a finste set of cardinality s, containing all infinite places.
Let C = 1 be a constant. Let F(Xy,X1) € Z|Xo,X1] be a binary form of.
degree m, of which the absolule values of the cueﬁ‘icienta are at most M.
Finally, let {€y}ves be a set of linear forms in K[Xo, X1, all dividing
F. Then the number of solutions of the inequality

il [u(%)]s Scﬁ(x)—ﬁ_—_e ' (4.9)

vES |£.ﬁ""-"|""I:K'I‘tlr

. in x € PHK) with H(x) 2 ai(d,m, e)(C + M + 1)Caldimse) 4 at most
o ca(dym,e) x {ea(e))”. |

. Asfar as we know, no explicit proof of this result has been published.
. In [51] Ch. 7, Lang proved that (4.9) has only finitely many solutions.. -
It is possible to prove Roth’s theorem above by making explicit all argu-
wie-oments in Lang’s proof, and combining this with ideas of Davenport and
= Roth [13]. In [82] Theorem 2.1, Silverman stated and sketched a proof

s 'ﬂf a result which is equivalent to Roth’s Theorem stated above.

Roth’s Theorem i i3 a quantitative version of the Subspace Theorem

in the special case n = 1, n, = 0 for v € S\ Se. It would be of great
;g::d:ﬂrest to derive a quantitative version of the same type for the general
- zSubsp ace Theorem.

H(y) 2 er(d)(24)°(.

3 purpose is to obtain an upper bound for the number of solutions
(4 8) which is independent of A. BE].GW we state a “gap principle”
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which enables us to derive such a bound. First we reduce (4.8) to a
. finite number of systems of inequalities

Iﬂv

where ', > 0 for v € S, 3. ,e5v = B for some B with £ < B < 1,
and the tuple (', )ves can be chosen from a set of cardinality at most
(cT(B))’. This can be achieved by taking a sufficiently fine grid of I'y's
(cf. [19] Lemma 4). | |

Yico o < (QAH(}')“B)F“ forves,  (4.10)

L T I T S DY e ’ -

- i,r.:..i:.:,__-.-l_\___ _:-':__...__. TR AL Ee.. e o
ih . . i =g 1 R LY PR TLIEEY H L L a
T R N 1 Py BT T oy gt PP Ll S ey S T PL LN PR

Gap Principle. Let y(1), y(2) be different solutions of (4.7) satisfy-
ing the same system of inequalities (4.10), and suppose that H(yH) <
H(y®). Then | o |

Hiy®) 2 278 4B (D)™ T (@1

1 - w
= T
ot Dt e T s el F

Proof. Let y® = (8 1y 1 48V), y® = (47 1 41" : v2"). P

1 y
My — V7,

YO, % Iy,

where 1, j are distinct elements of {0,1,2}. Obviously, A, 13 independeﬁt
of the choice of i, j. For v € S, take i = i(v), j # i(v). Then, by (4.10), -
forv € S, | | S

for v € Mg,

Ay =

(2)
Wiy lo  Wiilv

ly(l) v ’ Iy(2)|u |

Hence

= 2(24H(yW)*)".

For v ¢ S we have, on choosing %, such that vilo < [¥jle <1 Vk]uf:

viv|v
A, < .
’ {max({vol, V1w, [v2]0) }*
— |V0V1.V2|11
{max(lyﬂ'lﬁ: llullva.ll’?lu)}.a '
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Tc}géthef #ri_th the Product Formula this shows that

I1 Ay < AL

vEMi \ S

By combining this with (4.12) and the Product Formula we obtain

Ay € 2B AB-1p(y(1))-38

5= I A< 22am-ingy)
H(}'“))%(yf ) udike e

This implies (4.11). . | »

‘Since in (4.11) the exponent of A is positive and that of H(y(}) is
greater than one, the number of solutions of (4.10) with

| H(y) < cr(d)(24)° &

is bounded above by ¢g( B, d). We infer that the total number of solutions
of (4.8) is at most e19(B, d){c11(B))’. By choosing B appropriately and
observing that equation (4.7) can be reduced to at most 3* different
inequalities (4. 8) we conclude tha,t the number of solutions of (4.7) is at
most c12{d) X cis. -

‘We remark that it is possible to prove that (4.8) has at most cs(d) X ‘
&= cg solutions with H(y) > CT(d)(2A)"3(d) by techniques which are less
3 pﬂwerful than Roth’s (cf [19], [21}).

3
iR

:-§5. The rational case

We specialise the theorems of §§2, 3 to the case K = Q. This

_p;,i‘a.gra.ph can be read independeritly of §§1-4. The text between square
brackets indicates the connection with the preceding paragraphs.

 For a.ny prime number p and any rational number « we define ||, =
E if p~*a is the quotient Gf two rational 1ntegers both coprime to p.

H &y =1  for all a € Q. | (5.1)



Here and elsewhere we put V* = v\ {0} for any set V. Fﬁrthermnfe, we
define the height h{a) of o by o

h(e) = T mex(Lial). Bt

veM

Hence, if « = a/b with a,b € Z and ged(a,b) = .1, then ﬁ(a) =
max(|al, |b}). Note that, by (5.1),

h(a) = h(a~) = [] min(1,lals)™. (5.3)

ve M

Let t > 2. Let T = {p1,...,p:} be a set of prime numbers not exceeding

P. Let S be the set of valuations | .|, |.[pys -+ +s |- |p.- [Hence s =741,
the number of valuations in S.] By v ¢ S we mean v € M\S. For

a € Q* we write a = [a]g{a}s where [a]s = [[ e la|>* is the T-part
of & and {a}s = || [[er ol = [1yes ||y is the T-free part of a. The
get Ug of S-units consists of the rational numbers a with {a}s = 1.
Hence every « in Ug is of the form +p¥t . pFt with ky,...,ke € Z. Put
S=UsNL. | '

Since there are exactly two tuples (%o,...,%,) of rational integers
with ged 1 which correspond with a given projective point in P*(Q), we

" have the following consequence of Theorem 1. B

| COI"OH&I‘}" 1;3. Lﬂt A} (Sbﬂ Tﬁﬂ,z Cﬂ-ﬂﬂtﬂ-ﬂts w.ith Z:’ :} 0} 0 S 5 < 1.
Then there are only finstely many tuples = (%0,%1,..-,%n) of rational -

integers such that | - |
.:L‘u +x14 ...+ &y = 0, | (5*4)

for each proper, non-emply subset {iy,...,ix} of {0,1,...,n}, e

gcd(mu}ml, _r ,:r:n') =1,

and

TL
5
[[{zi}s < A( max_|z;])".
=0 3=0,...,n | o

e

We express (5.5) succinctly by saying that no subsum of z¢ + 21 -7
vanishes. Taking A = 1, § = 0 means requiring that zo, z1, el g
are all elements of §. Obviously Corollary 1.3 generalises the result off
Schlickewei [70} and Dubois and Rhin {14], mentioned at the beginning

of §2, who required pairwise coprimality instead of (5.5) and (5.6): i
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The subsequent results deal with the case n = 2. Let v{a, b’. c)
denote the number of solutions of the equation

ar +by=cz inz,y,z2 € S with ged(z,y,2) =1, = (5.8)

where @, .b',c € Z*. Since every solution 21,72 € Ug of ax; + bz = ¢
corresponds to exactly two solutions of (5.8), the following result follows

from Theorem 2.

Corollary 2. v(a,b,¢) < 6 x T#+3.

" Erdés, Stewart and Tijdeman [17] have proved that there exist sets

5. S of arbitrarily large cardinality ¢ for which v(1,1,1) > exp(Ct'/2log t).
- Here and elsewhere C is a constant, but the constant may have a different
. value at each occurrence.
S We call a triple {a,b,¢) € (Z*)* S-normalised if a, b, ¢, p1, ..., Pt
70 are pairwise relatively prime and 0 < a £ b < . [Then each S-
: *ﬁ equivalence class in (Z*)? contains exactly one S-normalised triple: Sup-
: :PQSE (aﬂ:alaaﬁ) € (Z*)E*' Pu.'t' A = ga&(aﬂaalaGZ)* Then (aﬂjﬂlaﬂﬁ)
m is S-equivalent with ({a{;/ A}s, {a1/A}s, {az/ ,\}s). Arrange the three
. numbers in the latter tuple in increasing order and call them q, b, ¢,
- “respectively. Then (a,b,¢) is the unique S-normalised triple in the 5-
. equivalence class of (ag,a1,a2)] The following result 1s an immediate
- consequence of Theorem 3.

Curollary 3. There are only finitely many S-normalised triples
. i{a,b,c) € (Z*)® for which (5.8) has more than two solutions with posstive

ol o
S
oy = .
il ik O
eE S L z
Lo XA
_;:_"-‘ - -
A L T
i T AR
23 LR

8]
—

& Corollary 3 can be derived from Corollary 1.3 as follows. Let
e - (a,b,¢) € (Z*)® be an S-normalised triple and suppose there are three

dlstmct triples (;,¥:,2;) € S° satisfying (5.8) and 2; > O for: =1,2,3.
.7 Then we obtain
e 2, 2y @3

T e .-.;-'.1"_._' TR T
RTASEAIS
:"lqt' .h‘:"*:.-, _..-r L AL

e | v Y2 Y3 | =0, (5.9)
Z1 X2 23 |

LR

ENote that the expression on the left-hand side does not change value if

2 * -, J\‘ )
=

.. 'we permute z, ¥, z or subscripts 1, 2, 3 consistently. Furthermore, if

. Tiypzs = &2y12s, then Z1ys = Tayy, hence @y = £z, y1 = *y2 and
i

" therefore #z; = %2,. Since 21 and z; are positive, we obtain

b
A e

="

T1Y223 F ZT2Y123. (5.10)

Sy
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We first prove that there are only finidely many possible values for
$132f$23'1 and y122/y221. To do so we apply Corollary 1.3 with A =1,
§ = 0 in the following way. If all conditions with the possible excep-
tion of (5.5) are satisfied, then there are only finitely many possibil-
ities for the quotients z; /a: i {0 £1 <35 £n) Ifno (proper, non-
empty) subsum of (5.9) vanishes, then Corollary 1.3 implies that there
are only finitely many possibilities for z1ys22/zoy321 = 2122/7221 and
T3Y1 22/ T3y221 = Y12z2/y271. In this case our claim is correct, but we
cannot be certain that no subsum vanishes. Suppose that there is
a vanishing subsum. Then the complementary subsum vanishes too
and we can apply Corollary 1.3 to both subsums. There are a great
many cases to be considered, but, by using the symmetry and (5.10),
their number can be brought down to five. The most dificult one is
T1Ya%3z + Tay3zy + 23y122 = 0, way1zz + z3y2z1 + v1y3ze = 0. By
Corollary 1.3 there are only finitely many possibilities for the quo-
tients waylzz/m Y223, T2Y321 /m1yzZa, T1Y322/T2y123 and msyzzl/ T2Y123,
hence for mlygzg [23y121 and 21yZz1 /aey? 2y, whence for 2323 /2323 and
y3 23 [y223, whence for ;29 /227; and y129 /y2z1. The other cases can be
treated similarly. We conclude that there are only finitely many possible
values of r122 /%221 and y123/y221, hence of z1y9/22y1. Since (z1,y1,21)
and (22,y2, 22) satisfy (5.8), we have

1] . - - -
[ - et Te e T . .t -
S i = gt P R S e e e .
I Ly T e L T L N L T L .

E Yizgy — Y22y _b_ _ 122 — T22
c  ZToyi — T1Y2 ¢ Tiyz — Ty
hernce
ary ylzzfyg,’d]_ —1 b‘yl :1?132/{1?221 — 1
C21 m2y1/m1yg -1’ CZ1 i‘lyzf-'ﬂzyl -1
Since a, b, c, P1; ..., Pt Are pairwise coprime and zy, y;, 21 are compc:sed;-
of p1, ..., pt, we obtain that there are only finitely many possible values

for az; / czy and by fczy, whence for a, b and ¢. Thus there are only:._
finitely many normalised triples (a,b,¢) € (Z*)3 for which (5.8) has mnre:_?
than two solutions. :_

Corollaries 1.3, 2 and 3 do not provide any upper bounds for the
solutions themselves We shall show how such bounds can be derlvedg; ._
from results on linear forms in logarithms of algebraic numbers.

Lemma 1. I’Et Yiseoes¥n € Q% with h{-y;) < [’; where T'; 33fa
i = 1,...,n and 7 2 2 Let B 2 2 and b € Z with [t < Bfof |
3 = 1 ﬂ P‘H-t ' i R

Am"y'i’l A
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Q= ﬁlﬁg I,
3=l
n-—l.

Q = H logI';
=1

a) Then either A =0 or IAI > exP(“ﬂO"ﬂlﬂg Q! log B).
b) Let p be any P?‘imﬂ' number. -Then either A =0 or

|Alp 2 exp (—-nc“pﬂ(lug B)?).

The prnnfs of Lemma la) and 1b) can be found in Baker [3] and van der -
Poorten {63], respectwely For defects in the latter proof, see Yu [91],

[92] |
Gydry [34] pmvﬂd the Comllary below by applying a variation on
. Lemma 1.

Corollary 4. If the iriple a,b,c € (Z*)° is S-normalised, then each
solution (z,y,2) of (5.8) satisfies

max(|z|, |y}, |2]) < exp(t“*P*/* log A)

where A = max(a,b,c, 3). ,

" 'We shall give a simple proof of a slightly weaker assertion, namely
?ﬁ'.*ith log A replaced by log A(log log Ay
= Let (z,y,2) € 8° satisfy 5_.8). Put Z = max(|z|,|yl,]2]). Then
'e&ch of , y, z is of the form Fp! . ..p¢* with ky,..., ke € Z. Observe
o that k| < C'lr.:sgp, < Clog Z. Let peT. Suppnse |z, # 1. Then
- el = lyly = 1 and

lelp = lezlp = |ag + byl = |~ = 1| .
by p

‘- --.'.

2], > exp( tG*P(Ing P)*lug A(log B)”) (5.11)

- here B = max(|k1],...,k¢]) < ClogZ. Inequahty (5. 11) is also valid
']*"'P = 1. It follows tha.t |

L =TTk
B
¥, < exp(1“*P(log P)* log A(loglog Z)?).



B.y. the symmetry of (5.8), the right-hand side is also an upper bound f
for [z} and |y|. (We have not used the fact that 0 < a £ b < c.) Hence

logZ e,
(lég og 272 < t“*P(log P)* log A.

By transferring secondary factors we obtain

log Z < t¢* P(log P)**2 log A(log log 4)2.

T T, T L P L R UL T SR S ST T

If log P < t* then (log P)**? < ¢, otherwise

__;-"" i Lo i
- | WG SR T

(log P)**? < (log P)**
< exp(3(log P)'/* log log P)
< CP3,
Thus |
| log Z < t9* P43 log A(loglog A)?

which is our claim.

An upper bound depending on P and ¢ only can be given for the
coeflicients and the solutions of those S-normalised S-unit equations
which have more than ¢ + 2 solutions. This follows from the follow- 8
ing consequence of Theorems 4 and 5. (Observe that for each triple '3
(o', b,c') € (Q*)3 we have max(h(a'), Ai(¥'), 2(c')) = max(|al, 3], ]c[)
where (@,d,¢) is an S-normalised tnple nf non-zero integers whmh is

S-equivalent to {a’, b’ ') ) Lk

Corollary 5. Each S-normalised triple (a,b,¢) € (Z*)® such that (58) .
has at least t + 3 solutions (2,y,z) with z > 0 satlisfies

max(|al, 8], e]) < exp(t°*P?)
and each solution of such an equation satisfies

max(|z], Jyl, |2]) < exp(tStPY).

Proof. Put o = afec, § = bfc, A = ¢ = max(a, b, ¢). Then 0<a< ﬁ <;;;1..-4-
If (5.8) has ¢ + 3 solutions with z > 0, then the equation T

ar + fy =1
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has t,'|‘3 solutions, (xe,¥0), (ZT1,¥1)s ++ -, (Tig2,Yea2) € UZ, say. Without
“logs of generality we may assume

h(zo) < ... < h(T14a). ' (5.13)
W hall prove that |
; ® 5 1DgA S tCtP'ifﬁ' | (51'14)

B Corollary 4, this suffices to prove Corollary 9. In the sequel we shall
“'assume A> 21“
First we prove that for ¢ = 1,...,1 + 2 there exists a valuation
Aol dogse«vs |« e } such that

laz;], < A7, (5.15)

'."-.' - .
i
Zan, n
u
P
RS I
L

. We write v € §. We distinguish two cases.

T

~ (This condition is equwalent to a < ¢*/%. Essentially this is the case
treated by Gyéry [34], cf. §3 above. In this case the solution (%o,¥o)
15 not used so tha.t the canclusmn of the theorem can be reached when

,,,, 'i;here are only £ + 2 solutions.)
"~ We have [a]s == 1 and {z;}s = 1. Hence

H Iﬂivil.t! = ]._.[ ol = a < AT,
. vesd vES |
ince S has t + 1 elements, there is some v in § such that (5.15) holds.

........

H‘a(mi — :ﬁﬂ)];l

veS peT

> H (miﬁ(lﬂflp.: ‘ﬂlp))—

p¢T

- (H mi_n(lﬂflpr lﬂlp)) -.“1 :

—

2
by
|
S
!

Uik,
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By the cc:pr:ma.hty condition on a, b ¢ we have nnn(la|p,|blp) =
lem(a, b)[ |ab|P Hence

. min(|al,, lb ab
. min(lalp:'ﬁlp) —_ (l 'P I IP) —

ety e p‘

By the Product Formula we obtain

(Hmin(la.lpslﬁlp))" L

Therefore

[T le(e: = 20)|, = ab/e > 434437441 = 4212
vES

On the other hand, by 0 € o < 1 and (5.13),

H Iﬂ:("ri - mﬂ-)lﬂ Lo H I:I-Ii — O}'u’ﬂ

vesS veES

< 2] max(leolo, ily)

veES

< 2(H m&x(l;-lmolu )(H max(1, |z, ))

YES
= 2h(z0)h(z;) < 2(h(2:))".

g

__ It fnllﬂw_s that 1/2
h(zi) 2 (-}Am) > AV,
We infer from (5.2) and (5.3) that .

Hmm (1, |z;ly )— (H mﬁx(lilmt' )

vES vES |
= (h(z;)) 1 gmiss .
Since 0<a<1and [alg = 1', there is some v in S such that
aily < Jaily < A=HOED)

This proves (5.15) in the second cﬁse.
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Since |S| t-l- 1 there are ¢, § in {1,...,t + 2} with § < j Euch
that, for the same valuatmn v ES,

azily < A-H/GED), jasfy < AV/GE),

Hence, by (5.12),

1
1Byile = |1 — ﬂ‘m.rlv 5

|ﬂ(y: - yj o =_|a(a;j - mi)|v E 2A—_~1/(5(t+1})_

We obtain

We apply Lemma 1&) if » is the absolute value and Lemma 1b) otheﬁ—-
wise. Note that y,/yJ _*pfl ... pt with [k < Clagma,x(h(y:), h(y;))-
Hence

-- -1} E-exp'(—-t_mP(log P)*"“-(lﬂg log m?a,x(h(y,-), h{y; )_))2). (5.17)

-

log max(h(y:), h(y;)) < t9'PY3logd. (5.18)

log A < t“* P(log P)**%,

L'in the proof of Corollary 4 we have (log P)*"“" < tCtp1/3, Hence

ik

A:_:{: th‘*/ 3 ag claimed in (5.14). - . - =

t is clear from the proofs that, in Corolla,nes 4 and 5, P*/3 and I—"2
E‘"’be replaced by P*¢ and P?® by P2+¢ for any pﬂﬂltwe €, pmwded
hat the constants C are allowed to depend on .
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§6. -Applicatin‘ns to sums of products of given primes

| Let T = {p1,...,pt} be a set of prime numbers not exceeding P
(> 2). Let S be the set of rational integers of which each prime divisor
belongs to T. We consider representations zy +...+z, wWith #1,...,%5 € E
S, so-called S-representations. We call two representations 23 + ... +
o and y1 + ... + yn distinet if (z1,...,2,) is not a permutation of |
(¥1,...,Yn). Therepresentations zj+...+&q, and y1+...+yn, are called
relatively prime if ged(21,...,%ny,¥1,.++,¥n;) = 1. They are called :
disjoint f z; Fy;fore=1,...,n1 H.Ildj =1,...,nq, and totally disjoint
if there are no equal subsums, that means there are no non-empty proper
subsets {%1,...,%k} of {1,...,11.1} and {j1,. .,,jg} of {1,...,n2} such
that z;, + ...+ i, = Yjy + ...+ ¥j,. If ny = ng = 2, then there 1s no
difference between the notions distinct, disjoint and totally disjoint.

In this paragraph we give some applications of Corollaries 1.3 and
9-5. By C we shall denote absolute constants, by C(T, n) numbers
depending only on T' and n, and so on. |

Theorem 6. Let n, ny and ng be positive integers.

a) There 18 ¢ number C(T,n) such that every integer m has ai most
C(T,n) representations as sums of n pairwise relatively prime ele-

menis from S.

b) There are only finstely many mtegers which admitl a representatw_l
1 + ... + zn, of patruise rr:latwely przme elements of S and ¢
representation yy + ... + yn, of pasrwise relatively prime elemen{?
of S such that the representmtwna are disjoint.

¢) There are only finitely many integers which admil en Shfrepresen
ation 1+ ...+ 2p, and an 8-repre.sentatmn Y1+ ..t Yn, Such th
the representations are relatively prime and totally disjoint.

Proof. ¢) Suppose m admits the two described representations.. Thé i
14 ...t Tn, ~ YL — ... — Yn, = 0. We may assume m # 0. We appl 2

Cﬂr-:}lla,ry 1.3. Cnndltmns (5.6) and (5.7) are satisfied (with A =13
§ = 0). If (5.5) is not fulfilled, then z; + ...+ &n, — Y1 — ...~ ym'
a vanishing subsum. The cﬂmplementary subsum va,mshes tnc.-. ) Si
m # 0, one of both subsums involves both z’s and y’s. This lea,ds:
contradiction with the supposition that the representations are tot'
disjoint. Thus (5.5) holds. By Corollary 1.3 we find that there: exl'"'""
finite set of (n; + n2)-tuples depending only on T, n;, a,nd ny tm
(Z1yeevyTnysY1,-.-5Yn,) belongs. Thus m =23+ ...+ wms
m < O(T. 100, 13).
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= . b) | Supplﬂse m admits the two described representations. We may
= ssume that m 5 0 and that we do not have z; = ~z; = 1 for some 2, J -
in {1,... 01} OT Y = —Y; = 1 for some ¢, J iz:l'.{l, ceoyna ks Obserm_a tl_m.t
g ...t Ty Y1~ — Unp CAD be split into a number of vanishing
... gubsums so that none of these subsums has a vanishing subsum. The
sumber of possible splittings is C(ny + ng). By the conditions of b)
i L ch subsum has at least three terms, hence involves at least two z’s or
= " {wo y's. By applying Corollary 1.3 to each of the possible splittings we
Lieuiysoin that there are only finitely many possibilities for the terms in each
subsum, since these terms have no common prime factor. It follows that
there is a finite set of (ny + ny)-tuples depending only on T, ny and ng
45 which (15-+ s Tag s Y1y« - 1 Yny ) belongs. Thus m| = |z 4.t a0, <

. C(Tyn,ma)-

::::

[
Fer i mh i
ST

&2 a) It suffices to prove that there are at most C(T,n) distinct
representatmna If m = 0 then we apply the argument to the S-

" Tepresentations 3 +...+ 2n of m which we applied to 21 4 ...+ Zn, —
e ...~ ¥n, in the proof of b). It follows that there is a finite set of
| n-tuples depending only on T and n to which (21,...,%s) belongs.

g1+ e A Yng F o1+ ..o+ 30 with 24 Fyjfori=1,...,m and
SR 1 ..., ny. According to b) there are only C1(T,n) integers m; which

e Ja

oS s :
":-'f\_'u'-i:-".-:lu- LA -

2o admit two disjoint representations £ +...-+n, and y1+...+Yn, of pair-

S Gise relatively prime elements of S for some ny < n. Moreover, it follows

= from the proof of b) that there is a finite set of 2n;-tuples depending only
L 6H'T and ny to which (21,...,Zny, Y1, ., Yn, ) belongs, that is, each my

x ~
gy
il

. 2dmits at most Ca(T, ny) pairwise disjoint S-representations of pairwise.
LT

~ télatively prime integers. Similarly m—m; admits at most Ce(Tyn—n1)

-

=

T
P L 3

L Bhirwise disjoint S-representations of pairwise relatively prime integers

% !

e T e
TR O o P Hence there are at most C1(T,n)Co(T,ny) possibili-

it
el 11};" - H
e

< fies.for the distinct part (z1,... ,Za, ) 80d C(T,n - ny ) possibilities for

i
S

- the remaining common part {Zn,+1,+..1%n). Thus the total number of

-y Tt

u:

L=

-
T
¢

- Wepresentations as sums of n pairwise relatively prime elements from &
U] . = _
jﬂ*bﬂunded by C(T, ﬂ). e C1(T, Tl) En1=1 CQ(T, T )02 (T,n —_ 'n1). ]

v
o
-

L

L P ]

:% It is not hard to see that the restrictions in b) and c) canpnot be
i ornitted. Let 7' = {2,3,5}. In b) we require disjointness, since there are
*ljilﬁmtely many integers with representations 5% 4 2% + 1 = BF + 3 + 2.
* We require pairwise coprimality in view of the representations gk+l
2342 and 2F + 2% 4 5. In ¢) we require total disjointness to exclude
representations 2542 4+ 2% + 2 +'1 and 2%.3 + 2%+l 4+ 3. We require

that, the representations are relatively prime, since otherwise we may
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have 2%+2 4 2% and 2% .3 4 2F+1 g3 representations. The restriction in -
a) is necessary, since 1 has infinitely many representations of the form
3.2%..2k+1 __9k L 1. However, Tijdeman and Wang [90] have proved that -
there is a number Cy(T,n) such that every integer has at most Cy(T,n)
representations as sums of n positive elements from §.

In a letter to one of us, P. Erdés drew our attention to the following
cnn;ecture of D. Newman (cf [16] p. 80). The number of representations .
= 2%3F 1-27 + 3° in non-negative integers «, B, v, § is bounded. Erdds
wﬁndered whether this could be solved by Corollary 1.3. We show that
he is right, and that there are only finitely many integers which have -
more than two disjoint representations. Any pair of coprime integers
greater than 1 could be taken in place of the bases 2 and 3. "

Theorem 7. a} There i3 a constant C such that every integer has at.
most C represeniations of the form 2937 + 27 + 3% with o, B, v and 6 _
non-negative integers.

b) There are only finitely mmny integers which admit more than
two pairwise disjoint representations of the form 2937 4+ 2"’r + 3% with a,
B, 4 and b non-negative inlegers. '

Proof. Put T = {2, 3} By N-representation we shall mean a representa.-—
tion of the form 2434 4- 27 4 3°, By Theorem 6c) there are only ﬁmtely
many integers m which admit two totally disjoint N -repreaenta,tmns. Let
My be the maximum of such numbers ™. b

We now assume that m > M, has two distinet N -representatmnsh; >
m = 2“3‘3 + 27 4+ 35 = 2¢3¢ 4 97 4. 39, Hence these representatmﬁ""ﬁ -
are not totally disjoint. Since the representations are distinct, 2':"'3’3 :
27 + 3% — 2¢3¢ — 27 — 37 has exactly two va.mshmg subsums (whmh :a,r
complementary).

Suppose first that each vanishing subsum has three terms. By usin
the symmetry, also with respect to the bases 2 and 3, we may a,ssum_
‘without loss of generahty that we have one of the following cases: . :::{

(i) 2280427 2% =0,  3-2"-3"=0

(id 2%3% 427 - 2" =, 3 _9¢3¢ 3% = 0. 02
i e3P yavogio0,  gP-23t-2=0
(). 27 + 3% — 2¢3¢ = 0' 230273 =0
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. Case (1). It follows thas ﬁhere are qnly:ﬁnite;iy many possibilities for §, »
and §. The numbers 2237, 27 and 2¢3¢ belong to a finite set apart-from
s common factor 28 (k€ Z,k>0). e
Case (ii). The numbers 2%37, 27, on belong to a finite set apart from a.
common factor 2F. The numbers 39, 2*3‘:_; 3% belong to a finite set apart
from a common factor 3¢. |
Cases (iii) and (iv). There are only finitely many possibilities for the
exponents. |
We conclude that m is both of the form ok(2k134 4 2k2) 4 3¢+4 and of
the form 2F+¥s 4 3¢(2F43%s + 344 where k1,..., k4, €1, .- ,£4 belong to a
certain finite set. | |

Suppose next that one vanishing subsum has two elements and the

other four. This implies that the representations are not disjoint and
Lence we are not in situation b). Without loss of generality we may

agsume that we have one of the following cases:

W) 0238 _9e3¢ =0,  27+3°-2"-3"=0,

() v on=0, 293 435 2%~ 3" =0.
Case (v). By applying Corollary 1.3 to the second sum we obtain that
(77, f5, n,8) belongs to & finite set of qua.druples. : E

Case {vi). By applying Corollary 1.3 to the second sum we find that
(2¢37,3%,2¢3¢,3%) belongs to a finite set of quadruples apart from & |
common factor 3¢, o . _' |

" To prove a) we observe that each N-representation of m is either
£ c’:_f 'the_ form a2* + b3’_ or of the form _2"’_33. -l_-' a + b where in each case
(d,b) belongs to a finite set. Put M; = max(a 4+ b) where (a,b) runs
&ver this finite set, The number of representations of m of the form
. a2% + 43¢ is bounded by Corollary 2. For representations of the form
o 2%3' 4 a+b we remark that it follows from Corollary 1.3 that the distance
" between numbers of the form 2° 3¢ exceeds 2M; when 2¥3° > M;. Hence
. ifm > M+ M and m = 2*3° + a+ b, then f and £ are uniquely
determined by m. It follows that for m > Mo+My +M, the number of N-
w.. representations of the second type is also bounded. We conclude that the
- total number of ¥ -representations of any number m > Mo+ M +M;zis
“bounded. It is obvious that the number of N-representations of numbers
. m < Mo + My + Mj can be bounded. This proves a).

To prove b) we recall that if m > Mo admits two disjoint N-
. representations then each representation is of the form a .28 +-5. 3¢ where
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(a,b) belongs to some finite set and either g = 2%13% 4 252 p = 3% (the
first type) or a == 2F2 b = 2Fa3% 4 3% (the second type). We define T} -
as the set consisting of 2,3 and all the prime divisors of a and b where
(a,b) runs over the finite set. Denote by & the set of rational integers
of which each prime divisor belongs to T}. Let M3 be so large that if m
has two totally disjoint, relatively prime S;-representations z; + z2 and
¥1 + Y2, then m < M. This number M; exists by Theorem 6¢).

Suppose m > max(Mo,M;) admits three pairwise disjoint N-
representations. Then there are two disjoint representations of the same -
type. Since m > Ms, these representations as sum of two elements
‘of S1, are not totally disjoint. It follows that the corresponding N-
representations are not totally disjoint. If the representations are of the

first type,
ok(2ki1gh 4 okz) 4 ghtts

and -
2k (2ka3te 1 ok4) 4. 3¢ +Es

say, then | o - | k
ok(2k13h 4 ok1) = gt +4

and

25:-’ (2".0':3333 + zk.;)l — 33-}'32,

since the N-representations are disjoint. It follows that % and e ar_
bounded, hence m < Mjy. If the representatmns are of the secopnd:!
type, then we obtain similarly m < Ms. Thus no m greater tha.n
max(Mn , M3, M4, My) admlts more than two disjoint N -representatmns

'dmtm{:t N -representa.tmns namely, fora>2,b22,

'(2ﬂ+3")=2ﬂ-13“+2“"1_+,'_3* L ol
petglpgetigh o o
= 91gb-1 “2u+3b -1 R
= 2332 490 +3b-—-2
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s 'I‘ijdeman and Wang [90] have proved that apart from the numbers of
the form 2¢ + 3% there are only finitely many positive integers m which
admit at least four N-representations.
It follows from Corollary 2 that the number of representations of
a non-zero integer m as difference of two elements of § is bounded (in
terms of t). This was the clue to the solution of an old problem of Erdos
 Letgr <oy <...<arand b <bs <... <y be positive integers.
Assume that the prime factors of

Poii= ] (e + )

1<i<k,1<5<tL

" are given by pi1,...,p:. Erdés and Turan (cf. [15] p. 36) conjectured
" that if £ = k and % tends to infinity then ¢ — oo. They had settled the
©  gpecial case b; = a; for § = 1,..., k in their first joint paper [18]. Gyory,
- Stewart and Tijdeman [47] observed that a stronger assertion follows
< from Corollary 2. Since, for any non-zero ¢, the number of solutions of
gz — Yy = ¢ in integers z, y composed of given primes py,...,p: 18 at most
6 x 723, the number of positive integers a such that both a + b, and
a + by are composed of p1,...,p: is at most 6 x 743, It follows that
£ > 2 already implies ¢ > Llogk — 2, hence t — o0 as k — co. An
elementary solution of the prﬂblem of Erdds and Turén was presented
in (88]. Erdés also posed the problem of investigating the number of
distinct prime factors of [{(ai + b;) if the product extends over a given

set of pairs (¢, ). Resultsin this direction can be found in Gyory, Stewart
and Tijdeman {48].

There are several related results involving P := maXj=q. ..t pPi.

" We henceforth assume that P is fixed and that a; + b1,...,a1 + by,
" az+b4,...,ax + b have no prime factor in common. In [47] we showed
. that if k > 2, £ > 2, then ai + b is bounded. This follows by applying
Corollary 1.3 to (a1 + b1) + (a2 + b2) — (a1 + b3) — (a2 + b1) = 0. By ap-
plying Corollary 5 to £ —y = b¢ — b1, we obtain the following refinement
. of 47, Theorem 2J:

e If k>t+3 and > 2, then ai + b < exp(t°*P?) where C is some
- effectively computable absolute constant. Surveys on these and related
-~ results are given by Stewart [87] and Stewart and Tijdeman [88].

. §7. Applications to finitely generated groups

In a letter to one of us A. Rhemtulla and S. Sidki asked to show that
. - 1ot every rational integer r is of the form ri+ra+.. .47y, n' < n, where
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each r; belongs to G, where G is a fixed multiplicative group generated by
algebraic integers a1, ..., . They needed this result for their study of
ellipticity problems in group theory. An application of Theorem 1 yielded
a positive answer. In fact, if n is a positive integer and «y,...,0Q: are
non-zero algebraic numbers (not necessarily integers), then there exists
a positive integer m which is not representable as the sum of at most n
power products ai‘ ‘e ai* (b1,...,bt € Z). This assertion follows from 3%
the following theorem by letting G be the group generated by ai,..., 0 n
and H the group generated by a prime number p of which no power ”
belongs to G. We namely infer from the theorem that only finitely many
powers of p can be represented as the sum of at most n power products

of 2 5 PRI s '

Theorem 8. Let nyi and ny be positive integers. Let G, H be finitely
generated multiplicative subgroups of C* with G H = {1}. There are
only finitely many compler numbers a which can be written both as

a=¢€;+... -l- €nq with €1y...,€n, € G (71)
and as |
a=1m +...+ 0, Withn1,...,%0n, c H. (72)

Proof. We use induction on n = ny + ny. We denote by N(n) the:
number of complex numbers o which can be written both in the form
(7.1) and in the form (7.2) with ny 4+ ng < n. Further we denote by
No(n) the number of complex numbers which are of the forms (7.1) and
(7.2) with ny + nz < n such that no subsumof €1 +... + €, equals any
subsum of 71 + ... + 7n,. Obviously N(2) = 1. Suppose N(n —1) < o0;
If & is of the forms (7.1) and (7.2) with n; 4+ ny = n, then T

oot ey =T Ty =0, _
€15+ -3 €ny € G! 7?‘_!:“-:7711; € H. (7

If no subsum of the left-hand side vanishes, then we obtain, by. appl
ing Theorem 1’ to Go = G™ x H"2, that there are only finitely ma,ﬁ
possibilities for (€1 1 ...t €ny M1 1 oo I ng)s K (€],.00 €, 3T N
and (e},...,€, M55+ My, ) are two solutions corresponding to the'*_s;,
projective point, then €} /ef = ni/nf € GNH = {1}. Thus there af
only finitely many solutions of (7.3) without vanishing subsums, when¢e
No(n) < co. ¥ some subsum vanishes, then o can be written as g
where both 4 and  are of the forms (7.1) and (7.2), but in both cas
ny +ng < n — 1. The number of numbers a representablé'iii" thls
is at most (N(n —1))”. Thus N(n) < No(n) + (N(n — 1)) <'o0:.

proves the induction hypothesis. e
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"'3 Apphcatmns to recurrence sequence of complex numbers

ol By a Tecurrence aequencﬂ we mean an infinite sequence of complex
mbers U= {um}o=s sa.tmfymg 2 rela.tmns]:up of the type

Umtk = c1um+k_1 + .ot CrUm for m=0,1,2,.., _(8.1)

:'t tere C1,...,Ck are complex numbers. The sequence U satisfies sev-
E'_fa,l rECUITence rela,twns af type (8. 1), among these there is a umque

F(.X')=.kac1xk“1.“*-tk_'1x—ck. - - _(3.2)

F(X)= (X~ wl)‘” co (X —wp)®r
- ";_here e1,...,€r &re positive integers and wy,...,w, non-zero distinct
' _i:amplex numbers Then there are pnlynummls f1 .y fr € C[X], o

Um = fri(mw? + ...+ fr(mw? form=0,1,2,.... (8.3)

Cm,nlm =:. Un, m >n 2 0. (8.4)
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Before discussing the proof, we state some consequences of Theorem

9.

Corollary 9.1 (Skolem, Mahler, Lech [53]). Let U = {vm}se.o be a
recurrence sequence in C for which the set M = {m : um = 0} 1s
infinite. Then M is ultimately periodic (i.e. there are postitve sniegers
mg and v such that m € M implies m +v € M for all m > my).

Proof. It is easy to check that M is finite if U has rank 1. Suppose
I/ has rank at least 2 and M is infinite. Then U is degenerate by
Theorem 9. Hence there exists an integer v such that each sequence
{vetmo } oo is either non-degenerate, whence has only finitely many

zeros, or-is identically zero. |

The following statement was made by Glass, Loxton and van der
Poorten [27]. |

Corollary 9.2. Let U = {um}m=o be @ non-periodic non-degenerate
recurrence sequence in C. Then there are only finitely many pairs of

integers m, n with m > n 2 0 and Uy = Un.

Proof. If U has rank 1, then upy, = uy implies
fi(mor” = fi(n)wy.

If f, is constant, then wy is a root of unity and U is periodic, which
contradicts our assumption. If fi is non-constant, then, by m > n;
I fl(m)l > | f;,(n)l for m sufficiently large. Hence jwi| < 1. Put fi (X) =

ﬂuX£ - 61X£_1 4+ ...+ {I.g with dg 35 0. Then -

|au|_l2£ laj I_C/ﬂ-

1 < lel__l < |w1|n-—m <

for some ¢ > 0. This implies that n is bounded. bSince un =;é 0
m large, we have u, 5% 0, hence | fl(n)w;‘l is bounded from below:b
a positive constant. We have fi(m)w(® — 0 as m — oo. ‘Thus 118
bounded.

If U has rank at least 2, then Corollary 9.2 follows at’ onc frﬂ%

Theorem 9. "

bros ':"-I_

The next result was proved by Pdlya [64] in 1921 in- the case
all the u,, are rational. . | | R

B 3 r_;__-_'."'.q_k
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| .Carollary 0.3. Let G be o finitely generated multiplicative sud-
e gruup'ﬂf C* and let U = {umlimo be a recurrence sequence such
5 that um € GU{0} for m =0 1,2,.... Then the formal power series

S et UmX ™ 18 equal to

]

sosis where £22 1 18 an integer and oy, ... o, P1,.-., Bt are complex numbers.
S . !
2 wnth ag, ... 0 #* 0.

o Praof. We first prove Corollary 9.3 in the case when .U has rank 1, that is
" f(m)a™ where o € C* and f € C[X]. Suppose that um € GU{0}

v for m = 0,1,2,.... Let G' be the multiplicative group generated by G
i and a. Then f(m) € G' U {0} for m =0,1,2,.... We shall prove that f
i is constant. " |

There exist complex numbers ¢, ..., ¢x such that

f(X + k) = f(X+k—1)+...+cef(X) identically in X.

= We suppose that k is minimal, hence ¢ # 0. Choose mq such that
S f(me) # 0 for m > my. By assumption, we have for m > mo that
L (f(m A+ k), flm+k—1),... , f(m)) is a solution of the equation

%ik-l—cla:k;.l +...+cpzog =0 |
in ©o,...,2x € G' (where ¢g = —1). (8.5)

- For each proper non-empty subset J of {0,...,k}, there are only .
finitely many m with ) .. ;¢; f(m + k = j) = 0, since the polynomial

Y e Ci F(X +k —j) does not vanish identically in X. Hence there 13 an
% m; such that for m 2 my, (f(m+k),..., f(m)) is a solution of (8.5) with
=) e Ci%h—j 7 0 for each proper non-empty subset J of {0,1,...,k}.

= We obtain from Theorem 1’ that f(m + k)/f(m) assumes only finitely
-many values for m = 0,1,2,.... Since f(m +k)/f(m) — 1 as m — 0o,
}his implies that f is constant. Hence um = Ba™ for m == 0,1,2,... and
<. -therefore |

iz L

x5 g -"f, :” v - 'm ’

vk '-'I.' u m X p—t [
1~aX.

i@ Now suppose that U has order at least 2. By Theorem 9, U is
degenerate. Hence thereis a v such that the sequences Uy = {Ugimy} oo




(0 < £ < v) are either nn'n-degenerate. br idéntlic-a,lly zero. But the non-
degenerate sequences among the U/, must have order 1. Now Corollary
0.3 follows by applying the result for recurrence sequencesof rank 1. m

Recently, Bézivin [6] proved the following result by applying Theo-
rem 1, | |

Let G be a finitely generated multiplicative subgroup of C* and
let F(X) = 5 > umX™ € C[[X ]| be a formal power series w::th the
following properties: . :

(a) there are polynomials fy,..., fi € C[X] such that

L . . . |
E fitm)umt+i =0 form=0,1,2,... (8.6)

1=0

and

(b) there are sequences {cj(m)} o (1 < j £ 1), with entries in GU{0}
such that

e |
U = Z ¢c;(m) form=0,1,2,.... (8.7)

3==1

Then F(X) is the Taylor expansion around the origin of a ra,tmnal_
function with only simple zeros. .

Using Bezivin’s result, Pdlya’s result can be extended to a recurrence;
sequence {um }oo.g satisfying a relationship of type (8 6). A relation of
type (8.6) is satisfied if F(X ) is the Taylor expansion of an a.lgebra.icf

function around the origin.

We now turn to the proof of Theorem 9, which resembles the proo
of Theorem 3 of [20] We shall only work out in detail the new idéas
The lemma below is used to reduce Theorem 9 to the case that R,l i
contained in the field of algebraic numbers A. | e

(“Specla.hsa.tmn”) such that ¢ i3 invariant on RN Q and, fﬂr emch
V, ¢(a) #0 and qﬁ(a) 33 ﬂ.at a root of umty e

.......
L
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Z[x] Z[mh oo ,:ct] Thus y'is a zero of a pﬂlynomm,l F(x Y) which is
.rreduciblein Z[x, Y] and has leading coefficient 1. Thus R can be written

as

T | Aly)  flxy)
| = z[ p(x) 7 p(x)

where f1,...,ft € Z[x;Y) and p € Z. Hence R is contained in the ring

; f(X'y) e
= {L rezmviner, 20},

' not identically zero in ¥ and § a zero of F(X, Y'), defines a ring homo-
| murphlsm é: R — A with

. -. - y ( f(x, y)) - f(i,ﬁ)
- ) " P

The image ﬂf ¢ is contained i in the algebraic number field Q(#) of which
. the degree is bounded by [K : Q(x)] Hence there is an integer m > 0,

JE—

.7 'independent of X and §, such. that every I‘ﬂﬂt of unity p in ¢:(R) satisfies

*  Let Gi,...,Gy, denote the minimal pﬂlynonuals in Z{x;Y] of the
 dlements of V Choose % € Z* such that p(X) # 0, F(X;Y) is not

- 1dent1cally zero and Gi(X;a) # 0 for each ¢ in {1,... ,v} and ¢ € {0} U -

{p pm =1}, (Nute that no Gi(X, ae) 18 1dent1cally zem) Let § be a
. zero of F(%;Y). It is now obvious that qb, defined by X and i, satisfies
> ithe assertlun of Lemma 2. | | =

EPrauf of Theorem 9. Let U = {um}m=0 be & non-degenerate recurrence
~“sequence of rank r > 2. Then there are non-zero polynomials f; € C[X]

l,",:_‘:"!n-."? -

and wi € C*fori=1,... ,7 such that

= Zf:(m)w form=20,1,2,..

t=1"

::*::ud w‘l/wj is not a root of umty for 1 *C t <3 < r, Let R C C be a ring

- € which contains R, wy,...,wr and the coefficients of fi,..., fr.
We first show that it suffices to show Theorem 9 in the algebraic

SR
ki

Fach pair X, ¥ with X = (931; . &) € ' with p(X) # 0 and F(x Y) |

" which is finitely generated over Z, and let K be the smallest subfield of

—————————
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the coefficients of Flyeoos fr a,nd'wl,...',w,., wit,...,wrt. By Lemma
2 there is a specialisation ¢ : R — A such that ¢ maps non-zero coef-
- ficients of the f; on non-zero numbers, and all quotients wi/w; (i # i)
on numbers different from 0 and roots of unity. Then ¢ maps U on the

sequence U 1= {fin} g := {qé(um)} o Where

U = Zﬁ(m){&f“ | form=0,1,2,...,

1==1

fi € A[X] and @; = ¢(w;) € A% Obviously U is a non-degenerate
recurrence sequence of rank r > 2. Let (m,n) be a pa.u' of integers with -

m>n 20, Cm,num = Un,

Cm,n e R\{U}, Cm‘ﬂ — 1 lf Unpn = 0., | (8,8)
Then, on putting B = ¢(R), Cm,n = #(Cm,n), We obtain
Em,n’ﬁm = ty, 6,-,1}“ & R | (8_9)

R is finitely generated over Z, but (m.n may be 0. However, from Then-
rem 9 in the algebraic case it follows that there is an ng such that 4y, 75 0
for n > ng, whence (8.9) is satisfied by at most finitely many pairs m, n
with m > n > no. We infer that (8.8) is satisfied by only finitely many
pairs m, n with m > n 2> no. To prove that (8.8) holds for only finitel
many pairs with n < ng, take a specialisation ¢’ having the same pm'
erties as ¢ and the additional property that ¢'(un) # 0 for ea.ch n < nh
with %, 5 0, and repeat the arguments given above. &

We shall now prove Theorem 9 in the algebraic case. Hencefort]
the field K is an algebraic number field and S 2 finite set of places on :
containing the infinite places, such that all non-zero coeflicients of th
polynomials f; and all w; (¢ = 1,...,r) are S-units, and such’ that
elements of R are S-integers. -

We shall need two other lemmas.

Lemma 3. Let p € A(X) be & rational function with no pales uut{;
the disc {z € C: |z| < A} and let o € A*. If there are mﬁmtely man
pairs of integers m, n with .

m>n 2 A, p(m)a™ = p(n)a™

thm p is constant and « i3 a root of unity.
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Préof (cf. [77] pp. 84485). We 'a..s.sume that

(X) X5 ﬂkk_1X*k_1+..+*-E1X+ﬂu
P ) S 1 X ... + b1 X + Bo

which is no restriction. Let 7{#) be the rational function obtained from
p(z) by replacing all coefficients of p by their complex conjugates. If
k # £ we put F(X) = p(X)P(X)(a@)* and if k = £ and « is & root of
unity of order ¢ say, we define F(X') to be a non-constant function from
{p(X)? +P(X)?, i(p(X)? — B(X)?) }. In both cases p(m)a™ = p(n)a™
implies Fi(m) = F(n), and there is an 29 such that F(z) is monotone for
¢ > z9. We conclude that p(m)a™ = p(n)a™ for at most finitely many
pairs of integers m, n with m > n. -

We now consider the remaining case: k = £ and « is not a root

of unity. We suppose |a| < 1 which is no restriction. By ¢, ¢3, ... we

~ denote (effectively computable} numbers depending only on « and p.
We have lp(m) - 1| < e /m for m > my. Hence, for m > n 2 my with

p(m)a™ = p(n)a”;

S
R L

Iam-—n - 1| 5 |alm““l1 -p(m)-] -+ Ip(n.) - 1| S % .

On the other hand, by Baker’s theorem [3] (which is the analogue of

:+ Lemma la) for algebraic numbers) we have, noting that « is not a root
of unity, | . .

]ﬂ:’""" — 1_‘ > [m - n'-_ca.

n < cq(m — n), | - (8.10)

s By assumption, a is not a root of unity. Hence there is a valuation |. |,
i on the smallest number field K containing o and the coeflicients of p

1th ||y := cg > 1. Therefore

EENEAL

g | =laly " = i 22 < erm®®

"6 p(m)

* th implies m — n < ¢g logm. Together with (8;10) this shows that

h:
bR
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‘such m, then there would be infinitely many pairs (m,n) with- m fﬂ

B | ~ S-UNIT EQUATIONS

Lemma 4. Let T be a finite set of places on K, containing S. Then for
every € with 0 < e < 1 there is an mg depending only on ¢ a,nd T such

that for all m > meq,

H lum|v Z {Hmax(lwllﬂ, _,,lwrl )

veET veES

(1-0)
}m > 0. (8.11)

Proof We shall prove Lemma 4 by induction on r. For r = 1, Lemma 4
is obvious. Suppose that (8.11) holds for all non-degenerate recurrence
sequences of rank less than r where r > 2 (mductmn hypothesis). We

hswe the identity

, _
Um = »_ filmw® =0 form=0,1,2,.... (8.12)

By the induction hypothesis, there is an m; such that no proper, non-
empty subsum of this sum vanishes for m > my. Let 0 < e < 1. Let H m
be the projective height of the projective point (um s —=film)w® ¢ ...
—fr(m)w™). It is easy to show that there is an my = ma(e, T) > m1

guch that | . m{l—¢/5)
H, > {H ma,:;(]wﬂﬂ, cees lerv)}

veES

for all m > my. Moreover, there is an ms = ms(e,T) > mo such tha

for all m 2 maj,
I Tlmper], < 265
veT i=1

since all w; are S-units. If m > mg3 does not satisfy (8.11) then

H (|um]u]_:_[1fi(m)w;“|v) < Hiﬂl’.ﬁi < Hil_-ﬁfz_

veT i=1

Recall that u., and the fi(m)w!™ are all T-integers. Together w1th t e
Main Theorem on S-Unit Equations this implies that there are onl:
finitely many projective points Py, = (um : fr(m)w® @ ... f,.(m)wl
such that (8.11) is not satisfied. For each projective point g, thﬂrﬂ
only finitely many m with P,, = g. For if there were mﬁmtely m

and

Almel _ fam)ep
AT &

whence

L r ]
------
T LT D
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fim) (wr\™ _ () (@

f2(m) \w2 T fa(n) \w2

o he latter is jmpossible by Lemma. 3. This completes the proof of Lemma
e | - |

Suppose that there are infinitely many pairs m, n withm>n 20

r which & Cm,n € R\{0} exists such that Cm plm = Un, 1.€.

S G i)t = 3 Fimf = 0.

; =1

=

are pairs of subsets (I;, J;) of {1,...,r}, for j = 1,...,4,
¢ 1=, J;={1,...,r}, the sets I; and the sets J; are

‘ j=1 _ * . :
airwise disjoint, at least one of I;, J; is non-empty, there is an infinite

\ &t v of pairs (m,n) for which
. m>n20, S Cmnfi(m)w" + S (—filn?) = (8.13)

d‘no proper, non-empty subsumn of this sum is 0.

We shall show that the cardinality of each I; is at most 1. Suppose I;
Atains two subscripts, which, ¢or convenience, are taken equal to 1 and
Tet Pm,n be the projective point with entries (m,nfi(m)w" (i € I)
d—-filn)wl (¢ € J;).. Then the entries of Pmn are all S-integers.
oreover there are infinitely many different points among the Py, n with
iin) € V), for the sequence of m with (m,n) € V is unbounded, and
Lemma 3 there are only finitely many pairs {m,ma) with my <ma,

1;m) €V, (ma,ng) €V and

Pm1,ﬂ1 = Pﬂlz,ﬂii

filmy) fwi\ filmg) (™

fo(my) \w2/  fa(ma2) \w2

y to check that for m

'''''''' '

T tH m,n denote the height of P . 1t 15 eas

1;:1ent1y large,

Hupp > C™/° | (8.14)

C= H ma,x(lwl lv'.- |w2|1’)"

veES -

oL o il .
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By enlarging S if necessary, we may assume that [l,es |uﬂ|-t, <

C'l"'(H”fmr)' for all n > 0 where & = logC/logC: and Ci

[Toes max(|w1]v, . - ,|wrls). By Lemma 4 we have for m sufficiently

I

large, that
H lumh 2 C;ﬂ(l*—'ﬁflﬂ'l‘].
yES
Hence -
- Un (m-+n)x/10r m/5r
H'Cm,n|v=n g < 0y <C ,
vES vES m v

This shows that for m sufficiently large, in view of (8.14)
Y

T (TT¢mmfitmyor], TT1fitnot],) < €™ < HLE.

vES i€l; i€ J;

By Theorem 1, we obtain that there are only finitely many projective
points Py, , and this yields a contradiction. Therefore no set I; or J;

can have cardinality larger than 1.

We infer that there is a permutation ¢ of (1,...,n) such that for all
(m,n)inV | |
Cmnfilm)w]® = foiy(n)wy(y- (8.15)

If ¢ is the identity, then there are infinitely many pairs (m,n) with

fi{(m) (E}_)m ___.fl(ﬂ) (“-’1 )“
fa(m) \w2 fz('ﬂ-) wg )
which is impossible in view of Lemma 3. If o is not the identity, we derive

a contradiction as follows (cf. [20] pp. 242-243). Let ¢ € {1,...,n} su
that ¢ £ o(2), and put s

8 = Wot(i) [Wottr(s)s 2 = Fartr(i)(n)] Fatiy(m).
Then, by (8.15),

qe
gy = v, for£=0,1,2....
£ Ges1 £41 ;-

e e mwlE

gl M, R B

h h '\..i
.

Let ble the order of . Then 8, = 6y, g, = go. .By startmgwit
and applying (8.16) p times, we find

671_;-“-—“*“ . ombml_pel m* " 2n—-mP=l mP3ndombia ﬁ”'l—mﬂ-.;_f
e = g o % gy
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All exponents are divisible by m — n. Choose a va.luatmn | |t, with
180]v = ¢ > 1. Then the v-adic valuation of the left-hand side of (8.17) -

is bounded from below by ¢™ " H(m—~ ~")  while the v-adic valuation of

the right-hand side is bounded from above by me ™"~ *(m=n) for some
constant ¢;. This shows that m is bounded. Thus the proof of Theorem
0 is complete. | -

Lewis and Turk [55] studied the solubility of equation uy,, = aun
in integers m > n where U = {un,}55., is a non-degenerate recurrence
sequence and a some complex number. They gave various upper bounds
which should be treated with care, since not all results are well stated.
The methods are however correct and some of them are qu1te 1nterest1ng,
but they do not involve S-unit equatwns.

§9. Applications to rﬂcli_rr_ence sequences of algahraic numbers

We shall use the notation of §8 and consider recurrence sequences of
© - algebraic numbers U = {4y }3_,. We assume that U is non-degenerate.
It then follows that the coefficients ¢; of the minimal recurrence relation
(8.2), the roots w; of the companion polynomial and the coefficients
of the polynomials f; are all algebraic (cf. [77] Ch. R). Let K be an
algebraic number field which contains all these algebraic numbers. By
an argument similar to that employed in the proof of Lemma 4 in §8, van,

. der Poorten and Schlickewei [67] proved that for every positive € there
exists a positive number C; depending only on U and € such that

Jum| > C1( max |w,|)“"“*)"‘ (9.1)

’-tu,r

|||||

Iuml-‘(.cﬂ(i II%&}E ]w‘_|)(1+£)m

Ii’

;:Qf terms in the sum on the rlght—ha.nd side of (8 3) can occur only to a

'|.
phak |.|-\.r

. gey:y limited extent (in the algebraic case)

- ,‘.



‘and of rank at least 2. Van der Poorten [66] noticed that Theorem 1
implies that P (%m) — o0 a3 m — oo. Evertse {20] generalised this by

proving .
l1m Pg(um/uﬂ) = 00. (9.2)

I == O
m>n

ti, 20

Theorem 9 implies the following stronger result.

Corollary 9.4.
Hm  PE(um/un) = 00

1y —+ OO
m>n

nn#0

Proof. It follows from Corollary 9.1 that 4,u, # 0 for m >n > ng. Put
Cmn = un/ Uy, for these values of m and n. Suppose there are infinitely
many pairs (m,n) with m > n > ng such that PE(um/ua) is bounded
from above by M.. Let S be the union of all infinite places on K and
all finite places corresponding to prime ideals on K with norms at most
M. Then the cardinality of S is finite. Further, (m » 15 an S-integer for
infinitely many pairs m, n with m > n > no. The S-integers form a
finitely generated subnng of C. Thus Theorem 9 implies that there are
only finitely many pairs m, n with m > n > ngy such that (m is an |
S-integer, a contradiction.

Since the proof of Theorem 1 is ineffective, it is impossible to derwe
lower bounds for P(um) or Pi(tm/un) from the proof of Theorem 1.,

If £ = r = 2, then (8.3) becomes
m = owy + fwg (m=0,1,...)

and it is possible to ﬁpply Theorems.2-5. We assurmne

wl"_}éw?: UJ=|W1|ZIW2I>0,

wy fwe not a root of unity.

Let S be the smallest set of places on K containing all mﬁmte plaf

such that o, 8, wy and wy are all S-units. Theorem 2 implies that for an
non-zero complex number A the equation u,,, = A has at most. 3. 7‘1%

solutions where d is the degree of K and s the cardinality of .5:- ThEEl
3 implies that for given roots w; and wy there are only finitely ma
equivalence classes of recurrence sequences such that u, = A hag

than two solutions m. f upm € Z for m =0,1,..., then results of. K'
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Upper bounds for the number of subscripts m with u,, = A in the case
that (9.3) yields a s&qu&nce of rational numbers, or even just algebraic
numbers, are contained in the papers of Kubota, [49] and Beukers and
Tijdeman [5].

Since the proofs of Theorems 4 and 5 are effective, it is possible to
derive effective bounds for sequences (9.3). First we state some results
in case uy, € Z for all m. Stewart [85] proved by Baker’s method that
there exist effectively computable numbers C; and m;, dependmg only
on o end 3 such that

Ium-l > wm-—(?alugm.

(m 2 iy )

Parnami and Shorey [62] used this result to prove that u, = u, with
m > n implies that m is bounded by an effectively computable constant
and Shorey [76] even derived lower bounds for |us, — unl In the latter
paper Shorey also proved that

| m 1/{dy+1)
logm

P-F(“mlfﬂn) > Cy (

where d; = [Q(wl) : Q] and Cy4 is an effectively computable number
‘depending only on U, Stewart [86] and Shorey [75] also cons1dered lower
-'_ibounds for the gre&test squarefree factor of u,,.

-

It is possible to generalise most of the above mentioned results to

__ a;rb1tra,ry algebraic recurrence sequences in K. Further Mignotte, Shorey

. o d Tudema,n [58] have exténded some results to the case r = 3. Their

s |um| > w™ exp(—Cjs(log m)?) {m 2 ma).

&n 3. For these and related results, see Shﬂrey and Tudema.n [77] Ch.

] 5 2’ 3. 4.

LA
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A = {ay,...,am} of Os with m > 3, we denote by Okx(A,S,N) the
graph whose vertex set is A and whose edges are the unordered pairs «;,
a; such that Ns(a; — ;) = [[,esloi — aﬂ&f‘ﬁ@] > N. If in particular 3
§ = S.., then we shall denote this graph simply by Gx (A, N). Many dio-
phantine problems, for instance related to irreducibility of polynomials 3§
(see Theorem 12), decomposable form equations (see §11) or algebraic
number theory (see §12), can be reduced to the study of connectedness
properties of graphs Gx(A,S,N). Such properties are stated in The-
orems 10 and 11 below and these theorems can be used to solve the
diophantine problems mentioned. Before stating Theorem 10, we intro- 1%
duce some terminology. If G is a graph, then, as usual, |G| and G denote
the order (the number of vertices) and the complement of g, respectively. 38
The triangle hypergraph GT of G is that hypergraph whose vertices are
the edges of G and whose edges are the triples of edges of G that form a
triangle. : E O

Theorem 10 (Gyéry [35], [42]). Let m > 3 be a rational integer, A =
{a1,...,am} a subset of Os and Gi,...,Ge the connected components
of G = G(A,S,N) such that |G1]| 2 |G2| 2 ... 2 |Gel. Then at least one
of the following cases holds: |

i) £=1 and G or .Z’;T ts not connected;
1) £=2,|Gy| =1 and Gy 18 not connected;

i) £=2,2 < |G| < |G1| and both G1 and Go are complete;

iv) there is an ¢ € Us and for every pair i, J with1<i<j<m there_;
is an «;; € Og such that |

O — A5 = €Qyj

and -
max h(a;) < exp{(c1s)**P**log 2N} i
£,7

where ¢y, ¢z are effectively computable numbers depending only on m,
and Dy. | T

Except for certain trivial situations, each of the cases i} to iv) ca
occur (cf. {35]). The graphs Gx(eA 4 B, S, N)) have obviously the seme 78
structure for every € € Us and 8 € Og. It follows from Theorem 10 that &8
apart from translation by elements of Os and multiplication by elemenital ¥
of Ug, there are only finitely many m-tuples A= {a,...,amn} for whi¢
Gx(A,S,N) is not of the type 1), ii) or iii) and all those A can be:
least in principle, effectively determined.
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" Theorem 10 is proved by repe&tedly a.ppl}ung Theurem 4. We sketch
some ideas behind the proof of Theorem 10: - a

LE N

Suppose 1), i) and iii) do not hold. Then one can prove that |

R :
. PR |
M

ST R R e b

a) G and its triangle hypergraph ?T are connected; or

PP [T
"u-‘r:r. -

b) ¢ has two connected components of order > 2 of which at least one
18 not complete.

‘We shall sketch the prnﬂf that iv) holds in case a). Let {a,ay, ﬂfk} be
an edge of g Then

et kg
Tl

=T

N

3

St
L

Ng(a; —aj) < N-.- Ns(aj—arp) SN, Ns(ap—a;) < N-

This implies that oy — aj, a; — ok, ar ~ a; are S-units Where S is 8
finite set of places which contains S and dependa only on N, K and S.

Mﬂreover,
o — crj | ﬂj — Y

Te—— | .—1*

O — Qg Q& — Xk

By Theorem 4 this implies that there are only finitely many passiﬁle val-
. ues for the quotient (a;—a;)/(a; —ax), which can all be effectively deter-

. “mined. I {aj, ok, ¢} is another edge of a then (aj—a)/(ar — o;) be-
- longs to a finite, effectively determinable set, and so {a; — a;)/(ar — ay)
e 'must belung to such a set By cnntinuing this a.rgr ument, it follﬁws that

But 3 18 connected,
ence for each quadruple (a,,cuj,ctp,cxg) for whmh [, ] and [ap,r:xq]
. aré edges in G, the quotient (a; — a;)/(ay, — ty ) can assume only finitely
:a.hy values which can be effectively determined. Fix p and q. Since ¢
“sﬂfdﬂnnected each pair (aﬂ,ab) can be connected by a path in §. By
e ;umnnng over all terms (cx, — ;) /(ap ~ oy} for the edges in this path
’We obtain that for each pair (a,b) the quotient (az — ap)/(ap ~ @,) can
"fas_gume only finitely many values which can be determined effectively.
oihice Ng(ay — ag) < N, we have a;, — ay = g€ where € €.Us and oy,
angs to a finite set which can be effectively determined. From these
: _é_:ts it follows easily that oy — ap = agpe for each pair (a,; o), where
Us, and each O ah belongs to a finite set which can be effectively

I the order of § = QH(A S,N) is large emush then G cannot

‘Ve -property iii). This fact plays a crucial role in some &pphcatmna to
I,;;_dhmble polynomials (see below and [41]} and polynomials of given

nmmant (cf. §12 and [38]). Gydry [35], [42] proved the following

.....
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theorem but with a weaker estimate for |G| than (10.1), since he used a 3
weaker version of Theorem 2. :

Theorem 11. Let A be a finite subset of Os and lel G = Gr(A,S,N).
There exists an effectively computable positive number c3, depending only

on d and Dy, such that if
91> e o)

then G has at most two connected components, and one of them 1s of
order at least |G| — 1. i
For certain more general (but ineffective) versions of Theorems 10 .
and 11, see Gy6ry [40]. Theorems 10 and 11 are shghtly modified versions
of Theorems 1, 2 of [35). | .
Theorems 10 and 11 have applications to irreducible polynomials,
Here we shall present a consequence of Theorem 11. 1. Schur and later -
A. Brauer, R. Brauer and H. Hopf investigated the reducibility of poly- .
nomials of the form g(f(X )) where f, g are monic polynomials in Z{X
g is irreducible over @ and the zeros of f are distinct elements of e
For a survey of results in this direction, see [29], [41]. Gydry [28], [29];
(41} extended these investigations to the case that the zeros of f are
in an arbitrary totally real algebraic number field X of degree d. Let
A={ay,...,am} € OF be the set of zeros of such a monic polynomial ¥
f € Z|X] and suppose that g € Z[X] is an irreducible monic ; |
mial whose splitting field is a totally imaginary quadratic extension of e
a totally real number field. Consider the graph § = Gk (A4, N) with the @
choice N = 2d|9’(0)|dl de8(0), Gyéry [28) proved that if this graph g has
s connected component with k vertices, then the number of irreducibl
factors of g(f(X)) over Q is not greater than deg(f)/k. This estimated
is in general best possible (cf. [29]). Therefore, Theorem 11 implies &
following R

'\_I

Theorem 12. Let f,g € Z[X] with the properties specified abaﬂeﬁf;ﬁa
is an effectively computable number ¢4, depending only on d, hi:
Dy, such that if | ' ERRAREE

. 2/ de
deg(f) > calg(0)[*/ 5

then g(f(X)) is érreducible over Q. : e
This theorem was proved by Gydry [41] with a slightly Weakgr

explicit lower bound for deg(f) and in the more general case tha

ground field is an arbitrary totally real number field (instead.of Q)%

R
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.§11; Applications to d.emmpbsab-le form equations B

Decomposable form equations form a very important class of poly-
nomial diophantine equations. Many problems in number theory can be
reduced to such equations. The most important types of decomposable

form equations are Thue equations, norm form equations, discriminant

form equations and index form equations. There is an extensive litera-
ture of equations of these types, and this will be the theme of the next
memoir [25] in these Proceedings. Here we shall restrict ourselves to the
application of unit equations to decomposable form equations. As will
be seen, finiteness problems for decomposable form equations are in fact
equivalent to finiteness questions concerning unit equations.

Let F'(X;,X2) be a binary form with coefficients in @y and Bpllttmg
field G over K. Let § € O \{0}. By using their results on approxima-
tions of algebraic numbers, Thue [89] (in the case K = Q) and Siegel
78], [80] showed that if

(a) F has at least three pairwise linearly independent linear factors in
its factorisation over G

then the equation.
F(ml,mg) = 3 11'1 Ty,%Tg € O}{ | (.11.1)

. has only finitely many solutions. Equa.tmn (11.1) is called a Thue equa-
e gtton over K. Further, as was (implicitly) pointed out by Siegel [79], [80],
.. any unit equation in two variables (over K) can be reduced to a finite
T umber of Thue equations (over K) and conversely, any Thue equation
*ver K leads to a finite number of unit equations in two variables (over
~ an-appropriate extension of K. Indeed since Uy is finitely genera.ted

A

. ‘i}ery solution of |

o)
5

i

N

e +av =1 inwu,v€ .UK | - (11.2)

y

"s_where a1,z € K*) can be written in the form « = u a:l ) v = vzl
W ere n 2 318 a given pcsa.twe integer, €1, %2 € Uk, and v/,v' € Uy can

“‘*}_‘ S}tme ranly finitely many values. Hence {11.2) reduces to fimtely many
| (ﬁlu')m? +- (agv")m;‘ =1 in,z € Ok.

all now shmw how the finiteness of the number of solutions of
) follows from the fact that any equation of the form (11.2) has
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only finitely many solutions. After fnﬁltiplﬁng (11.1) by an appropriate |
rational integer, (11.1) takes the form

£i(x)... £a(x) = g inx=(z1,2:) € O% (11.3)

where the £;(X) (i = 1,...,n) are linear forms in Xy, X2 with coeflicients
in the ring of integers Og of G. For every solution x of (11.3), each £;(x)
divides #' in Og, and hence lies in a finite number of cosets of G* with
respect to the unit group Ug. If now e.g. 2,, 0,5, £3 are pairwise linearly

‘independent, then |
| El(X) ‘ EZ(X) _

LX) T (X) |
for appropriate A1, Ay € G*. The numbers £(x)/23(x) and fa(x) [€3(x)

are contained in a finite number of cosets of G* with respect to Ug,
hence (11.3) yields a finite number of unit equations B

A 1

A

Mu+dv=1 inu,v€Ug.

For every solution u, v of this equation, £1(x)/¢3(x) = u, £2 (x)/3(x) = v
determine £;(x), £5(x), £3(x) and hence X, up to a proportional factor
which can be determined from (11.3). There is a similar relationship

hetween Thue equations over Og, i.e. equations of the type |

F($1,$2) = ,8 n L1, T9 e_ Os (111

and S-unit equations in two variables (with not necessarily the "saﬁ}
ground field and set of places 5). Cf. Mahler [56] and Parry [63] L

Thanks to Baker [1] and others, it turns out that the a,bo"-fﬂarg

PRI AR F L 1y v
o7 TR

ments can be made effective and Theorem 4 (as well as its other versio

can be applied to obtain effective results for Thue equations. Baker [1]:
9] proved (implicitly) the first version of Theorem 4 (for ordinary units
and used it to make effective Thue's and Siegel’s finiteness theorem
mentioned above by giving explicit upper bounds for the heights of t}
solutions of (11.1). Coates [11], [12], in the case K = Q, and Gyory (3
[39], in the general case, extended these results to equation (11 1’)
using (a more explicit version of) Theorem 4, it was shown in 137),[8
that all solutions 1, z2 of (11.1") satisfy | |

ma.}c{h(a:l), h(mz)} < Exp{(cls)“”Pd“}

where ¢; and ¢y are positive numbers depending only on S, F:
(which were given explicitly in [39]). |

SAbaE
n -
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By means of (a generalisation of) Theorem 2, Evertse [19] and later -
Evertse and Gy6ry [22] derived explicit upper bounds for the numbers of
solutions of (11.1) and (11.1') which are mdependent of the coeflicients
of F. In [22], the bound

4n x 729(d+a+tﬁ(ﬂ))

has been obtained for the number of solutions of (11.1') where n =
deg(F), ¢ [G K] (hence 1 < g < n!) and w(B) denotes the number
of distinct prime ideal divisors of (3).

As a generalisation of (11.1) and (11.1"), consider the decampasable
form equations

.F(ml,...,mm)=ﬁ M Ty, ,8m € O (114)

or, more generally,

F(m_l,.,.,mm)=ﬁ inﬂ:l,...,mmeo,s (11*4')

where F(X) F(X 1y+ .- Xm) is & decomposable form in m > 2 variables
with coefficients in O, i.e. & homogeneous polynomial which factorises
into linear factors, £1(X),...,£,(X) say, over some finite extension G of

K.

In the case that F is a norm form and K = @, Schmidt [72] and
Schlickewei [71] gave finiteness criteria for (11.4) and (11.4"), repectively. -
Their proofs are based on Schmidt’s Subspace Theorem and its p-adic
generalisation (cf. §4) and are ineffective. For generalisations to norm

form equations over arbitrary ﬁmtely generated domains over Z, see
Laurent [52].

(11.4) and (11.4") can be reduced to unit equations in a similar way
as in the case m = 2 described above. Any linear relation Aily, + ...+
}\,,E;, = 0 with Ai;,..., A, € G* leads to finitely many inhomogeneous
unit equations in r — 1 variables. But in contrast to the case m = 2,
where one linear relation with r = 3 was enough, in general several linear
relations are needed to prove the finiteness of the number of solutions of
(11.4) and (11.4"). Gyéry (partly with Papp) extended the above method
- of reducmg Thue equations to unit equations to all decumpusable form
equations in m (2> 2) variables whose system of linear factors Lo =
{4,..., £n} satisfies the followmg condltmns.

- (b) rank g = m;

(c) Lo can be divided into subsets £y,..., £, such that if 1Ll > 2 fmr
" some j, then for each %, 3’ with 4;, £, € L; there exists a sequence
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=L yeeey iy = E,r in £; with the property that forg=1,...,r—1

there is a linear eembmetmn of 4; , and £; ., with coefficients in G*,

which also belongs to Lj; -

(d) There is a k with 1 < k < m such that X;c can be expressed as a
linear combination of the forms from £; for each j in {1,...,A}.

By using Theorem 10, Gydry [37], [39] showed that under assump-
tions (b), (¢), (d), equation (11.4') has only finitely many solutions with
2 # 0 and he gave an effective bound for the heights of the solutions.
The condition z; # 0 is necessary in general, but if A = 1 in (¢) then
conditions (d) and i # 0 can be dropped. This is always the case for -}
Thue equations. Then & = 1 and (b), (c) are equivalent to condition (a).

Important special types of decomposable form equations are the
discriminant form equation

Dysrrc{orm +.FapIn)=F InT,...,Tm E.Os, - (11.5)
and the norm form equation
Na/x(cozo + ...+ mom) =B inzo,...,Tm € Os, (11.6)..

where oy = 1, M = K (eul, Vo ,eem) is a finite extension of K,
1,04,...,an are linearly independent over K, and Das/x and Npr/g de-
note the discriminant and norm over K, respectively. As an eppliee,tien

Gyéry [39] gave exphtut upper bounds for the he1ghte of the eelutmne of
(11.5) and (11.6), where in (11.6) he assumed that L

[K (a0, .-, @i41) : Klao,.. ,@i)] 2 3 fori=0,...,m— 1

Gyéry [36], [39] derived several results on index form eque.mene a,nd
algebraic number theory from his result on (11.5). |

Recently, Evertse and Gy6ry [25] replaced conditions (b),(c), (d) by

the slightly weaker condition (e) of Theorem 13. To state this theere_f’__'j-
"we need some further notation. Let £* be a maximal set of pairwisee
linearly independent linear factors of Ly. For any subspace Vof K "‘_,'21
r(V, L*) denote the minimum of all positive integers r for which the el
are £;, ..., 0; in £* whose restrictions to V are linearly dependent ‘buts
pairwise linearly independent. If this minimum exists, then r(V, £"') >
Otherwise we put r(V,£*) = 2. Let £ 2 L* be a finite set of pairwi
linearly independent linear forms in X1,..., X, with ceefﬁclente 1';"1*-‘:'*1;
By applying Theorem 4 the following reeult can be proved. i

N [T e
A R el
. R T LR -t F
SR I SRRtk 1
' h'!
. e v

Theorem 13. (Evertee e.nd_ Gylry [25]). .S'eppeee that
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(e) far e-'uﬁry aubapace 14 af K™ of dsmcnswn > 2 on wh:ch none of the |
forms in L vanishes identically, we have r(V,L*) = .

| Then there exists an effectively computabl’e number cj, dﬂpending only
- on K, 8, F and f, such that all solutions of the equation

F(x) =F(x1,...,2m) =0 in x € OF
with £(x) # 0 for all £ € L (11.7)

- satisfy m?,x h(z;) < cs.

If in particular £ = L£*, then equation (11.7) reduces to (11.4') and
Theorem 13 provides an effective bound for the solutions of (11.4'). In
[25], Theorem 13 is proved under a slightly weaker assumption which
" involves only a finite and effectively determinable collection of subspaces

V of K™,
The next result can be deduced from Theorem 2.

Theorem 14 (Evertse and GySry ([22]). With the above notation and
under assumption (e), the number of solutions of (11.7) is ai most

n(4 x 72y(d+a+w(ﬁ)))m+1_

Ttis a remarkable fact that this bound is independent of the coefficients
of F. As a consequence of Theorem 14, Evertse and Gyéry [22] derived
“also explicit bounds for the numbers of solutions of (11. 5) and (11.8),
_~_'_~;w1th similar conditions as for the effective results.

o AIl application of Corollary 1.21ed to the fGHGWIIlg genera.l finiteness
-;?'".i;f;':'f}i:}lter:ﬂn for decampﬂs&ble form equations.

>, .
A

-t-hearem 15 (Evertse and Gyory [24]). . The following two statements

:?;if'f.) For every subspace V' of K™ of dimension > 2 on which none of
o the forms in L vanishes zdentmmlly; we have r(V,L*) 2 3;

- wnfinite places, (11.7) has only finitely many solutions.

Condition (f) is obviously weaker than (e). Theorem 15 implies, in
' _meﬁ'ectwe form, all the above-mentmned ﬁmtenesa results for decom-

) '\-n.-
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As was pointed out in [24], Corollary 1.2 is a consequence of im-
plication (f)==>(g) of Theorem 15. Indeed; let a1,...,am € K™ and
consider the unit equation |

Q1T -+ G2y -I-... + mEm =1 Inx3,22,...,2m € Us (11.8)

with a2z, + ... + o @i, # D for all non-empty subsets {iy,. ..,z,.}

of {1,...,m}. Put F(X) = XplanXs + ...+ apXn), £ =

{Xl, ‘e ,Xm,le +.. .+amxm} a.nd let £ be the set of linear forms of
the type o, Xi, +. .. +a;, X;, where {13,...,1,} is a non-empty subset of
{1,...,m}. Since F(x) € Ug for every solutlcm X=(21,...,Zm) €UL 3
of (11.8), we have F(x) = Be™*! where 3, ¢ € Ug and § can assume
only finitely many values. This means that, with the notation x' = x/¢,
(11.8) reduces to ﬁmtely many equations of the type

F(x')=# inx =(z},...,%m) €U |
with £(x') £ 0 for all £ € £. (11.9) .18

It was, however, shown in [24] that these £L* and £ sa.tmfy assumption :
(f} of Thenrem 15. There:fnre, by Theorem 15, equation (11.9) has only
finitely many solutions x’. This implies that (11.8) has indeed only:
finitely many solutions. In other words, Corollary 1.2 on unit equations is'
equivalent to the implication (f)==>(g) Df Theorem 15. This contains as a
special case the relationship observed by Siegel between Thue equa,tmn
and unit equatmns in two variables.

Finally, we note that Theorems 14, 15 were proved in [22] [24]:
respectively, in the more general form when the ground ring is an arbi
trary finitely generated extension ring of Z. In the proofs the a.uthc:r
used Theorem 1' and the general version of Theorem 2, respectwely
Gydry’s effective results on decomposable form equatmns in [37] [39
have been extended to this more general situation in [43], [44].

§12. Applications to algebraic number theory

reduced to the study of the equations

| Dgfq(ﬂ:) =Dy ma€Og
snd

D(f) = Do in monic polynomials f cZ[X]
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where K is now an algebraic number field of degree d 2 2, D(f) and
Dy q(a) denote the discriminant of f and e, respectwely, and Dy €
Z\ {0} If o satisfies (12.1) then its minimal defining polynomial over Z
satisfies (12.2). Equation (12.2) can have, however, other (not necessarily
irreducible) solutions without zeros in K. Hence (12.2) is more general
than (12.1). If a is a solution of {12.1) then so is a + a for all a € Z.
Elements a, o' of Ok with o — o' € Z are called Z-equivalent. Sinilarly,
if f 18 a solution of (12.2), then so is f*(X) = f(X + a) for every a € Z.
Polynomials f, f* of this kind are called Z- equivalent. By repeatedly
applying an earlier version of Thaﬂrem 4, Gydry prnved in 1973, the
following

Theorem 16 (Gyary (30]). EBvery solution « af (12 1) is Z-equivalent
. to a solution o € OK Jor whach

H(a') < 1

where ¢ 15 an eﬂ'ﬂctwely camputmbfe number depﬂndmg only on d, Dy
and Dy. |

In other words, there are only ﬁnitely many pairwise Z- inequivalent
elements in Qg with diseriminant Dy, and a full set of representatives of
such elements can be, at least in principle, effectively determined. This
finiteness assertion was independently proved in a non-eﬂ'ectwe form by

Birch and Merriman {7] in 1972. _
. We shall now sketch how (12.1) can be reduced to a finite system
: éﬁf unit equations. Let G be the normal closure of K /Q with degree ¢

¢ (over Q) and let o) =, o ... oD denote the conjugates of « w:th
. respect to K /Q.Ifd>3 then

....
{{{{{

a:(]-) - ﬂ;(‘) a(') _— a(g)
'a(l'}.-; a(2) 1 (1) q_r(?)

=1 fori=3,...,d  (123)

:____«Further, the numbers o) — o2 (1) - ON o — a(? divide Dy in

: v&rlablea and, by Theorem 4, c:u(l) o:(‘) ol — ﬂ:(‘} and so ﬂ:(‘) e
. can be determined up to the common factor all) — o(2) whmh is however
i déterminable from (12.1), and Theorem 16 follows. -

+ In fact Theorem 16 is an immediate consequence of Theorem 10. .
_:'t:_..A {a(l), ‘oo ,ﬂ:(d}} and N = |_Du|9' By .(12.1) we have

INgjq(a® — o) <N for1<i<j<d,
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hence the graph Gg(A, N) (cf. §10) has only isolated vertices. Therefore
case iv) of Theorem 10 applies and the differences a9 — a9 can assume
only finitely many effectively determinable values, up to a common fac-
tor, while this common factor can be derived from (12.1).

If (12.1) is solvable then D g |Dy. Denote by w the number of distinct
prime factors of Dy/Dr. By means of Theorem 2 one can prove the

following

Theorem 17 (Evertse and Gyéry [23)). Eqwtibn (12.1) has ot most
79(d~1)(2w+3) guirpise Z-inequivalent solutions.

We note that d < ¢ < dl.

In view of a theorem of Minkowski d can be estimated from above
explicitly in terms of Dg. Further, (12.1) implies {Dg| < |Dof. Hence
the dependence of ¢; on d and Dg in Theorem 16 can be dropped (cf.

[30]). For irreducible polynomials f € Z[X] this implies the following

Theorem 18 (Gyéry (30]). Every solution f of (12.2) is Z-equivalent
to a solution f* € 2[X] for which | | -

deg(f*) < eca, H(f')< e

where ¢z, c3 are effectively computable numbers depending only ﬂﬂDﬂ
and H(f*) denotes the mazimum absolute value of the coefficients of f*. 2
The ‘reducible’ case can be reduced to the ‘irreducible’ one by usin
the relation ) | S
D(F)=T[D(f:) [ (Res(fifi) .
=1 1<i<j<k o
wheré f =TI, fi in Z[X] and Res(f;, f;) denotes the resultant Gf
and f;. We note that in Theorem 18 an upper bound for deg(f*) car:
also be derived by means of Theorem 11.

Theorem 18 implies that up to Z-equivalence, there are only ﬁmtel "
many monic polynomials f € Z[X] with discriminant Dy # 0 and a full
set of representatives of such polynomials can be effectively determinedy
For binary forms of given degree and given non-zero discriminantia
similar but ineffective finiteness theorem was independently proved by
Birch and Merriman (7). .

We present one consequence of Theorems 16 and 17 here. ‘Foric
applications we refer to [32], [33], [36), [23]. As is known, there €xl
algebraic number fields K having power integral bases (i.e. integral base

PR
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*of the form {1 a,... ,a:" 1} where d = [K Q) but this is not the case
in genera,l For references to results concerning power integral bases, see
[46]. Tt is known that o € Ok generates a power integral basis if and
only if Dg/q(a) = Dx. If o is a generator then so are all &' € Ox
which are Z-equivalens to a. By a.pplymg Theore:m 16 with Dy = Dy,
we hawe

Corollary 16.1 (Gyéry [32]). If {1,0,...,0%"1} is an integral basis of
K, then there is an o € Og which s Z-equivelent to « such thal

-H(ﬂﬂl) < ¢4_

where ¢4 i3 an effectively computable number depending only on d and
Dg. | |

Thus, up to Z-equivalence, there are only finitely many elements in
Ok which generate a power integral basis and they can be effectively
determined. In particular, one can decide at least in principle, whether .
K has a power integral basis or not.

Corollary 17.1 (Evertse and Gyéry [23]). Up to Z-equivalence there
“are at most T39(d- 1_) elements a € Ok for which {l,a,...,a a®~ 1} i3 an
integral basis for K. -

Since ¢ < d!, this implies an upper bound depending only on d.

For explicit expressions for ¢; to ¢4 and for references, see Gyéry
=~ [31], [33]. The results presented above have various generalisations; for
= . references see [45], [46], [23].

§13 Applications to transcendental number theory

: Let g(2) = Ek—1 z. Let a1y... 040 be algebraic numbers with
20 < oy} < 1for i = 1,...,n. D. W. Masser conjectured that if o;/o;
s not a root of unity for 1 <4 < j '< n, then g{ez),...,9(an) are

algebraacaﬂy mdependent Nishioka [60] used Thenrem 1.to prove the

5 i <n,£>0)are algebraically 1ndepel_1dent.

1. Nishioka generalised the above result to more general gap series f.
= §t K be an algebraic number field. Let f (z) = E:iﬂ a2 be a power

klirga(ek -+ log Mk -+ lcsg Ak)/§k+1 ::-*-0
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where Ay = max(1,[@o),...,l@xl) and My is a positive integer such that
Mzag, ..., Mrag are algebraic integers. Cijsouw and Tijdeman [10]
proved that f(a) is transcendental for any algebraic number « with
0 < |a| < R. Bundschuh and Wiylegala (8] proved the remarkable result
that fon)y ..., flan) arve algebraically independent for any algebraic
numbers aq,...,an wWith 0 < Jan| <... < laen| < R. There are several
other papers on the algebraic independence of values of gap series, but
nobody could handle the case of a; of equal absolute values until Nish-
ioka [61] applied Theorem 1. She proved the following general result,

Theorem 19. Let aq,...,an be algebraic numbers with 0 < log] < 1
for i =1,...,n. Then the following three properiies are equivalent. .
(i) The numbers FO () (1 <3 < n, £ > 0) are mlgebm-imlfy depende t
over the rationals. |

(i) The numbers 1, floy)y -ovy flon) are linearly dependent over th
elgebraic numbers. |

~(iii) There is o non-empty subset {t1,...,%m} of (1,...,n}, @ numb
v, roots of unity (1, ..., Cm and algebraic numbers dy, ..., dm, 1

all zero, such thai

ai; =¢y (1£j<m) and Y di¢st =0

j=1

for all sufficiently large k.

References

[1] A. Baker, Contributions to the theory of diophartine equati
~ Philos. Trans. Roy. Soc. London A 263 (1967/68), 173-208. .4

[2] A. Baker, Bounds for the solutions of the hyperelliptic equa,t
 Proc. Cambridge Phailos. Soc. 65 (1969), 439-444. A
(3] A. Bakér, The theory of linear forms in logarithms, Tmn.scen
Theory: Advances and Applications, Academic Press, London,
pp. 1-27. | - |
[4] . Beukers, The multiplicity of binary recurrences, Cﬂm}i‘
Math. 40 (1980), 251-267. o

5] F.Beukers and R. Tijdeman, On the multiplif:ities of bm&ryc
recurrences, Compositio Math. 51 (1984), 193-213. o



S.UNIT EQUATIONS | 169

(6] J.-P. Bezwm, SurunThenreme de G. Pulya, J. Reme An_gew Math.
364 (1986), 60-68. - -

[7] B. J. Birch and J. R. Merriman, Finiteness theorems for binary
forms with given discriminant, Proc. London Math. Soc. (3) 24
(1972), 385-394.

(8] P. Bundschuh and F.-J. Wylegala, Uber algebra.iéche Unabhangig-
keit bei gewissen nichtfortsetzbaren Potenzreihen, Arch. Math. 34

(1980), 32-36.

[9] J. W. S. Cassels, On a class of éxpoﬁential equations, Ark. Mal. 4
- (1961), 231-233.

[10] P. L. Cijsouw and R. Tijdeman, On the transcendence of certain
power series of algebraic numbers, Acta Arith. 23 (1973), 301-305.

DR LH

[11] J. Coates, An effective p-adic analogue of a theorem of Thue, Acta
Arith. 15 (1968/69), 279-305.

(12] J. Coates, An effective p-adic analogue of a theorem of Thue II: The
greatest prime factor of a binary form, Acte Arith. 16 (1969/70),
399-412. |

[13] H. Davenport and K. F. Roth, Rational approximations to algebraic
numbers, Mathematika 2 (1955), 160-167.

[14] E. Dubois and G. Rhin, Sur la majoration de formes linéaires & coef-
ficients algébriques réels et p-adiques, Démonstration d’une conjec-

ture de K. Mahler, C. R. Acad. Sci. Paris A 282 (1976), 1211-1214.

[15] P. Erdds, Problems in number theory and combinatorics, Proc. 6th

Manitoba Conference on Numerical Math., Congress Numer. 18,
Utilstas Math., Winnipeg, Man., 1977.

{16] P. Erd6s and R. L. Graham, Old and new problems and results
in combinatorial theory: van der Waerden’s theorem and related
- topics, Enseign. Math. (2) 25 (1979), 325-344.

- [17] P. Erd8s, C. L. Stewart and R. Tijdeman, On the number of solu-

tions of the equation z + y =2z in S-units, Compositio Math., to
- appear.



e o | | T | S.UNIT EQUATIONS

[20] J.-H. Evertse, On sums of S-units and linear recurrences, C’ampasz-
tio Math. 53 (1984), 225-244.

[21] J.-H. Evertse, On equations In two S-units over function fields of
characteristic 0, Acta Arith. 47 (1986), 233-253.

[22] J.-H. Evertse and K. Gyory, On unit equations and decomposable
form equations, J. Rﬂme Angew. Math. 358 (1985), 6-19.

23] J.-H. Evertse and K Gyc:ry, On the number of pnlyncmmls and
integral elements of given discriminant, ﬁctm Math. Hungar., to ap-

pear.

[24] J.-H. Evertse and K. Gydry, Finiteness cr1ter1a for decnmpusable.
© form equations, Acte M uth., to appear. _

[25] J.-H. Evertse and K. Gydry, Decomposable form equations, New
Advances in Transcendence Theory (A. Baker ed.), Cambridge Uniy. -

Press, 1988, Chapter 10.

[26] J.-H. Evertse, K. Gyéry, C. 1,. Stewart and R. Tijdeman, On S-umt _
equations in two unknowns, Invent M ath., to appear. 3

27] J. P. Glass, J, H. Loxton and A. J. van der Poorten, Identifying a
rational function, C. R. Math. Rep. Acad. Sci. Canada 3 (1981)

279-284. Corr. 4 (1982), 309-314.

[28] K. Gydry, Sur lirréductibilité d'une classe des pulynnmes I, Publ;__ﬁ___

Math. Debrecen 18 (1971), 289-307.
[29] K. Gydry, Sur lirréducibilité d’une classe des pmlynﬂmes 11, Publ _

Math. Debrecen 19 (1972), 293-—-326

[30] K. Gyéry, Sur les polynomes & coefficients entiers et de d:scnmm&nt
donné, Acta Arith. 23 (1973), 419-428. L

[31] K. Gyobry, Sur les polyndmes a. coefficients entiers et de d1scr1mm"'_'
| donné 11, Publ. Math. Debrecen 21 (1974), 125~144.

132] K. Gydry, Sur les polyndmes a coeflicients entiers et de d1scr1m1n-_':.::.
‘donné III, Publ. Math Debrecen 23 (1976), 141-165.  ~x

[33] K. Gyory, On polynﬂmmls with integer coeficients and glven
criminant IV, Publ. M mth Debrecen 25 (1978), 155—*167 P

T, -

(34] K. Gy6ry, On the number of solutions of linear equa,tmns in un
an algebraic number field, Comment M .-::.th H elv.. 54 (1979)*-' 9



S.UNIT EQUATIONS S n

. [35].' K. Gysry; On certain graphs cﬂmposed of algebraic integérl of a
number field and their applications I, Publ. Math, Debrﬂcen 27
(1980),229—242

[36] K. Gydry, Résultats effectifs sur la représentation des entiers par des
formes décomposables, Queen’s Papers in Pure and Applied Muth

No. 56, Kingston, Ont., 1980.

37] K. Gybry, On the representation of integers by decomposable forms
in several va.nables, Publ. Math. Debrecen 28 (1981), 89-98.

[38] K. Gyory, On discriminants and indices of integers of an algebraac
number field, J. Reine Angew. Math. 324 (1981), 114-126.

(89} K. Gydry, On S-integral solutions of norm form, discriminant form
and index form equations, Studia Sci. Math. Hungar. 16 (1981),
149-161.

[40] K. Gydry, On certain graphs associated with an integral domain and
their applications to Diophantine problems, Publ. Math. Dﬂbrecen
29 (1982), 79-94.

[41] K. Gyéry, On the 1rreduc1b111ty of & class of pnlynommls III J.
Number Theory 15 (1982),.164-181. *

[42] K. Gyory, Effective finiteness theorems for Diophantine problems

~and their applications (in Hungama.n), Academic doctor’s thesis,
Debrecen, 1983. '

[43] K. Gydry, Bounds for the solutions of norm form, discriminant form

and index form equations in finitely generated domains, Acta Math.
Hungar. 42 (1983), 45-80.

S
Pk il

s

[44] K. Gyory, On norm form, discriminant form and mdex form equa-
tions, Coll. Math. Soc. J. Bolya: 34, Topics in Classical Number
Theory, Budapest, 1981, North-Holland, Amsterdam etc., 1984, pp.
617-676, - -

. [45] K. Gybry, Effective finiteness theorems for polynamié.l_s with giveﬁ
=i discriminant and integral elements with given discriminant over
finitely generated domains, J. Reine Angew. Math, 346 (1984), 54~

100, - o

[46] K. Gydry, Sur les générateurs des ordres monogenes des GGI'I;S de
= nombres algébriques, Sém. Théorie des Nombre.s 1983——84 Umv.
Bordeaux, No. 32; 1984, 12 pp. '

7] K. Gyory, C. L. Stewart and R. Tijdeman, On prime factors of sUrns
of integers I, Compositio Math. 59 (1986}, 81-88.




me__ﬁwlﬁegw. . S'-U-NIT EQUATIONS

(48] K. Gyery, C L. Stewart and R. Tijdeman, On prime factors ef sums
of integers III, Acta Arith., to appear. |

[49] K. K. Kubota, On a conjecture of Mergen Werd Acta Arith., 33
(1977), 1148, 99-109.

[50] S. Lang, Integral pemte on curves, Publ. Math. LH.E.S. 6 (1960),
27-43.

[51) S. Lang, Fundamentals of Diophantine Geometry, Sprmger- Verleg,
Berhn, Heidelberg, New York, 1983,

[52] M. Laurent, Equations diophantiennes exponentielles, Invent. Math.
78 (1984), 299-327.

53] C. Lech, A note on recurring eeriee, Ark. Mat. 2 (1953), 417-421,

=

54] D. J. Lewis and K. Mahler, On the representation of mtegere by
binary forms, Acta Arith. 6 (1960/ 61), 333-363. |

I55] D. J. Lewis and J. Turk, Repetitiveness 1n binerjr recurrences, J.
Reine Angew. Math. 356 (1985), 19-48

[56] K. Mahler, Zur Apprexlme,tmn a,lgebreaecher Zahlen I: Uber den ;
grossten Primteiler binérer Formen, Math. Ann. 107 (1933), 691-

730.

[57] R. C. Mason, Norm form equations IV; rational functions, M ethe
matika 33 (1986), 204-211.

[58] M. Mignotte, T. N. Shorey and R. Tijdeman, The distance between i
terms of an algebraic recurrence sequence, J. Reine Angew. M eth :

349 (1984), 63-76.

[59] T. Nagell, Quelques problemes relatifs aux unités a.lgebnquee, Arh
Mat. 8 (1969), 115-127. iR

[60] K. Nishioka, Proof of Masser’s eenjeeture on the algebraic indep'e' "
dence of values of Liouville series, Pree Jopan Acad, Ser. A
(1986) 219-222. " R

[61] K. Nishioka, Conditions for algebraic mdependenee of certain .pwr
series of a.lgebrmc numbere, Compositio Math., 62 (1987), 53-—61:-.-

62]

sequernces, Aete Amth 40 (1981/82), 193-196.

(63] C. J. Parry, The p-adic generalisation of the Thue-S1ege1 theﬁ
Acte Math. 83 (1950), 1 1-100. PR =t



- ~ S.UNIT EQUATIONS | 173

| [64] G. Pélyﬁ, -A'rithmetische'Eigenéchafteﬁ der Reiheﬁeﬁﬁwickiungén ra-
tionaler Funktionen, J. Reine Angew. Math. 151 (1921), 1-31. ~ -

- [65] A. J. ven der Poorten, Linear forms in logarithms in the p-adic
cese, Transcendence Theory: Advances and Applications, Academic

Press, London, 1977, pp. 29-57.

[66]- A. J. van der Poorten, Some problems of recurrent interest, Coll.
Math. Soc. Jénos Bolyai 34, Topics in Classical Number Theﬂry,
Nﬂrth-Hulland Amsterdam, 1984, pp. 1265~-1294.

[67] A. J. van der Poorten and H. P. Schlickewei, The grﬂwth condi-
| tions for recurrence sequences, Macquarie Univ. Math. Rep. 82-
0041 North Ryde, Australia, 1982.

[68] H. P. Schlickewei, Linearformen mit algebrmschen Koeffizienten,
Manuscripta Math, 18 (1976}, 147-185.

> [69] H. P. Schlickewei, The p-adic Thue-—Swgel-Rﬂth-Schmldt theorem,
= Arch. Math. 29 (1977), 267-270.

[70] H. P, Schllckewm, Uber dze diophantische Gleichung z; + x4 + A
zyn = 0, Acte Arith. 33 (1977), 183~185.

[71] H. P. Schlickewei, On norm form equations, J. Number Theory 9
(1977), 370-380.

- [72] W. M. Schmidt, Linearformen miit algebrmschen Koeffizienten II,
Math. Ann. 191 (1971), 1-20.

[73] W. M. Schmidt, Simultaneous approximation to algebraic numbers
by elements of a number field, Monatsh. Math. T9 (1975), 55-66.

[74] W. M. Schmidt, Diophantine Approzimation, Lect. Notes Math.
| 785, Springer-Verlag, Berlin, Heidelberg, New York, 1980,

{75] T. N. Shorey, The gréﬁtest square free factor of a binary recursive
. sequence Hardy Ramenujen J. 6 (1983), 23~36.

-_ """" [76] T. N. Shorey, Linear forms in members of a binary recursive se-
% quence, Acta Arath 43 (1984), 317-331.

.‘1"78] C. L. Siegel, Approximation algebraischer Zahlen, Math. Z. 10
- (1921), 173-213. -

C.L. Slegel, The mteger solutions of the equation y? = az™-+bz™ 1+

9]
vt k, J. London Math. Soc. 1 (1926), 6668,



801
(81]

(82}
[83]
[84]

(85}

[86]

87]

[88]

[89]
[90]

[91]

[92]

ST~ ML b= by, s, 5 m = h ol T,

174 o S UNIT EQUATIONS

‘der Poorten, Cambridge Univ. Press, 1986, pp. 83-98.

C. L. Siegel, ﬁber einige Anweﬁdungen diophantischer Approxima- |
tionen, Abh. Preuss. Akad. Wiss., Phys.-Math. Kl., 1929, No. 1.~

J. H. Silverman, Quantitative results 1n diophantine geometry,
Preprint, M. L. T., Cambridge, Mass., 1983.

J. H. Silverman, A quantitative version of Siegel’s theorem: integral
points on elliptic curves and Catalan curves, J. Reine Angew. Math,

378 (1987), 60-100.

Th. .Sknlem, A method for the solution of the exponential equation
A%, Az — By ...BPr =C (Norwegian), Norsk Mat. Tidsskr. -
27 (1945), 37-51.

V. G. Sprindzhuk, Effective estimates in ‘ternary’ exponential dio-
phantine equations (Russian), Dokl Akad. Nouk BSSR 13 (1969),

T77-780.

C. L. Stewart, Divisor Properties of Arithmetical Sequences, Ph.DE
Thesis, Univ. of Cambridge, Cambridge, 1976.

C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehme
numbers 111, J. London Math. Soc. (2) 28 (1983), 211-217.

C. L. Stewart, Some remarks on prime divisors of sums of inte
gers, Séminaire de Théorie des Nombres, Paris, 198485, Progres:
‘n Mathematics 63, Birkhauser, Boston etc., 1986, pp. 217-223. -

Tl
....

C. L. Stewart and R, Tijdeman, On prime factors of sums of integeﬁ
11, in Diophaniine Analysis, edited by J. H. Loxton and A. J.

A. Thue, Uber Anndherungswerte algebraischer Zahlen, J., Rea
Angew. Math. 135 (1909}, 284-305. U

R. Tijdeman and L. Wang, Sums of products of powers of giv
prime numbers, Pacific J. Math. to appear.

K. R. Yu, Linear forms in logarithms in the p-adic case, Nc'w A
vances in Transcendence Theory (A. Baker ed.), Cambridge Un
Press, 1988, Chapter 26. - R

K. R. Yu, Linear forms in the p-adic logarithms, Max-PI&n

Institut fic Mathematik MP1/87-20, Bonn, F. R. Germany, 198

i



