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ON EFFECTIVE APPROXIMATIONS TO
CUBIC IRRATIONALS

A. Baker a‘hd C. L. Stewart"_

1. Introdu¢t_ion

~ The problem of obtaining effective measures of irrationality for al-
gebraic irrationals has recently attracted considerable attention. The
first result in this field was discovered by Baker [1], (2] in 1964. He used
properties of hypergeometric series to obtain effective results for certain
fractional powers of rationals. It was shown, in particular, that for all
rationals p/q with ¢ > 0 we have ' '

Q= = > -, | (1)
" el

where a = ¥/2, ¢ = 10~¢ and x = 2.955. A similar result was established
for instance for a@ = 19 with ¢ = 10~° and « = 2.56. This work
" was recently refined by Chudnovsky [11]; by a careful study of the Pade
approximants occurring in the hypergeometric method he obtained more
precise values for k and consequently he was able to deal with a wider
range of algebraic numbers. Chudnovsky left the values for c occurring in
his results unspecified but these have recently been established 1n some
special cases by Easton [13]. Easton has shown in particular that (1)
holds with o = V28, ¢ = 7.5 x 10~7 and £ = 2.9. -

The results above improved upon the relatively crude inequality of
Liouville established in 1844 to the effect that (1) holds for any algebraic
number a, where k = n, n > 1, the degree of a and ¢ is an effectively
computable positive number depending only on a. The first general
effective improvement on Liouville’s theorem was obtained by Baker 13]
in 1968 using the theory of linear forms in the loganthms of algebraic

* The research of the second author was supported in part by Grant
A3528 from the Natural Sciences and Engineering Research Council -of
Canada. | o | |
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numbers. A more precise version of the result was obtained subsequently
by Feldman {14| and an explicit formulation of the theorem has recently
been given by Gyory and Papp [15]. In the present paper we shall
sharpen the result of Gyory and Papp in the case of cube roots of integers.
We shall prove the following result.

Theorem 1. Let a be a positive integer not a perfect cube, and let

a = /a. Further let € be the fundamental unit in the field Q(¥a). Then

(1) holds for all rational numbers p/q, ¢ > 0, with ¢ = 1/(3ac;) and
K =3~1/cy, where

¢ = ¢l30loglog "")-2, ¢y = 102 log €. | (2)

Here Q denotes, as usual, the ﬁeld of rational numbers and by the

fundamental unit € in Q(\/a we mean the smallest unit in the field
larger than 1. Note that some authors adopt the alternative convention
that the fundamental unit lies between 0 and 1. The result of Gyéry and

Papp mentioned above yields a theorem similar to Theorem 1 but with
¢z = 300°° log ¢(log log €)? (3)

and with a value for ¢; slightly greater than (40a)’e. In both (2) and
(3) we have made use of the fact, established in 32 below, that loge > 1

for all fields Q(+/a). Although our value for ¢; improves substantially on

(3), the value for « that it furnishes is far from the exponent 2+6, § > 0,
occurring in the Thue-Siegel-Roth theorem. As is well known the latter
theorem is ineffective, that is, it does not provide an explicit value for the
constant ¢ in (1). But Bombieri [8] and Bombieri and Mueller [9] have
recently shown that in certain special cases effective results can in fact
be derived from the Thue-Siegel method. Nevertheless the restnctmns
attaching to a in their work are very stringent at present.

The inequality established in Theorem 1 is essentially equivalent to
an upper bound for the solutions of the Diophantine equation

z’ —ay’ =n. . (4)

We have the folloWing’ result.

Theorem 2. Let a and n be positive integers with a not a perfect cube.
Then all solutions in integers = and y of (4) satisfy
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where ¢; and ¢y are given by (2).

- In order to derive Theorem 1 from Theorem 2 we denote by p / q,
g > 0, any rational number and we suppose that la - p/q| < ¢; then
p/ql £ @ -+ ¢, whence

o® + a(p/q) + (p/9)*] < 30® +3ac+¢* < 3a.

This'gives ' -
' la-(p/Q)al <3a|a p/ql )

| _'We now apply Theorem 2 with n = |p* - aq3| and conclude that ¢ <
(c1n)°* whence n > (1/(:1)4:11/""2 By (5) we have Ia - P/Q| > n/(3ag® )
and our result follows. |

The proof of Theorem 2 is based essentially on the methods of (3]
and [4]. In particular we reduce the problem to the study of a linear form
in three log'arit'hms and we ultimately establish the bound 2:10*? log(cin)
for the size of the integer coefficients in that form. Our exposition will
follow the general pattern of the earlier papers but we shall use a simpli-
fied auxiliary function, and also a more efficient extrapolation procedure
to which Kummer theory can be applied directly. The work here to-
gether with the technique of Baker and Davenport [6] would enable the
complete list of solutions of (4) to be computed for any moderately sized
a and n. Indeed we have loge < (0.37)d*/%(log d)® where d is the abso-
lute value of the discriminant of Q(¥a) (see [18]); thus, since d < 27a’
we obtain, for a > 3,

log ey < (501og d)* log ¢ < (37log a)ta.

Hence if, for example, a < 10° and logn < 109 then the coefficients of
the logarithms in the linear form will have sizes at most 10%°. '

As a pa,rtlcular mstance of Theorem 1 we take & = /5; this is the
- smallest cube root not covered by the papers employmg the hypergeo-

" metric method. Then € = 41 + 24« + 14a? (see [10], Table 2, p. 270) and

log e < 5. Hence we conclude that (1) holds with ¢ =10~ —12900 and

k = 2.9999999999998.

We should like to express our thanks to Professor D. Djokovic for
his generous assistance in the computational work referred to in §3. The
latter was carried out while the first author was visiting the University
of Waterloo and he is grateful for their hospitality.
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2. Preliminary lemmas

We shall require'i:nediﬁed forms of two classical lemmas in transcen-

‘dence theory. First we obtain the following sharpening of Lemma 4 of
Baker and Stark [7] | '

Lemma 1. Suppose that a, B are elements of an algebraic number field
and that for some positive integer p we have a = BP. If a, b are the

leading coefficients in the ﬁeld polynomaals defining a, f respectively then
b < allP. -

Here the field polynomials are, as usual, powers of the minima_l
polynomials with degree D, where D denotes the degree of the field.
Lemma 4 of (7] gives the weaker inequality b < aP/?P, where a denotes
any non-zero integer such that aa is an algebraic integer.

Proof. Let oV, .. (P} and 5(1) B(D ) be the feld conjugates of a
and S respectwely Then b 1s the least positive integer such that

f@) =Yz - D). (z - BD)y

has rational integer coefficients. We write -

() = a(z” - aV)... (=" - oP)), h(m) H f(ze®™/?),

=1

Since, by hypothesis, o = 8P we have
¥ g(z) = (- 1)9(”*”&?1(3:)

Argmng as in [7] we deduce from the a.lgebra.:c generahzatmn of Gauss
lemma that h(z) has relatively prime rational Integer coefficients. But

g9(z) also has rational integer coeﬁcwnts and so b* divides aq, whence
b < al/? as required.

Secondly, we shall estabhsh a version of S1ege1’s lemma appropriate
to our work here. We shall adapt the result of Dobrowolski [12] so as to
‘deal with linear forms with arbitrary algebraic coefficients, not merely
algebraic integers. Obviously it would suffice to multiply through each
equation by a suitable common denominator but this would be too crude
for our purpose. In order to state the lemma, we define K to be an
algebraic number field with degree n over Q and we let ¢4,..., 0, be the
embeddings of A in the complex numbers. Further we signify by b;;

173

1<: <N, 1< 75 £ M, elements of i such that for each 7 not all bij,
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1 <i< N, are zero. We now define ¢;, 1 < j < M, to be a positive
integer such that

¢jo1 (i) -- a,.(b.,,,,)

is an algebra.lc mteger fc)r all cho:lces ef $1ye-ybn.

Lemma 2. If N > nM then the system of cquaﬁons.

Zb,,:&‘,"“‘o ISJsM*:

|==1 |

has a solution in rational sntegers ml,..;,mN,_ not all 0, with absolute
values at most

Y = (2VE(N +1)Z1/M)rM/ (N =)

where

Z= H(c, H max1ak(b,,)|)

=1 k=1

Proof. The proof follows almost verbatim that of Dobrowolski (12]. the
main idea is to select rational integers z;,...,zxn by the box principle
such that

eV (L bue)| <1, 15isM

- This differs from [12] by virtue of the presence of c;; our definition of
c; ensures that the expression on the left of the above inequality is a
rational integer. The only s:gmﬁca.nt modification in the proof concerns
the qua.nt1ty

1/n
(c, H ma.x|ak(b,,)|)
which now includes "c':'_',*. This leads to the definition
¢; = (YN/z)VMe;,

which gives R IR
| 2\/2_(N -+ 1')YCJ' — EJ' = {)
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as in [12]. Further, as there, we note that C; 2 1 and hence also Y > 1;
this follows from our definition of ¢; and the assumption that, for each
7, not all b;; are zero.t

We now record three lemmas that will be needed later. Lemma 3 is
classical Kummer theory; for a proof see Baker and Stark [7). Lemma
‘4 is a famous result of Delaunay and Nagell; for a proof see Nagell {17).

Lemma 5 is due to Ljunggren [16].

- Lemma 3. Let aj,...,a, be non-zero elements of an algebraic number

feld K and'lﬁt all/p"“ “{fl denote fized pth__ roots for some pTIME
p. Further, let K' = K(alf’",...,ai{fl). Then either K'(a2/?) is an
 extension of K' of degree p or we hcwe
ap=al.. C’f'::::: P

for some ~ in K and some integers 71,...,9n-1 with 0 < j¢ < p.

Lemma 4. Let a be a positive integer, not a perfect cube. The ﬁqu-at'ioﬁ
ma. — a.y3 = ]

has at most one solution in £ntege'rs z,y with y # 0 and, for this, z— yJa
is given by either 1/¢ or l/e , where € is the fundamental unzt of Q(\/_)
as tn §1.

Lemma 5. Let A, B, C be pbsitive integers with C =1 or C = 3 and
suppose that A &?’Ld B are > 1 when C = 1. Suppose further that AB 1is
“not divisible by 3 when C = 3. Then the equation

Am +By --C

_ has at most one .solutwn tn mteger.s z,y and for this, C~ Hz VA \/—+ \3@
is either 1/n or 1/n? where 1 is the fundamental unit in Q(3/(AB?)).
The only ezception is the equation 2z% +y® = 3 which has two solutionsJ
namely z =y =1 and T=4,y=~5

Note that if the condltlon in Lemma 5 that AB be not divisible by
3 when C = 3 is violated then the equation reduces to an equation with

T Professor Vaa.ler _ha.s'pointedtout to us that the result can also be
obtained from Theorem 9 of Bombieri and Vaaler, “On Siegel’s Lemma”,
Invent. Math. 73 (1983), 11-32, and in fact with VN in plaece of
2v2 (N +1). . T '



APPROXIMATIONS TO CUBIC IRRATIONALS 7

C = 1. Note further that 1f the condition that A and B be > 1 when
C = 1 is violated then the equation reduces to-one of the kind considered
in Lemma 4. Hence, taking into account the possible replacement of z
or y by ~z or —y, we see that the lemmas incorporate all equations

Az® + By = C, where A, B are any integers and C =1 or C = 3J.

Now these results of Delaunay, Nagell and Ljunggren can be viewed
as .prowdmg the complete solution to (4) when n divides the discriminant
~27a% of z3 — a; it is precisely this condition that will arise in our
“discussion later. In particular, we see that Theorem 2 certainly holds
in this case. To verify the assertion, note that if n? divides 27a* then
" n divides 3a and so also n divides 3z%. We write 3z3/n = Az’ where
A, z are integers and A divides 3n?. Further we put B = —3a/n and
C = 3. Then Az® + By® = C and AB? = (3z/nz)%a®. Hence Lemmas
4 and 5 give the possible values of y, z and thus also z, in terms of the
fundamental unit ¢ in Q(¥a).

3. On units in purely cubic fields

Let a be a p051t1ve integer, not a perfect cube and let a = \/E as in

§1. Let w be a primitive cube root of unity and put o =wa, &' = wla.

Further let ¢ be the fundamental unit in Q(a) with ¢ > 1 as in §1. We
define ¢, €' to be the conjugates of e corresponding to a', a' and we put
o = ¢"/¢. Throughout the paper, logarithms will have their principal
values. ' B ' |

Lemma 6. We have loge > 1. Further, ';'f.logﬁ-ds 3 then Q(a) 1s
Q(Ym) where m is one of 2, 3, 7, 19, 28. Furthermore, if Q(a) is not
Q(\/_) then we have Ilogpl < 3loge. | | |

_ Proof. Since e€'¢"’ = e|e'|* = 1, the mmlmal polynomial defining e
has the form |

z° + Z:a:z:_2 + ez — 1.
Here b, c are integers and

i

'b=—-—(e+e'+e"), | c:«-ee + €¢” +ee
We.ha.ve_'...' - ' _ -
~(e+2//?)<b<0, || <267 +1/e.

1

If loge < 3 these'give -21 < 5 <0, || £9. The discriminant of the
polynomial is ' - I

INA

d = b c? + 463 - 4c® = 27 — 186(:.
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Now the discriminant of Q(/a) divides the discriminant —27a2 of 2’ — a

and so it has the form —3k? for some divisor k of 3a. Hence d = ~362
for some multiple £ of k. A computer search shows that the only poss1ble
b, ¢ in the above ranges for which d = —3¢* for some integer £ are given
by (—3,-3), (—12, —6), (-12,6), (—14,2), (=5,-1), (~15,3), (0,0) and
(=2,2). We find that the corresponding equations have prec1sely one

real root; in the case of the first five pmrs on the list the root 1S gwen
respectively by

14 V24 (V2 =384...
4+ 3V/3+2(V3) = 12.48...
4427+ (Y7 =1148...
1(14 + 519 + 2(V19)?) = 13.86
1(10+4V28 + (V28)%) = 5.22..

The sixth pair in the first list, that is (=15, 3), cOrresponds to an equation

with real root 1/(¥/2—1)?; this is the square of the first root above. The
last two pairs of admissible values of (b,¢), namely (0,0) and (—2,2),

correspond to reducible equations with real root 1. This estabhshes the
- first two assertions of the lemma.

- For the Jast assertion we note tha.t lpl = 1 and so Ilog o < T
Hence the required inequality certainly holds if loge > 3. If loge < 3 we
have the five possibilities for m above, and it is readily checked that the

- corresponding values of |log p\/(wlog ¢) are 0.27, 0.13, 0.13, 0.31, 0.50
to two decimal places This establishes the result. -

Let now K= Q(a,w) We define ¢ as either —w or —-w so that the
real numbers ¢ log p and :log o have opposite signs.

Lemma 7. K(p'/%,01/2) is an extension of K of degree 4.

Proof. First we show that [K(p'/?) : K] = 2. We have ee'¢” = 1 and

so p=¢"/¢ = 1/e(¢')?. Hence if K(p'/?) were not an extension of K
with degree 2 then we would have ¢ = n? for some n € K. Thus €/2 is
in K. But ¢ is the fundamental unit in Q(a) whence €!/? is not in Q(a)

and thus Q(a, €}/?) 1s a field with degree 6 over Q. On the other hand,
K has degree 6 and is not a real field whence K is not Q(a, €/ ?). Thus
e!/? is not in K, a contradiction. | | |

Secondly, we show that [K(pl/2 ol/?) : K(p'/?)] = 2. If this does
not hold then ¢!/% is in K(p'/2). But K(p'/?) = K(e!/?) and so 1 =
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A + pw for some A, u in Q(a, €/?). This gives 2i = p(w — w?), that
18 2 = i\/_p Hence V3 = v + 6¢*/2, where v, § are in Q(a). Thus
3 = 42 + €62 + 246€*/2. If 46 # 0 then this implies that e!/? is in Q(a),
a contradiction. We cannot have § = 0 for this would give V3 = 7,
contrary to the fact that Q(a) does not have a quadratic subfield. Hence
 ~ = 0 and thus v/3 = §!/2. This gives 3 = §%¢ and consequently, taking
norms from Q(a) to Q, we get 27 = (N§)*, a contradactmn since N§ is
rational. This proves the result

4. Reduction to a linear form in logarithms

_ Let n be a posnwe integer and let z, y be integers satisfying (4).
With the notation of §3 we have

(z—ay)(z—-a'y)(z —a"y) =n.
We shall prove that if n > ¢; then
max(|zl, ly]) <n. (8
This will suffice to esiablish Thec:ufem 2. For if n < ¢; then we put
z,=Cz, 1y =Cy, n, = C3n,
where C = [(cl/n)1/3]'+-1; this gives z} — ay; = n; with ny > ¢y,

whence, by (6), we ha.ve

max (|21, lual) < (c”a nl/3y3¢z

and Theorem 2 follows.
We now show that we can assume that the quotxent

=(~’c - y)/(w - a' y)
is not a unit in XK. Put

' tz = x/(ﬁ: y), Y2 = y/(z, y), ny = n/-(ﬂ: y)3~

Then z9, y are relatively prime and we ha:ve 23 — ayd = no. Further we
Y y 2 2

have
(" — a')zy = : (29 — a'ya)(a" - -a'v)

(a" —ad )y = (z2 —a'y)(1 -v).
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Hence, if v is a unit, then, taking norms from K to Q, we find that
N(z2—a'ys) divides N(a" ~&')N(z;) and N(a" —a')N(yz). But N(zg)
and N(y2) are relatively prime whence N(z2 — a'yz) divides N(a" ~a'),
that is n2 divides 27a%®. We have (z,y) < n and hence |z| £ n|z2|,
lv| £ nly2|. Now Lemmas 4 and 5 give bounds for z,, y; in terms of the
fundamental unit in Q(a) as in §2, and Theorem 2 follows in this case.

‘We define 8 = (z — ay)e’, where j is the integer such that
1< n~138] < e

We put . - |
B=(-e e, f'=(z~a y)f"’
Then B ﬁ” = n and since 18’} = |;9"| we obtain

e"1/2 < n3B < 1.
‘We shall assume in the sequel that
j > 2( 102 —1)logn | (7)

- and we shall ultlmately denve a contra,dlctlon ThlS will suﬁce to prove
Theorem 2; for we have |3'| < n!/3, whence

|z — a'y| £ nl_/'3 /|77 = n:_'/:’*e-f/_z."- :

Thus if (7) does not hold then |z — a'y| < n®2~2/3, But since the imag-
inary part of w is £v/3/2 this gives |ay| < (2/v/3)n2~2/3, We have
n > ciand |z| < |ay| 4+ |z — a'y|, and (6) follows. |

We now consider the number A = —wf"/f#'. ldeally we would like
A1/2 to generate an extemsion of K(p!/?,01/?) of degree 2; but this is
‘not necessarily so. We overcome th_e problem by substituting 7 for A as
described below. Our argument is apparently novel and more efficient

~than those appled previously in this context. Let v > 0 be an mteger |
such that :

¢ g
1

',\-pcr'r

(&)

~ where t = 2" and t', " are integers with 0 < t' < ¢, 0 <t'<tandTis
in K. Plainly at least one such v exists since we can take ¢/ = ¢t” = 0 and
t = 1. We proceed to prove that t < 3logn. Now ) is an element of K
and the leading coefficient in the field polynomial of A divides n?. Since
p and o are units, the same holds for the field polynomial of 7*. It follows
from Lemma 1 that the leading coefficient, say g, in the field polynomial
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of T satisfies ¢ < n?/*. Suppose now that ¢t > 3logn. Then, since ¢ is
assumed to be positive, we have ¢ = 1. Hence 7 is an algebraic integer
and thus also A is an algebraic integer. But we have v = —w?p=’ )\ and
it follows that v is an algebraic integer. On the other hand, it is an
 immediate consequence of the definition of v that its norm is 1. Thus v
is a unit contrary to our assumption above. We shall suppose henceforth
that v is the largest integer such that (8) holds. Then, by Lemma 3, 71/2
generates an extension of K(p'/?,0!/2) of degree 2. Further, by Lemma
7, we see that K(p!/?,01/2,71/2) is an extension of K with degree 8.
We require estimates for the conjugates of 7. For this purpose we
observe that the field conjugates of p are €'’ /€', €/ /¢, e/€', /", €' [¢, €' [ €
and these have absolute values 1, 1, €3/2, €3/2, ¢=3/2, ¢=3/2 respectively.
Further, from our estimates for |3}, |#'| above we see that four of the
conjugates of A have absolute values at most 1 and the other two have
absolute value at most ¢3/?. Hence from (8) we see that two of the con-
jugates of 7t have absolute values at most €(3/2)(+1) and the remainder
~ have absolute value at most 1. Since ' + 1 < ¢, it follows that two of

the conjugates of 7 have absolute value at most 63/ 2 and the remainder
have absolute value at most 1.

We now derive the basic inequality involving a linear form in loga-
rithms. We have the 1dent1ty

ﬂﬁ_’?(ﬂ.’ . o:")+ﬂ E‘—J(O‘.‘” _ a’)‘l"ﬂ" H"‘"j-(a' __af) = 0-

B" /¢ ) - B /¢ I Al — o

737 (F) a’ff-a-l-l:'_ﬁ.? (;) d"—-a
Ap™! 1= (B/(wB))(e[e).

As above we have |3/8'| < €/? and |¢'/¢| = ¢~3/2. This gives

Hence

and thus

Ap=7 = 1] < e~ (/DG=D),
- We substitute for A from (8) and obtain
o' =it 1] < ~(3/2)(-1)

Since, for any complex number z, the inequality |e* — 1| < 1/4 implies
- that |z — tk7| < 4|e® — 1] for some rational integer k, we deduce that

‘r 1¢g p+ slogo —tlog TI < _46_(_3'/2)(1*_1)1 (9)
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where r=j -- t' a,nd s 15 a rat:onal mteger We recall here that t= .
2" < 3logn and that the logarithms have their principal values. Since
0 <t <, we see from (7) that 0 < r < 5. __Furthe: we observe that

. lsl_og_ o] < 7(r -+ t") + 1
 and thus,_Sincc .log_a = -;53, we have |

s| < 3(r+1t)+1 < 3j +10logn.

5. The aux1hary functmn _ :

We shall now assume that (7) and (9) hold and that n > ¢, and we
shall eventually deduce a contradiction. By virtue of the results referred

to in §1 we can suppose that Q(a) is not Q(v/2) or Q(\a/f.) see”[2_], '
n3)). | _ _ | o
We put u = max(l,v) and A = 500u. Further we put I =
(7/h)log e and we write ' o o

ey

Ly =[10"%L/loge], Lo =[10"%L},  Ls=[2-5"Lh*/j]
Then for any non-negative integers my, my we define the function
1 ? 3
(z my,mg) = Z Z Z p()\ A(t*y;,ml)A(tW}mg) MNZgTa?,
0 A15=0 Aqa=0 Ag=0

where

C m=EAF(r/)As, r2 =22+ (s/t)As,

and the.p()n)' = p(A1, A2, A3) are integers to be determined later. The
A-polynomials are defined, as usual, by | -

A(z;0)=1, Alzik)=(z+1)...(z + QI E> 1,

and z% means e“"‘g“’ where the loganthm has its pr1nc1pa.l value. We
also introduce the function

.' o | L Lo Le | |
- Xm0 A9=0 Agm0 _
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The coefficients p(A) are chosen so that g({;m;,m2) = 0 for all
odd integers ¢ with 1 < £ < 2h and all non-negative integers my, ma
with m; + mp < L. The number of such my, mz is H = (1/2)(L +
1)(L + 2) and thus we have to solve M = Hh linear equations in the

= (Ly; +1)(Lz + 1)(L3 + 1) unknowns p(1). By the definition of L we
ha.ve N > (25/4)L%h and, from (7), it follows that N > 12M. We shall
apply Lemma 2 with K = Q(a,w) so that n = 6; we conclude that there
exist rational integers p(}), not all 0, such that

. |p(M)] € 2V2(N +1)Z2/(EM) (10)

and our purpose now is to determine a bound for the quantity Z referred
~ to in the lemma.

First we shall esta,bhsh estimates for the A-polynomlals We shall
- write, for brevity,

U(mi,mq) = Aﬂﬁﬂ!ﬁ(iﬁ; m;)&(t'm; ma)|.

Lemma 8 We have

U(mi,ms) < (2-101H)™Fma 220,

Proof. We begin' by noting that
' L;/L < 2 -5'h?[j =2775-10"%u? /5. (11)
Since u? < ¢ except for '.u_= 3. ¢ = 8 we have uz/t < 9/8 and this gives
Ls /_L < 2'5'“’ - 45-10%%(t/5) -g 45-10°(t/7). - (12)
Further, from (7) and (11), we obtain
. L3/L < u*/(50logn) < 9t/(400logn). - (13)
We can now estimate v, 72, We have

71| K Ly 4+ (r/t)Ls < Ly + (j/t)Ls

and so from (12) we see that

1] < Ly +45-10°L < 5-10*°L.
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Si.mila,rly we have
2| < Ly + (Is|/t)Ls < L2+ (35 + 10logn)/t) L
and so from (12) aﬁd (13) we see that 2| < 15 101‘°L. Thus we obtain
NA(ymy)| < t™ 10M™ A(L/2;my) = tmi101imigl/2+m,
Similarly we obtain
|A(tyz;ma)| < tm=1011m,23b/2+m=’

and the lemma follows.

As a corollary we see that if m; + my < L/2 then U(m;,m3) < A,

where
= (2° . 101 1¢)%/2.

Now we have t = 2¥ < 2% < e(07)% and (25 .1011)1/2 < €44, Hence we
obtain A < €4-732% and since h = 500u, this gives A < (0:03)Lh
We also wish to estimate |

U= ][] Ulmi,my),

iy, ma

where the product is taken over all non-negative integers m;, ms with
mjy + my < L. For this purpose we observe that

L L-m,
Z Z (my+my)=2LH
my,=0 maz=(

where H = (L +1)(L +2) as above; indeed the 1eft-ha_nd side is

Z (Lmy )(L=my=+1) = (1/2)L{L+1){(L+1)+1/2—(1/6)(2L+1)}.

m =0

Thus from Lemma 8§ we obtain

U< (2%, 1011t)(2/3)LH'_

Now t < (0¥ and (24 - 10" )2_/3 < e'®"® Hence we have

[* < 1932 LHY ¢ (0.0385) L H )
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Lemma 9. For all Ay, Az, A3, we have

p(V)] < N-HeOoDE

Proof. We apply Lemma 2 with

H {q“‘ U(ms, ma))’ P}

&,my,my

where
A1f A:l Aal)l

Here we recall that q is the leadmg coefﬁc:lent in the field polynomial for

. Hence
qL tay(Trart) . og(Tee)

is an algebrmc integer for all integer choices of A3 i (1 < k < 6) with
0 € A3k £ Lj. Since clearly U(m;,m3) is a rational integer and p and
o are units we see that the numbers ¢~3¢ have the property required of
the ¢; in Lemma 2.

In the expression for Z above, the product is over all odd mtegers 4
with 1 < ¢ < 2h and all non-negatwe integers my, ma mth mi+mg < L.
‘\Tote that the sum of the integers £ 1s '

Z(zg + 1) = 2((1/2)h(h - 1)) + = h2

)=0

To estimate P we recall that two of the conjugates of T have absolute
values at most 3/2 ‘and that the remainder have absolute values at most

1; moreover the same holds for the conjugates of p. Since also o is a root

of unity 1t follows that
P < 63_(L.1_fLa)f‘

Now by the definition of U we obtain
7 & qLathUﬁhEB(Lﬂl-i-La)th_
Hence, since M = Hh, we deduce from (10) that

pN)] S 2VE(N 4+ 1)gieh T H /DBt
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We have ¢ < n2/! and thus, by (13), ¢¥s#/¢ < 6(3/400)“‘ Further, by
(14), UYVH < ¢(0.0385)Lh Furthermore, we have 5(1/2)1’”‘ < 6(1/290)“‘ :
We shall verify in a moment that, since n > ¢;, |

uz/ logn < 1/(10.4loge). - - (15)

* This together with (13) gives e(” lah < l1/1040) LR, Hence on combin-
Ing our est1mates we get | | | |

1p(M)] < V(N + 1)e(0:0519T)Lh

Then Lemma 9 follows since clearly 2{,/_ 2(N + l)N < (0.00001)Lh -

It remains to venfy (15). Since 2% < 3logn we have u < p(n),
where .

. tb( ) (l/log 2)(10g3+log logn)

Now (gb(n)) /logn is a decreasmg function of n for n > ¢;, and thus it

~ suflices to prove that

(@) floger < 1/(10410ge).
We have .
o 105 ‘1 = (5010g10g e) 105#" o

and thus we reduzre that . |
50 Ieg loge > (\/W/ log 2)(log 3 + log log cl)
The expression on the r1ght is - d
- 4‘? + Sleg log € + 1010g10g10g €,

wnth constants rounded up shghtly, and if loge > 3 then the demred |
inequality is obvious. If loge < 3 we have the five possibilities for ¢
hsted in the proof of Lemma 6. We have already remarked that we

‘can exclude the fields Q(+v/2 ) and Q(\/_ ), and the desired 1nequalltv 18
readily checked for the three remaining values of . |

6. Basic estimates

- Our purpose here is to-establish the main estimates needed for the
- extrapolation algorithm described i in the next section. The object is to
prove that ¢(¢/2; m,.m2) = 0 for all odd mtegere L with 1 < ¢ < 4h and
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a.ll non-negative integers m,, ™my with my +my < L/2. Accordmgly we
| sha.ll suppose that "

g= g(e/z;mhmz) # 0

for some such £, m;, m, and we shall ultimately obtain a contradiction.

First we note that g is an algebraic numberin the field K (p1/2, o1/? "

71/2), and consequently g has degree at most 48. We proceed to estlma.te
the field norm N(g) of g. By Lemma 9 we have Ip(A)| < N71X, where

X = ¢(%-032)LA Pyrther, as in the proof of the lemma, we see that

6

ME/2 _Aal/2_Asl/2:] 3/2)8(Ly+Ls)
s A‘J(P1/02/T_,a/)|se(/)(1 a)__.
k=1 1:A913

Furthermore it 1s clear that one of the conjugates of ¢ is in fact the
complex conjugate g(—£/2; m;,m3). Hence we obtain

N(g)| < lgP(xayeaitio.

Now we have XA < e(0-082)Lh and 50 (X A)E < £(3-772)Lh Also, as in
Lemma 9, we see that if £ < 4h, then e!2¢L1 < e(048)L4 5p4 512”'3 <
el0-093) Lk This gives |

1N(g)| < Iglzef(**-us')Lh

To obtain a lower bound for |N(g)|, we observe that 7*3¢/2 can be
expressed as T* or 72*1/2 where ) is an integer with 0 < ) < L32/2.
Now, since £ < 4h, it follows that ¢*6£22 N(g) is an algebraic integer. By
supposition g # 0, and hence

|N(g9)| 2 g~16Lah > o—(0.72)Lk

On comparing estimates we obtain \grl2 > e~(8085)Lh and so |g| >
e—(2:533) Lk _

This gives a similar estimate for

£ = f(£/2;my, m3).

Indeed, for any complex number z we have |e — 1| < |'=‘-'|el *| and thus,
by (9), we obtam - '

| _I(pr/tga/t))katfz _.1.)«38/2‘ S'(9L3h)€“(_3/2)(jm1).
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~ Now 9L3h < e(0-001)Lh pnd by the definition of L, we have (3/2)s =

6(15/4)1"1- Hence the number On theright is .at mOSt. e*(37)Lh' This
gives . B o T o

and so certa,i'n-ly f = g| < lgl/2. 1t follows that |f l_>_ lg1/2, whe’n_c’:e -
fl >k gy

We shall also require an upper bound for | f(z;m;, mg)l_ with mj +
mg £ L/2. By the definition of o, the numbers ilogp and ilogo take
opposite signs. Hence | | | | |

| .'pA1:g;\2-‘:| ..<.. max (6;1|zlng p]jebglzlpg gl) |

We have |log 0| = 7.*/3 and, by Lemma 6, if Q(a) 1s not Q(€'/2_8), as we
can assume, then |log p| < (7/3)loge. thus we obtain -

- pMEe? | < /Al
Further we have, by (9).,
llog(p"/‘a’/t) ~log 7| < 4e=(3/2)(5-1)
for some walue of the ﬁ;st_. logarithzn._ This gives

. 'I(pr/tg-’/t)'*\az‘ < e(|10‘8';|+U.0{}'1.)-L3.|z|
and since |log 7| < 7, the number on the right is at most e(3-15)Lalz] Ty
~ follows that | | |

lf(z-:i m) *:r..m?)l .< X Ael(n/3)L2+(3.15) Ls)iz|

Now XA < el0082)Lh and I, < 1072L, whence e(7/3)L2 < ¢(0.0105)L

- Further, by (13) and (15), we have L3/L < 1/(520loge). If we exclude

~the fields Q(¥/2) and Q(V/28) which, as we noted in §5, we may, then
loge 2 log(11.48) > 2.44. Hence L3/L < 1/(1268) and so el3:18)Ls <

e(0.0025)L We conclude that

. If(z;mhmﬁ)l S 6(0.082)Lh+(0,013)L!z|' S (18) __
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7. Extrap olation

Let £ be any odd integer with 1 < ¢ < 45. Suppose tha.t my, M2 are

non-negative integers with my + m, < /2 and let f(z) = f(z3m1,m2).
Our purpose here is to obtain an upper bound for f = f(£/2) which is
- stronger than the lower bound given by (17). Thus we shall conclude
that ¢ = 0 as required.

We shall denote the mth derivative of fiz) by fm(z) Our first
objective is to estimate fm(£')/m!, where ¢ is any odd integer with
1< || <2h a.nd m is any mteger with 0 < m < L/2. We have

fm(€)/m! = Z(Hllﬁzf)"(leg p)*'(log o) f'(€';my, my),

- where the sum is over all non-negative integers uy, 2 With uy +p2 =m
and my = m; + p1, my = me + u;. Here f'(¢';m},my) is defined
like f(£';my, m3) but with A(ty;;m; + u,) replaced by 'yJ"&(t‘)’J, m;j).
Now the auxiliary function was constructed so that g(£';m{,ms) = 0 for
positive £', and in fact this holds also for negative ¢', since g(—¢'; ;my, my)
is a conjugate of g(¢'; m{, m),). Further arguing inductively with respect
to py + p2 and observing that A(tvj;m;) is a polynomial in «; mth

coeflicients independent of the A’s we deduce that g'(¢';my,m3) =
where ¢’ is the analogue of f'. Hence we obtain

RO S A€~ i

where | |
A= max ZI m 112!)™ (1 log ) ”‘(vz logc")""’l

and the * signifies tha.t each term in the sum ov er Ay, Az, A3 representlng
f — g is to be replaced by its absolute value. We have |y1| < 5-10'°L
. a.nd |log p| £ < 7, and thus

(m Ing)#I/M!‘ < '(5 L1010 L) /1 < 101081 57L
-Simila.rly since |log o] € m/3 we have
|('5’2 log 0)#2 /ua!| < 1010K257L.
Hence, since m < L/2 aﬁd h > 500, we obta.in
| A <L1010m 10mL < 6(0 1)Lk

and it follows from the eshmates of §6 (cf. (16)) that

Ifm(ef)/m'I .S. 6_(3'5)Lh* | (19)
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Now let S = [L/2] and let
F(z) = ((z* = 1)(z* = 3%)...(2* - (2h - 1-)?))5.*’.

Further let l" e.nd o be the clrcles Iz\ = 76h and |z-—-E’ ] =1/4, descnbed
in the positive sense. By Cauchy’s theorem we have |

S f) | 1 s ~ 5 fal0) Full) [ (2= E)mds
5 "G DFG) R b= = URFG)

me==(

where E signiﬁes summation over all odd mtegers B’ with 1 < IE’I < 2h.

We require an estimate for the last mtegral and for this purpose we note
that o -

(F(Z))1/(3+1) o 22}1 H (z! + k) -
A N et T

where 2/ = (2 + 1) Further, for z on Iy, we have |z — E’\ = 1/4 and'
hence |z — L’”l = 1/8, where ¢ = =(I'+1). Thus we obtain

2+ k| = (' ---£’”)+(k-|~£” |> |k+€”|-—1/8
It follows that if £ > —£" 41 then we have |2/ + k| > k 4+ £ ~ 1, and if

k< —£" ~1,then |2 + k| > —k — £ — 1. Since also |2’ + k| > 7/8 for
k=~0"%1 and |2’ +k|-- 1/8 for kr.:--ﬁ" we obtam |

P s+ 2.22"(1/8)(7/8) (h+ 0" - 2)!.(h'-— ¢ — 1),
where, for brevzty, we have adopted the conventmn that (—1)! = 1. The

number on the right is at least (2h — 3)!(7/8)? and since (‘??1)3(7/8)""'2
e(0-05)% this gives ' _ . .

|F(z)|”(s+1) > (2h)!e"(°'°5)h_.
Now clearly, for z on I'p, we have
(z ~ 2" /(2 - £/2)] < 4.

Further, the number of terms in the double sum above is 2h(S +1) <
e(0-02)Lh  Hence, from (19), the absolute value of the sum is at most

e~ LA (p)) "+ (20)
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It is readily verified tha.t, for z = £/2, we have
F(z)|" (s+1) 22k (h+ [ (b =[] < 2“(2}:)!

This gives . _
' [F(e/2)] < 28442 ((2R)) 7T,

and hence (20) is at most
e"(ﬁ.T)Lh‘F(E/Q)\."'l‘

Let now 6 and © denote respectively the upper bound of | f (z)| and

the lower bound of |F(z)| with z on I. Since 2|z — ¢/2| with z on T
exceeds the radius of I', we obtain .

7(¢/2)] < (26/)|F(e/2)] + 72740

On noting that |
122 = k% 2 |2)*(1 = k/|2])

for each odd integer k with 1 < k < 2h, and recalling tha.t T has radius
76h, we deduce that |

© >.((37/38)1/2761)*M ),

Thus, frbm the trivial estimate
F(/2)] < (2h)2HS+),
1t folllows that -
O/|F(e/2)| > ((37/38)}/238) "+ ;-_ e3-62Lh
But fr.om (18) we have 8 < ;1*07“‘ and hence
[f(€/2)! < 26—2.5;1,}» +em27Lh

This contradicts (17), and the contradiction 1mp11es that ¢ = 0, as re-
‘quired.



22 APPROXIMATIONS TO CUBIC IRRATIONALS

8. Kummer theory

The equation g(£ /2 mi,m2) = 0, where £ is any odd integer with
< { < 4h and m,, m, are non-negative integers with m; + mz <

L / 2, can be replaced by eight equations formed by restricting A;, Az,
A3 to run through residue classes (mod 2). This is a consequence of the
fact, established in §4, that K (p” 2 g1/2 71/2) is an extension of K with

degree 8. Hence for any A}, Az, A3 given by 0 or 1 we have

1 2 3
Z Z Z P(P)A(‘Tnmﬂﬁ(qu,mg)p’“‘ﬁg#:f/?,.uazfz =0,

p1=0 po=0 ug=0

~ where pJ'-—- A +2)\J, 1<7<3,p(p)= (,ul,pg,pa) and

v, = p1+ (T/f)ns, Vo = p2 + (s/t)us;

‘1t 1s understood that A1, A2, Az, are allowed to run through all 1ntegers
compatible with the ranges of p1, p2, #a. The above equatmn gives

Zl 22 Z P (A)A 711m1 )A(’)’z,mg)p)‘” }‘93 Aaf = ()

A =0 Ag9=0 Az=0

where L, = [( RS )/2} '1 <7 < 3 The coefﬁcients p'(A) =

()\1, )\2, A3) are a subset of the original p(}) and we can suppose that
J\;.., 3 are chosen such that the p'(A) are not all 0. Furthermore it 1s
clear that A(7yy;my) and A(y,;m2) are polynomials in 4; and 7, with
degrees m; and m; and with coefficients independent of the A’s. Hence,
arguing by induction with respect to mj 4+ m,, we see that they can be

replaced by A(y;m1) and A(y2;m2). Thus we have shown that there _
15 a functmn - '

l f

g(l)(z) Z Z Zp(’\)A(711m1)A(721m2)pAlz Aﬁz As¥

A12=0 Ao=0 Ag=0

such that ¢/V(¢) = 0 for all odd integers £ with 1 < £ < 4h and all

non-negative mtegers my, my with m, + m; < L/2; and here we have
L' <L;/2,1<j5<L3.

The argument can now be repeated by induction and we deduce
that for each integer J = 0,1,... there exist integers p{¥)()), not all 0,

- given by a subset of the original p()\) such that the function

L L

LICED ISP W6 A(—n,ml)am,mz)p*“ i

A1 =0 ho=0 Ag=0
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satisfies g{?)(£) = 0 for all odd integers £ with 1 < £ < 2/*1h and all
~ non-negative integers m;, my with m; + my < (1 /2)" L; and we have

</, 1<js<3

‘But when J is large enough it follows that Li =0,1< 7 <3, and

since then p{/)(0) # 0, we plainly have a contradlctlon This proves the
theorems.
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