On irregularities of distribution in shifts and dilations of integer sequences, II

J. Beck * A. Sárközy ${ }^{\dagger}$ and C.L. Stewart ${ }^{\ddagger}$

February 21, 2002

Dedicated to Professor A. Schinzel on the occasion of his sixtieth birthday

1 Introduction

Let N be a positive integer. In 1964, Roth [3], see also [4] and [5], proved that no matter how we partition $\{1, \ldots, N\}$ into two sets there will always be an arithmetic progression which contains a preponderance of terms from one of the two sets. In particular, let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be elements of $\{1,-1\}$ and put $\varepsilon_{i}=0$ for $i<1$ and $i>N$. He proved that there exist positive numbers c_{0} and c_{1} such that if N exceeds c_{0} then

$$
\begin{equation*}
\max _{a, q, t \in \mathbb{Z}^{+}}\left|\sum_{j=1}^{t} \varepsilon_{a+j q}\right|>c_{1} N^{1 / 4} . \tag{1}
\end{equation*}
$$

In 1981, Beck [1] proved that (1) is best possible, apart from a logarithmic factor, by proving that there exists a positive number c_{2} such that for each integer N larger than one there is a sequence $\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ of plus and minus ones for which

$$
\begin{equation*}
\max _{a, q, t \in \mathbb{Z}^{+}}\left|\sum_{j=1}^{t} \varepsilon_{a+j q}\right|<c_{2} N^{1 / 4}(\log N)^{5 / 2} \tag{2}
\end{equation*}
$$

Recently Matousek and Spencer [2] proved that the factor $(\log N)^{5 / 2}$ can be removed in (2) and so (1) is best possible up to a constant factor.

In 1987 Sárközy and Stewart [7] generalized Roth's result by studying shifts and dilations of arbitrary sequences of positive integers in place of arithmetical

[^0]progressions. In particular, let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be complex numbers and put $\varepsilon_{i}=0$ for $i<1$ and $i>N$. Let $\left(b_{1}, b_{2}, \ldots\right)$ be any sequence of positive integers. Their objective was to estimate
\[

$$
\begin{equation*}
\max _{a \in \mathbb{Z}, q, t \in \mathbb{Z}^{+}}\left|\sum_{j=1}^{t} \quad \varepsilon_{a+b_{j} q}\right| . \tag{3}
\end{equation*}
$$

\]

They were able to obtain non-trivial lower bound for (3) when $\left(b_{1}, b_{2}, \ldots\right)$ is an increasing sequence which does not grow more quickly than the sequence of squares. For the sequence of squares they proved the following result. Let δ be a positive real number and suppose that $\varepsilon_{1} \ldots, \varepsilon_{N}$ are of absolute value one. There is a number $c_{3}(\delta)$, which is effectively computable in terms of δ, such that if N exceeds $c_{3}(\delta)$ then

$$
\begin{equation*}
\max _{a \in \mathbb{Z}, q, t \in \mathbb{Z}^{+}}\left|\sum_{j=1}^{t} \varepsilon_{a+j^{2} q}\right|>N^{1 / 6} \exp (-(1+\delta)(\log 2 \log N) / 3 \log \log N) \tag{4}
\end{equation*}
$$

Our goal in this paper is to strengthen and to extend the range of applicability of the estimates of [7]. For instance, we shall prove that the exponential factor on the right hand side of inequality (4) may be replaced by a constant. Further we are able to treat shifts and dilations of the sequence of r th powers for any positive integer r.

Theorem 1. Let N, t and Q be positive integers with

$$
\begin{equation*}
2 t \leq Q \tag{5}
\end{equation*}
$$

Let b_{1}, \ldots, b_{t} be positive integers with $b_{t}=\max _{i} b_{i}$ and let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be complex numbers. Put $\varepsilon_{i}=0$ for $i<1$ and $i>N$. Then

$$
\begin{equation*}
\sum_{q=1}^{Q} \sum_{a=-Q b_{t}+1}^{N}\left|\sum_{j=1}^{t} \varepsilon_{a+b_{j} q}\right|^{2} \geq \frac{t Q}{4} \sum_{n=1}^{N}\left|\varepsilon_{n}\right|^{2} \tag{6}
\end{equation*}
$$

Condition (5) is necessary and cannot be weakened by a factor of 2 as the following example shows. Let p be a prime number and put $Q=t=p-1$, and $b_{j}=j$ for $j=1, \ldots, t$. Let N be a positive integer and put $\varepsilon_{n}=\left(\frac{n}{p}\right)$ for $n=1, \ldots, N$, where $\left(\frac{n}{p}\right)$ denotes the Legendre symbol of n modulo p. Notice that

$$
\left|\sum_{j=1}^{t} \varepsilon_{a+b_{j} q}\right|=\left|\sum_{j=1}^{p-1}\left(\frac{a+j q}{p}\right)\right| \leq 1
$$

for $1 \leq q \leq t=p-1$ and for $0 \leq a \leq N-t^{2}$. For $-Q b_{t}+1=-t^{2}+1 \leq a<0$ and for $N-t^{2}<a \leq N$ we certainly have

$$
\left|\sum_{j=1}^{t} \varepsilon_{a+b_{j} q}\right| \leq t
$$

and thus the left hand side of inequality (6) is at most $t N+2 t^{5}$. On the other hand the right hand side of inequality (6) is at least $\frac{t Q}{4} N\left(\frac{p-1}{p}\right)$, hence at least $\frac{N t^{2}}{8}$. A comparison of these two estimates yields a contradiction for t in the range $16<t<(N / 32)^{1 / 3}$. Furthermore, the lower bound in (6) is, in general, best possible apart from a constant factor as may be seen from the Rudin-Shapiro construction from harmonic analysis, see [6, Theorem 4] for details.

Choosing $Q=2 t$ in Theorem 1 we obtain the next result.
Corollary 1. Let N and t be positive integers. Let b_{1}, \ldots, b_{t} be positive integers with $b_{t}=\max _{i} b_{i}$ and let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be complex numbers. Put $\varepsilon_{i}=0$ for $i<1$ and $i>N$. If

$$
\begin{equation*}
2 t b_{t} \leq N \tag{7}
\end{equation*}
$$

then

$$
\max _{\substack{1 \leq q \leq 2 t \\-N<a \leq N}}\left|\sum_{j=1}^{t} \varepsilon_{a+b_{j} q}\right| \geq \frac{t^{1 / 2}}{\sqrt{8}}\left(\frac{1}{N} \sum_{n=1}^{N}\left|\varepsilon_{n}\right|^{2}\right)^{1 / 2}
$$

It follows from the result of Matousek and Spencer [2] that condition (7) can not be weakened by more than a constant factor.

For any real number x, let $[x]$ denote the greatest integer less than or equal to x. Let r be a positive integer and put

$$
t=\left[(N / 2)^{1 /(r+1)}\right] .
$$

We now apply Corollary 1 with $b_{j}=j^{r}$ for $j=1, \ldots, t$. Observe that $t \geq$ $\left(N^{1 / r+1}\right) / 2$ provided that $N \geq 5^{r+1}$ and so we obtain the result below.

Corollary 2. Let N and r be positive integers and assume N is at least 5^{r+1}. Let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be complex numbers of absolute value 1. Put $\varepsilon_{i}=0$ for $i<1$ and $i>N$. Then

$$
\begin{equation*}
\max _{\substack{1 \leq q \leq 2 N^{1 /(r+1)} \\-N<a \leq N}}\left|\sum_{1 \leq j \leq\left(\frac{N}{2}\right)^{1 /(r+1)}} \varepsilon_{a+j^{r} q}\right| \geq \frac{1}{4} N^{1 / 2(r+1)} . \tag{8}
\end{equation*}
$$

Certainly from (8) we have

$$
\begin{equation*}
\max _{a \varepsilon \mathbb{Z}, q, t \varepsilon \mathbb{Z}^{+}}\left|\sum_{j=1}^{t} \varepsilon_{a+j^{r} q}\right| \geq \frac{1}{4} N^{1 / 2(r+1)} \tag{9}
\end{equation*}
$$

and we suspect that the lower bound on the right hand side of inequality (9) is best possible, up to a constant factor for each positive integer r. This is certainly the case when $r=1$ by the result of Matousek and Spencer [2]. Finally, we remark that on taking the ε_{i} 's to be plus or minus one we induce a partition of $\{1, \ldots, N\}$. Therefore, by Corollary 2 , if N exceeds 5^{r+1} then no matter how we split $\{1, \ldots, N\}$ into two disjoint sets there will always be a shift and dilation of the sequence of r-th powers of positive integers which contains $\frac{1}{4} N^{1 / 2(r+1)}$ more terms from one set than from the other.

2 The proof of Theorem 1

For any real number α we denote $e^{2 \pi i \alpha}$ by $e(\alpha)$. Put

$$
S(\alpha)=\sum_{n=1}^{N} \varepsilon_{n} e(n \alpha)
$$

We now introduce the Féjer kernel. For each positive integer Q denote $F_{Q}(\alpha)$ by

$$
F_{Q}(\alpha)=\left|\sum_{q=0}^{Q} e(q \alpha)\right|^{2}=Q+1+\sum_{q=1}^{Q}(Q+1-q)(e(q \alpha)+e(-q \alpha))
$$

and observe that

$$
\begin{equation*}
F_{Q}(0)=(Q+1)^{2} \tag{10}
\end{equation*}
$$

Next, put

$$
G(\alpha)=\sum_{j=1}^{t} \sum_{k=1}^{t} F_{Q}\left(\left(b_{j}-b_{k}\right) \alpha\right) .
$$

Observe that

$$
G(\alpha)=t^{2}(Q+1)+2 \sum_{q=1}^{Q}(Q+1-q) \sum_{j=1}^{t} \sum_{k=1}^{t} e\left(\left(b_{j}-b_{k}\right) q \alpha\right)
$$

hence

$$
\begin{equation*}
G(\alpha)=t^{2}(Q+1)+2 \sum_{q=1}^{Q}(Q+1-q)\left|\sum_{j=1}^{t} e\left(b_{j} q \alpha\right)\right|^{2} . \tag{11}
\end{equation*}
$$

Our proof proceeds by a comparison of estimates for

$$
J=\int_{0}^{1}|S(\alpha)|^{2} G(\alpha) d \alpha
$$

On irregularities of distribution ... dilations of integer sequences, II

We establish a lower bound first. Since $F_{Q}(\alpha)$ is always non-negative,

$$
J \geq \int_{0}^{1}|S(\alpha)|^{2} \sum_{j=1}^{t} F_{Q}\left(\left(b_{j}-b_{j}\right) \alpha\right) d \alpha
$$

and so, by (10),

$$
J \geq t(Q+1)^{2} \int_{0}^{1}|S(\alpha)|^{2} d \alpha
$$

Therefore, by Parseval's formula,

$$
\begin{equation*}
J \geq t(Q+1)^{2} \sum_{n=1}^{N}\left|\varepsilon_{n}\right|^{2} \tag{12}
\end{equation*}
$$

On the other hand, by (11),
$J=t^{2}(Q+1) \int_{0}^{1}|S(\alpha)|^{2} d \alpha+2 \sum_{q=1}^{Q}(Q+1-q) \int_{0}^{1}\left|S(\alpha) \sum_{j=1}^{t} e\left(-b_{j} q \alpha\right)\right|^{2} d \alpha$. (13)
Since

$$
S(\alpha) \sum_{j=1}^{t} e\left(-b_{j} q \alpha\right)=\sum_{n=1}^{N} \sum_{j=1}^{t} \varepsilon_{n} e\left(\left(n-b_{j} q\right) \alpha\right)
$$

we have

$$
S(\alpha) \sum_{j=1}^{t} e\left(-b_{j} q \alpha\right)=\sum_{a=-\infty}^{\infty} \delta_{a, q} e(a \alpha)
$$

where

$$
\delta_{a, q}=\sum_{j=1}^{t} \varepsilon_{a+b_{j} q} \quad \text { for } a \in \mathbb{Z}
$$

Notice that $\delta_{a, q}=0$ when a exceeds N or when a is at most $-Q b_{t}$. From (13) and Parseval's formula we obtain

$$
\begin{equation*}
J \leq t^{2}(Q+1) \sum_{n=1}^{N}\left|\varepsilon_{n}\right|^{2}+2(Q+1) \sum_{q=1}^{Q} \sum_{a=-Q b_{t}+1}^{N}\left|\sum_{j=1}^{t} \varepsilon_{a+b_{j} q}\right|^{2} . \tag{14}
\end{equation*}
$$

The result now follows from (5), (12) and (14).

References

[1] J. Beck, Roth's estimate on the discrepancy of integer sequences is nearly sharp, Combinatorica 1 (1981), 319-325.
[2] J. Matousek and J. Spencer, Discrepancy in arithmetic progressions, Journal of the A.M.S., 9 (1996), 195-204.
[3] K. F. Roth, Remark concerning integer sequences, Acta Arith. 9 (1964), 257-260.
[4] K. F. Roth, Irregularities of sequences relative to arithmetic progressions I, Math. Ann. 169 (1967), 1-25.
[5] K. F. Roth, Irregularities of sequences relative to arithmetic progressions II, Math. Ann. 174 (1967), 41-52.
[6] A. Sárközy, Some remarks concerning irregularities of sequences of integers in arithmetic progressions II, Studia Sci. Math. Hung. 11 (1976), 79-104.
[7] A. Sárközy and C.L. Stewart, On irregularities of distribution in shifts and dilations of integer sequences I, Math. Ann. 276 (1987), 353-364.
J. Beck

Department of Mathematics
Rutgers University
New Brunswick, NJ
U.S.A. 08903
A. Sárközy

Department of Algebra \& Number Theory University Eötvös Loránd
Muzeum krt. 6-8
H-1088 Budapest
Hungary

C.L. Stewart

Department of Pure Mathematics
University of Waterloo
Waterloo, ON
Canada N2L 3G1

[^0]: *Research partially supported by NSF Research Grant DMS-9626151.
 ${ }^{\dagger}$ Research partially supported by the Hungarian National Foundation for Scientific Research, Grant T 017433.
 \ddagger Research supported in part by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

