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1 Introduction

Let N be a positive integer. In 1964, Roth [3], see also [4] and [5], proved that
no matter how we partition {1, . . . , N} into two sets there will always be an
arithmetic progression which contains a preponderance of terms from one of the
two sets. In particular, let ε1, . . . , εN be elements of {1,−1} and put εi = 0 for
i < 1 and i > N . He proved that there exist positive numbers c0 and c1 such
that if N exceeds c0 then

max
a,q,t∈Z+

∣∣∣∣∣∣
t∑

j=1

εa+j q

∣∣∣∣∣∣ > c1N
1/4 . (1)

In 1981, Beck [1] proved that (1) is best possible, apart from a logarithmic
factor, by proving that there exists a positive number c2 such that for each
integer N larger than one there is a sequence (ε1, . . . , εN ) of plus and minus
ones for which

max
a,q,t∈Z+

∣∣∣∣∣∣
t∑

j=1

εa+j q

∣∣∣∣∣∣ < c2N
1/4(logN)5/2 . (2)

Recently Matousek and Spencer [2] proved that the factor (logN)5/2 can be
removed in (2) and so (1) is best possible up to a constant factor.

In 1987 Sárközy and Stewart [7] generalized Roth’s result by studying shifts
and dilations of arbitrary sequences of positive integers in place of arithmetical
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progressions. In particular, let ε1, . . . , εN be complex numbers and put εi = 0
for i < 1 and i > N . Let (b1, b2, . . .) be any sequence of positive integers. Their
objective was to estimate

max
a∈Z,q,t∈Z+

∣∣∣∣∣∣
t∑

j=1

εa+bjq

∣∣∣∣∣∣ . (3)

They were able to obtain non-trivial lower bound for (3) when (b1, b2, . . .) is
an increasing sequence which does not grow more quickly than the sequence of
squares. For the sequence of squares they proved the following result. Let δ be
a positive real number and suppose that ε1 . . . , εN are of absolute value one.
There is a number c3(δ), which is effectively computable in terms of δ, such that
if N exceeds c3(δ) then

max
a∈Z,q,t∈Z+

∣∣∣∣∣∣
t∑

j=1

εa+j2q

∣∣∣∣∣∣ > N1/6 exp(−(1 + δ)(log 2 logN)/3 log logN) . (4)

Our goal in this paper is to strengthen and to extend the range of applica-
bility of the estimates of [7]. For instance, we shall prove that the exponential
factor on the right hand side of inequality (4) may be replaced by a constant.
Further we are able to treat shifts and dilations of the sequence of rth powers
for any positive integer r.

Theorem 1. Let N, t and Q be positive integers with

2t ≤ Q . (5)

Let b1, . . . , bt be positive integers with bt = max
i
bi and let ε1, . . . , εN be complex

numbers. Put εi = 0 for i < 1 and i > N . Then

Q∑
q=1

N∑
a=−Qbt+1

∣∣∣∣∣∣
t∑

j=1

εa+bjq

∣∣∣∣∣∣
2

≥ tQ

4

N∑
n=1

|εn|2 . (6)

Condition (5) is necessary and cannot be weakened by a factor of 2 as the
following example shows. Let p be a prime number and put Q = t = p − 1,

and bj = j for j = 1, . . . , t. Let N be a positive integer and put εn =
(
n

p

)
for

n = 1, . . . , N , where
(
n

p

)
denotes the Legendre symbol of n modulo p. Notice

that ∣∣∣∣∣∣
t∑

j=1

εa+bjq

∣∣∣∣∣∣ =

∣∣∣∣∣∣
p−1∑
j=1

(
a+ jq

p

)∣∣∣∣∣∣ ≤ 1
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for 1 ≤ q ≤ t = p− 1 and for 0 ≤ a ≤ N − t2. For −Qbt + 1 = −t2 + 1 ≤ a < 0
and for N − t2 < a ≤ N we certainly have∣∣∣∣∣∣

t∑
j=1

εa+bjq

∣∣∣∣∣∣ ≤ t
and thus the left hand side of inequality (6) is at most tN + 2t5. On the other

hand the right hand side of inequality (6) is at least
tQ

4
N

(
p− 1
p

)
, hence at

least
Nt2

8
. A comparison of these two estimates yields a contradiction for t

in the range 16 < t < (N/32)1/3. Furthermore, the lower bound in (6) is,
in general, best possible apart from a constant factor as may be seen from
the Rudin-Shapiro construction from harmonic analysis, see [6, Theorem 4] for
details.

Choosing Q = 2t in Theorem 1 we obtain the next result.

Corollary 1. Let N and t be positive integers. Let b1, . . . , bt be positive integers
with bt = maxi bi and let ε1, . . . , εN be complex numbers. Put εi = 0 for i < 1
and i > N . If

2tbt ≤ N , (7)

then

max
1≤q≤2t
−N<a≤N

∣∣∣∣∣∣
t∑

j=1

εa+bjq

∣∣∣∣∣∣ ≥ t1/2√
8

(
1
N

N∑
n=1

|εn|2
)1/2

.

It follows from the result of Matousek and Spencer [2] that condition (7) can
not be weakened by more than a constant factor.

For any real number x, let [x] denote the greatest integer less than or equal
to x. Let r be a positive integer and put

t = [(N/2)1/(r+1)] .

We now apply Corollary 1 with bj = jr for j = 1, . . . , t. Observe that t ≥
(N1/r+1)/2 provided that N ≥ 5r+1 and so we obtain the result below.

Corollary 2. Let N and r be positive integers and assume N is at least 5r+1.
Let ε1, . . . , εN be complex numbers of absolute value 1. Put εi = 0 for i < 1 and
i > N . Then

max
1≤q≤2N1/(r+1)

−N<a≤N

∣∣∣∣∣∣
∑

1≤j≤(N2 )1/(r+1)

εa+jrq

∣∣∣∣∣∣ ≥ 1
4
N1/2(r+1) . (8)

Certainly from (8) we have

max
aεZ,q,tεZ+

∣∣∣∣∣∣
t∑

j=1

εa+jrq

∣∣∣∣∣∣ ≥ 1
4
N1/2(r+1) (9)
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and we suspect that the lower bound on the right hand side of inequality (9) is
best possible, up to a constant factor for each positive integer r. This is certainly
the case when r = 1 by the result of Matousek and Spencer [2]. Finally, we
remark that on taking the εi’s to be plus or minus one we induce a partition of
{1, . . . , N}. Therefore, by Corollary 2, if N exceeds 5r+1 then no matter how we
split {1, . . . , N} into two disjoint sets there will always be a shift and dilation

of the sequence of r-th powers of positive integers which contains
1
4
N1/2(r+1)

more terms from one set than from the other.

2 The proof of Theorem 1

For any real number α we denote e2πiα by e(α). Put

S(α) =
N∑
n=1

εne(nα) .

We now introduce the Féjer kernel. For each positive integer Q denote FQ(α)
by

FQ(α) =

∣∣∣∣∣
Q∑
q=0

e(qα)

∣∣∣∣∣
2

= Q+ 1 +
Q∑
q=1

(Q+ 1− q)(e(qα) + e(−qα)) ,

and observe that
FQ(0) = (Q+ 1)2 . (10)

Next, put

G(α) =
t∑

j=1

t∑
k=1

FQ((bj − bk)α) .

Observe that

G(α) = t2(Q+ 1) + 2
Q∑
q=1

(Q+ 1− q)
t∑

j=1

t∑
k=1

e((bj − bk)qα)

hence

G(α) = t2(Q+ 1) + 2
Q∑
q=1

(Q+ 1− q)

∣∣∣∣∣∣
t∑

j=1

e(bjqα)

∣∣∣∣∣∣
2

. (11)

Our proof proceeds by a comparison of estimates for

J =
∫ 1

0

| S(α)|2G(α)dα .
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We establish a lower bound first. Since FQ(α) is always non-negative,

J ≥
∫ 1

0

|S(α)|2
t∑

j=1

FQ((bj − bj)α)dα ,

and so, by (10),

J ≥ t(Q+ 1)2

∫ 1

0

|S(α)|2 dα .

Therefore, by Parseval’s formula,

J ≥ t(Q+ 1)2
N∑
n=1

|εn|2 . (12)

On the other hand, by (11),

J = t2(Q+ 1)
∫ 1

0

|S(α)|2dα+ 2
Q∑
q=1

(Q+ 1− q)
∫ 1

0

∣∣∣∣∣∣S(α)
t∑

j=1

e(−bjqα)

∣∣∣∣∣∣
2

dα. (13)

Since

S (α)
t∑

j=1

e(−bjqα) =
N∑
n=1

t∑
j=1

εn e((n− bjq)α) ,

we have

S (α)
t∑

j=1

e(−bjqα) =
∞∑

a=−∞
δa,q e(aα)

where

δa,q =
t∑

j=1

εa+bjq for a ∈ Z .

Notice that δa,q = 0 when a exceeds N or when a is at most −Qbt. From (13)
and Parseval’s formula we obtain

J ≤ t2(Q+ 1)
N∑
n=1

|εn|2 + 2(Q+ 1)
Q∑
q=1

N∑
a=−Qbt+1

|
t∑

j=1

εa+bjq|2 . (14)

The result now follows from (5), (12) and (14).
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[6] A. Sárközy, Some remarks concerning irregularities of sequences of integers
in arithmetic progressions II, Studia Sci. Math. Hung. 11 (1976), 79–104.

[7] A. Sárközy and C.L. Stewart, On irregularities of distribution in shifts and
dilations of integer sequences I, Math. Ann. 276 (1987), 353–364.

J. Beck A. Sárközy
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