ON DIVISORS OF SUMS OF INTEGERS IV

A. SÁrKÖZY AND C. L. STEWART

1. Introduction. Throughout this article $c_{0}, c_{1}, c_{2}, \ldots$ will denote effectively computable positive absolute constants. Denote the cardinality of a set X by $|X|$. Let N be a positive integer and let A and B be non-empty subsets of $\{1, \ldots, N\}$. Put

$$
\begin{aligned}
A_{0} & =\{a \in A \mid(N / 2)<a \leqq N\} \text { and } \\
B_{0} & =\{b \in B \mid(N / 2)<b \leqq N\} .
\end{aligned}
$$

In [3], Balog and Sárközy proved that if $N>c_{0}$ and

$$
\begin{equation*}
\left(\left|A_{0}\right|\left|B_{0}\right|\right)^{1 / 2}>c_{1} N^{12 / 13}(\log N)^{21 / 13} \tag{1}
\end{equation*}
$$

then there exist a_{0} and b_{0} with $a_{0} \in A_{0}$ and $b_{0} \in B_{0}$ and a prime number p such that

$$
p^{2} \mid\left(a_{0}+b_{0}\right)
$$

and

$$
\begin{equation*}
p^{2}>c_{2}\left(\left|A_{0}\right|\left|B_{0}\right|\right)^{5 / 2} /\left(N^{4}(\log N)^{7}\right) \tag{2}
\end{equation*}
$$

If follows from this result that if $|A| \gg N$ and $|B| \gg N$ then there exist a in A and b in B and a prime p such that $p^{2} \mid(a+b)$ with

$$
p^{2} \gg N /(\log N)^{7}
$$

Let k be an integer with $k \geqq 2$. We shall prove that if $|A| \gg N$ and $|B| \gg N$ then there exist $>{ }_{k} N^{1+(1 / k)} / \log N$ pairs (a, b) with a in A and b in B for which $a+b$ is divisible by p^{k} with p a prime and

$$
p^{k} \gg_{k} N
$$

This result is best possible, up to determination of constants, both with respect to the number of pairs (a, b) and also with respect to the lower bound for p^{k}. It follows from Theorem 1 below.

The case $k=1$ was considered by Balog and Sárközy in [2]. They proved, by means of the large sieve inequality, that if $|A| \gg N$ and $|B| \gg N$ then there exist a in A and b in B and a prime p with $p \mid(a+b)$ and Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

$$
p \gg N / \log N .
$$

In part II of this series [9] we showed, by means of the Hardy-Littlewood method, that if $|A| \gg N$ and $|B| \gg N$ then there exist $\gg N^{2} / \log N$ pairs (a, b) with a in A and b in B for which $a+b$ is divisible by a prime p with

$$
p \gg N .
$$

Put

$$
R=3 N /(|A||B|)^{1 / 2}
$$

and
(3) $\theta_{k}=\left(1+2 k 4^{k-1}\right)^{-1}$,
for $k \geqq 2$.
Theorem 1. Let N and k be positive integers with $k \geqq 2$, let A and B be subsets of $\{1, \ldots, N\}$ and let ϵ be a positive real number. There exist effectively computable positive absolute constants c_{3} and c_{4} and positive numbers C_{0}, C_{1} and N_{0} which are effectively computable in terms of ϵ and k such that if $N>N_{0}$ and

$$
\begin{equation*}
(|A||B|)^{1 / 2}>N^{1-\theta_{k}+\epsilon} \tag{4}
\end{equation*}
$$

then there exist at least
(5) $\quad C_{0}\left(\left((|A||B|)^{1 / 2}\right)^{1+(1 / k)} / \log N\right) \exp \left(c_{3}(\log k \log R) / \log \log R\right)$
pairs (a, b) with a in A and b in B, (respectively pairs $\left(a_{1}, b_{1}\right)$ with a_{1} in A and b_{1} in B), such that for each pair there exists a prime p for which $p^{k} \mid(a+b),\left(\right.$ respectively $\left.p^{k} \mid\left(a_{1}-b_{1}\right)\right)$, with

$$
\begin{align*}
& \frac{2 C_{1}(|A||B|)^{1 / 2}}{\exp \left(c_{4}(\log k \log R) / \log \log R\right)} \tag{6}\\
& \geqq p^{k}>\frac{C_{1}(|A||B|)^{1 / 2}}{\exp \left(c_{4}(\log k \log R) / \log \log R\right)}
\end{align*}
$$

In particular if (4) holds then for N sufficiently large there exist a in A and b in B and a prime p such that $p^{k} \mid(a+b)$ with
(7) $\quad p^{k}>C_{1}(|A||B|)^{1 / 2} / \exp \left(c_{4}(\log k \log R) / \log \log R\right)$.

Note that if $k=2$, (4) is a more stringent requirement that (1), however the lower bound for p^{2} given by (7) is better than the one given by (2). In fact the lower bound for p^{k} given by (7) is best possible apart from the factor

$$
\exp \left(c_{4}(\log k \log R) / \log \log R\right)
$$

as the following example shows. Let A and B consist of all multiples of a positive integer t with $t \leqq N^{1 /(k+1)}$. Then

$$
|A|=|B|=[N / t] .
$$

If $p^{k} \mid(a+b)$ with a in A and b in B, (or indeed if $p^{k} \mid(a-b)$ with a in A, b in B and $a \neq b$), then either $p \mid t$ in which case

$$
p^{k} \leqq N^{k /(k+1)} \leqq N / t \leqq 2(|A||B|)^{1 / 2}
$$

or $p \nmid t$ in which case

$$
p^{k} \leqq 2[N / t]=2(|A||B|)^{1 / 2}
$$

We shall derive Theorem 1 from the following result of independent interest. For any real number x let $[x]$ denote the greatest integer less than or equal to x, let $\{x\}=x-[x]$ denote the fractional part of x and let

$$
\|x\|=\min (\{x\}, 1-\{x\}) .
$$

Theorem 2. Let k be an integer greater than one and let ϵ be a positive real number. Let N be a positive integer and let y be a real number with

$$
\begin{equation*}
3 \leqq y<N^{\gamma_{k}-\epsilon} \tag{8}
\end{equation*}
$$

where $\gamma_{k}=\left(2 k 4^{k-1}\right)^{-1}$. For any real number α with

$$
y^{k-1} / N \leqq \alpha \leqq 1-\left(y^{k-1} / N\right)
$$

we have

$$
\begin{aligned}
& \sum_{p^{k} \leqq N} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) \\
& <C_{2}\left(N^{1 / k} / \log N\right) \exp \left(c_{5}(\log k \log y) / \log \log y\right)
\end{aligned}
$$

for $N>N_{1}$, where c_{5} is an effectively computable positive absolute constant and C_{2} and N_{1} are real numbers which are effectively computable in terms of ϵ and k.

In [10] we established the analogue of Theorem 2 for the case $k=1$.
2. Preliminary lemmas. For any real number x denote $e^{2 \pi i x}$ by $e(x)$.

Lemma 1. Let X and Y be positive integers with $X<Y$. Then for any real number α we have

$$
\left|\sum_{X<n \leqq Y} e(n \alpha)\right| \leqq \min \left(Y-X, 2\|\alpha\|^{-1}\right)
$$

Proof. See [8], p. 189.

Lemma 2. Let V be a positive integer. Then for any real number α we have

$$
\left|\sum_{n=0}^{V-1} e(n \alpha)-V\right| \leqq 4 V^{2}|\alpha|
$$

Proof. See [1], Lemma 2.
For any positive integer n let $\omega(n)$ denote the number of distinct prime factors of n.

Lemma 3. There exists an effectively computable positive real number c_{6} such that
(9) $\omega(n)<c_{6}(\log n) / \log \log n$,
for $n \geqq 3$.
Proof. This estimate is well known. It can be derived easily from the prime number theorem. In fact for any positive real number ϵ, (9) holds with $c_{6}=1+\epsilon$ provided that n is sufficiently large in terms of ϵ.

We shall next record four additional well known elementary results. For any positive integer n, denote the number of integers less than or equal to n and coprime with n by $\phi(n)$. ϕ is Euler's phi function.

Lemma 4. There exists an effectively computable positive real number c_{7} such that

$$
\phi(n)>c_{7} n / \log \log n
$$

for $n \geqq 3$.
Proof. See [8], p. 24.
For any positive integer n, denote the number of positive integers which divide n by $\tau(n)$.

Lemma 5. Let q be a positive integer and let u and v be real numbers with $v>0$. Then

$$
\left|\sum_{\substack{u<a \leq u+v \\(a, q)=1}} 1-v \phi(q) / q\right| \leqq 2 \tau(q) .
$$

Proof. This is Lemma 4 of [9].
Lemma 6. There exists an effectively computable positive real number c_{8} such that for any integer b with $b \geqq 2$,

$$
\sum_{\substack{1 \leqq n \leqq b \\(n, b)=1}} 1 / n<c_{8}(\phi(b) / b) \log b .
$$

Proof. This is Lemma 5 of [9].
Let a, k and q be integers with k and q positive. We define the function $f(a, k, q)$ by
(10) $f(a, k, q)=\sum_{\substack{0 \leqq x<q \\(x, q)=1 \\ x^{k} \equiv a(\bmod q)}} 1$.

Lemma 7. Let a, k and q be integers with k and q positive.
(i) If $(a, q)=1$ and $f(a, k, q) \neq 0$ then
(11) $f(a, k, q)=f(1, k, q)$.
(ii) If p is a prime number, r and k are positive integers and $(a, p)=1$ then
(12) $f\left(a, k, p^{r}\right) \leqq\left\{\begin{aligned} 2 k & \text { for } p=2 \\ k & \text { for } p>2 .\end{aligned}\right.$
(iii) There exists an effectively computable positive real number c_{9} such that for $k \geqq 2, q \geqq 3$ and $(a, q)=1$,

$$
f(a, k, q)<\exp \left(c_{9}(\log k \log q) / \log \log q\right) .
$$

Proof. Let x_{1}, \ldots, x_{t} denote a complete set of incongruent solutions modulo q of

$$
x^{k} \equiv 1(\bmod q)
$$

and let x_{0} be a solution of
(13) $x^{k} \equiv a(\bmod q)$.

Then $x_{0} x_{1}, \ldots, x_{0} x_{t}$ is a complete set of incongruent solutions of (13) and this implies (11).
(ii) follows easily from the theory of binomial congruences.

Let

$$
q=p_{1}^{r_{1}} \ldots p_{l}^{r_{1}}
$$

with r_{1}, \ldots, r_{l} positive integers and p_{1}, \ldots, p_{l} distinct primes. By the Chinese Remainder Theorem

$$
f(a, k, q)=f\left(a, k, p_{1}^{r_{1}}\right) \ldots f\left(a, k, p_{l}^{r_{1}}\right)
$$

Thus by (ii) and Lemma 3

$$
\begin{aligned}
f(a, k, q) & \leqq 2 k^{l} \\
& =2 \exp ((\log k) \omega(q))<\exp \left(c_{9}(\log k \log q) / \log \log q\right)
\end{aligned}
$$

as required.

Let i, n and q be integers with $q \geqq 2$. Put
(14) $\xi(i, n, q)= \begin{cases}1 & \text { if } i \equiv n(\bmod q) \\ 0 & \text { if } i \not \equiv n(\bmod q) .\end{cases}$

Lemma 8. Let a, b, k and q be integers with $k \geqq 2, q \geqq 3$ and $(a, q)=1$ and let u and v be real numbers with $v>0$. Then

$$
\left|\sum_{u<i \leqq u+v} \sum_{\substack{0 \leqq n<q \\(n, q)=1}} \xi\left(i, a n^{k}+b, q\right)-v \phi(q) / q\right|
$$

$<q^{1 / 2} \exp \left(c_{10}(\log k \log q) / \log \log q\right)$,
where c_{10} is an effectively computable positive real number.
Proof. We have, for $(n, q)=1$,

$$
\xi(i, n, q)=(1 / \phi(q)) \sum_{\chi} \bar{\chi}(i) \chi(n)
$$

where the summation is taken over all characters χ modulo q. We shall denote the principal character modulo q by χ_{0}. Thus

$$
\begin{aligned}
& \sum_{u<i \leqq u+v} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}} \xi\left(i, a n^{k}+b, q\right) \\
& =\sum_{u<i \leqq u+v} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}} \xi\left(i-b, a n^{k}, q\right) \\
& =\sum_{u-b<j \leqq u+v-b} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}} \xi\left(j, a n^{k}, q\right) \\
& =\sum_{u-b<j \leqq u+v-b} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}}(1 / \phi(q)) \sum_{\chi} \bar{\chi}(j) \chi\left(a n^{k}\right) \\
& =(1 / \phi(q)) \sum_{\chi}\left(\chi(a) \sum_{u-b<j \leqq u+v-b} \bar{\chi}(j) \sum_{n=0}^{q-1} \chi^{k}(n)\right) \\
& =(1 / \phi(q)) \chi_{0}(a) \sum_{u-b<j \leqq u+v-b} \bar{\chi}_{0}(j) \sum_{n=0}^{q-1} \chi_{0}^{k}(n) \\
& +(1 / \phi(q)) \sum_{\chi \neq \chi_{0}}\left(\chi(a) \sum_{u-b<j \leqq u+v-b} \bar{\chi}(j) \sum_{n=0}^{q-1} \chi^{k}(n)\right) \\
& =\sum_{\substack{u-b<j \leqq u+v-b \\
(j, q)=1}} 1+\sum_{\substack{\chi \neq \chi_{0} \\
\chi^{k}=\chi_{0}}}\left(\chi(a) \sum_{u-b<j \leqq u+v-b} \bar{\chi}(j)\right) \text {. }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left|\sum_{u<i \leqq u+v} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}} \xi\left(i, a n^{k}+b, q\right)-v \phi(q) / q\right| \\
& \leqq\left|\sum_{\substack{u-b<j \leqq u+v-b \\
(j, q)=1}} 1-v \phi(q) / q\right|+\sum_{\substack{x \neq \chi_{0} \\
\chi^{k}=\chi_{0}}}\left|\sum_{u-b<j \leqq u+v-b} \bar{\chi}(j)\right|
\end{aligned}
$$

which, by Lemma 5, the Pólya-Vinogradov inequality [7], [11] and the trivial inequality $\tau(q) \leqq 2 q^{1 / 2}$, is

$$
\begin{aligned}
& <2 \tau(q)+\sum_{\substack{\chi \neq \chi_{0} \\
\chi^{k}=\chi_{0}}} c_{11} q^{1 / 2} \log q \\
& \leqq 4 q^{1 / 2}+c_{11} q^{1 / 2} \log q \sum_{\chi^{k}=\chi_{0}} 1 \\
& =4 q^{1 / 2}+c_{11} q^{1 / 2} \log q \sum_{\chi}(1 / \phi(q)) \sum_{n=0}^{q-1} \chi^{k}(n) \\
& =4 q^{1 / 2}+c_{11} q^{1 / 2} \log q \sum_{n=0}^{q-1}(1 / \phi(q)) \sum_{\chi} \chi\left(n^{k}\right) \\
& =4 q^{1 / 2}+c_{11} q^{1 / 2} \log q \sum_{\substack{0 \leq n<q \\
n^{k} \equiv 1(\bmod q)}} 1 \\
& =4 q^{1 / 2}+c_{11} q^{1 / 2} \log q f(1, k, q) .
\end{aligned}
$$

The result now follows from Lemma 7.
Lemma 9. Let h, a and q be integers with $a>0, q>1$ and $(a, q)=1$. Let $\rho(n)$ be a real valued function defined for those integers n with $h \leqq n \leqq$ $h+q$ and $(n, q)=1$. Put

$$
\lambda=\max _{\substack{h \leqq n<h+q \\(n, q)=1}} \rho(n)-\min _{\substack{h \leqq n<h+q \\(n, q)=1}} \rho(n)
$$

and

$$
\eta(n)=(a n+\rho(n)) / q .
$$

There is an effectively computable positive absolute constant c_{12} such that if $\lambda \leqq 1$ and if E is a real number satisfying $2 \leqq E \leqq q$ then

$$
\sum_{\substack{h \leqq n<h+q \\(n, q)=1}} \min \left(E,\|\eta(n)\|^{-1}\right)<c_{12} \phi(q) \log E .
$$

Proof. This is Lemma 6 of [9].

Lemma 10. Let k, h, a and q be integers with $k \geqq 2, a \geqq 1, q \geqq 3$ and $(a, q)=1$. Let $\rho(n)$ be a real valued function defined for those integers n with $h \leqq n<h+q,(n, q)=1$ and $f(n, k, q)>0$. Put

$$
\lambda=\max _{\substack{h \leqq n<h+q \\(n, q)=1 \\ f(n, k, q)>0}} \rho(n)-\min _{\substack{h \leqq n<h+q \\(n, q)=1 \\ f(n, k, q)>0}} \rho(n)
$$

and

$$
\eta(n)=(a n+\rho(n)) / q .
$$

There exists an effectively computable positive absolute constant c_{13} and a positive real number C_{3} which is effectively computable in terms of k such that if $\lambda \leqq 1$ and if E is a real number satisfying $3 \leqq E \leqq q$, then
(15)

$$
\begin{aligned}
& \text { 15) } \sum_{\substack{h \leqq n<h+q \\
(n, q)=1}} f(n, k, q) \min \left(E,\|\eta(n)\|^{-1}\right) \\
& <C_{3} \phi(q) \exp \left(c_{13}(\log k \log E) / \log \log E\right) \\
& \text { Proof. If } q^{1 / 3} \leqq E \leqq q \text { then, by Lemmas } 7 \text { and } 9,
\end{aligned}
$$

$$
\begin{align*}
& \sum_{\substack{h \leqq n<h+q \\
(n, q)=1}} f(n, k, q) \min \left(E,\|\eta(n)\|^{-1}\right) \tag{16}\\
& \leqq\left(\max _{\substack{0 \leqq n<q \\
(n, q)=1}} f(n, k, q)\right) \sum_{\substack{h \leqq n<h+q \\
(n, q)=1}} \min \left(E,\|\eta(n)\|^{-1}\right)
\end{align*}
$$

$<\exp \left(c_{9}(\log k \log q) / \log \log q\right) c_{12} \phi(q) \log E$
$<\phi(q) \exp \left(c_{14}(\log k \log E) / \log \log E\right)$.
Thus we may assume that
(17) $3 \leqq E<q^{1 / 3}$.

Put

$$
r=\left[\min _{\substack{h \leq n<h+q \\(n, q)=1 \\ f(n, k, q)>0}} \rho(n)\right],
$$

and $\rho_{1}(n)=\rho(n)-r$. Note that

$$
0 \leqq \rho_{1}(n)<\lambda+1 \leqq 2
$$

We have

$$
\eta(n)=\left((a n+r)+\rho_{1}(n)\right) / q
$$

and so

$$
(a n+r) / q \leqq \eta(n)<(a n+r+2) / q,
$$

hence

$$
\begin{aligned}
&\|\eta(n)\|^{-1} \leqq \max \left(\|(a n+r) / q\|^{-1},\|(a n+r+1) / q\|^{-1}\right. \\
&\left.\|(a n+r+2) / q\|^{-1}\right),
\end{aligned}
$$

subject to the convention that

$$
a \leqq \max (1 / 0, b) \quad \text { and } \quad 1 / 0 \leqq \max (1 / 0, a)
$$

for all real numbers a and b. Thus, on recalling (14), we find that

$$
\begin{aligned}
& \sum_{\substack{h \leqq n<h+q \\
(n, q)=1}} f(n, k, q) \min \left(E,\|\eta(n)\|^{-1}\right) \\
& \leqq \sum_{\substack{h \leqq n<h+q \\
(n, q)=1}} f(n, k, q) \sum_{i=0}^{2} \min \left(E,\|(a n+r+i) / q\|^{-1}\right) \\
& \leqq 3 \max _{j \in \mathbf{Z}} \sum_{\substack{h \leqq n<h+q \\
(n, q)=1}} f(n, k, q) \min \left(E,\|(a n+j) / q\|^{-1}\right) \\
& =3 \max _{j \in \mathbf{Z}} \sum_{\substack{h \leqq n<h+q \\
(n, q)=1}} f(n, k, q) \sum_{i=0}^{q-1} \xi(i, a n+j, q) \min \left(E,\|i / q\|^{-1}\right) \\
& =3 \max _{j \in \mathbf{Z}} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}} \sum_{i=0}^{q-1} \xi\left(i, a n^{k}+j, q\right) \min \left(E,\|i / q\|^{-1}\right) \\
& \leqq 3 \max _{j \in \mathbf{Z}} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}} \sum_{i=0}^{[q / 2]}\left(\xi\left(i, a n^{k}+j, q\right)+\xi\left(q-i, a n^{k}+j, q\right)\right) \\
& \times \min (E, q / i) \leqq 3 \max _{j \in \mathbf{Z}}\left(E \sum_{0 \leqq i \leqq q / E} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}}\right. \\
& \left(\xi\left(i, a n^{k}+j, q\right)+\xi\left(q-i, a n^{k}+j, q\right)\right) \\
& +\sum_{u=1}^{[E]}(E / u) \sum_{u q / E<i \leqq(u+1) q / E} \sum_{\substack{0 \leqq n<q \\
(n, q)=1}}\left(\xi\left(i, a n^{k}+j, q\right)\right. \\
& \left.\left.+\xi\left(q-i, a n^{k}+j, q\right)\right)\right)
\end{aligned}
$$

which, by Lemma 8, is

$$
\begin{aligned}
& \leqq 6 E((1+(q / E))(\phi(q) / q) \\
& \left.+q^{1 / 2} \exp \left(c_{10}(\log k \log q) / \log \log q\right)\right) \\
& +6 \sum_{u=1}^{[E]}(E / u)((1+(q / E))(\phi(q) / q) \\
& \left.+q^{1 / 2} \exp \left(c_{10}(\log k \log q) / \log \log q\right)\right)
\end{aligned}
$$

and, by (17), is

$$
\begin{aligned}
& \leqq 12 \phi(q)+6 q^{5 / 6} \exp \left(c_{10}(\log k \log q) / \log \log q\right) \\
& +12(1+\log E)\left(\phi(q)+q^{5 / 6} \exp \left(c_{10}(\log k \log q) / \log \log q\right)\right)
\end{aligned}
$$

whence, by Lemma 4, is
(18) $<C_{4} \phi(q) \log E$,
where C_{4} is a positive number which is effectively computable in terms of k. Lemma 10 now follows from (16) and (18).

Lemma 11. Let θ be a positive real number and let k be an integer larger than one. If α is a real number and a, q and N are positive integers with $(a, q)=1$ and $|\alpha-(a / q)|<q^{-2}$ then

$$
\left|\sum_{p \leqq N} e\left(\alpha p^{k}\right)\right|<C_{5} N^{1+\theta}\left(q^{-1}+N^{-1 / 2}+q N^{-k}\right)^{4^{1-k}}
$$

where C_{5} is a real number which is effectively computable in terms of k and θ; the summation above is over primes p with $p \leqq N$.

Proof. This follows from Theorem 1 of [4] by partial summation.
Lemma 12. Let δ be a real number satisfying

$$
0<\delta \leqq 1 / 2
$$

Then there exists a periodic function $\psi(x, \delta)$, with period 1 , such that
(i) $\psi(x, \delta) \geqq 1$ in the interval $-\delta \leqq x \leqq \delta$,
(ii) $\psi(x, \delta) \geqq 0$ for all x,
(iii) $\psi(x, \delta)$ has a Fourier series expansion of the form

$$
\psi(x, \delta)=a_{0}+\sum_{0<j \leqq(1 / 2 \delta)-1} a_{j} \cos 2 \pi j x,
$$

where

$$
\left|a_{0}\right| \leqq \pi^{2} \delta,
$$

and

$$
\left|a_{j}\right|<2 \pi^{2} \delta
$$

for $0<j \leqq(1 / 2 \delta)-1$.
Proof. This is Lemma 4 of [10]. In fact in [10] it is shown that one may take

$$
\psi(x, \delta)=\left(\pi^{2} /\left(4 N^{2}\right)\right)|(1-e(N x)) /(1-e(x))|^{2}
$$

where $N=[1 /(2 \delta)]$. Of course results of this character are well known. They were introduced in this setting by Weyl and have often been used by Vinogradov and others.

Let x be a real number and let l and k be positive integers. As usual we denote the number of primes less than or equal to x by $\pi(x)$ and the number of primes less than or equal to x and congruent to l modulo k by $\pi(x, k, l)$.

Lemma 13. There exist effectively computable positive real numbers c_{15} and c_{16} such that if X and Y are real numbers with $X>c_{15}$ and $Y \geqq$ $X^{23 / 42}$ then

$$
\pi(X+Y)-\pi(X)>c_{16} Y / \log X
$$

Proof. This is the main theorem of [5].
In fact we only require Lemma 13 for the range $Y \geqq X^{(5 / 8)+\epsilon}$ for ϵ an arbitrary positive real number and so Ingham's Theorem would suffice here.

Lemma 14. (Brun-Titchmarsh Theorem). Let x and y be positive real numbers and let k and l be relatively prime positive integers with $y>k$. Then

$$
\pi(x+y, k, l)-\pi(x, k, l)<2 y /(\phi(k) \log (y / k))
$$

Proof. This is Theorem 2 of [6].
3. The proof of theorem 2. As before, C_{0}, C_{1}, \ldots and N_{0}, N_{1}, \ldots denote positive real numbers which are effectively computable in terms of ϵ and k and c_{0}, c_{1}, \ldots denote effectively computable positive absolute constants. We shall assume, without loss of generality, that

$$
0<\epsilon<\left(2 k 4^{k-1}\right)^{-1}
$$

Put

$$
P=\left(y N^{\epsilon / 2}\right)^{4^{k-1}} \quad \text { and } \quad Q=N / P
$$

Let T_{1} denote the set of those α in the interval

$$
\left(y^{k-1} / N, 1-\left(y^{k-1} / N\right)\right)
$$

for which for all integers n with $1 \leqq n \leqq y$ there exist positive integers r_{n} and s_{n} with $\left(r_{n}, s_{n}\right)=1$,
(19) $\left|n \alpha-\left(r_{n} / s_{n}\right)\right|<1 / s_{n}^{2}$
and

$$
\begin{equation*}
P \leqq s_{n} \leqq Q \tag{20}
\end{equation*}
$$

Put

$$
T^{\prime}=\left(y^{k-1} / N, 1-\left(y^{k-1} / N\right)\right)-T_{1}
$$

so that T^{\prime} consists of the real numbers α in $\left(y^{k-1} / N, 1-\left(y^{k-1} / N\right)\right)$ which are not in T_{1}. If $\alpha \in T^{\prime}$ then for some integer n^{*} with $1 \leqq n^{*} \leqq y$ there exist no coprime positive integers $r_{n^{*}}, s_{n^{*}}$ satisfying (19) and (20) with n^{*} in place of n. By Dirichlet's Theorem there exist integers u and v with
(21) $\left|n^{*} \alpha-(u / v)\right|<1 /(v Q)$,
$0 \leqq u, 0<v \leqq Q$ and $(u, v)=1$. Note that

$$
\left|n^{*} \alpha-(u / v)\right|<1 / v^{2},
$$

and therefore that $v<P$. It follows directly from (21) that

$$
\left|\alpha-\left(u / n^{*} v\right)\right|<1 /\left(n^{*} v Q\right)
$$

hence, on writing $u /\left(n^{*} v\right)$ in the form a / b with a and b coprime $a \geqq 0$ and $b>0$ we see that
(22) $|\alpha-(a / b)|<1 /(b Q)$,
with
(23) $b \leqq n^{*} v \leqq y P$.

To each α in T^{\prime} we shall associate a pair of coprime integers a and b with $a \geqq 0$ and $b>0$ satisfying (22) and (23) and we shall put

$$
\beta=\alpha-(a / b)
$$

Let us define subsets T_{2} and T_{3} of T^{\prime} by

$$
\begin{aligned}
& T_{2}=\left\{\alpha \in T^{\prime} \mid b \leqq y\right\}, \\
& T_{3}=\left\{\alpha \in T^{\prime} \mid y<b\right\} .
\end{aligned}
$$

Put

$$
S_{0}(\alpha)=\sum_{p^{k} \leqq N} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right)
$$

Since

$$
\left(y^{k-1} / N, 1-\left(y^{k-1} / N\right)\right)=T_{1} \cup T_{2} \cup T_{3}
$$

it suffices to show that for $N>N_{1}$,
(24) $\max _{\alpha \in T_{i}} S_{0}(\alpha)<C_{2}\left(N^{1 / k} / \log N\right) \exp \left(c_{5}(\log k \log y) / \log \log y\right)$,
for $i=1,2$, 3 . We shall establish (24) for $i=1$, the case of the "minor arcs" in Section 4 and for $i=2,3$, the "major arcs" in Section 5.
4. Minor arcs. Assume that $\alpha \in T_{1}$. For $\beta>0$, put

$$
Z(N, \alpha, \beta)=\sum_{\substack{p^{k} \leq N \\\left\|p^{k} \alpha\right\|<\beta}} 1
$$

Then

$$
\begin{aligned}
S_{0}(\alpha) & =\sum_{p^{k} \leqq N} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) \\
& =\sum_{\substack{p^{k} \leqq N \\
\left\|p^{k} \alpha\right\|<1 / y}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) \\
& +\sum_{j=2}^{[y / 2]+1} \sum_{\substack{p^{k} \leqq N \\
(j-1) / y \leqq\left\|p^{k} \alpha\right\|<j / y}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) \\
& \leqq \sum_{\substack{p^{k} \leqq N}} y+\sum_{j=2}^{[y / 2]+1} \sum_{\substack{p^{k} \leqq N \\
(j-1) / y \leqq n<1 / y}} y /(j-1) \\
& =y Z(N, \alpha, 1 / y) \\
& +\sum_{j=2}^{[y / 2]+1}(y /(j-1))(Z(N, \alpha, j / y)-Z(N, \alpha,(j-1) / y)) \\
& =y \sum_{j=2}^{[y / 2]} Z(N, \alpha, j / y)(1 /(j-1)-1 / j) \\
& +(y /[y / 2]) Z(N, \alpha,([y / 2]+1) / y) \\
& \leqq y \sum_{j=2}^{[y / 2]} Z(N, \alpha, j / y) /(j(j-1))+3 \sum_{p^{k} \leqq N} 1 .
\end{aligned}
$$

Thus, by the prime number theorem,

$$
\begin{equation*}
S_{0}(\alpha)<y \sum_{j=2}^{[y / 2]} Z(N, \alpha, j / y) /(j(j-1))+4 k N^{1 / k} / \log N, \tag{25}
\end{equation*}
$$

for $N>N_{2}$.
On applying Lemma 12 with $\delta=j / y$ and $1 \leqq j \leqq y / 2$ we find that

$$
\begin{aligned}
& Z(N, \alpha, j / y) \\
& =\sum_{\substack{p^{k} \leqq N \\
\left\|p^{k} \alpha\right\|<j / y}} 1 \leqq \sum_{p^{k} \leqq N} \psi\left(p^{k} \alpha, j / y\right) \\
& =\sum_{p^{k} \leqq N}\left(a_{0}+\sum_{0<m \leqq(y / 2 j)-1} a_{m} \cos \left(2 \pi m p^{k} \alpha\right)\right) \\
& =a_{0} \pi\left(N^{1 / k}\right)+\sum_{0<m \leqq(y / 2 j)-1} a_{m} R_{e}\left(\sum_{p^{k} \leqq N} e\left(m p^{k} \alpha\right)\right) \\
& \leqq\left|a_{0}\right| \pi\left(N^{1 / k}\right)+\sum_{0<m \leqq(y / 2 j)-1}\left|a_{m}\right|\left|\sum_{p^{k} \leqq N} e\left(m p^{k} \alpha\right)\right| \\
& \leqq\left(\pi^{2} j / y\right) \pi\left(N^{1 / k}\right)+\sum_{0<m \leqq(y / 2 j)-1}\left(2 \pi^{2} j / y\right)\left|\sum_{p^{k} \leqq N} e\left(m p^{k} \alpha\right)\right|
\end{aligned}
$$

Thus, by the prime number theorem, for $N>N_{3}$,

$$
\begin{align*}
& Z(N, \alpha, j / y) \tag{26}\\
& \leqq(20 k j / y) N^{1 / k} / \log N \\
& +\left(\max _{0<m \leqq(y / 2 j)-1}\left|\sum_{p^{k} \leqq N} e\left(m p^{k} \alpha\right)\right|\right) \sum_{0<m \leqq(y / 2 j)-1} 20 j / y \\
& \leqq(20 k j / y) N^{1 / k} / \log N+10 \max _{0<m \leqq(y / 2 j)-1}\left|\sum_{p^{k} \leqq N} e\left(p^{k} m \alpha\right)\right|
\end{align*}
$$

If $0<m \leqq(y / 2 j)-1$ then, since $(y / 2 j)-1 \leqq y$, for $\alpha \in T_{1}$ there exist, by (19), positive integers r_{m} and s_{m} with $\left(r_{m}, s_{m}\right)=1$,

$$
\left|m \alpha-\left(r_{m} / s_{m}\right)\right|<1 / s_{m}^{2}
$$

and $P \leqq s_{m} \leqq N / P$. Thus, on applying Lemma 11 with $\theta=\epsilon / 2$, we find that

$$
\left|\sum_{p^{k} \leqq N} e\left(p^{k}(m \alpha)\right)\right|<C_{6} N^{(1+(\epsilon / 2)) / k}\left((2 / P)+N^{-(1 / 2 k)}\right)^{4^{1-k}}
$$

which, for $N>N_{4}$, is, by (8),

$$
<C_{7} N^{1 / k} /(y \log N)
$$

Therefore, by (26), for $1 \leqq j \leqq y / 2$ and $N>N_{5}$,

$$
Z(N, \alpha, j / y)<C_{8}(j / y) N^{1 / k} / \log N .
$$

Thus, from (25), for $\alpha \in T_{1}$,

$$
\begin{align*}
S_{0}(\alpha) & <C_{8}\left(N^{1 / k} / \log N\right) \sum_{j=2}^{[y / 2]} 1 /(j-1)+4 k N^{1 / k} / \log N \tag{27}\\
& <C_{9}\left(N^{1 / k} / \log N\right) \log y
\end{align*}
$$

provided that $N>N_{5}$.
5. Major arcs. For any real number α in T^{\prime} and associated positive integer $b \leqq N$ we put

$$
S_{0}(\alpha, b)=\sum_{\substack{p^{k} \leq N \\(p, b)=1}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) .
$$

Then, by Lemma 3,

$$
\begin{aligned}
S_{0}(\alpha) & \leqq \sum_{p \mid b} y+S_{0}(\alpha, b) \leqq c_{17} y \log b+S_{0}(\alpha, b) \\
& \leqq c_{17} y \log N+S_{0}(\alpha, b)
\end{aligned}
$$

Thus, by (8), for $N>N_{6}$,

$$
\begin{equation*}
S_{0}(\alpha)<N^{1 / k} / \log N+S_{0}(\alpha, b) \tag{28}
\end{equation*}
$$

In this section we shall establish (24) for $\alpha \in T_{2}$ and $\alpha \in T_{3}$. Assume first that $\alpha \in T_{2}$. Put

$$
L=\min (N, 1 /(2 b|\beta|)),
$$

where $\min (N, 1 / 0)=N$ by definition. Then we have
(29) $N \geqq L \geqq Q / 2=N /(2 P)$.

Put

$$
\begin{aligned}
& S_{1}(\alpha, b)=\sum_{\substack{p^{k} \leq L \\
(p, b)=1}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) \quad \text { and } \\
& S_{2}(\alpha, b)=\sum_{\substack{L<p^{k} \leq N \\
(p, b)=1}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right),
\end{aligned}
$$

so that
(30) $\quad S_{0}(\alpha, b)=S_{1}(\alpha, b)+S_{2}(\alpha, b)$.

Notice that the sum $S_{2}(\alpha, b)$ is empty for $N \leqq 1 /(2 b|\beta|)$ hence for (31) $|\beta| \leqq 1 /(2 b N)$.

We shall now estimate $S_{1}(\alpha, b)$. Suppose that $b=1$. Then $|\beta|=\|\alpha\|$ and since $\alpha \in T^{\prime},|\beta|>y^{k-1} / N$. Thus $L<N / y^{k-1}$ and so $L|\beta|=1 / 2$. We have, just as in our estimation (25) for $S(\alpha)$,

$$
S_{1}(\alpha, 1) \leqq y \sum_{j=2}^{[y / 2]} Z(L, \alpha, j / y) /(j(j-1))+4 k N^{1 / k} / \log N
$$

Now, since $L|\beta|=1 / 2$, we have, by Lemma 14,

$$
Z(L, \alpha, j / y) \leqq \pi\left((2 j L / y)^{1 / k}\right) \leqq 8 k(j N)^{1 / k} /(y \log N)
$$

Therefore,
(32) $\quad S_{1}(\alpha, 1) \leqq C_{10}\left(N^{1 / k} / \log N\right)$.

Next suppose that $b>1$. In this case we may assume, since a and b are coprime, that $a>0$. If $(p, b)=1$ and $p^{k} \leqq L$ then

$$
\begin{aligned}
\left\|p^{k} \alpha\right\| & =\left\|p^{k}((a / b)+\beta)\right\|=\left\|a p^{k} / b\right\|-p^{k}|\beta| \\
& \geqq\left\|a p^{k} / b\right\|-1 /(2 b) \geqq(1 / 2)\left\|a p^{k} / b\right\|,
\end{aligned}
$$

since $b>1$ and $\left(a p^{k}, b\right)=1$. Thus

$$
S_{1}(\alpha, \beta)
$$

$$
\leqq \sum_{\substack{p^{k} \leq L \\(p, b)=1}} \min \left(y, 2\left\|a p^{k} / b\right\|^{-1}\right)
$$

$$
\leqq \sum_{\substack{0<h<b \\(h, b)=1}} \sum_{\substack{0<x<b \\(x<b)=1 \\ x^{k} \xlongequal{k} h(\bmod b)}} \sum_{\substack{p \leqq L^{1 / k} \\ p \equiv x(\bmod b)}} 2\|a h / b\|^{-1}
$$

$$
=2 \sum_{\substack{0<h<b \\(h, b)=1}} \sum_{\substack{0<x<b \\ x^{k} \stackrel{(x, b)=1}{\equiv h(\bmod b)}}} \pi\left(L^{1 / k}, b, x\right)\|a h / b\|^{-1}
$$

$$
<2\left(\max _{\substack{0<x<b \\
(x, b)=1}} \pi\left(L^{1 / k}, b, x\right)\right) \sum_{\substack { 0<h<b \\
(h, b)=1 \\
\begin{subarray}{c}{\left.0<x<b \\
x^{k} \equiv h, b\right)=1 \\
\equiv h(\bmod b){ 0 < h < b \\
(h , b) = 1 \\
\begin{subarray} { c } { 0 < x < b \\
x ^ { k } \equiv h , b) = 1 \\
\equiv h (\operatorname { m o d } b) } }\end{subarray}}\|a h / b\|^{-1}
$$

$$
=2\left(\max _{\substack{0<x x b b \\(x, b)=1}} \pi\left(L^{1 / k}, b, x\right)\right) \sum_{\substack{0<h<b \\(h, b)=1}} f(h, k, b)\|a h / b\|^{-1}
$$

$$
\begin{aligned}
& \leqq 2\left(\max _{\substack{0<x<b \\
(x, b)=1}} \pi\left(L^{1 / k}, b, x\right)\right)\left(\max _{\substack{0<h<b \\
(h, b)=1}} f(h, k, b)\right) \sum_{\substack{0<h<b \\
(h, b)=1}}\|a h / b\|^{-1} \\
& \leqq 4\left(\max _{\substack{0<x<b \\
(x, b)=1}} \pi\left(L^{1 / k}, b, x\right)\right)\left(\max _{\substack{0<h<b \\
(h, b)=1}} f(h, k, b)\right) \sum_{\substack{0<l \leq[b / 2] \\
(l, b)=1}} b / l .
\end{aligned}
$$

Employing Lemmas 6 and 7 and recalling that since $\alpha \in T_{2}, b \leqq y$, we find
(33) $\quad S_{1}(\alpha, b)$

$$
\leqq C_{11}\left(\max _{\substack{0<x<b \\(x, b)=1}} \pi\left(L^{1 / k}, b, x\right)\right) \exp \left(c_{18}(\log k \log y) / \log \log y\right) \phi(b) .
$$

Now, by (29),

$$
L^{1 / k} / b \geqq N^{1 / k} /\left(2 y P^{1 / k}\right)
$$

hence by (8),

$$
L^{1 / k} / b>N^{1 / 2 k}
$$

for $N>N_{7}$. Thus we may apply Lemma 14 to conclude that
(34) $\max _{\substack{0<x<b \\(x, b)=1}} \pi\left(L^{1 / k}, b, x\right)<C_{12} L^{1 / k} /(\phi(b) \log N)$.

Thus, since $L \leqq N$, it follows from (33) and (34) that
(35) $\quad S_{1}(\alpha, b)<C_{13}\left(N^{1 / k} / \log N\right) \exp \left(c_{18}(\log k \log y) / \log \log y\right)$,
for $N>N_{8}$.
We shall now estimate $S_{2}(\alpha, b)$. We may assume that
(36) $1 /(2 b N)<|\beta|<1 /(b Q)$,
since otherwise, recall (31), the sum is empty. Thus also
(37) $L=1 /(2 b|\beta|)$.

We have

$$
\begin{aligned}
& S_{2}(\alpha, b) \\
& =\sum_{\substack{L<p^{k} \leqq N \\
(p, b)=1}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) \\
& \leqq \sum_{\substack{j=1}}^{[N / L]} \sum_{\substack{L L<p^{k} \leqq(j+1) L \\
(p, b)=1}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right)
\end{aligned}
$$

Note that

$$
(h-1) /([2 y]+1) \leqq\left\{p^{k} \alpha\right\}<h /([2 y]+1)
$$

implies that

$$
\left\|p^{k} \alpha\right\|^{-1} \leqq\|(h-1) /([2 y]+1)\|^{-1}+\|h /([2 y]+1)\|^{-1}
$$

where we write $x \leqq(1 / 0)+z$ and $(1 / 0) \leqq(1 / 0)+z$ for all real numbers x and z. Thus

If p_{0} and p_{1} are primes with

$$
\begin{aligned}
& j L<p_{i}^{k} \leqq(j+1) L \text { and } \\
& (h-1) /([2 y]+1) \leqq\left\{p_{i}^{k} \alpha\right\}<h /([2 y]+1)
\end{aligned}
$$

for $i=0,1$ then, by (37),

$$
\begin{aligned}
& 1 /(2 y)>1 /([2 y]+1) \\
& \geqq\left\|\left(p_{1}^{k}-p_{0}^{k}\right) \alpha\right\|=\left\|\left(p_{1}^{k}-p_{0}^{k}\right)((a / b)+\beta)\right\| \\
& \geqq\left\|\left(p_{1}^{k}-p_{0}^{k}\right) a / b\right\|-\left|p_{1}^{k}-p_{0}^{k}\right||\beta|>\left\|\left(p_{1}^{k}-p_{0}^{k}\right) a / b\right\|-L|\beta| \\
& =\left\|\left(p_{1}^{k}-p_{0}^{k}\right) a / b\right\|-1 /(2 b)
\end{aligned}
$$

Thus

$$
\left\|\left(p_{1}^{k}-p_{0}^{k}\right) a / b\right\|<1 /(2 y)+1 /(2 b) \leqq 1 / b
$$

whence

$$
p_{1}^{k} \equiv p_{0}^{k}(\bmod b)
$$

Therefore
(39) $1 /(2 y)>\left\|p_{1}^{k} \alpha-p_{0}^{k} \alpha\right\|=\left\|\left(p_{1}^{k}-p_{0}^{k}\right) a / b+\left(p_{1}^{k}-p_{0}^{k}\right) \beta\right\|$

$$
=\left\|\left(p_{1}^{k}-p_{0}^{k}\right) \beta\right\|
$$

Since

$$
\left|\left(p_{1}^{k}-p_{0}^{k}\right) \beta\right|<L|\beta|=1 /(2 b) \leqq 1 / 2
$$

it follows from (39) that

$$
1 /(2 y)>\left|p_{1}^{k}-p_{0}^{k}\right||\beta|,
$$

hence

$$
\begin{aligned}
\left|p_{1}-p_{0}\right| & <\left(2|\beta| y\left(\sum_{i=0}^{k-1} p_{1}^{i} p_{0}^{k-1-i}\right)\right)^{-1} \leqq\left(2|\beta| y p_{0}^{k-1}\right)^{-1} \\
& <\left(2|\beta| y(j L)^{(k-1) / k}\right)^{-1}
\end{aligned}
$$

Thus, by (37),

$$
\left|p_{1}-p_{0}\right|<L^{1 / k} b /\left(y j^{(k-1) / k}\right)
$$

Therefore, either there are no primes p with

$$
\begin{aligned}
& j L<p^{k} \leqq(j+1) L, \quad(p, b)=1 \quad \text { and } \\
& (h-1) /([2 y]+1) \leqq\left\{p^{k} \alpha\right\}<h /([2 y]+1)
\end{aligned}
$$

or for some p_{0} with $\left(p_{0}, b\right)=1$ we have
(40)

$$
\begin{aligned}
& \sum_{\substack{j L<p^{k} \leqq(j+1) L \\
(p, b)=1 \\
(h-1) /([2 y]+1) \leq\left\{p^{k} \alpha\right\}<h /([2 y]+1)}} \sum_{\substack{p^{k} \equiv p_{1}^{k}(\bmod b) \\
\left|p-p_{0}\right|<L^{1 / k} b /\left(y j^{(k-1) / k}\right)}} 1 \\
& =\sum_{\substack{0 \leqq t<b \\
t^{k} \equiv p_{0}^{k}(\bmod b)}} \sum_{\substack{p \equiv t(\bmod b) \\
\leqq p-p_{0} \mid<L^{1 / k} b /\left(y j^{(k-1) / k}\right)}} 1 \\
& \leqq \sum_{\substack{0 \leq t<b \\
t^{k} \equiv p_{0}^{k}(\bmod b)}}\left(\pi\left(p_{0}+\left(L^{1 / k} b /\left(y j^{(k-1) / k}\right)\right), b, t\right)\right. \\
& \left.-\pi\left(p_{0}-\left(L^{1 / k} b /\left(y j^{(k-1) / k}\right)\right), b, t\right)\right) .
\end{aligned}
$$

Now, since $1 \leqq j \leqq N / L$ and $L>Q / 2$,

$$
\begin{aligned}
\left(2 L^{1 / k} b /\left(y j^{(k-1) / k}\right)\right) / b & \geqq 2 L /\left(y N^{(k-1) / k}\right) \\
& >Q^{\prime}\left(y N^{(k-1) / k}\right)=N^{1 / k} /(y P)
\end{aligned}
$$

and, by (8),

$$
N^{1 / k} /(y P) \geqq N^{3 /(8 k)} .
$$

Thus, the right hand side of (40) is, by Lemma 14,

$$
<\sum_{\substack{0 \leqq t<b \\ t^{k} \equiv p_{0}^{k}(\bmod b)}} C_{14} L^{1 / k} b /\left(y j^{(k-1) / k} \phi(b) \log N\right)
$$

and, by Lemma 4,

$$
\begin{aligned}
& <C_{15}\left(L^{1 / k} \log \log b /\left(y j^{(k-1) / k} \log N\right)\right) \sum_{\substack{0 \leq t<b \\
t^{k} \equiv p_{0}^{k}(\bmod b)}} 1 \\
& =C_{15}\left(L^{1 / k} \log \log b /\left(y j^{(k-1) / k} \log N\right)\right) f\left(p_{0}^{k}, k, b\right)
\end{aligned}
$$

and, by Lemma 7 and the fact that $b \leqq y$,

$$
<C_{15}\left(L^{1 / k} /\left(y j^{(k-1) / k} \log N\right)\right) \exp \left(c_{19}(\log k \log y) / \log \log y\right)
$$

Therefore, by (38),

$$
\begin{align*}
& S_{2}(\alpha, b) \tag{41}\\
& \leqq \sum_{j=1}^{[N / L]} \sum_{h=1}^{[2 y]+1}\left(\min \left(y,\|(h-1) /([2 y]+1)\|^{-1}\right)\right. \\
& \left.+\min \left(y,\|h /([2 y]+1)\|^{-1}\right)\right) \\
& \times C_{15}\left(L^{1 / k} /\left(y j^{(k-1) / k} \log N\right)\right) \exp \left(c_{19}(\log k \log y) / \log \log y\right) \\
& \leqq C_{16}\left(L^{1 / k} /(y \log N)\right) \exp \left(c_{19}(\log k \log y) / \log \log y\right) \\
& \times \sum_{j=1}^{[N / L]} j^{-(k-1) / k} \sum_{h=0}^{[2 y]+1} \min \left(y,\|h /([2 y]+1)\|^{-1}\right) \\
& \leqq C_{17}\left(L^{1 / k} /(y \log N)\right) \exp \left(c_{19}(\log k \log y) / \log \log y\right)(N / L)^{1 / k} \\
& \times\left(y+\sum_{h=1}^{[y]+1}(2 y+1) / h\right) \\
& \leqq C_{18}\left(N^{1 / k} / \log N\right) \exp \left(c_{20}(\log k \log y) / \log \log y\right) .
\end{align*}
$$

Appealing to (28), (30), (32), (35) and (41) we find that for $\alpha \in T_{2}$,
(42) $\quad S_{0}(\alpha)<C_{19}\left(N^{1 / k} / \log N\right) \exp \left(c_{21}(\log k \log y) / \log \log y\right)$,
provided that $N>N_{9}$.
Finally, we assume that α is in T_{3}. Put

$$
M=\min \left(N,(|\beta| y)^{-1}\right) .
$$

Then
(43) $\quad S_{0}(\alpha, b) \leqq \sum_{j=0}^{[N / M]} \sum_{\substack{j M<p^{k} \leqq(j+1) M \\(p, b)=1}} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right)$.

Now if $\left\|p^{k} \alpha\right\|^{-1}<y$ with $j M<p^{k} \leqq(j+1) M$, and n is defined by $p^{k} \equiv n(\bmod b)$ with $(j+1) M-b<n \leqq(j+1) M$, then

$$
\begin{aligned}
\left\|p^{k} \alpha\right\| & =\left\|p^{k}((a / b)+\beta)\right\|=\left\|(a n / b)+n \beta+\left(p^{k}-n\right) \beta\right\| \\
& \geqq\|(a n+n b \beta) / b\|-\left|p^{k}-n\right||\beta| .
\end{aligned}
$$

Note that $N>b$ and

$$
(|\beta| y)^{-1}>b Q / y \geqq Q>b
$$

by (8) and (23). Thus $\left|p^{k}-n\right|<M$ and so

$$
\left|p^{k}-n\right||\beta|<M|\beta| \leqq 1 / y<\left\|p^{k} \alpha\right\| .
$$

Therefore

$$
2\left\|p^{k} \alpha\right\| \geqq\|(a n+n b \beta) / b\|,
$$

whence

$$
\min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) \leqq 2 \min \left(y,\|(a n+n b \beta) / b\|^{-1}\right) .
$$

Consequently, by (43),

$$
\begin{align*}
S_{0}(\alpha, b) & \leqq \sum_{j=0}^{[N / M]} \sum_{\substack{(j+1) M-b<n \leqq(j+1) M \\
(n, b)=1}} \tag{44}\\
& \times 2 \min \left(y,\|(a n+n b \beta) / b\|^{-1}\right) \sum_{\substack{ \\
j M<p^{k} \leqq(j+1) M \\
p^{k} \equiv n(\bmod b)}} 1 .
\end{align*}
$$

By (22), (| $|\beta| y)^{-1}>Q b / y$ and by (23), $N \geqq Q b / y$ hence $M \geqq Q b / y$. Thus, since $b>y$,

$$
\begin{aligned}
& \left(((j+1) M)^{1 / k}-(j M)^{1 / k}\right) / b \\
& \geqq M^{1 / k} /(k(j+1) b) \geqq M^{1 / k} /(2 b k(N / M)) \\
& =M^{1+(1 / k)} /(2 b k N) \geqq Q^{1+(1 / k)} b^{1 / k} /\left(2 k N y^{1+(1 / k)}\right) \\
& \geqq N^{1 / k} /\left(2 k y P^{1+(1 / k)}\right)
\end{aligned}
$$

which is, by (8),
(45) $\geqq N^{1 /(8 k)}$,
for $N>N_{10}$. Therefore, by (45) and Lemma 14,
(46)

$$
\begin{aligned}
& \sum_{\substack{j M<p^{k} \leqq(j+1) M \\
p^{k} \equiv n(\bmod b)}} 1 \\
&= \sum_{\substack{0 \leqq t<b \\
t^{k} \equiv n(\bmod b)}} \sum_{\substack{(j M)^{1 / k}<p \leqq((j+1) M)^{1 / k} \\
p \equiv t(\bmod b)}} 1 \\
&<\sum_{\substack{0 \leqq t<b \\
t^{k} \equiv n(\bmod b)}}\left(16 k\left(((j+1) M)^{1 / k}-(j M)^{1 / k}\right) /(\phi(b) \log N)\right) \\
&<\left(C_{20} M^{1 / k}\left((j+1)^{1 / k}-j^{1 / k}\right) /(\phi(b) \log N)\right) \sum_{\substack{0 \leqq t<b \\
t^{k} \equiv n(\bmod b)}} 1 .
\end{aligned}
$$

But the sum in the expression on the right hand side of inequality (46) is $f(n, k, b)$ and so on combining (44) and (46) we obtain

$$
\begin{aligned}
& S_{0}(\alpha, b) \\
& \leqq \sum_{j=0}^{[N / M]}\left(C_{20} M^{1 / k}\left((j+1)^{1 / k}-j^{1 / k}\right) /(\phi(b) \log N)\right) \\
& \times \sum_{\substack{(j+1) M-\\
(n, b)=n \leqq(j+1) M}} f(n, k, b) \min \left(y,\|(a n+n b \beta) / b\|^{-1}\right) .
\end{aligned}
$$

We may estimate the inner sum above by means of Lemma 10 with $h=(j+1) M-b+1, q=b$ and $\rho(n)=n b \beta$. Then, by (8), (22) and (23),

$$
\begin{aligned}
\lambda & =\max _{\substack{(j+1) M-b<n \leq(j+1) M \\
(n, b)=1}} n b \beta-\min _{\substack{(j+1) M-b<n \leq(j+1) M \\
(n, b)=1}} n b \beta \\
& \leqq b^{2}|\beta|<b / Q<1 .
\end{aligned}
$$

Thus
$S_{0}(\alpha, b)$
$\leqq \sum_{j=0}^{[N / M]} C_{21}\left(M^{1 / k}\left((j+1)^{1 / k}-j^{1 / k}\right) / \log N\right)$
$\times \exp \left(c_{13}(\log k \log y) / \log \log y\right)$
$=C_{21}\left(M^{1 / k} / \log N\right) \exp \left(c_{13}(\log k \log y) / \log \log y\right)$
$\times \sum_{j=0}^{[N / M]}\left((j+1)^{1 / k}-j^{1 / k}\right)$

$$
\begin{aligned}
& =C_{21}\left(M^{1 / k} / \log N\right) \exp \left(c_{13}(\log k \log y) / \log \log y\right) \\
& \times([N / M]+1)^{1 / k} \\
& <C_{22}\left(N^{1 / k} / \log N\right) \exp \left(c_{13}(\log k \log y) / \log \log y\right) .
\end{aligned}
$$

By (28) and (47), for α in T_{3},

$$
\begin{equation*}
S_{0}(\alpha)<C_{23}\left(N^{1 / k} / \log N\right) \exp \left(c_{13}(\log k \log y) / \log \log y\right) \tag{48}
\end{equation*}
$$

provided that $N>N_{10}$.
Thus (24) follows from (27), (42) and (48) and this completes the proof of Theorem 2.
6. Further preliminaries to the proof of theorem 1. Let $\boldsymbol{\epsilon}$ be a positive real number less than θ_{k} and let C_{0}, C_{1}, \ldots denote positive real numbers which are effectively computable in terms of ϵ and k and c_{0}, c_{1}, \ldots denote effectively computable positive absolute constants. Let C and c be real numbers, with $C \geqq 20$ and $c \geqq 1$, to be specified later and let N_{11}, N_{12}, \ldots denote numbers which are effectively computable in terms of C, c, ϵ and k. We shall choose C and c later so that C is effectively computable in terms of ϵ and k and so that c is an effectively computable positive absolute constant. Put

$$
y=C R \exp (c(\log k \log R) / \log \log R) .
$$

Since $R \geqq 3$ we have $y \geqq 3$ and if (4) holds and $N>N_{11}$ then

$$
\begin{equation*}
y<N^{\theta_{k}-(\epsilon / 2)} . \tag{49}
\end{equation*}
$$

We shall first establish Theorem 1 for the case of sums $a+b$; the case $a-b$ is treated in a similar way. To do so it suffices to show that there exist at least

$$
C_{24}|A||B|(N / y)^{(1 / k)-1} / \log N
$$

pairs (a, b) with a in A and b in B for which there exists a prime p with $p^{k} \mid(a+b)$ and
(50) $4 N / y \geqq p^{k}>2 N / y$.

We now introduce the following notation. Put

$$
\lambda=y^{k} / N \quad \text { and } \quad U=\left[N / y^{k+1}\right]
$$

and, for each positive integer n,

$$
d_{n}= \begin{cases}1 & \text { if } n=m p^{k} \text { with } 1 \leqq m \leqq y, p \text { a prime and } \\ 0 & \text { otherwise. }\end{cases}
$$

Next put

$$
\begin{aligned}
& S(\alpha)=\sum_{n=1}^{4 N} d_{n} e(n \alpha), \\
& S=S(0)=\sum_{n=1}^{4 N} d_{n} \\
& U(\alpha)=\sum_{n=0}^{U-1} e(n \alpha)
\end{aligned}
$$

and, since $d_{n}=0$ if $n<1$ or $n>4 N$, write

$$
S(\alpha) U(\alpha)=\sum_{n=1}^{4 N+U-1} v_{n} e(n \alpha) \quad \text { where } v_{n}=\sum_{j=n-U+1}^{n} d_{j} \text {. }
$$

Further, put

$$
F(\alpha)=\sum_{a \in A} e(a \alpha), \quad G(\alpha)=\sum_{b \in B} e(b \alpha)
$$

and

$$
H(\alpha)=F(\alpha) G(\alpha)=\sum_{a \in A, b \in B} e((a+b) \alpha)=\sum_{n=1}^{2 N} h_{n} e(n \alpha)
$$

where

$$
h_{n}=\sum_{\substack{a+b=n \\ a \in A, b \in B}} 1 .
$$

Finally, define J by

$$
J=\int_{0}^{1} F(\alpha) G(\alpha) S(-\alpha) d \alpha
$$

Observe that

$$
\begin{aligned}
J & =\int_{0}^{1} H(\alpha) S(-\alpha) d \alpha=\int_{0}^{1} \sum_{n=1}^{2 N} \sum_{m=1}^{4 N} h_{n} d_{m} e((n-m) \alpha) d \alpha \\
& =\sum_{n=1}^{2 N} h_{n} d_{n} .
\end{aligned}
$$

Note that $d_{n}>0$ implies that $p^{k} \mid n$ with $2 N / y<p^{k} \leqq 4 N / y$, while $h_{n}>0$ implies that $n=a+b$, for $a \in A, b \in B$. Thus to establish our result it suffices to show that
(51) $J>C_{24}|A||B|(N / y)^{(1 / k)-1} / \log N$.

In order to prove (51) we first require some estimates for $S, S(\alpha)$ and v_{n}.
We remark that by (49), $y<(2 N / y)^{1 / k}$, provided that $N>N_{11}$ and therefore that
(52) $\quad S(\alpha)=\sum_{m \leqq y} \sum_{2 N / y<p^{k} \leqq 4 N / y} e\left(m p^{k} \alpha\right)$.

Lemma 15. For $N>N_{11}$,
(53) $S<C_{25} y(N / y)^{1 / k} / \log N$.

Proof. By (52),

$$
S=\sum_{n=1}^{4 N} d_{n}=\left(\sum_{1 \leqq m \leqq y} 1\right)\left(\sum_{2 N / y<p^{k} \leqq 4 N / y} 1\right) \leqq y \pi\left((4 N / y)^{1 / k}\right),
$$

which, by (49) and Lemma 14, is

$$
<C_{25} y(N / y)^{1 / k} / \log N .
$$

Lemma 16. If $N>N_{12}$, then for $\lambda \leqq \alpha \leqq 1-\lambda$,
(54) $|S(\alpha)|<C_{26}\left((N / y)^{1 / k} / \log N\right) \exp \left(c_{5}(\log k \log y) / \log \log y\right)$.

Proof. By (52), for $N>N_{11}$,

$$
|S(\alpha)|<\sum_{2 N / y<p^{k} \leqq 4 N / y}\left|\sum_{m \leqq y} e\left(m p^{k} \alpha\right)\right|
$$

which, by Lemma 1, is

$$
\begin{aligned}
& \leqq \sum_{2 N / y<p^{k} \leqq 4 N / y} \min \left(y, 2\left\|p^{k} \alpha\right\|^{-1}\right) \\
& \leqq 2 \sum_{p^{k} \leqq 4 N / y} \min \left(y,\left\|p^{k} \alpha\right\|^{-1}\right) .
\end{aligned}
$$

The lemma now follows from Theorem 2.
Lemma 17. If $N>N_{13}$ and n is an integer satisfying $30 N / y<n \leqq 2 N$ then
(55) $v_{n}>C_{27}(N / y)^{(1 / k)-1} U / \log N$.

Proof. If n satisfies $30 N / y<n \leqq 2 N$ then, for $N>N_{11}$,

$$
v_{n}=\sum_{j=n-U+1}^{n} d_{j}=\sum_{\substack{n-U<m p^{k} \leqq n \\ m \leq y \\ 2 N / y<p^{k} \leqq 4 N / y}} 1
$$

$$
=\sum_{m \leqq y} \sum_{\max ((n-U) / m, 2 N / y)<p^{k} \leqq \min (n / m, 4 N / y)} 1 .
$$

Notice that if $m \leqq 11 n y /(30 N)$ then

$$
(n-U) / m \geqq 30 N /(11 y)-U / m \geqq 30 N /(11 y)-N / y^{k+1}
$$

and, since $y \geqq 3$,

$$
(n-U) / m>2 N / y .
$$

Further, if $9 n y /(30 N)<m$ then $n / m<30 N /(9 y)<4 N / y$. Since

$$
11 n y /(30 N) \leqq 22 y / 30<y
$$

we conclude that

$$
\begin{align*}
v_{n} & >\sum_{9 n y /(30 N)<m \leqq 11 n y /(30 N)} \sum_{(n-U) / m<p^{k} \leqq n / m} 1 \tag{56}\\
& \left.=\sum_{9 n y /(30 N)<m \leqq 11 n y /(30 N)} \pi\left((n / m)^{1 / k}\right)-\pi\left(((n-U) / m)^{1 / k}\right)\right) .
\end{align*}
$$

We may now apply Lemma 13 with

$$
X=((n-U) / m)^{1 / k} \quad \text { and } \quad Y=(n / m)^{1 / k}-((n-U) / m)^{1 / k}
$$

for

$$
9 n y /(30 N)<m \leqq 11 n y /(30 N) .
$$

For we have
(57) $\quad X=((n-U) / m)^{1 / k}<(n / m)^{1 / k}<(30 N /(9 y))^{1 / k}$
while
(58) $\quad Y=(n / m)^{1 / k}\left(1-(1-(U / n))^{1 / k}\right)>C_{28}(N / y)^{(1 / k)} U / n$,
since $U / n<y^{-k}<1 / 2$ for $N>N_{14}$. By (57) and (58)

$$
\left(X^{3 / 5} / Y\right)^{5 k / 2}<C_{29} y^{1+(5 k(k+1) / 2)} / N
$$

which, by (49), is

$$
<C_{29} / N^{1 / 17}
$$

Thus for $N>N_{15}, X^{3 / 5}<Y$ whence, by Lemma 13,

$$
\begin{aligned}
v_{n} & >\sum_{9 n y /(30 N)<m \leqq 11 n y /(30 N)} C_{30}(N / y)^{(1 / k)} U /(n \log N) \\
& >((2 n y /(30 N))-1) C_{30}(N / y)^{(1 / k)} U /(n \log N) .
\end{aligned}
$$

Since $n>30 N / y$ the result follows.
7. The proof of theorem 1. We shall establish (51) now. We have, for $N>N_{16}$,

$$
\begin{aligned}
& \left|J-U^{-1} \int_{0}^{1} F(\alpha) G(\alpha) S(-\alpha) U(-\alpha) d \alpha\right| \\
& \leqq \int_{-\lambda}^{\lambda}|F(\alpha)||G(\alpha)||S(-\alpha)|(U-U(-\alpha)) / U \mid d \alpha \\
& +\int_{\lambda}^{1-\lambda}|F(\alpha)||G(\alpha)||S(-\alpha)|(1+|U(-\alpha) / U|) d \alpha
\end{aligned}
$$

which, by Lemma 2, is

$$
\begin{aligned}
& \leqq \int_{-\lambda}^{\lambda}|F(\alpha)||G(\alpha)| S 4 U|\alpha| d \alpha \\
& +\int_{-\lambda}^{\lambda}|F(\alpha)||G(\alpha)|\left(\max _{\lambda \leqq \beta \leqq 1-\lambda}|S(\beta)|\right) 2 d \alpha
\end{aligned}
$$

by Lemmas 15 and 16 , is

$$
\begin{aligned}
& <\int_{\lambda}^{\lambda}|F(\alpha)||G(\alpha)| C_{31}\left(y(N / y)^{1 / k} / \log N\right) U \lambda d \alpha \\
& +\int_{\lambda}^{1-\lambda}|F(\alpha)||G(\alpha)| 2 C_{26}\left((N / y)^{1 / k} / \log N\right) \\
& \times \exp \left(c_{5}(\log k \log y) / \log \log y\right) d \alpha, \\
& \leqq\left(C_{31}(N / y)^{1 / k} / \log N+C_{32}\left((N / y)^{1 / k} / \log N\right)\right. \\
& \left.\times \exp \left(c_{5}(\log k \log y) / \log \log y\right)\right) \\
& \times \int_{0}^{1}|F(\alpha)||G(\alpha)| d \alpha,
\end{aligned}
$$

and, by Cauchy's inequality, is

$$
\begin{aligned}
& \leqq C_{33}\left((N / y)^{1 / k} / \log N\right) \exp \left(c_{5}(\log k \log y) / \log \log y\right) \\
& \times\left(\left(\int_{0}^{1}|F(\alpha)|^{2} d \alpha\right)\left(\int_{0}^{1}|G(\alpha)|^{2} d \alpha\right)\right)^{1 / 2} .
\end{aligned}
$$

Thus, by Parseval's formula,

$$
\begin{align*}
& \left|J-U^{-1} \int_{0}^{1} F(\alpha) G(\alpha) U(-\alpha) S(-\alpha) d \alpha\right| \tag{59}\\
& \leqq C_{33}\left((N / y)^{1 / k}(|A||B|)^{1 / 2} / \log N\right) \\
& \times \exp \left(c_{5}(\log k \log y) / \log \log y\right) .
\end{align*}
$$

Furthermore,

$$
I=\int_{0}^{1} F(\alpha) G(\alpha) U(-\alpha) S(-\alpha) d \alpha
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(\sum_{n=1}^{2 N} h_{n} e(n \alpha)\right)\left(\sum_{m=1}^{4 N+U-1} v_{m} e(-m \alpha)\right) d \alpha \\
& =\sum_{n=1}^{2 N} h_{n} v_{n} .
\end{aligned}
$$

Since h_{n} and v_{n} are non-negative for $n=1, \ldots, 2 N$,

$$
I \geqq \sum_{30 N / y<n \leqq 2 N} h_{n} v_{n},
$$

and, by Lemma 17,

$$
\begin{aligned}
& I \geqq C_{27}(N / y)^{(1 / k)-1}(U / \log N) \\
& \sum_{30 N / y<n \leqq 2 N} h_{n} \\
&=C_{27}(N / y)^{(1 / k)-1}(U / \log N) \sum_{\substack{a \in A, b \in B \\
30 N / y<a+b \leqq 2 N}} 1 .
\end{aligned}
$$

Observe that since $C \geqq 20$,

$$
30 N / y \leqq(|A||B|)^{1 / 2} / 2 \leqq(1 / 2) \max (|A|,|B|)
$$

and thus

$$
\sum_{\substack{a \in A, b \in B \\ 30 N / y<a+b \leqq 2 N}} 1 \geqq|A||B| / 2 .
$$

Therefore

(60) $\quad I \geqq C_{34}|A||B|(N / y)^{(1 / k)-1} U / \log N$.

It follows, from (59) and (60), that

$$
\begin{align*}
|J| & \geqq|I| / U-C_{33}\left((N / y)^{1 / k}(|A||B|)^{1 / 2} / \log N\right) \tag{61}\\
& \times \exp \left(c_{5}(\log k \log y) / \log \log y\right) \\
& \geqq C_{34}|A||B|\left((N / y)^{(1 / k)-1} / \log N\right)\left(1-\left(C_{35} N /\left(y(|A||B|)^{1 / 2}\right)\right)\right. \\
& \left.\times \exp \left(c_{5}(\log k \log y) / \log \log y\right)\right) .
\end{align*}
$$

Recall that

$$
y=C R \exp (c(\log k \log R) / \log \log R)
$$

We now choose $c=2 c_{5}$. Put
(62) $\quad W=C_{35}\left(N /\left(y(|A||B|)^{1 / 2}\right)\right) \exp \left(c_{5}(\log k \log y) / \log \log y\right)$.

Provided that $C>C_{36}$ we have $y<(C R)^{2}$ and
$\log y / \log \log y<2(\log C R) / \log \log C R$

$$
<2((\log C / \log \log C)+(\log R / \log \log R))
$$

hence

$$
W<C_{35} \exp \left(2 c_{5}(\log k \log C) / \log \log C\right) / C
$$

and so we may choose $C=C_{37}$ sufficiently large so that $W<1 / 2$. Then, by (61) and (62),

$$
|J| \geqq\left(C_{34} / 2\right)(|A||B| / \log N)(N / y)^{(1 / k)-1} .
$$

Since J is non-negative (51) holds and this completes the proof of Theorem 1 for the case of sums $a+b$. The proof of Theorem 1 for terms of the form $a-b$ is essentially the same as that given above. We estimate

$$
J^{\prime}=\int_{0}^{1} F(\alpha) G(-\alpha) S(-\alpha) d \alpha
$$

in place of J; see pp. 190-191 of [9] for details.

References

1. A. Balog and A. Sárközy, On sums of sequences of integers, I, Acta Arith. 44 (1984), 73-86.
2. On sums of sequences of integers, II, Acta Math. Hung. 44 (1984), 169-179.
3. On sums of sequences of integers, III, Acta Math. Hung. 44 (1984), 339-349.
4. G. Harman, Trigonometric sums over primes, I, Mathematika 29 (1981), 249-254.
5. H. Iwaniec and J. Pintz, Primes in short intervals, Monatshefte Math. 98 (1984), 115-143.
6. H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
7. G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger Nachrichten (1918), 21-29.
8. K. Prachar, Primzahlverteilung (Springer-Verlag, 1957).
9. A. Sárközy and C. L. Stewart, On divisors of sums of integers, II, J. reine angew Math. 365 (1986), 171-191.
10. On exponential sums over prime numbers, J. Austral. Math. Soc. Series A, to appear.
11. I. M. Vinogradov, An asymptotic equality in the theory of quadratic forms, Zh . fiz.-matem. Obshch. Permsk universitet 1 (1918), 18-28.

Hungarian Academy of Science,
Budapest, Hungary;
University of Waterloo, Waterloo, Ontario

