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ON INFINITE-DIFFERENCE SETS 

C. L. STEWART AND R. TIJDEMAN 

1. Introduction. Let A be a sequence; throughout this paper sequences 
are understood to be infinite, strictly increasing and composed of non-negative 
integers. We define D, the infinite-difference set of A, to be the set of those 
non-negative integers which occur infinitely often as the difference of two 
terms of A. Plainly D has no positive terms if and only if ai+i — at —• oo as 
i —» oo. Note that D contains zero. We shall be interested in the case when 
d(A) > 0. Then D certainly contains more than one term. In fact, see Corol
lary 1, §2, d(D) ^ d(A) in this case. Here d and ^denote the (natural asymp
totic) upper and lower density respectively. 

Let h be a positive integer and let Ai, . . . , Ah be sequences with positive 
upper densities ei, . . . , eh respectively. Erdôs asked whether D\ C\ . . . C\ Dh, 
the intersection of the associated infinite-difference sets, necessarily contains 
positive terms. We shall show that in fact the intersection has positive lower 
density. We put 

(1) Ci = ei and C* = f l (e,/5 log (A + 1)) for h ^ 2, 

and we prove 

THEOREM 1. / / d(A t) ^ et for i = 1, . . . , h then there exists a sequence A 
with d(A) ^ Ch such that 

D QD1C\ .. .r\Dh. 
In fact it follows from Theorem 3 that Theorem 1 remains true even with the 

stronger conclusion D = D\ C\ . . . C\ Dh. 
By Corollary 1 we have d(D) ^ d(A) and thus we see from the above 

theorem that 

4{D1 r\... r\ Dh) è ch. 
Apart from the factor 5 log (h + 1 ) , which appears in the definition of Ch, 
Theorem 1 is best possible. For let wi, n2, . . . , nh be positive integers and put 
Ai = {a \ a ^ 0 and a = 0 (mod n\)) and A t = {a \ a ^ 0 and a = 0, 
1, . . . , ni . . . fif-i — 1 (mod Wi . . . Hi)} fori = 2, . . . , h. We then have d(A {) 
= 1/tii for i = 1, . . . , h. Furthermore Di = {a \ a ^ 0 and a = 0 (mod n\)\ 
while Di = {a | a ^ 0 and a = 0, =b 1, db 2, . . . , ± («i . . . w<_i — 1) mod 
(wi . . . fit)} for i = 2, . . . , h. An easy induction shows that 

Di C\ . . . C\ Dh = {a | a ^ 0 and a = 0 (mod Wi . . . W/J}. 
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Therefore 

d(D, C\...C\Dh) = ( I l t i n,)-1 = n t i d(A<) = I l t i et. 

One might ask whether D\C\ . . . C\ Dh can contain gaps of arb i t ra ry length. 
I t will follow as a consequence of our next theorem t h a t this is not possible. 
Independent ly Pr ikry [7] has obtained this result by means of a theorem of 
Hindman [5]. Fur ther his proof remains valid if Dt is replaced by 

{x\d(Air\Ai + x) > 0} 

for i — 1, . . . , h\ here A + k is the set {a + k | a G ̂ 4}. From Theorem 1 we 
see tha t it is sufficient to show tha t the difference set of a sequence of positive 
upper densi ty does not contain arbi trar i ly long gaps. We denote the non-
negative integers by No. 

T H E O R E M 2. Let A be a sequence with d{A ) = e > 0. Then there exist r integers 

k\, . . . , kr such that 

U ï » i ( £ + fe,) 2 No. 

with r S e- ( l o g 3 ) / l o g 2 . 

I t follows from Theorem 2 tha t D cannot contain gaps of size larger than 
twice the maximum in absolute value of the k/s. For if there was a larger 
gap the integers closest to the middle of the gap would not be in the union 
of the sets D + kj contradict ing Theorem 2. We observe t ha t it is vain to 
hope for an est imate for m a x ; | kj | in terms of e. For let A denote the 
set of integers of the form 3nt + i for i = 1, . . . , / and n = 0, 1, 2, . . . . 
Then D consists of the non-negative integers of the form 3nt ± i for i = 0, 
. . . , t and n = 0, 1, 2, . . . and so contains infinitely many gaps of length /. 
On the other hand d(A) = 1/3. 

Theorems 1 and 2 show tha t infinite-difference sets possess a certain regu
larity. This might suggest t h a t every infinite-difference set associated with a 
sequence of positive upper densi ty has a density. However this is certainly not 
the case since we have 

T H E O R E M 3. Let D be the infinite-difference set of a sequence A. Let E be a set 

of non-negative integers with D C E. Then there exists a sequence B with d(B) 
= d(A) and d(B) = d{A) whose infinite-difference set is E. 

An immediate consequence of this result is t ha t there exist sequences A with 
d(A) = d{A) > 0 for which d{D) > d(D). Fur ther , Theorem 3 is a step in the 
proof of the following theorem concerning D, the collection of infinite-differ
ence sets associated with sequences of positive upper density. Let SP (No) denote 
the set of all subsets of N0 . We have 

T H E O R E M 4. D is a filter of & (No). Furthermore all cofinite subsets of No which 
contain zero are in D. 
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D is not an ultrafilter, for there exist disjoint sets B\ and B2 satisfying 

BX\J B2 = No and d(Bi) = d(B2) = 0; by Corollary 1 every infinite-dif

ference set associated with a sequence of positive upper density has a positive 

lower density and thus neither B\ nor B2 is in D. 

We define the difference set of a finite or infinite sequence A to be the set of 
those non-negative integers which occur as the difference of two elements of 
A and we denote this set by 2${A). I t is interesting to note t ha t the collection 
of all difference sets associated with sequences of positive upper density does 
not form a filter. First , the collection does not satisfy the superset property. 
Observe tha t while 9 (E) = E, where £ denotes the non-negative even integers 
there exists no sequence A with 0(A) = E\J {1}. Second, the collection does 
not satisfy the intersection property as the following example shows. Pu t 
A = {a | a ^ 0 and a = 0 (mod 10)1 U {7} and B = {b \ b ^ 0 and b = 
7(mod 10)} W {0}; it is readily checked tha t 9(A) H 9(B) = A and tha t 
there is no sequence C of positive upper density with 9(C) = A. I t would be 
desirable to explicitly describe those sets which are infinite-difference sets or 
difference sets of sequences of positive upper density. A first a t t emp t for the 
case of difference sets has been made by Ruzsa [9]. 

Obviously one always has D Ç1 9(A). On the other hand we have 

T H E O R E M 5. Given a sequence A with positive upper density there exists a 
sequence A' with d(A) ^ d(A') such that 9(A1) Ç D. 

I t follows from the above theorem tha t we may replace D by 9(A) in the 
s ta tement of Theorem 1 ; hence plainly the analogous s ta tement of Theorem 1 
holds with difference sets in place of infinite-difference sets. 

An infinite difference set need not contain an infinite arithmetical progres
sion. In fact we shall show tha t for every a with 0 < a < 1 there exist se
quences A with density a for which the intersection of 9(A) with any infinite 
ari thmetical progression of difference v is a set of density a t most 2a/v. Let 
| X | be the cardinality of a set X and denote the set {0, 1, . . . , n — 1} by n. 
We have 

T H E O R E M 6. Let 6 be an irrational number and let a be a number between 0 and 1. 
There exists a sequence A with density a for which 

v \9(A)C\EC\n\ 

for every sequence E = \e\, e2, . . .} such that {Bek\^i is uniformly distributed 
modulo 1. 

I t is well known (see e.g. [6] Ch. 1, Theorem 4.1) tha t for any sequence 
E = {<?i, e2, . . .} the sequence {r}ek}Z=i is uniformly distr ibuted modulo 1 
for almost all real numbers 17. Hence, given countably many sequences 
E(i) = {ek

(i)} we can find an irrational number 6 for which {6ek
{i)} is uniformly 

distr ibuted modulo one for all i. In particular it follows from Theorem 6 tha t 
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for every a with 0 < a < 1 there exists a sequence A with densi ty a such t h a t 

\â){A) r\ Er\ n\ ^ n 
h ™ r p — I ^ T ^ T — - 2 a 

for every ari thmetical progression {ak + £>}?=i with a, /; G No, a > 0, for 
every geometrical progression ja^fcj^Li with a, b £ No, « > 0, b > 1, and for 
every sequence {P(£)}£Li, where P(x) is a non-constant polynomial mapping 
No into N0 . 

Theorem 7 concerns sequences which have a non-empty intersection with 
every in fini te-difference set D associated with a sequence A of positive upper 
density. W e prove tha t there are arbi trar i ly thin sequences of positive integers 
with this proper ty . 

T H E O R E M 7. For every sequence f \, f 2,. . . there exists a sequence E = [e\, 6 2 . ..} 
with ej ^ fjfor all j such that for every sequence A 

v . c \Dr\EC\u\ . j , A , 
hminf j—lT, ^ A{—'• > d(A). 

The sequence E constructed for the proof of Theorem 7 has the proper ty 
tha t for all positive integers h, 

lim inf ej+Jl/ej = 1. 
7->oo 

This condition is critical. On the one hand we have 

T H E O R E M 8. If k\, k2, . . • is a sequence of positive integers satisfying 

lim inf kj+h/kj = 1 

for every positive integer h, then there exists a sequence E = \d, e2, . . .} with 
ej+i/ej ^ kj+i/kj for j = 1 , 2 , . . . such that D Pi E 9e 0 for every sequence A of 
positive upper density. 

On the other hand, if k\, k2, . . . is a sequence satisfying 

lim inf kj+h/kj > 1 

for some h, then for every sequence E = {ei, e2, . . .} with ej+i/ej ^ kj+i/kj 
for 7 = 1, 2, . . . there exists a s e q u e n c e d with d(A) > 0 for which D C\ E = 0. 
This result is a consequence of Theorem 9. 

T H E O R E M 9. Let k\, k2, . . . be a sequence of positive integers. If, for a positive 
integer h and for real numbers C\, . . . , ch larger than 2, we have 

k(j+l)h+i/kjh+i = Cu 
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for i — 1, . . . , h and j = 0, 1, 2, . . . , then there exists a sequence A, having a 
density, with 

«*> * n ( ^ ) . 
for which kj (f_ & (A) for j = 1 , 2 , . . . . 

Observe tha t if kj+h/kj ^ a > 1 for j = 1 , 2 , . . . , and if g is an integer with 
g è (log 3)/log a, then kj+gh/kj ^ 3 for j = 1 , 2 , . . . since 

Rj+gh Kj+gh & j+h ^ 0 ^> o 

^ ; Rj+(g-l)h Rj 

Further , if lim infMoo kj+i/kj > 1 for some positive integer / then there exists 
a real number a with a > 1 such tha t kj+i/kj ^ a for j = 1, 2, . . . . Thus we 
may apply Theorem 9 with h = g/ and c\ = c2 = . . . = ^ = 3 to conclude tha t 
there exists a sequence yl having a positive density with kj d 2iï (Â) for j = 
1, 2, . . . as was asserted previously. 

T o illustrate Theorem 9 we show tha t there exists a sequence A with d(A ) ^ 
2/11 which does not have a factorial as the difference of two terms. This 
follows on put t ing k\ = 1!, k2 = 2!, . . . and applying the theorem with h = 2, 
Ci = 6 and c2 = 12. 

Theorem 9 is related to a general problem of Motzkin who asked how dense 
a sequence A can be if 0(A) does not contain any elements from a given set 
K. Cantor and Gordon [1] and more recently Haralambis [4], have obtained 
some results in this connection, mainly for finite sets K. Sarkôzy [10], [11] and 
[12] considered the case of some interesting infinite sets K. He obtained results 
like: \f A is a sequence with positive upper density then two distinct elements 
of A differ by a square. Furstenberg [3], using the methods of ergodic theory, 
has also proved this result. Let K = {ki, k2, . . .} be a sequence of positive 
integers for which ki+i — kt —> oo as i —> GO . In response to a question of 
Erdôs and Har tman , Rotenberg [8] showed tha t every infinite sequence A 
possesses an infinite subsequence A' for which 3>(A') C\ K = 0. In conclusion 
we should like to thank M. Best and P. Erdôs for some helpful comments. 

2. Pre l iminary l e m m a s . For any subset T of n and any integer a we pu t 
T(a) = T + a C\ n where T + a denotes the set of numbers t + a with 
t G T. We prove 

LEMMA 1. Let 8 and e satisfy 0 < < 5 < l , 0 < e < l . If T is a subset of n 
with | T | ^ en then there exist integers k, ci\, . . . , ah and a set E with \ E\ ;g on 
such that 

T U 7 > i ) U . . . U T(ak) = n\E 

and such that 

k ^ 2 [ ( l o g « ) / l o g ( l - e)]. 
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Proof. We first observe t ha t C(a) = T(a) U T(a — n) is a cyclic shift of T 
for a = 0, . . . , n — 1 and hence | C(a) | ^ en. Fur ther , given any subset G of n 
with 0w terms for 0 :g # rg 1 we may find an integer b for which \C(b) Pi G| 
^ e#n. T o see this note t h a t each integer from n is contained in a t least en of 
the cyclic shifts C(0), . . . , C(n — 1). T h u s 

n - 1 

X \C(p)C\G\ è c0n2 

and as a consequence |C(&) P\ G\ ^ e#n for some integer b, as required. 
Now set G\ = w \7 \ We have |Gi| = d^n where 0i ^ 1 — e since | T | ^ en. 

By the above paragraph we may find an integer b) such tha t \C(bi) P\ G| 
è e M and thus G2 = n\{TVJ C(&i)} satisfies |G2| = M for #2 ^ #i - edl 

^ (1 — e)2. I tera t ing this a rgument / — 1 times yields integers bi, . . . , bi-\ 
and a set Gx = n\{T U C(h) U . . . U C(6z_i)} satisfying |G,| ^ (1 - e) ln. 
On recalling tha t C(bt) = T(bt) \J T(bt — n) we see t ha t if / — 1 = [log «5/ 
log(X - e)] then T \J Tib,) U r ( 6 i - n) U . . . U r (6 j_ i ) U r ( 6 , _ ! - w) = 
n \ G ; where |G/| ^ <5n. Pu t t ing 2(/ — 1) = k, bt = a2i — 1 and b7 — n = a2i for 
i = 1, . . . , / — 1 and Gt = E the lemma follows. 

LEMMA 2. Z,e£ zl fre a sequence with d(A) = e. For any positive integers b and r 
there are at least [er] of the integers b, 2b, . . . , rb in D. 

Proof. Split A into /; subsequences A j = A C\ {ib + j}?=o for j = 
0, 1,. . . , b — 1. At least one of the sequences Aj satisfies d(Af) ^ e/b. We 
define the sequence B by i G 2? if and only if ib -\- j Ç 4̂ 7 for this par t icular 
value of j . Let Z}0 be the infinite difference set of B. I t is clear t ha t if d £Do then 
bd Ç Dj^D. Hence, it suffices to prove t ha t a t least [er] of the integers 
1, 2, . . . , r belong to D0. Plainly we may assume tha t e > 0. 

Since d(B) ^ e, there are infinitely many integers mf such t h a t 
\B r\ [mu ml + r]\ > er. By the box principle there is a set of [er] + 1 integers 
bo, . . . , b[€r] with 0 ^ bo < b\ < . . . < b[er] ^ r such t h a t for infinitely many 
integers nti one has mt + bk t B for k = 0, 1, . . . , [er]. I t follows tha t 
bk — bo (k = 1, . . . , [er]) are [er] differences which occur in D{). This proves 
our assertion whence the lemma follows. 

COROLLARY 1. For any sequence A we have d(D) ^ d(A). 

Proof. The result follows on taking b = 1 in Lemma 2. 

Let | |x| | denote the distance from x to the nearest integer. 

LEMMA 3. Let c be a real number, larger than 2, and let ki, &2, • • • be a sequence 
of positive integers with 

kj+i/kj ^ C, 
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forj = 1 , 2 , . . . . Then there exists a real number 0 such that 

HMII 2; (c - 2)/2(c - l), 

/o r j= 1,2,.... 

Proof. See Lemma 1 of [2]. 

3. Proof of theorem 1. Let Ai, . . . , Ah be sequences with d(At) > et > 0 
for i = 1, . . . , h. We first observe that if et > | for some integer i then 
D t = No. For if there is a positive integer k which is not in D * then the sequence 
A i = A i \J A i + k satisfies d(A/) ^ 2d (A t) which is plainly impossible for 
et > i To see that d(A / ) ^ 2d (A ,) note that \A t H A t + k\ = I < co by 
assumption and thus for all n > 0, 

|^ / r\ n\ ^ M t r\ Û\ + \A i + k n n\ - i ^ 2\Atr\û\- k - i 

from which the conclusion follows. Accordingly we may assume that the e/s 
are all at most \. 

We shall construct, for each positive integer n, a set Wn = W with 

(2) W QA,\W\ è G » and 9 (W) Q DXC\ . . . C\ Dh. 

Since J(^4 t) ^ €*, for each positive integer n there are infinitely many integers 
k for which {A t• — k) Pi n contains at least etn terms. By the pigeon hole 
principle there exists an infinite subsequence ki, k2, . . . of the &'s for which 
(A{- kx) r\n = (A,- k2) nû = Set Tt = (A t - kx) C\ n. Plainly 
we have Tf C û, \Tt\ ^ etn and 

(3) 9{T<) C D , 

Thus if h = 1 we may take W = T\ and (2) holds. 
Assume that h ^ 2. On setting 5 = (h + 1)_1, e = et and T = T{ in 

Lemma 1 we conclude that there exist integers k(i), aiiU . . . , aiMi) and a 
set £* with \Et\ ^ n/(h + 1) such that 

(4) 7\ W Tt(aitl) U . . . U 7\(a<,t(i)) = n\£* 

and such that 

(5) k(i) ^ 2 [ - log(A + l) / log(l - «,)], 

for f = 1, . . . , h. Put 

F = H (û\Et). 
1 = 1 

By construction, | F\ ^ w/(/z + 1). Setting ait0 = 0, so that Tt = 7 \ ( a M ) , 
we find from (4) that 

h 

F C U H 7\(af l,(<)), 

https://doi.org/10.4153/CJM-1979-085-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-085-6


904 C. L. STEWART AND R. TIJDEMAN 

where the union is taken over the (k(l) + 1) . . . (k(h) + 1) h-tuples 
(j( l) , . . . , j(h)) with 0 ^ j(i) ^ k(i). Thus for at least one h-tup\e the set 

w = ri(aiiJ(i)) n . . . n Th(ahJ(h)) 
contains at least 

(6) w = »/(ft + l)(fe(l) + I ) - - - (fe(A) + 1) 

terms. Clearly ^ ( W 0 C H ^ i ^(r<(a<,,<0)) and therefore, since 9{TM)) 
Q9(Tt) for all integers a, ^ ( W ) C H?= i ^ ( 7 \ ) . Thus from (3), 

0(WO C D I H . . . n A . 

Since W7 is plainly contained in w we need only show that \W\ ^ w ^ C^w. 
We have from (6) and (5) that 

w > 1 ,U \ - log( l -6<) + V h + 
which, since 0 ^ e, ^ ^ for i = 1, . . . , A, gives 

" ' -log (1 ~ 6,) 
w ^ T I Q A + 1 t \ \21og(A + l) + l o g 2 ; 

We may now use the inequality — log(l — x) ^ x, which holds for 0 ^ x ^ ^, 
and the fact that h §; 2 to deduce that 

w " W H V 3 ( 2 + log 2/log 3) log (A + 1)/ ' 

It is easily checked that w ^ CAw. Thus (2) is seen to hold for h ^ 2 as well as 
for A = 1. 

We construct the sequence A from the sets Wn in the following way. For 

n = 1, 2, 3, . . . we set (?(w) = u ) a n d P u t A n t(?M> Q(n + 1)) = 

W„_[iogw] + Q(n). The sequence 4̂ is well defined since, for n ^ 1, W^-nogn] 
+ Q(n) Q [Q(n), Q{n) + ri\ and (?(w) + w = Q(n + 1). We now show that 
d(A) ^ Ch. Given a positive integer m we define fe by the inequalities Q(k) 
^ m ^ Q(& + !)• From (2) we have | Wj ^ Chn for n = 1, 2, . . . and thus 

M H m | ^ Ê iW^nogml è Ë C»(» - [log»]) ^ Ch(Q(k) - k[logk]). 

Therefore 

\AC\m\ > C»Q(fe) -fe[logfe] > r _ 2(1 + [log k]) 
m = Q(fe + 1) = h k 

Letting m and hence k tend to infinity we see that d{A ) ^ C». 
Finally we show that D Q D i H . . . Pi Dh. The terms of .4 in the interval 

[Q(n)> Q(n + 1)] differ, by construction, by at least [log n] from the terms of 
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the interval [Q(n + 1), Q(n + 2)]. Thus if a difference occurs infinitely often 
in A it must occur as the difference of two elements from the interval [Q(m), 
Qim + 1)] for some positive integer m and so it must be contained in 

-[log m] ) • From (2) we see that the difference is contained in D\ C\ . . . /°\ Dh 

as required. This completes the proof. 

4. Proof of theorem 2. We set D° = D and l0 = 0. For i g l w e define 
l\ and Dl whenever Dl~l ^ N0 by the following inductive process: set lt 

equal to the smallest positive integer which is not in Dl~l and put Dl = 
£M-i \j Di~i + i. \j Di-i _ i W e s h a u p r o v e t h a t Ds 3 N Q f o r s o m e p0Si tiVe 

integer 5 satisfying 5 ^ [— (log e)/log 2] where Ch is defined as in (1). This will 
establish the theorem since 

D* = U (D° + kt), 
i=i 

where the kt are the r = 3 s finite sums of the form a,\ + . . . + as with at one 
of 0, If or — If for i = 1, . . . , 5. 

As in the proof of Theorem 1, for any positive integer n there exists by the 
pigeon hole principle; a set T Ç n with \T\ ^ ew satisfying &(T) C Z). 
Assume that ZM, hence also /*, has been defined for i = 0, . . . s. Set T = T° 
and define Tz to be T^1 \J T^1 + lu for i = 1, . . . , s. For any set of integers 
A and any integer / it is readily checked that Q (A \J A + /) Q & (A) U 
@(A)+IU @(A)-l. From the definition of Dl and the fact that @ (T°) C Z>° 
we conclude that 2) (T1) ÇI Z)? for i = 0, . . . , s. Therefore li+i does not occur 
as the difference of two terms in Ti since by assumption li+i is not in D\ Accord
ingly Tlr\ Tl + li+i = 0so that \Ti+1\ = 2|r*| and thus \TS\ = 2S\T°\ ^ 2sew. 
On the other hand Ts ÇZ [0, n + /i + . . . + /,.] and therefore 

2sen g « + /i + /2 + . . . + /, + 1. 

Dividing by w and letting w tend to infinity we see that 2se ^ ] whence 

s g [-( log e)/log 2] 

as required. 

5. Proof of theorem 3. Let E = {<?i, e2, • • •}. We construct a sequence 
F = {/i, /2, . . . } by setting, for n = 1, 2, . . . : fn = ej where j is the unique 

( fyi \ 
I + i and 1 ^ j -^ m for some positive integer 

m. Note that every element of E occurs infinitely often as a term of F. 
We now construct B. The terms of B are the integers 36n + en and 3en 

+ en + /ra and those integers of 4̂ which do not lie in the intervals [3gn, 3Cn + 3ew] 
for w = 1 , 2 , . . . . Since JS is an increasing sequence of non-negative integers, 
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en ^ n — 1 and l i m ^ ^ (3?zew)/3gn = 0, whence B differs from A only on a set 
of density zero. T h u s d(B) = d(A) and d(B) = d(A). 

T h e intervals [ 3 % 3 e" + 3^w] are disjoint for w = 1, 2, . . . . Fur ther , 
fn = en fo r all w > 0 and thus the difference of an element of B from the 
interval [36n, 36 n + 3en] with one not from this interval is ^ en. Since en —> oo 
as w —> oo the infinite difference set of B is equal to the union of those integers 
which occur infinitely often as the difference of two terms of B neither of which 
is in Un=i [3en , 36 n + Sen] with those integers which occur as the difference of 
two terms of B in [3e", 36 n + 3en] for infinitely m a n y integers n. T h e former 
set is plainly contained in D C E while the la t ter set is exactly E since 
36n + en + fn — (3e n + en) = fn is the only positive integer which occurs as 
the difference of two terms of B from [36n, 36n + Sen] and since every element of 
E occurs infinitely often as a term of F. This completes the proof. 

6. Proof of t h e o r e m 4. T o prove t ha t D is a filter of ^ ( N 0 ) we must show 
tha t (i) D 5* 0, (ii) D ?± 0 for £> Ç D , (hi) D G D and D Ç £ Ç N 0 then 
£ G D, (iv) P i P D2 e D for Dly D2 £ D . Propert ies (i) and (ii) are readily 
seen to hold. Proper ty (iii) follows from Theorem 3. Proper ty (iv) follows from 
proper ty (iii) and Theorem 1. Therefore D is a filter of ^ ( N 0 ) . 

Fu r the r we must show tha t every cofinite subset of N 0 which contains zero 
is in D . Given a set of positive integers n\ < n2 < . . . < nk we consider the set 
of positive multiples of nk + 1. This has an infinite-difference set which does 
not contain n\, . . . , nk and so by the superset proper ty (iii) we can find a D 
which is exactly N0 \{wi, . . . , nk\. This completes the proof. 

7. Proof of t h e o r e m 5. P u t e = d(A) and let n be any positive integer. We 
prove first t ha t there exist infinitely many integers m such tha t 
\AC\ [m, m + k)\ ^ ek for k = 1, . . . , n. Suppose this s t a t ement is false. Then 
for every m ^ m0 there exists a km with 1 S km ^ n such t ha t \A P [m, m + &m) | 
< ekm. Pu t 

e' = {maxi/k \ i, k £ No, 1 ^ k S- n, i/k < i]. 

Note t ha t e' < e and t h a t for every m ^ m0 we have |̂ 4 Pi [m, m + &OT)| 
^ e'&m. Define the sequence m0, mi, m2, . . . inductively by pu t t ing mj+i 
= nij + kj. Let x be a t least m0 and define J by the inequalities mj S x ^ m J + i . 
Since for every positive integer j we have |̂ 4 Pi \mh mj+i)\ S e(mj+i — mf) 
the number of elements of A less than x is a t most 

m0 + ef (nij — m0) + x — m ; ^ e'x + m0 + n. 

T h u s 5(^4) ^ e which is a contradict ion. 
Let fi ( w ) , r2<w\ . . . be a sequence such t h a t \A P [ r / n ) , r / n ) + &)| ^ e& for 

j = 1 , 2 , . . . and k = 1, . . . , n. We consider the sets (A — r / w ) ) P n. By the 
pigeon hole principle there exists on infinite subsequence {s3-

in)} of [rj{n)\ such 
t ha t (A — Sj(n)) P w is the same set S(w) for every j . W e obtain in this way a 
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set S(n), for every positive integer n, such tha t for k = 1, . . . , n the number of 
elements less than k is a t least ek. We now construct the sequence A' by induc
tion. Suppose A' C\ n has been constructed in such a way tha t there are 
infinitely many integers v with S{v) C\ n = A' C\ n. We pu t n £ A' if and only 
if there are infinitely many integers vf among these integers v with n € S^'K I t 
follows tha t there are infinitely many integers v with S{v) P\ (w + 1) = 
^4' H (n + 1). By construction the number of elements of A' less than n is 
equal to the number of elements of S{v) less than n for some v > n and hence is 
a t least en. T h u s d(^4') ^ e. Let a / and «2' be any two elements of A' with 
ci\ < (I2. Then a / and a2 ' are in S(p) for some integer v. Therefore a/ + s/") G 4̂ 
and a / + s/v) Ç 4̂ for 7 = 1, 2, . . . whence a2 — ci\ G £). This completes 
the proof. 

Note t ha t we have even proved t ha t the Schnirelmann density of A' + 1 
is a t least e since \A' C\ [0, n)\ ^ en for every positive integer n. 

8. Proof of t h e o r e m 6. Let 6 be an irrational number and let a be a number 
between 0 and 1. Define A to be the sequence composed of those non-negative 
integers n for which an integer m exists with nB — m Ç (0, a). Since {w0}5JLi is 
uniformly distr ibuted modulo 1, d(A) = a. Un £ 0(A), then n = n\ — n2 

with n1} n2 £ A, and there exist mi, m2 such tha t 0 < Wi0 — Wi < a, 0 < n20 
— ra2 < a and hence —a < (wi — n2)6 — (ni\ — ra2) < a. Thus 0(A) con
sists of non-negative integers w for which an integer m exists with nd — m £ 
( — a, a ) . Therefore, if £ = { î, e2, . . .} is a sequence for which {6ek} is 
uniformly distributed modulo 1, we have 

^ P - H Ë T Û I = 2"' 
l^ ( .4 )n£n^i 

9. Proof of t h e o r e m 7. Clearly we may assume, for all positive integers 
n, t ha t 

(7) fn+i/fn > n, for all n. 

( TYl \ 
I for m = 1, 2, 3, . . . . We define the sequence E by sett ing 

eQ(m-l) + j = jÎQ(m) 

for j = 1, 2, . . . , m — 1 and m = 2, 3, . . . . I t follows tha t 

eQ(m-l) + j = J Q(m) = jQ(m-l)+m ^ JQ(m-l) + j 

for these values of j and m. Thus e^ ^ / ; for all 7. Fur ther , by (7), for m ^ 2, 

^o(m) = (m — l)fQ(m) S Q(m)fQ{m) <fQ(m+i) = eQ(m)+1. 

I t follows tha t the sequence E is strictly increasing and further t ha t the ele
ments of E in the interval [/Q(m), /Q( T O +D) are j / Q ( m ) for j = ] , 2, . . . , m — 1. 
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Let A be a sequence with d{A) = a. By Lemma 2, the number of elements of 
D C\ E in the interval [fQ(m),fQ(m+i)) is a t least [{m — 1)a\. Let n be an integer 
larger t h a n / i . Take m such t h a t / Q ( m ) ^ n < /<?(m+i). Then , as the numbers e, 
are distinct, 

l ^ n E H n l > [a] + [2a] + . . . + [(m - 2)q] 

| E H A| = l + 2 + . . . + (m - 1) 

Hence, 

m — I l 
)a — m 

( " ) 

hir'nf"T^n^r=hm 

I 2 / 

10. Proof of t h e o r e m 8. Let j ( l ) , j ( 2 ) , j ( 3 ) , . . . be a sequence with j(h + 1) 
> j ( ^ ) + h (or h = 1 , 2 , . . . such tha t 

kj(h)+h/kj(h) < 1 + 1/A. 

Such a sequence exists since 

lim inf kj+h/kj = 1 
j-ÏCO 

for every positive integer h. We define the sequence E inductively. P u t ex = 1. 
If i is not of the form j(h) + / for some h and / with 2 ^ I ^ h, then we choose 
et to be the smallest integer with eje^x ^ kt/ki_i. On the other hand, if i is of 
the form j (A) + / with 2 g / ^ A, we pu t e ^ + i = fe,o»+i; since j(A + 1) > 
j ( ^ ) + A, both A and / are uniquely determined and the sequence E is well 
defined. By construction 

ej{h)+i/ej{h)jri-i ^ 1 + h"1 > kjw+i/kjw+i-i 

for / = 2, 3, . . . , h and hence ei/ei-.i ^ kjki-x for all i. By Lemma 2 (compare 
with the proof of Theorem 7) the subsequence e^D+i, ej(2)+i, ej(2)+2, <?j(3)+i, 
^j(3)+2, ^j(3)+3, £j(4)+i, . . . of £ has a non-empty intersection with D for every 
sequenced of positive upper density. Hence, D C\ E y^ 0, as required. 

11. Proof of t h e o r e m 9. By Lemma 3 there exists a real number 6U for 

i = 1, . . . , h satisfying 

(8) \\k,^fit\\ è (ct - 2 ) / 2 ( c , - 1), 

for j = 0, 1, 2, Pu t 

(9) g, = (ct - 2)/2(c, - 1), 

for i = 1, . . . , h. Let {x} denote the fractional pa r t of x. Given i with 1 ^ 
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i ^ h and an integer lt we put X* = {Ugi} and yt = {(/* + l )g*| . We then define 
the set A it u in the following manner: if yt ^ \ t then 

Attli = {n\ Xt S {ndi} < yt}, 

while if y i < X* then 

Aitli = {n | either \ t ^ [ndi} < 1 or 0 ^ {ndi} < T'Z}-

We have @(Aitli) Ç {w | | | n^ | | < gt} for i = 1, . . . , h. We now set 

4̂ jlf...,«A = {n\n £ AitU for i = 1, . . . , A}, 

so tha t 

^ ( ^ . . . . . J Q {n\ \\ndi\\ <giion = 1 , . . . , A}. 

I t follows from (8) and (9) tha t kj $_ & {A lu...,lh) tor j = 1, 2, . . . . Therefore 
it suffices to show tha t for some choice of h, . . . , lhl the sequence A h>,..tlh has 
a density which is a t least gig% . . . gh-

We observe t ha t for any real numbers \i, . . . , \h and 71, . . . , yh the set 
\n I \i rg {?z#*} < y i} for i = 1, . . . , h possesses a density ; this is a consequence 
of the uniform distribution of the points {{ndi), . . . , {w0/j}) in the maximal 
linearly independent subspace generated by 6\, . . . , 6h in the ^-dimensional 
unit cube and may be deduced from Weyl 's criterion, (see p. 48 of [6]). Fur ther
more if A and B are disjoint sets possessing densities then d{A U B) = d{A) 
+ d{B). Using these observations we see, after taking an appropriate part i t ion 
of the unit cube in blocks and a corresponding decomposition and regrouping 
of sets A hj...flh1 t ha t for every positive integer L 

£ £ l o . . . E £ ^ ( i , , . . , J è [Lg1][Lg2]...[Lgh]dan\0 S {ndi} < l 

for i = 1, . . . , h}). 

But d{{n I 0 ^ {ndi} < 1 for i = 1, . . . , / * } ) = d(N0) = 1 and therefore 

i 1 , -1 L - l 

lim inf-^ E • • • E ^ (^n . . . . . « J ^ gig2 . • . ga, 

whence for some choice of /1, . . . , lh we have 

d(Allt...tlh) ^ gig2 . . . gh. 

The result now follows. 

Remark. As the referee has pointed out, by considering the cartesian product 
of measure preserving systems associated with sequences of positive upper 
density as elaborated by Furstenberg in [3] it is possible to remove the factor 
5 log {h + 1) in Theorem 1. Recently Y. Katznelson and I. Ruzsa have found 
elementary proofs of this fact. Fur thermore Kamae and Mendes France have 
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used Fourier analysis to obtain some of the results of Sârkozy referred to in 
§1, (see Van der Cor put's difference theorem, Israel J. Math., 31 (1978), 335-
342). 
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