ON SEQUENCES OF INTEGERS WITH SMALL PRIME FACTORS

C.L. STEWART
For Professor Henryk Iwaniec on the occasion of his seventy-fifth birthday

Abstract. We show that the difference between consecutive terms in sequences of integers whose greatest prime factor grows slowly tends to infinity.

1. Introduction

Let y be a real number with $y \geq 3$ and let $1=n_{1}<n_{2}<n_{3}<\ldots$ be the increasing sequence of positive integers composed of primes of size at most y. In 1908 Thue [14] proved that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} n_{i+1}-n_{i}=\infty, \tag{1}
\end{equation*}
$$

see also Pólya [11] and Erdős [4]. Thue's result was ineffective. In particular his proof does not allow one to determine, for every positive integer m, an integer $i(m)$ such that $n_{i+1}-n_{i}$ exceeds m whenever i is larger than $i(m)$. Cassels [2] showed how (1) can be made effective by means of estimates due to Gelfond [5] for linear forms in two logarithms of algebraic numbers. In 1973 Tijdeman [15] proved, by appealing to work of Baker [1] on estimates for linear forms in the logarithms of algebraic numbers, that there is a positive number c, which is effectively computable in terms of y, such that

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i} /\left(\log n_{i}\right)^{c} \tag{2}
\end{equation*}
$$

for $n_{i} \geq 3$. In addition Tijdeman showed that there are arbitrarily large integers n_{i} for which (2) fails to hold when c is less than $\pi(y)-1$; here $\pi(x)$ denotes the counting function for the primes up to x.

Now let $y=y(x)$ denote a non-decreasing function from the positive real numbers to the real numbers of size at least 3 . For any integer n let $P(n)$ denote the greatest prime factor of n with the convention that $P(0)=$ $P(\pm 1)=1$. Let $\left(n_{i}\right)_{i=1}^{\infty}$ be the increasing sequence of positive integers n_{i} for which

$$
\begin{equation*}
P\left(n_{i}\right) \leq y\left(n_{i}\right) \tag{3}
\end{equation*}
$$

[^0]For any integer k with $k \geq 2$ let $\log _{k}$ denote the k-th iterate of the function $x \rightarrow \max (1, \log x)$ for $x>0$. We shall prove that (1) holds provided that

$$
\begin{equation*}
y(n)=o\left(\frac{\log _{2} n \log _{3} n}{\log _{4} n}\right) \tag{4}
\end{equation*}
$$

Furthermore if we assume the abc conjecture, see $\S 2$, then we can prove that (1) holds provided that

$$
\begin{equation*}
y(n)=o(\log n) \tag{5}
\end{equation*}
$$

For any real number $x \geq 2$ put

$$
\delta(x)=\exp \left(\frac{x \log _{2} x}{\log x}\right)
$$

We shall deduce (4) from the following result.
Theorem 1. Let $y=y(x)$ be a non-decreasing function from the positive real numbers to the real numbers of size at least 3. Let $\left(n_{1}, n_{2}, \ldots\right)$ be the increasing sequence of positive integers n_{i} for which (3) holds. There is an effectively computable positive number c such that for $i \geq 3$,

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i} /\left(\log n_{i}\right)^{\delta\left(c y\left(n_{i+1}\right)\right)} \tag{6}
\end{equation*}
$$

Furthermore there is an effectively computable positive number c_{1} such that for infinitely many positive integers i

$$
\begin{equation*}
n_{i+1}-n_{i}<n_{i} \exp \left(c_{1} y\left(n_{i}\right)\right) /\left(\log n_{i}\right)^{r-1} \tag{7}
\end{equation*}
$$

where $r=\pi\left(y\left(\sqrt{n_{i}}\right)\right)$.
Observe that we obtain (1) from (6) when (4) holds on noting that in this case $n_{i+1} \leq 2 n_{i}$ and

$$
(\log n)^{\delta(c y(n))}=o(n)
$$

In order to establish (6) we shall appeal to an estimate for linear forms in the logarithms of rational numbers due to Matveev [8], [9]. The upper bound (7) follows from an averaging argument based on a result of Ennola [3].

We are able to refine the lower bound (6) provided that the abc conjecture is true.

Theorem 2. Let $y=y(x)$ be a non-decreasing function from the positive real numbers to the real numbers of size at least 3. Let $\left(n_{1}, n_{2}, \ldots\right)$ be the increasing sequence of positive integers n_{i} for which (3) holds and let ε be a positive real number. If the abc conjecture is true then there exists a positive
number $c_{1}=c_{1}(\varepsilon)$, which depends on ε, and a positive number c_{2} such that for $i \geq 1$,

$$
\begin{equation*}
n_{i+1}-n_{i}>c_{1}(\varepsilon) n_{i}^{1-\varepsilon} / \exp \left(c_{2} y\left(n_{i+1}\right)\right) \tag{8}
\end{equation*}
$$

We obtain (1) from (8) when (5) holds since in this case

$$
\exp \left(c_{2} y(n)\right)=n^{o(1)}
$$

2. Preliminary lemmas

For any non-zero rational number α we may write $\alpha=a / b$ with a and b coprime integers and with b positive. We define $H(\alpha)$, the height of α, by

$$
H(\alpha)=\max (|a|,|b|)
$$

Let n be a positive integer and let $\alpha_{1}, \ldots, \alpha_{n}$ be positive rational numbers with heights at most A_{1}, \ldots, A_{n} respectively. Suppose that $A_{i} \geq 3$ for $i=$ $1, \ldots, n$ and that $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are linearly independent over the rationals where \log denotes the principal value of the logarithm. Let b_{1}, \ldots, b_{n} be nonzero integers of absolute value at most B with $B \geq 3$ and put

$$
\Lambda=b_{1} \log \alpha_{1}+\ldots+b_{n} \log \alpha_{n}
$$

Lemma 3. There exists an effectively computable positive number c_{0} such that

$$
\log |\Lambda|>-c_{0}^{n} \log A_{1} \ldots \log A_{n} \log B
$$

Proof. This follows from Theorem 2.2 of Nesterenko [10], which is a special case of the work of Matveev [8], [9].

Let x and y be positive real numbers with $y \geq 2$ and let $\Psi(x, y)$ denote the number of positive integers of size at most x all of whose prime factors are of size at most y. Let r denote the number of primes of size at most y so that $r=\pi(y)$.

Lemma 4. For $2 \leq y \leq(\log x)^{1 / 2}$ we have

$$
\Psi(x, y)=\frac{(\log x)^{r}}{\prod_{i=1}^{r}\left(i \log p_{i}\right)}\left(1+O\left(y^{2}(\log x)^{-1}(\log y)^{-1}\right)\right)
$$

Proof. This is Theorem 1 of [3].
We also recall the abc conjecture of Oesterlé and Masser [6], [7], [13]. Let x, y and z be positive integers. Denote the greatest square-free factor of $x y z$ by $G=G(x, y, z)$ so

$$
G=\prod_{\substack{p \mid x y z \\ p, p r i m e}} p
$$

Conjecture 5. (abc conjecture) For each positive real number ε there is a positive number $c(\varepsilon)$, which depends on ε only, such that for all pairwise coprime positive integers x, y and z with

$$
x+y=z
$$

we have

$$
z<c(\varepsilon) G^{1+\epsilon} .
$$

For a refinement of the abc conjecture see [12].

3. Proof of Theorem 1

Let c_{1}, c_{2}, \ldots denote effectively computable positive numbers. Following [15], for $i \geq 3$ we have $n_{i} \geq 3$,

$$
\begin{equation*}
n_{i+1}-n_{i}=n_{i}\left(\frac{n_{i+1}}{n_{i}}-1\right) \tag{9}
\end{equation*}
$$

and, since $e^{z}-1>z$ for z positive,

$$
\begin{equation*}
\frac{n_{i+1}}{n_{i}}-1>\log \frac{n_{i+1}}{n_{i}} . \tag{10}
\end{equation*}
$$

Let p_{1}, \ldots, p_{r} be the primes of size at most $y\left(n_{i+1}\right)$. Notice that $r \geq 2$ since $y\left(n_{i+1}\right) \geq 3$. Then $\frac{n_{i+1}}{n_{i}}=p_{1}^{l_{1}} \ldots p_{r}^{l_{r}}$ with l_{1}, \ldots, l_{r} integers of absolute value at most $c_{1} \log n_{i+1}$ and, since $n_{i+1} \leq 2 n_{i}$,

$$
\begin{equation*}
\max \left(\left|l_{1}\right|, \ldots,\left|l_{r}\right|\right) \leq c_{2} \log n_{i} . \tag{11}
\end{equation*}
$$

Since

$$
\log \frac{n_{i+1}}{n_{i}}=l_{1} \log p_{1}+\cdots+l_{r} \log p_{r}
$$

it follows from (11) and Lemma 3 that

$$
\begin{equation*}
\log \frac{n_{i+1}}{n_{i}}>\left(\log n_{i}\right)^{-c_{3}^{r} \log p_{1} \ldots \log p_{r}} . \tag{12}
\end{equation*}
$$

By the arithmetic-geometric mean inequality

$$
\begin{equation*}
\prod_{i=1}^{r} \log p_{i} \leq\left(\frac{1}{r} \sum_{i=1}^{r} \log p_{i}\right)^{r} \tag{13}
\end{equation*}
$$

and by the prime number theorem

$$
\begin{equation*}
\sum_{i=1}^{r} \log p_{i}<c_{4} r \log r . \tag{14}
\end{equation*}
$$

Thus, from (12), (13) and (14),

$$
\begin{equation*}
\log \frac{n_{i+1}}{n_{i}}>\left(\log n_{i}\right)^{-\left(c_{5} \log r\right)^{r}} \tag{15}
\end{equation*}
$$

Observe that $r \geq 2$ and so

$$
\begin{equation*}
\left(c_{5} \log r\right)^{r}<e^{c_{6} r \log _{2} r} \tag{16}
\end{equation*}
$$

Further

$$
3 \leq p_{r} \leq y\left(n_{i+1}\right)
$$

and so

$$
\begin{equation*}
r \leq c_{7} y\left(n_{i+1}\right) / \log y\left(n_{i+1}\right) \tag{17}
\end{equation*}
$$

Thus, by (16) and (17),

$$
\begin{equation*}
\left(c_{5} \log r\right)^{r}<\delta\left(c_{8} y\left(n_{i+1}\right)\right) \tag{18}
\end{equation*}
$$

and (6) follows from (9), (10), (15) and (18).
We shall now establish (7). Observe that if n_{i} satisfies (3) then since $y(t) \geq 3$ for all positive real numbers $t, P\left(2 n_{i}\right) \leq y\left(n_{i}\right) \leq y\left(2 n_{i}\right)$ and so $2 n_{i}=n_{j}$ for some integer j with $j>i$. In particular $n_{i+1} \leq 2 n_{i}$ hence $n_{i+1}-n_{i} \leq n_{i}$ so

$$
\begin{equation*}
n_{i+1}-n_{i}<2 n_{i} . \tag{19}
\end{equation*}
$$

Suppose that X is a real number with $X \geq 9$ and that i is a positive integer with n_{i+1} and n_{i} in the interval $(\sqrt{X}, X]$. If, in addition,

$$
\begin{equation*}
y(\sqrt{X})>(\log X)^{\frac{1}{4}} \tag{20}
\end{equation*}
$$

then, since $\sqrt{X}<n_{i} \leq X$,

$$
\begin{equation*}
y\left(n_{i}\right)>\left(\log n_{i}\right)^{\frac{1}{4}} . \tag{21}
\end{equation*}
$$

Since y is non-decreasing

$$
\begin{equation*}
\pi\left(y\left(\sqrt{n}_{i}\right)\right)-1 \leq \pi\left(y\left(n_{i}\right)\right) \tag{22}
\end{equation*}
$$

and by the prime number theorem

$$
\pi\left(y\left(n_{i}\right)\right)<c_{9} \frac{y\left(n_{i}\right)}{\log y\left(n_{i}\right)}
$$

By (21),

$$
\begin{equation*}
\pi\left(y\left(n_{i}\right)\right)<c_{10} \frac{y\left(n_{i}\right)}{\log _{2} n_{i}} . \tag{23}
\end{equation*}
$$

Thus by (22) and (23),

$$
\begin{equation*}
\left(\log n_{i}\right)^{\pi\left(y\left(\sqrt{n_{i}}\right)\right)-1}<e^{c_{10} y\left(n_{i}\right)} . \tag{24}
\end{equation*}
$$

We may suppose that c_{1} exceeds $1+c_{10}$ and in this case, by (24),

$$
\exp \left(c_{1} y\left(n_{i}\right)\right) /\left(\log n_{i}\right)^{\pi\left(y\left(\sqrt{n_{i}}\right)\right)-1} \geq \exp \left(y\left(n_{i}\right)\right) \geq \exp (3) \geq 2
$$

and therefore (7) follows from (19).
We shall now show that there is a positive number c_{11} such that if X is a real number with $X>c_{11}$ then there is a positive integer i for which n_{i+1}
and n_{i} are in ($\left.\sqrt{X}, X\right]$ and satisfy (7). Accordingly let X be a real number with $X \geq 9$ and put

$$
r=\pi(y(\sqrt{X}))
$$

Notice that $r \geq 2$ since $y(t) \geq 3$ for all positive real numbers t. By the preceding paragraph we may suppose that

$$
y(\sqrt{X}) \leq(\log X)^{\frac{1}{4}}
$$

Let $A(X)$ be the set of integers n with

$$
\begin{equation*}
\sqrt{X}<n \leq X \tag{25}
\end{equation*}
$$

for which

$$
\begin{equation*}
P(n) \leq y(\sqrt{X}) \tag{26}
\end{equation*}
$$

Note that the members of $A(X)$ occur as terms in the sequence $\left(n_{1}, n_{2}, \ldots\right)$. The cardinality of $A(X)$ is

$$
\Psi(X, y(\sqrt{X}))-\Psi(\sqrt{X}, y(\sqrt{X}))
$$

and so for $X>c_{12}$ is, by Lemma 4, at least

$$
\begin{equation*}
\frac{(\log X)^{r}}{2 \prod_{i=1}^{r} i \log p_{i}} \tag{27}
\end{equation*}
$$

Let j be the positive integer for which

$$
\frac{X}{2^{j}}<\sqrt{X} \leq \frac{X}{2^{j-1}}
$$

and consider the intervals $\left(\frac{X}{2^{k}}, \frac{X}{2^{k-1}}\right]$ for $k=1, \ldots, j$. Then $j \leq 1+\frac{\log X}{2 \log 2}$ and so, for $X>c_{13}$,

$$
\begin{equation*}
j \leq \log X \tag{28}
\end{equation*}
$$

Thus, by (27) and (28), there is an integer h with $1 \leq h \leq j$ for which the interval $\left(\frac{X}{2^{h}}, \frac{X}{2^{h-1}}\right]$ contains at least

$$
\frac{(\log X)^{r-1}}{2 \prod_{i=1}^{r} i \log p_{i}}
$$

integers from $A(X)$. Notice that

$$
\prod_{i=1}^{r} i \log p_{i} \leq(r \log y(\sqrt{X}))^{r}
$$

Thus, since $y(\sqrt{X}) \leq(\log X)^{\frac{1}{4}}$ and, since $r \geq 2, r-1 \geq \frac{r}{2}$ we see that for $X>c_{14}$, the interval $\left(\frac{X}{2^{h}}, \frac{X}{2^{h-1}}\right]$ contains at least

$$
\frac{(\log X)^{r-1}}{3(r \log y(\sqrt{X}))^{r}}+1
$$

terms from $A(X)$ hence two of them, say n_{i+1} and n_{i}, satisfy

$$
n_{i+1}-n_{i}<\frac{X}{2^{h}(\log X)^{r-1}} 3(r \log y(\sqrt{X}))^{r} .
$$

Since $n_{i}>\frac{X}{2^{h}}$ it follows that

$$
n_{i+1}-n_{i}<3 \frac{n_{i}}{\left(\log n_{i}\right)^{r-1}}(r \log y(\sqrt{X}))^{r} .
$$

By (25), $\sqrt{n}_{i} \leq \sqrt{X} \leq n_{i}$ hence, since y is non-decreasing, $y\left(\sqrt{n}_{i}\right) \leq$ $y(\sqrt{X}) \leq y\left(n_{i}\right)$. Thus

$$
n_{i+1}-n_{i}<3 \frac{n_{i}}{\left(\log n_{i}\right)^{r-1}}\left(r \log y\left(n_{i}\right)\right)^{r}
$$

and so

$$
\begin{equation*}
n_{i+1}-n_{i}<3 \frac{n_{i}}{\left(\log n_{i}\right)^{r^{\prime}-1}}\left(s \log y\left(n_{i}\right)\right)^{s} \tag{29}
\end{equation*}
$$

where $r^{\prime}=\pi\left(y\left(\sqrt{n}_{i}\right)\right)$ and $s=\pi\left(y\left(n_{i}\right)\right)$. By the prime number theorem there is a positive number c_{15} such that

$$
\begin{equation*}
3\left(s \log y\left(n_{i}\right)\right)^{s}<e^{c_{15} y\left(n_{i}\right)} . \tag{30}
\end{equation*}
$$

Estimate (7) now follows from (29) and (30). On letting X tend to infinity we find infinitely many pairs of integers n_{i+1} and n_{i} which satisfy (7).

4. Proof of Theorem 2

Let $i \geq 1$ and put

$$
\begin{equation*}
n_{i+1}-n_{i}=t \tag{31}
\end{equation*}
$$

Let g be the greatest common divisor of n_{i+1} and n_{i}. Then

$$
\frac{n_{i+1}}{g}-\frac{n_{i}}{g}=\frac{t}{g} .
$$

Let $\varepsilon>0$. By the abc conjecture there is a positive number $c(\varepsilon)$ such that

$$
\frac{n_{i}}{g}<c(\varepsilon)\left(\frac{t}{g} \prod_{p \leq y\left(n_{i+1}\right)} p\right)^{1+\varepsilon}
$$

hence

$$
\begin{equation*}
\left(\frac{n_{i}}{c(\varepsilon)^{\frac{1}{1+\varepsilon}}}<t \prod_{p \leq y\left(n_{i+1}\right)} p\right. \tag{32}
\end{equation*}
$$

By the prime number theorem, since $y\left(n_{i+1}\right) \geq 3$, there exists a positive number c_{2} such that

$$
\begin{equation*}
\prod_{p \leq y\left(n_{i+1}\right)} p<e^{c_{2} y\left(n_{i+1}\right)} . \tag{33}
\end{equation*}
$$

The result follows from (31), (32) and (33).

5. Acknowledgements

This research was supported in part by the Canada Research Chairs Program and by grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms, Acta Arith. 21 (1972), 117-129.
[2] J.W.S. Cassels, On a class of exponential equations, Arkiv f. Mat. 4 (1960), 231-233.
[3] V. Ennola, On numbers with small prime divisors, Ann. Acad. Sci. Fennicae (Series AI) 440 (1969), 1-16.
[4] P. Erdős, Some recent advances and current problems in number theory, Lectures on Modern Mathematics, Vol. III, 196-244, Wiley, New York, 1965.
[5] A.O. Gelfond, Transcendental and Algebraic Numbers, (Moscow, 1952; Dover, New York, 1960).
[6] D.W. Masser, Open problems, Proc. Symp. Analytic Number Theory (W.W.L. Chen, ed.), Imperial College, London, 1985.
[7] D.W. Masser, Abcological anecdotes, Mathematika 63 (2017), 713-714.
[8] E.M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), 81-136, (English) Izv. Math. 62 (1998), 723-772.
[9] E.M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180, (English) Izv. Math. 64 (2000), 1217-1269.
[10] Y. Nesterenko, Linear forms in logarithms of rational numbers, Diophantine approximation (Cetraro 2000), Lecture Notes in Math., vol. 1819, 53-106, Springer, Berlin, 2003.
[11] G. Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Z. 1 (1918), 143-148.
[12] O. Robert, C.L. Stewart and G.Tenenbaum, A refinement of the abc conjecture, Bull. London Math. Soc. 46 (2014), 1156-1166.
[13] C.L. Stewart and Kunrui Yu, On the abc conjecture, II, Duke Math. Journal 108 (2001), 169-181.
[14] A. Thue, Bermerkungen über gewisse Näherungsbrüche algebraischer Zahlen, Christiania Vidensk. Selsk. Skr. (1908), Nr.3.
[15] R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), 319-330.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Email address: cstewart@uwaterloo.ca

[^0]: 1991 Mathematics Subject Classification. Primary 11N25; Secondary 11J86.
 Key words and phrases. small prime factors, linear forms in logarithms.

