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Abstract. We establish estimates from below for the greatest prime
factor of the n-th term of a non-degenerate binary recurrence sequence
when the sequence belongs to a class of sequences which includes the
Lucas sequences.

1. Introduction

Let r and s be integers with r2 + 4s 6= 0. Let u0 and u1 be integers and

put

(1) un = run−1 + sun−2,

for n = 2, 3, . . . . Then for n ≥ 0

(2) un = aαn + bβn,

where α and β are the roots of the characteristic polynomial x2 − rx − s
and

(3) a =
u1 − u0β
α− β

, b =
u0α− u1
α− β

when α 6= β. The sequence of integers (un)∞n=0 is a binary recurrence se-

quence. It is said to be non-degenerate if abαβ 6= 0 and α/β is not a root

of unity.

In 1934 Mahler [14] proved that if un is the n-th term of a non-degenerate

binary recurrence sequence then the greatest prime factor of un tends to

infinity with n. His proof was ineffective however since it depended on a p-

adic version of the Thue-Siegel theorem. In 1967 Schinzel [18] refined work

of Gelfond on estimates for linear forms in the logarithms of two algebraic

numbers and as a consequence he was able to give an effective lower bound.

For any integer m let P (m) denote the greatest prime factor of m with the

convention that P (0) = P (±1) = 1. Schinzel proved that there exists a
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positive number C0 which is effectively computable in terms of a, b, α and

β such that

P (un) > C0n
c1(log n)c2 ,

where

(c1, c2) =

{
(1/84, 7/12) if α and β are integers

(1/133, 7/19) otherwise.

The above result was subsequently improved by Stewart [22], by Yu and

Hung [26] and in 2013 by Stewart [24] who showed that there is a positive

number C, which is effectively computable in terms of a, b, α and β such

that if n exceeds C then

(4) P (un) > n1/2 exp(log n/104 log log n).

Let (tn)∞n=0 be a non-degenerate binary recurrence sequence with t0 = 0

and t1 = 1. Then, recall (2) and (3),

(5) tn =
αn − βn

α− β
for n = 0, 1, 2, . . . and the sequence is known as a Lucas sequence. Note that

a Lucas sequence is non-degenerate. Lucas sequences have a rich divisibility

structure and have been extensively studied, eg. [4], [6], [8], [11], [13], [21]

and [27]. In 2013 Stewart [23] proved that if tn is the n-th term of a Lucas

sequence then

(6) P (tn) > n exp(log n/104 log log n)

provided that n exceeds a number which is effectively computable in terms

of α and β, see also [5] and [9].

In 1967 Schinzel [18] introduced a class of binary recurrence sequences

which includes the Lucas sequences and whose members have similar divis-

ibility properties to the Lucas sequences. He considered those sequences for

which a/b and α/β are multiplicatively dependent and proved that if α and

β are real numbers then there is a positive number c, which is effectively

computable in terms of a, b, α and β, such that

(7) P (un) > n− c.

Schinzel’s proof of (7) depended on a result [17] of his on primitive divi-

sors of Lucas numbers. In 2003 Luca [12] proved (7) in the case when α

and β are not real numbers. Observe that if (un)∞n=0 is a non-degenerate

binary recurrence sequence with a term which is zero then a/b and α/β are

multiplicatively dependent.

We shall prove the following result.
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Theorem 1. Let (un)∞n=0 be a non-degenerate binary recurrence sequence, as

in (2), with a/b and α/β multiplicatively dependent. There exists a positive

number C, which is effectively computable in terms of a, b, α and β, such

that if n exceeds C then

(8) P (un) > n exp(log n/104 log log n).

The proof of Theorem 1 relies on arguments from [23] as well as the work

of Schinzel [19] on primitive divisors in algebraic number fields.

For any non-degenerate binary recurrence sequence (un)∞n=0 we are able

to improve (4) for all positive integers n except perhaps for a set of asymp-

totic density zero. Let ε(n) be a real valued function on the positive integers

for which limn→∞ ε(n) = 0. In [22] Stewart proved that for all positive in-

tegers, except perhaps for a set of asymptotic density zero,

P (un) > ε(n)n log n;

see the papers of Murty, Séguin and Stewart [16] and Balaji and Luca [3]

for related work. Combining the approaches of [22] and [23] we are able to

prove the following result.

Theorem 2. Let (un)∞n=0 be a non-degenerate binary recurrence sequence.

For all positive integers n, except perhaps a set of asymptotic density zero,

(9) P (un) > n exp(log n/104 log log n).

The proofs of Theorem 1 and Theorem 2 ultimately depend on an es-

timate for p-adic linear forms in the logarithms of algebraic numbers due

to Yu [25] and, as discussed in [23], the constant 104 which appears in our

estimates has no arithmetical significance but instead is a consequence of

the bounds in [25]. For a more detailed historical account of these topics see

[24].

2. Cyclotomic polynomials

Let r and s be integers. We denote the greatest common divisor of r and

s by (r, s). For each positive integer k put ζk = e2πi/k. Let n be a positive

integer. The n-th cyclotomic polynomial Φn(x, y) is given by

(10) Φn(x, y) =
n∏
j=1

(j,n)=1

(x− ζjny).
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Let e be a positive integer and let i be an integer. Put

(11) Φ(i)
n,e(x, y) =

ne∏
j=1

(j,ne)=1
j≡i mod e

(x− ζjney).

Note that if (i, e) > 1 then Φ
(i)
n,e(x, y) = 1 and that

(12)
e∏
i=1

(i,e)=1

Φ(i)
n,e(x, y) = Φne(x, y).

We remark that when (i, e) = 1 the degree of Φ
(i)
n,e(x, y) is φ(ne)/φ(e) where

φ() denotes Euler’s totient function.

For any integer i we have

(13)
ne∏
j=1

j≡i mod e

(x− ζjney) = xn − ζ ieyn

and so by the inclusion-exclusion principle, see also Lemma 4 of [19], when

(i, e) = 1

(14) Φ(i)
n,e(x, y) =

∏
m|n

(m,e)=1
mm≡i mod e

(xn/m − ζme yn/m)µ(m).

It follows from (14) that Φ
(i)
n,e(x, y) has coefficients in Q(ζe) and then from

(11) that the coefficients of Φ
(i)
n,e(x, y) are from Z[ζe], the ring of algebraic

integers of Q(ζe).

Next we put

(15) Ψ(i)
n,e(x, y) =

ne∏
j=1

(j,ne)>1
j≡i mod e

(x− ζjney).

By (13) we have

(16) Φ(i)
n,e(x, y)Ψ(i)

n,e(x, y) = xn − ζ ieyn.

Since Φ
(i)
n,e(x, y) is in Z[ζe][x, y] we see from (15) and (16) that Ψ

(i)
n,e(x, y) is

also in Z[ζe][x, y].

3. Divisibility of values of the cyclotomic polynomial and of

Lucas numbers

We first record two results describing the arithmetical character of values

of the cyclotomic polynomial. Observe that Φn(α, β) is an integer for n > 2

if (α + β)2 and αβ are integers, see for example p.428 of [21].
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Lemma 3. Suppose that (α+β)2 and αβ are coprime non-zero integers and

that α/β is not a root of unity. If n > 4 and n 6= 6, 12 then P (n/(3, n)) di-

vides Φn(α, β) to at most the first power. All other prime factors of Φn(α, β)

are congruent to ±1 (mod n).

Proof. This is Lemma 6 of [21]. �

Our next result follows from the proof of Theorem 1.1 of [23]. Note that

we do not require (α + β)2 and αβ to be coprime.

Lemma 4. Let α and β be complex numbers such that (α + β)2 and αβ

are non-zero integers and α/β is not a root of unity. There exists a positive

number C, which is effectively computable in terms of α and β, such that

for n > C,

(17) P (Φn(α, β)) > n exp(log n/103.95 log log n).

Proof. This follows from the second last line in the proof of Theorem 1.1 of

[23]. �

For any non-zero rational number x let ordp x denote the p-adic order of

x.

Lemma 5. Let (un)∞n=0 be a non-degenerate binary recurrence sequence as

in (2) with a/b and α/β multiplicatively independent. There exists a positive

number C which is effectively computable in terms of a, b, α and β such that

if p exceeds C then

ordp un < p exp(− log p/51.9 log log p) log n.

Proof. This is Lemma 7 of [24]. �

We shall now describe the prime decomposition of terms of a Lucas

sequence (tn)∞n=0 .

Lemma 6. Let (tn)∞n=0 be a Lucas sequence as in (5). If p is a prime number

which does not divide αβ then p divides tn for some positive integer n and

if l is the smallest positive integer for which p divides tl then

l ≤ p+ 1.

Proof. This follows, for example, from Lemma 7 of [22]. �

For any rational number x let |x|p denote the p-adic value of x, normal-

ized so that |p|p = p−1.
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Lemma 7. Let {tn}∞n=0 be a Lucas sequence, as in (5), with α + β and

αβ coprime. Let p be a prime number which does not divide αβ, let l be

the smallest positive integer for which p divides tl and let n be a positive

integer. If l does not divide n, then

|tn|p = 1.

If n = lk for some positive integer k, we have, for p > 2,

|tn|p = |tl|p |k|p ,

while for p = 2,

|tn|2 =

{
|tl|2 for k odd

2 |t2l|2 |k|2 for k even.

Proof. This is Lemma 8 of [22] . �

Lemma 8. Let {tn}∞n=0 be a Lucas sequence, as in (5), with α + β and

αβ coprime and |α| ≥ |β|. Let n be an integer larger than 1. There exists

a positive number C, which is effectively computable in terms of α and β,

such that if p is a prime number larger than C then

ordp tn < p exp(− log p/51.9 log log p) log |α| log n.

Proof. We may suppose that C exceeds |αβ| and the absolute value of the

discriminant of Q(α/β). The result then follows from Lemma 4.3 of [23]. �

4. Cyclotomic polynomials at algebraic points in quadratic

cyclotomic extensions

Let θ1 and θ2 be non-zero algebraic integers in Q(ζe) with e equal to 3, 4

or 6 and suppose that θ1/θ2 is not a root of unity and that θ1 = θ2. Then

θ1 and θ2 are algebraic conjugates. Put

g = ((θ1 + θ2)
2, θ1θ2),

and

λ1 = θ1/
√
g, λ2 = θ2/

√
g.

Note that

(x−λ1)(x+λ1)(x−λ2)(x+λ2) = x4−((θ1 +θ2)
2/g−2θ1θ2/g)x2−(θ1θ2/g)2

is a polynomial with integer coefficients and thus λ1 and λ2 are algebraic

integers. Further λ1 is of degree 2 over Q with conjugate λ2 when g is a

perfect square and is of degree 4 over Q with conjugates λ1,−λ1, λ2,−λ2
when g is not a perfect square. Since θ1/θ2 = λ1/λ2 is not a root of unity
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we see that λ1 is not a root of unity. In both cases the conjugates of λ1 have

the same absolute value as λ1 and, since λ1 is not a root of unity,

(18) |λ1| ≥ 21/4,

as is readily checked. Furthermore, since θ1 = θ2 we find that λ1/λ2 = λ2/λ1

and as λ1/λ2 is not a root of unity it is an algebraic number of degree at

least 2. In fact it has conjugate λ2/λ1 and minimal polynomial

λ1λ2x
2 − (λ21 + λ22)x− λ1λ2.

For any algebraic number α let M(α) denote the Mahler measure of α, see

[7]. We then have

(19)

M(λ1/λ2) = M(λ2/λ1) = |λ1λ2|max(1, |λ1/λ2|) max(1, |λ2/λ1|) = |λ1|2.

Lemma 9. Let n be a positive integer and ζ an e-th root of unity with e

equal to 3, 4 or 6. There exists an effectively computable positive number c1

such that

n log |λ1| − c1 log(n+ 1) log |λ1| ≤ log |λn1 − ζλn2 | ≤ n log |λ1|+ log 2.

Proof. Note that

log |λn1 − ζλn2 | = n log |λ1|+ log |ζ(λ2/λ1)
n − 1|

Since θ1 = θ2 we see that |λ2/λ1| = 1 and so |ζ(λ2/λ1)
n− 1| ≤ 2. It remains

to establish a lower bound for |ζ(λ2/λ1)
n − 1|. For any complex number z,

either 1/4 ≤ |ez − 1| or

|z − ibπ| ≤ 4|ez − 1|

for some integer b, see page 176 of [1]. Let z = log ζ + n log(λ2/λ1) where

we take the principal value of the logarithms. Then either

(20) |ζ(λ2/λ1)
n − 1| ≥ 1/4

or

4|ζ(λ2/λ1)
n − 1| ≥ min

b∈Z
| log ζ + n log(λ2/λ1)− bπi|.

Suppose that the minimum occurs at b0. Then |b0| ≤ n+ 1. Further

log ζ − b0πi = b1 log ζ12

with |b1| ≤ 6(|b0|+ 1) ≤ 6n+ 12 and thus if (20) does not hold then

(21) 4|ζ(λ2/λ1)
n − 1| ≥ |n log(λ2/λ1) + b1 log ζ12|.
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Let c1, c2, . . . denote effectively computable positive numbers. This is a lin-

ear form in two logarithms and by [10], [2] or [15] we see from (20) and (21),

since λ2/λ1 is not a root of unity, that

(22) log |ζ(λ2/λ1)
n − 1| > −c2 log(n+ 1) log max(4, A)

where A is the Mahler measure of λ2/λ1. Thus, by (18) and (19),

max(4, A) ≤ |λ1|c3

hence, from (22),

log |ζ(λ2/λ1)
n − 1| > −c4 log(n+ 1) log |λ1|

and our result follows.

�

For any positive integer n let ω(n) denote the number of distinct prime

factors of n and put q(n) = 2ω(n).

Lemma 10. Let e be 3, 4 or 6 and let i be an integer coprime with e. There

exists an effectively computable positive number c such that if n > 2 then

(φ(ne)/φ(e)− cq(n) log n) log |λ1| ≤ log |Φ(i)
n,e(λ1, λ2)|

and

log |Φ(i)
n,e(λ1, λ2)| ≤ (φ(ne)/φ(e) + cq(n) log n) log |λ1|.

Proof. By (14)

log |Φ(i)
n,e(λ1, λ2)| =

∑
m|n

(m,e)=1
mm≡i mod e

µ(m) log |λn/m1 − ζme λ
n/m
2 |

and so, by Lemma 9,

| log |Φ(i)
n,e(λ1, λ2)|−

∑
m|n

(m,e)=1

µ(m)(n/m) log |λ1|| ≤
∑
m|n

(m,e)=1
µ(m)6=0

c1 log(n+1) log |λ1|.

The result now follows. �

Lemma 11. Let e be 3, 4 or 6 and let i be an integer coprime with e. There

exists an effectively computable positive number C such that if n exceeds C

then

log |Φ(i)
n,e(λ1, λ2)| > (φ(ne)/2φ(e)) log |λ1|.

Proof. For n sufficiently large

φ(n) > n/(2 log log n)
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and

q(n) < n1/ log logn

and so by (18) the result follows from Lemma 10.

�

Lemma 12. Let e be 3, 4 or 6 and let p be a prime number. There exists

a positive number C, which is effectively computable in terms of a, b, α and

β, such that for n > C

ordp Φne(λ1, λ2) < p exp(− log p/51.9 log log p) log |λ1| log ne.

Proof. This follows from (5.3) and (5.4) of [23]. �

Lemma 13. Let e be 3, 4 or 6 and let i be 1 or −1. There exists a positive

number C, which is effectively computable in terms of θ1 and θ2, such that

if m exceeds C then there is an irreducible π in Z[ζe] which divides

θm1 − ζ ieθm2
in Z[ζe] which is either a rational prime p or is such that ππ = p and, in

both cases,

p > m exp(logm/103.95 log logm).

Proof. Let c1, c2, . . . denote positive numbers which are effectively com-

putable in terms of θ1 and θ2. From Section 2 we see that Φ
(i)
m,e(x, y) is

a polynomial with coefficients in Z[ζe]. Thus Φ
(i)
m,e(θ1, θ2) is in Z[ζe] and, by

(16), Φ
(i)
m,e(θ1, θ2) divides θm1 − ζ ieθm2 in Z[ζe]. By (12)

Φ(1)
m,e(θ1, θ2)Φ

(−1)
m,e (θ1, θ2) = Φme(θ1, θ2)

and therefore

(23) Φ(1)
m,e(λ1, λ2)Φ

(−1)
m,e (λ1, λ2) = Φme(λ1, λ2).

Notice that Φ
(j)
m,e(λ1, λ2) = g−φ(me)/2φ(e)Φ

(j)
m,e(θ1, θ2) for j = ±1. Since

Φ
(j)
m,e(θ1, θ2) is in Z[ζe] and Φ

(j)
m,e(λ1, λ2) is an algebraic integer we see that

Φ
(j)
m,e(λ1, λ2) is in Z[ζe] for j = ±1. Therefore if π is an irreducible in Z[ζe]

which divides Φ
(i)
m,e(λ1, λ2) then π divides Φ

(i)
m,e(θ1, θ2) and so divides θm1 −

ζ ieθ
m
2 . We shall now show that Φ

(i)
m,e(λ1, λ2) is divisible by an irreducible π

which is either a large rational prime or is such that ππ is a large rational

prime.

Since (λ1 + λ2)
2 and λ1λ2 are coprime integers Φme(λ1, λ2) is an integer

for me > 12 and, by Lemma 3, P (me/(3,me)) divides Φme(λ1, λ2) to at

most the first power. All other prime factors are congruent to ±1( modme).

Thus

Φ(i)
m,e(λ1, λ2) = γπl11 . . . π

lt
t
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where γ is a divisor of P (me/(3,me)), t ≥ 0, π1, . . . , πt are irreducibles of

Z[ζe] and l1, . . . , lt are positive integers. Note that t ≥ 1 for m > c1 by

Lemma 11. Let P be the largest prime associated with an irreducible πj.

Then, by (23) and Lemma 12,

max
j
lj ≤ 2P exp(− logP/51.9 log logP ) log |λ1| logme

hence

(24)

log |Φ(i)
m,e(λ1, λ2)| ≤ logme+2tP logP exp(− logP/51.9 log logP ) log |λ1| logme.

But t ≤ 2(π(P,me, 1) + π(P,me,−1)) and so

(25) t ≤ 5P/me.

Thus by (24) and (25)

(26)

log |Φ(i)
m,e(λ1, λ2)| ≤ c2(P

2 logP exp(− logP/51.9 log logP ) logme)/me,

and by Lemma 11, for m > c3,

(27) log |Φ(i)
m,e(λ1, λ2)| > (φ(me)/2φ(e)) log |λ1|.

Comparing (26) and (27) we find that, for m > c4,

meφ(me)/ logm < c5P
2 logP exp(− logP/51.9 log logP ).

Since φ(me) > c6m/ log logm

P > m exp(logm/103.95 log logm)

for m > c7 as required.

�

5. Proof of Theorem 1

Put K = Q(α) and let OK denote the ring of algebraic integers of K.

Let w be the smallest positive integer for which wa and wb are algebraic

integers. By considering the sequence (vn)∞n=0 with vn = wun for n = 0, 1, . . .

we see that it suffices to prove our result for sequences (un)∞n=0 for which

a, b, α and β are algebraic integers. Since a/b and α/β are multiplicatively

dependent there exist integers k and l, not both zero, for which

(28) (a/b)k = (α/β)l.

By inverting (28) if necessary we may suppose that k ≥ 0. Notice that

k 6= 0 since otherwise α/β is a root of unity contrary to the assumption

that (un)∞n=0 is non-degenerate. Thus k > 0.
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If l = 0 then a/b is a root of unity and we put

(29) un = a(θn1 − ζθn2 )

where

(θ1, θ2) = (α, β)

and ζ is a root of unity from K.

We now suppose that k > 0 and l 6= 0 and, following Schinzel [18] and

Luca [12], we put

l1 = l/(k, l), k1 = k/(k, l).

It follows from (28) that

(30) (a/b)k1 = (α/β)l1ζ

where ζ is a root of unity from K. There exists a unique pair of integers

(x, y) for which

(31) xl1 + yk1 = 1

and

0 < y ≤ |l1|.
Put

ρ = axαy/bxβy.

Then, by (31),

(32) ρl1 = (a/b)xl1(α/β)yl1 = (a/b)xl1(a/b)yk1ζ−y = (a/b)ζ−y

and

(33) ρk1 = (a/b)xk1(α/β)yk1 = (α/β)xl1ζx(α/β)yk1 = (α/β)ζx.

Thus

(a/b)(α/β)n = ρl1ζyρk1nζ−xn = ρl1+k1nζy−xn.

Accordingly

un = bβn((a/b)(α/β)n + 1)

so

un = bβnζy−xn(ρl1+k1n + ζxn−y),

and we find that

(34) θl1+k1n2 un = bβnζy−xn(θl1+k1n1 − (−ζxn−y)θl1+k1n2 )

where

(35) (θ1, θ2) = (axαy, bxβy)

when x ≥ 0 and

(36) (θ1, θ2) = (b−xαy, a−xβy).
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when x < 0. Observe that

θ1/θ2 = α/β

in case (29) while

θ1/θ2 = ρ

in cases (35) and (36). Thus, by (33) and the fact that α/β is not a root of

unity we see that in all three cases θ1/θ2 is not a root of unity. Furthermore

either a, b, α, β are non-zero integers or α and β are algebraic conjugates

hence θ1 and θ2 are algebraic conjugates. In both cases θ1 + θ2 and θ1θ2 are

non-zero integers. Note that in the former case K = Q and so the root of

unity ζ in (29), and also in (30), is 1 or −1.

If in (29) ζ is 1 then Φn(θ1, θ2) divides un while if ζ is −1 then Φ2n(θ1, θ2)

divides un and in both cases the result follows from Lemma 4. If l 6= 0 then

(34) holds and θl1+k1n2 un is an algebraic integer in K which is divisible by

Φk1n+l1(θ1, θ2) in OK if −ζxn−y is 1 and is divisible by Φ2(k1n+l1)(θ1, θ2) in

OK if −ζxn−y is −1. Again the result follows from Lemma 4.

It remains to consider the possibility that ζ in (29) or −ζxn−y in (34) is

a root of unity in K different from 1 or −1. Since the degree of K is at most

2 over Q we find that the root of unity must be a primitive third, fourth or

sixth root of unity and so K = Q(ζe) with e equal to 3, 4 or 6, hence equal

to 3 or 4. Notice that Z[ζe] is the ring of algebraic integers of Q(ζe) and that

Z[ζe] is a unique factorization domain. Since Q(α) = Q(ζe) we see that α

and β and also a and b are complex conjugates hence

θ1 = θ2,

in all three cases.

Let c1, c2, . . . denote positive numbers which are effectively computable

in terms of a, b, α and β. Note that if π is an irreducible in Z[ζe] which is

not a rational prime then ππ is a prime p and since un is an integer if π

divides un then p divides un. If ζ in (29) is a root of unity different from 1

or −1 then we may apply Lemma 13 with m equal to n to give the result. If

−ζxn−y in (34) is a root of unity different from 1 or −1 then we may apply

Lemma 13 with m = l1 + k1n. Since l1 + k1n > n/2 for n > c1 we see that

θl1+k1n1 − (−ζxn−y)θl1+k1n2

is divisible by an irreducible π in Z[ζe] which is either a rational prime p or

is such that ππ = p and in both cases

p > n exp(log n/104 log log n)
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for n > c2. By (34) p divides un since bβnζy−xn is an algebraic integer and

for n > c3 we see that neither π nor π divides θ2. The result now follows.

6. Proof of Theorem 2

Let un denote the n-th term of a non-degenerate binary recurrence se-

quence as in (1) and let g = (r2, s). Let K = Q(α) and let OK denote the

ring of algebraic integers of K. For any θ in OK let [θ] denote the ideal in

OK generated by θ. Notice that, as in Lemma A.10 of [20],

(x− α2/g)(x− β2/g) = x2 − ((r2 + 2s)/g)x+ (s/g)2.

Since (r2 + 2s)/g and s/g are coprime

([α2/g], [β2/g]) = [1].

Put

vn = g−nu2n = a(α2/g)n + b(β2/g)n

and

wn = g−nu2n+1 = aα(α2/g)n + bβ(β2/g)n

for n = 0, 1, 2, . . . .

We shall prove that if (un)∞n=0 is a non-degenerate binary recurrence

sequence as in (1) with ([α], [β]) = [1] then for all positive integers n, except

perhaps a set of asymptotic density 0,

(37) P (un) ≥ n exp(log n/103.95 log log n).

Since (n/2)− 1 ≥ n/3 for n ≥ 6 and

(n/3) exp(log(n/3)/103.95 log log(n/3)) > n exp(log n/104 log log n)

for n sufficiently large we see that this suffices to prove our result in general

on considering the non-degenerate binary recurrence sequences (vn)∞n=0 and

(wn)∞n=0 in place of (un)∞n=0 .

Let c1, c2, . . . denote positive numbers which are effectively computable

in terms of a, b, α and β. By Theorem 1 it suffices to prove our result under

the additional assumption that a/b and α/β are multiplicatively indepen-

dent. Further we may assume, without loss of generality, that |α| ≥ |β|.
To establish (37) we shall assume that there is a positive number δ such

that

(38) P (um) < m exp(logm/103.95 log logm),

for a set of integers m of positive upper density δ and we shall show that this

leads to a contradiction. Accordingly, we can find arbitrarily large integers

n such that between n and 2n there are at least δn/2 integers m which
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satisfy (38). Fix such an integer n and denote the set of these integers by

M . Put

(39) T = 2n exp(log 2n/103.95 log log 2n),

and for each prime number p less than T let um(p) be the term with n ≤
m(p) ≤ 2n which is divisible by the highest power of p; if more than one

term is divisible by p raised to the largest exponent then denote the one

with least index by um(p).

It is proved on page 24 of [22] that, for n sufficiently large, at most 3 of

the integers m with n ≤ m ≤ 2n satisfy

|um| < |α|3m/4.

Further, since um is non-zero for m sufficiently large, we see that

(40) log |
∏
m∈M

um| >
δn2

4
log |α|

for n sufficiently large.

Put

S(p) =
un . . . u2n
um(p)

.

Clearly

(41) |
∏
m∈M

um| ≤
∏
p<T

|um(p)|−1p |S(p)|−1p .

By Lemma 5, for p > c1

(42) log |um(p)|−1p < p log p exp(− log p/51.9 log log p) log 2n.

Further, for p ≤ c1

(43) log |um(p)|−1p < max
n≤m≤2n

log |um| < 4n log |α|

for n sufficiently large. Thus∑
p<T

log |um(p)|−1p ≤
∑
p≤c1

log |um(p)|−1p +
∑

c1<p<T

log |um(p)|−1p

and by (42) and (43)∑
p<T

log |um(p)|−1p ≤ c2n+ π(T )T log T exp(− log T/51.9 log log T ) log 2n.

Therefore, by (39), for n sufficiently large

(44)
∑
p<T

log |um(p)|−1p < n2 exp(− log n/40, 000 log log n).

It remains to estimate
∏

p<T |S(p)|−1p .

Let p be a prime which divides αβ and let p be a prime ideal divisor of

[p] in OK with ramification index ep. Then p divides either [α] or [β] and we
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shall assume, without loss of generality, that p divides [α]. Put a′ = (β−α)a

and b′ = (β − α)b. If pl exactly divides [um] then pepl exactly divides [b′] for

m sufficiently large. Thus

|um|p ≥ |a′b′|p,

and so

(45)
∏
p<T
p|αβ

|S(p)|−1p ≤
∏
p<T
p|αβ

|a′b′|−np .

Assume now that p does not divide αβ and let tn, as in (5), be the n-th

term of the Lucas sequence associated with (un)∞n=0. For positive integers m

and r with m ≥ r,

(46) um − βrum−r = a′αm−rtr.

On setting m = m(p) in (46) and letting r run over those integers such that

m(p)− r ≥ n we find that

(47) |um(p)−1 . . . un|p ≥
m(p)−n∏
r=1

(|tr|p|a′b′|p).

Let l = l(p) be the smallest integer for which p divides tl; l exists by Lemma

6. For any real number x let bxc denote the greatest integer less than or

equal to x. By Lemma 7, if p > 2 then

(48)

m(p)−n∏
r=1

|tr|p = |tl|s1p |s1!|p,

where s1 = bm(p)−n
l
c, while if p = 2

(49)

m(p)−n∏
r=1

|tr|2 = |tl|s12
∣∣∣∣t2ltl
∣∣∣∣s2
2

|s2!|2,

where s2 = bm(p)−n
2l
c. Similarly on setting m− r = m(p) in (46) and letting

r run over those integers such that m(p) + r ≤ 2n we find that for p > 2

(50) |um(p)+1 . . . u2n|p ≥ |tl|s3p |s3!|p|a′b′|2n−m(p)
p ,

while for p = 2,

(51) |um(p)+1 . . . u2n|2 ≥ |tl|s32
∣∣∣∣t2ltl
∣∣∣∣s4
2

|s4!|2|a′b′|2n−m(p)
2 ,

where s3 = b2n−m(p)
l
c and s4 = b2n−m(p)

2l
c. Thus, from (47), (48) and (50)

we see that if p is a prime number which does not divide 2αβ then

(52) |S(p)|−1p ≤ |tl|−sp |s!|−1p |a′b′|−np
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and

(53) |S(2)|−12 ≤ |tl|−s2

∣∣∣∣t2ltl
∣∣∣∣−s
2

|s!|−12 |a′b′|−n2

where s = bn
l
c.

By Lemma 6 either 2 divides αβ or 2 divides tn for some integer n and

l(2) is either 2 or 3. But in the latter case, since |tl| ≤ 2|α|l,

(54) |tl|−s2

∣∣∣∣t2ltl
∣∣∣∣−s
2

≤ 2n|α|2n.

Therefore, by (45), (52), (53) and (54)

(55)
∏
p<T

|S(p)|−1p ≤ 2n|α|2n(
∏
p<T
p-2αβ

|tl|−sp )n!|a′b′|n.

Now

(56)
∏
p<T
p-2αβ

|tl|−sp = AB

where

A =
∏

l(p)<n/ logn
p<T
p-2αβ

|tl(p)|
−b n

l(p)
c

p

and

B =
∏

n/ logn≤l(p)
p<T
p-2αβ

|tl(p)|
−b n

l(p)
c

p

Observe that

A ≤
∏

1≤l<n/ logn

|tl|
n
l

and so

A ≤
∏

1≤l<n/ logn

2n|α|n

hence

(57) logA ≤ c3n
2/ log n.

Further when l(p) ≥ n/ log n we have⌊
n

l(p)

⌋
≤ log n

and, by Lemma 6, when p < T we see that l(p) < T + 1. Since

p+ 1 ≥ l(p) ≥ n/ log n
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it follows from Lemma 8 that

logB ≤ π(T ) log n(T+1) exp(− log(T+1)/(51.9 log log(T+1))) log(T+1) log |α| log 2n

hence, by (39),

(58) logB ≤ n2 exp(− log n/40, 000 log log n),

for n sufficiently large. By (55), (56), (57) and (58)

(59)

log
∏
p<T

|S(p)|−1p ≤ c4n log n+ c3n
2/ log n+ n2 exp(− log n/40, 000 log log n),

for n sufficiently large.

But the lower bound (40) for log |
∏

m∈M um| is incompatible with the

upper bound which follows from (41), (44) and (59) for n sufficiently large.

This contradiction establishes our result.

7. Remark

As the referee has noted, the proof of Theorem 2 shows not only that

the set of positive integers m for which (38) holds is of density zero but that

up to X it is of size O(X/ logX). In fact, by modifying the definition of A

and B, one may prove that there is a positive number c such that up to X

the set is of size O(X/ exp(c logX/ log logX)).
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