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On the representation of k-free integers by binary
forms

C.L. Stewart and Stanley Yao Xiao

Abstract. Let F be a binary form with integer coefficients, non-zero
discriminant and degree d with d at least 3 and let r denote the largest
degree of an irreducible factor of F over the rationals. Let k be an integer
with k ≥ 2 and suppose that there is no prime p such that pk divides
F (a, b) for all pairs of integers (a, b). Let RF,k(Z) denote the number of
k-free integers of absolute value at most Z which are represented by F . We
prove that there is a positive number CF,k such that RF,k(Z) is asymptotic

to CF,kZ
2
d provided that k exceeds 7r

18
or (k, r) is (2, 6) or (3, 8).

1. Introduction

Let F be a binary form with integer coefficients, non-zero discriminant ∆(F ) and
degree d with d ≥ 3. For any positive number Z let RF (Z) denote the set of
non-zero integers h with |h| ≤ Z for which there exist integers x and y such that
F (x, y) = h. Denote the cardinality of a set S by |S| and let RF (Z) = |RF (Z)|.
In [37] Stewart and Xiao proved that there exists a positive number CF such that

(1.1) RF (Z) ∼ CFZ
2
d .

Such a result had been obtained earlier by Hooley in [16], [21], [23] and [24] when
F is an irreducible binary cubic form, when F is a quartic form of the shape

F (x, y) = ax4 + bx2y2 + cy4.

and when F is the product of linear forms with integer coefficients. In addition, a
number of authors including Bennett, Dummigan, and Wooley [1], Browning [5],
Greaves [11], Heath-Brown [13], Hooley [19], [20], [22], Skinner and Wooley [34]
and Wooley [40] obtained asymptotic estimates for RF (Z) when F is a binomial
form.
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Let k be an integer with k ≥ 2. An integer is said to be k-free if it is not
divisible by the k-th power of a prime number. For any positive number Z let
RF,k(Z) denote the set of k-free integers h with |h| ≤ Z for which there exist
integers x and y such that F (x, y) = h and put RF,k(Z) = |RF,k(Z)|. Extending
work of Hooley [16], [18], Gouvêa and Mazur [8] in 1991 proved that if there is
no prime p such that p2 divides F (a, b) for all pairs of integers (a, b), if all the
irreducible factors of F over Q have degree at most 3 and if ε is a positive real
number then there are positive numbers C1 and C2, which depend on ε and F ,
such that if Z exceeds C1 then

(1.2) RF,2(Z) > C2Z
2
d−ε.

This was subsequently extended by Stewart and Top in [36]. Let r be the largest
degree of an irreducible factor of F over Q. Let k be an integer with k ≥ 2 and
suppose that there is no prime p such that pk divides F (a, b) for all integer pairs
(a, b). They showed, by utilizing work of Greaves [10] and Erdős and Mahler [6],
that if k is at least (r − 1)/2 or k = 2 and r = 6 then there are positive numbers
C3 and C4, which depend on k and F , such that if Z exceeds C3 then

(1.3) RF,k(Z) > C4Z
2
d .

The estimates (1.2) and (1.3) were used by Gouvêa and Mazur [8] and Stewart
and Top [36] in order to estimate, for any elliptic curve defined over Q, the num-
ber of twists of the curve for which the rank of the Mordell-Weil group is at least 2.

For any real number x let dxe denote the least integer u such that x ≤ u.
In 2016 [41] Xiao extended the range for which (1.3) holds by generalizing the
determinant method of Heath-Brown [14] and Salberger [31], [32] to the setting of
weighted projective space. He proved that if

(1.4) k > min

{
7r

18
,
⌈r

2

⌉
− 2

}
,

and (k, r) is not (3,8) then (1.3) holds. In addition, the related problem of esti-
mating BF,k(Z), the number of pairs of integers (x, y) with max(|x|, |y|) ≤ Z for
which F (x, y) is k-free, has been studied by Browning [4], Filaseta, [7], Granville
[9], Greaves [10], Helfgott [15], Hooley [25], [26], Murty and Pasten [28], Poonen
[30] and Xiao [41]. Recently Bhargava [2] and Bhargava, Shankar and Wang [3]
have extended these estimates to the case of discriminant forms.

By building on the method used to prove (1.1) we shall give the first asymptotic
estimates for RF,k(Z). We shall do so under the assumption that k satisfies (1.4).

Theorem 1.1. Let F be a binary form with integer coefficients, non-zero discrim-
inant and degree d with d ≥ 3 and let r denote the largest degree of an irreducible
factor of F over the rationals. Let k be an integer with k ≥ 2 and suppose that there
is no prime p such that pk divides F (a, b) for all pairs of integers (a, b). Suppose
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that (1.4) holds. Then there exists a positive number CF,k such that

(1.5) RF,k(Z) = CF,kZ
2
d +OF,k

(
Z

2
d /gk,r(Z)

)
where

(1.6) gk,r(Z) =



logZ log logZ if (k, r) 6= (2, 6) or (3, 8)

(logZ)
(d−2)(0.7043)

d if (k, r) = (2, 6)

(
log logZ

log log logZ

)1− 2
d

if (k, r) = (3, 8).

Throughout this article we make use of the standard notation ”O”, ”o” and
”∼”, for instance as in Section 1.6 of [12], with the convention that the implicit
constant denoted by the symbol ”O” may be determined in terms of the subscripts
attached to it.

For a positive number Z we put

NF (Z) = {(x, y) ∈ Z2 : 1 ≤ |F (x, y)| ≤ Z}

and
NF (Z) = |NF (Z)|.

We also put

(1.7) AF = µ({(x, y) ∈ R2 : |F (x, y)| ≤ 1})

where µ(·) denotes the area of a set in R2. In 1933 Mahler [27] proved that if F is
a binary form with integer coefficients and degree d with d ≥ 3 which is irreducible
over Q then

NF (Z) = AFZ
2
d +OF

(
Z

1
d−1

)
.

The assumption that F is irreducible may be replaced with the weaker requirement
that F has non-zero discriminant; see [39].

Let k be an integer with k ≥ 2. For a positive number Z we put

NF,k(Z) = {(x, y) ∈ Z2 : F (x, y) is k-free and 1 ≤ |F (x, y)| ≤ Z}

and
NF,k(Z) = |NF,k(Z)|.

For each positive integer m we put

ρF (m) = |{(i, j) ∈ {0, · · · ,m− 1}2 : F (i, j) ≡ 0 (mod m)}|
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and

λF,k =
∏
p

(
1− ρF (pk)

p2k

)
,

where the product is taken over the primes p. Observe that the product converges
since k ≥ 2 and ρF (pk) is at most p2k−2 + dpk provided that p does not divide the
discriminant ∆(F ), see [35]. Further λF,k = 0 whenever there is a prime p such
that pk divides F (a, b) for all (a, b) in Z2. Next we put

(1.8) cF,k = λF,kAF .

In order to prove Theorem 1.1 we shall first establish the following result which is
an analogue of Mahler’s theorem for the case of k-free values assumed by a binary
form.

Theorem 1.2. Let F be a binary form with integer coefficients, non-zero discrim-
inant and degree d with d ≥ 3 and let r denote the largest degree of an irreducible
factor of F over Q. Let k be an integer with k ≥ 2 and suppose that (1.4) holds.
Then, with cF,k defined by (1.8), we have

(1.9) NF,k(Z) = cF,kZ
2
d +OF,k

(
Z

2
d /gk,r(Z)

)
with gk,r(Z) given by (1.6).

Let A be an element of GL2(Q) with

A =

(
a1 a2
a3 a4

)
.

Put FA(x, y) = F (a1x + a2y, a3x + a4y). We say that A fixes F if FA = F . The
set of A in GL2(Q) which fix F is the automorphism group of F and we shall
denote it by AutF . Let G1 and G2 be subgroups of GL2(Q). We say that they
are equivalent under conjugation if there is an element T in GL2(Q) such that
G1 = TG2T

−1. There are 10 equivalence classes of finite subgroups of GL2(Q)
under GL2(Q)-conjugation to which AutF might belong, see [29] and [37], and we
give a representative of each equivalence class together with its generators in Table
1 below.
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Table 1
Group Generators Group Generators

C1

(
1 0
0 1

)
D1

(
0 1
1 0

)

C2

(
−1 0
0 −1

)
D2

(
0 1
1 0

)
,

(
−1 0
0 −1

)

C3

(
0 1
−1 −1

)
D3

(
0 1
1 0

)
,

(
0 1
−1 −1

)

C4

(
0 1
−1 0

)
D4

(
0 1
1 0

)
,

(
0 1
−1 0

)

C6

(
0 −1
1 1

)
D6

(
0 1
1 0

)
,

(
0 1
−1 1

)

Let Λ be the sublattice of Z2 consisting of (u, v) in Z2 for which A
(
u
v

)
is in Z2

for all A in AutF .

When AutF is conjugate to D3 it has three subgroups G1, G2 and G3 of order
2 with generators A1, A2 and A3 respectively, and one, G4 say, of order 3 with
generator A4. Let Λi = Λ(Ai) be the sublattice of Z2 consisting of (u, v) in Z2 for
which Ai

(
u
v

)
is in Z2 for i = 1, 2, 3, 4.

When AutF is conjugate to D4 there are three subgroups G1, G2 and G3 of
order 2 of AutF/{±I} where I denotes the 2 × 2 identity matrix. Let Λi be the
sublattice of Z2 consisting of (u, v) in Z2 for which A

(
u
v

)
is in Z2 for A in a gener-

ator of Gi for i = 1, 2, 3.

Finally when AutF is conjugate to D6 there are three subgroups G1, G2 and
G3 of order 2 and one, G4 say, of order 3 in AutF/{±I}. Let Ai be in a generator
of Gi for i = 1, 2, 3, 4. Let Λi be the sublattice of Z2 consisting of (u, v) in Z2 for
which Ai

(
u
v

)
is in Z2 for i = 1, 2, 3, 4.

Let L be a sublattice of Z2. We define cF,k,L in the following manner. For any
basis {ω1, ω2} of L with ω1 = (a1, a3) and ω2 = (a2, a4) we define Fω1,ω2

(x, y) =
F (a1x + a2y, a3x + a4y). Notice that if {ω′1, ω′2} is another basis for L then it is
related to {ω1, ω2} by a unimodular transformation. As a consequence,

cFω1,ω2
,k = cFω′1,ω′2 ,k

and so we may define cF,k,L by putting

cF,k,L = cFω1,ω2
,k.
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Observe that if L = Z2 then cF,k,L = cF,k. For brevity, we shall write

(1.10) c(L) = cF,k,L.

We are now able to determine the positive number CF,k in (1.5) of Theorem
1.1 explicitly in terms of AutF and the lattices described above.

Theorem 1.3. The positive number CF,k in the statement of Theorem 1.1 is given
by the following table:

Rep(F ) CF,k Rep(F ) CF,k

C1 cF,k D1 cF,k −
c(Λ)

2

C2
cF,k

2
D2

1

2

(
cF,k −

c(Λ)

2

)

C3 cF,k −
2c(Λ)

3
D3 cF,k −

c(Λ1)

2
− c(Λ2)

2
− c(Λ3)

2
− 2c(Λ4)

3
+

4c(Λ)

3

C4
1

2

(
cF,k −

c(Λ)

2

)
D4

1

2

(
cF,k −

c(Λ1)

2
− c(Λ2)

2
− c(Λ3)

2
+

3c(Λ)

4

)

C6
1

2

(
cF,k −

2c(Λ)

3

)
D6

1

2

(
cF,k −

c(Λ1)

2
− c(Λ2)

2
− c(Λ3)

2
− 2c(Λ4)

3
+

4c(Λ)

3

)

Here Rep(F ) denotes a representative of the equivalence class of AutF under
GL2(Q)-conjugation, Λ and Λi’s are defined above, cF,k is as in (1.8), and c(Λ)
and c(Λi) as in (1.10).

Recall (1.1). We remark that while CF,k is equal to λF,kCF when AutF is
conjugate to either C1 or C2, in general CF,k is different from λF,kCF . For instance

if G(x, y) = 8x3 + y3 then, by Lemma 3.3 of [37], AutG =

((
1 0
0 1

)
,

(
0 1/2
2 0

))
so AutG is conjugate to D1 and, by Corollary 1.3 of [37],

(1.11) CG =
3

4
AG.

Furthermore Λ, the sublattice of Z2 consisting of (u, v) in Z2 for which A
(
u
v

)
is in

Z2 for all A in AutG, is generated by ω1 = (1, 0) and ω2 = (0, 2). Observe that

(1.12) Gω1,ω2
(x, y) = 8(x3 + y3)

and so when k is 2 or 3 we have λGω1,ω2,k
= 0 since ρGω1,ω2

(2k) = 22k. Thus, when
k is 2 or 3, c(Λ) = cGω1,ω2

,k = 0 and, by Theorem 1.3,

(1.13) CG,k = cG,k
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hence, by (1.8) and (1.11),

(1.14) CG,k =
4

3
λG,kCG.

We conjecture that the estimates for RF,k(Z) in Theorem 1.1 and for NF,k(Z)
in Theorem 1.2 apply without hypothesis (1.4).

Conjecture 1.4. Let F be a binary form with integer coefficients, non-zero dis-
criminant and degree d with d at least 3. Let k be an integer larger than 1. Then
either cF,k = 0 or

(1.15) NF,k(Z) ∼ cF,kZ
2
d

where cF,k is defined by (1.8). If there is no prime p such that pk divides F (a, b)
for all pairs of integers (a, b) then

(1.16) RF,k(Z) ∼ CF,kZ
2
d

where CF,k is the positive number given by Theorem 1.3.

Let F be a binary form with integer coefficients, non-zero discriminant and
degree d with d ≥ 3. Granville [9] established an asymptotic estimate for BF,2(Z),
the number of pairs of integers (x, y) with absolute value at most Z for which
F (x, y) is squarefree subject to the abc conjecture, see eg. [38]. Let k be an
integer with k > 1. The same analysis allows one to give an asymptotic estimate
for BF,k(Z), the number of pairs of integers (x, y) with absolute value at most
Z for which F (x, y) is k-free. We may use such an estimate in conjunction with
the arguments used to prove Theorem 1.1 and Theorem 1.2 in order to prove
Conjecture 1.4, see the final paragraph of Section 6. In particular, Conjecture 1.4
follows from the abc conjecture.

2. Preliminary lemmas

Let F (x, y) be a binary form with integer coefficients, non-zero discriminant and
degree d with d ≥ 3. Suppose that F factors over C as

(2.1) F (x, y) =

d∏
i=1

(γix+ βiy)

and put

H(F ) =

d∏
i=1

√
|γi|2 + |βi|2.

Then H(F ) does not depend on the factorization in (2.1).

A special case of Theorem 3 of Thunder [39] is the following explicit version of
a result of Mahler [27].
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Lemma 2.1. Let F be a binary form with integer coefficients, non-zero discrimi-
nant and degree d ≥ 3. Let Z be a real number with Z ≥ 1. Then, with AF defined
by (1.7), we have ∣∣∣NF (Z)−AFZ

2
d

∣∣∣ = O
(
Z

1
d−1H(F )d−2

)
,

where the implied constant is absolute.

We may write

(2.2) F (x, y) = a

d∏
i=1

(x− αiy)

where a is a positive integer and α1, . . . , αd are the roots of F (x, 1) provided that y
is not a factor of F (x, y). In the latter case, since the discriminant of F is non-zero,
we have

(2.3) F (x, y) = ay

d−1∏
i=1

(x− αiy).

Put

(2.4) EF =

2 max
1≤j≤k

(1, |αj |)

min(1,min
i 6=j
|αi − αj |)

where k = d if (2.2) holds and k = d− 1 if (2.3) holds.

Lemma 2.2. Let F be a binary form with integer coefficients, non-zero discrimi-
nant and degree d with d ≥ 3. Let Z be a real number with Z ≥ 1. For any positive
real number β larger than EF the number of pairs of integers (x, y) with

0 < |F (x, y)| ≤ Z

for which

max(|x|, |y|) > Z
1
d β

is

OF

(
Z

1
d log(1 + Z) +

Z
2
d

βd−2

)
.

Proof. We shall follow Heath-Brown’s proof of Theorem 8 in [14]. Accordingly put

S(Z;C) = |{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ Z,C < max(|x|, |y|) ≤ 2C, gcd(x, y) = 1}|.

Suppose that

(2.5) C ≥ Z 1
dEF .
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Heath-Brown observes that by Roth’s theorem S(Z;C) = 0 unless C �F Z
2 .

Suppose that we are in the case when (2.2) holds and that (x, y) is a pair of
integers with gcd(x, y) = 1,

0 < |F (x, y)| ≤ Z

and

(2.6) C < max{|x|, |y|} ≤ 2C

Further suppose that i0 is an index for which

|x− αi0y| ≤ |x− αjy|

for j = 1, . . . , d. Note that then

(2.7) |x− αi0y| ≤ Z1/d.

We have two cases to consider. The first case is when max(|x|, |y|) = |y|. In
this case we have, for j 6= i0,

(2.8) |x− αjy| = |(x− αi0y) + (αi0 − αj)y| ≥ |αi0 − αj ||y| − |x− αi0y|

and, by (2.5), (2.6) and (2.7),

(2.9)
1

2
|αi0 − αj ||y| − |x− αi0y| ≥

1

2
|αi0 − αj |Z1/dEF − Z1/d ≥ 0.

Thus, by (2.8) and (2.9),

(2.10) |x− αjy| ≥
1

2
|αi0 − αj ||y| ≥

1

2
|αi0 − αj |C.

The second case is when max(|x|, |y|) = |x|. Then

(2.11) |αi0(x−αjy)| = |(αi0−αj)x+αj(x−αi0y)| ≥ |αi0−αj ||x|−|αj ||x−αi0y|,

and, by (2.4), (2.10) and (2.11),

(2.12)
1

2
|αi0 − αj ||x| − |αj ||x− αi0y| ≥

1

2
|αi0 − αj |Z1/dEF − |αj |Z1/d ≥ 0.

Thus, by (2.11) and (2.12),

(2.13) |x− αjy| ≥
1

2|αi0 |
|αi0 − αj |C.

It now follows from (2.6), (2.10) and (2.13) that

(2.14) C �F |x− αjy| �F C.

We obtain (2.14) in a similar fashion when (2.3) holds.
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Thus, by (2.14),

(2.15) |x− αi0y| �F Z/C
d−1.

The number of coprime integer pairs (x, y) satisfying (2.6) and (2.15) for some
index i0 is an upper bound for S(Z;C) and therefore, by Lemma 1, part (vii) of
[14],

(2.16) S(Z;C)�F 1 +
Z

Cd−2
.

Put

S(1)(Z;C) = |{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ Z,C < max(|x|, |y|), gcd(x, y) = 1}|.

Therefore on replacing C by 2jC in (2.16) for j = 1, 2, · · · and summing we find
that

S(1)(Z;C)�F log(1 + Z) +
Z

Cd−2
.

Next put

S(2)(Z;C) = |{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ Z,C < max(|x|, |y|)}|.

Then

S(2)(Z;C)�F

∑
h≤Z1/d

S(1)

(
Z

hd
,
C

h

)
and since C > Z

1
dEF we see that

C

h
>

(
Z

hd

) 1
d

EF ,

hence

S(2)(Z;C)�F

∑
h≤Z1/d

(
log(1 + Z) +

Z

h2Cd−2

)

�F Z
1
d log(1 + Z) +

Z

Cd−2
.

Our result now follows on taking C = Z
1
d β since β > EF .

For any positive real numbers Z and β put

NF (Z, β) = |{(x, y) ∈ Z2 : |F (x, y)| ≤ Z,max(|x|, |y|) ≤ Z 1
d β}|.

Lemma 2.3. Let F be a binary form of degree d ≥ 3 with integer coefficients and
non-zero discriminant. Let Z be a real number with Z ≥ 1. Let EF be as in (2.4)
and suppose that β is a real number with β > EF . Then

NF (Z, β) = AFZ
2
d +OF

(
Z

1
d−1 + Z

1
d β + Z

2
d β−(d−2)

)
.
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Proof. This follows from Lemma 2.1 and Lemma 2.2 on noting that the number of
pairs of integers (x, y) with max(|x|, |y|} ≤ Z

1
d β for which F (x, y) = 0 is at most

OF

(
Z

1
d β
)

.

In order to facilitate the determination of the main terms in Theorems 1.1 and
1.2 we introduce the quantity ÑF (Z, β), which is the number of pairs of integers

(x, y) such that |F (x+θ1, y+θ2)| ≤ Z and max(|x+θ1|, |y+θ2|) ≤ Z
1
d β whenever

0 ≤ θ1 < 1 and 0 ≤ θ2 < 1.

Lemma 2.4. Let F be a binary form with integer coefficients, non-zero discrimi-
nant and degree d ≥ 3. Let Z be a real number, let EF be as in (2.4) and suppose

that β is a real number with Z1/d2 > β > EF . Then

ÑF (Z, β) = AFZ
2
d +OF

(
Z

1
d−1 + Z

2
d β−(d−2) + Z

1
d βd−1

)
.

Proof. Plainly

(2.17) ÑF (Z, β) ≤ NF (Z, β).

Note that for integers x, y with (x, y) 6= (0, 0) there is a number κ with κ ≥ 1,
which depends on F , such that for (θ1, θ2) in R2 with |θi| ≤ 1 for i = 1, 2 we have

|F (x+ θ1, y + θ2)| ≤ |F (x, y)|+ κmax(|x|, |y|)d−1.

Put

(2.18) Z1 = Z − κ
(
Z

1
d β
)d−1

and observe that we may assume that Z exceeds a positive number depending on
F and, in particular, that Z1 ≥ 1. Thus if max(|x|, |y|) ≤ Z 1

d β and

|F (x, y)| ≤ Z1

then, for (θ1, θ2) ∈ R2 with |θi| ≤ 1 for i = 1, 2, we have

(2.19) |F (x+ θ1, y + θ2)| ≤ Z.

Furthermore, since β < Z1/d2 ,

(2.20) Z
1
d − Z

1
d
1 = Z

1
d − Z 1

d

(
1− κβd−1

Z
1
d

) 1
d

and so

(2.21) Z
1
d − Z

1
d
1 =

κβd−1

d
+OF

(
Z
−1
d β2(d−1)

)
.

Since κ ≥ 1 and β ≥ 2, if max(|x|, |y|) ≤ Z
1
d
1 β then

(2.22) max(|x|+ 1, |y|+ 1) ≤ Z 1
d β
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and hence, by (2.19) and (2.22),

(2.23) NF (Z1, β) ≤ ÑF (Z, β)

for Z sufficiently large in terms of F . Note that

(2.24) Z
2
d
1 =

(
Z − κ

(
Z

1
d β
)d−1) 2

d

= Z
2
d +OF

(
Z

1
d βd−1

)
.

The result now follows from Lemma 2.3, (2.17), (2.23) and (2.24).

We now put, for a real number Z, an integer k with k ≥ 2 and positive numbers
γ and β,

NF,k(Z, γ, β) = |{(x, y) ∈ Z2 : |F (x, y)| ≤ Z,max(|x|, |y|) ≤ Z 1
d β and

F (x, y) is not divisible by pk for any prime p with p ≤ γ}|,

and

NF,k(Z, γ) = |{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ Z and F (x, y) is not divisible by

pk for any prime p with p ≤ γ}|.

Lemma 2.5. Let F be a binary form with integer coefficients, non-zero discrimi-
nant and degree d with d ≥ 3. Let Z be a real number with Z ≥ 4 and let k be an
integer with k ≥ 2. Then

NF,k

(
Z,

1

2kd
logZ

)
= cF,kZ

2
d +OF,k

(
Z

2
d /(logZ log logZ)

)
with cF,k given by (1.8).

Proof. We have

NF,k

(
Z,

1

2kd
logZ

)
= NF,k

(
Z,

1

2kd
logZ, (logZ)6

)
+OF,k

(
Z

1
d (logZ)6

)
+OF,k

(
|{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ Z and max(|x|, |y|) > Z

1
d (logZ)6}|

)
.

By Lemma 2.2, since d ≥ 3,
(2.25)

NF,k

(
Z,

1

2kd
logZ

)
= NF,k

(
Z,

1

2kd
logZ, (logZ)6

)
+OF,k

(
Z

2
d /(logZ)6

)
.

Next we put

V = V (d, k, Z) =
∏

p≤logZ/(2kd)

pk,
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where the product is taken over primes p. By the Prime Number Theorem,

(2.26) V = O
(
Z

1
2d+

1
d2

)
.

For each pair of integers (a, b) we define B(a, b) by

B(a, b) = {(t, u) ∈ R2 : aV ≤ t < (a+ 1)V, bV ≤ u < (b+ 1)V }.

Observe that B(a, b) is a square in R2. We say that B(a, b) is admissible if

(2.27) |F (t, u)| ≤ Z and max(|t|, |u|) ≤ Z 1
d (logZ)6

whenever (t, u) is in B(a, b). Let B1 denote the number of admissible squares
B(a, b). We have

B1 = ÑF

(
Z

V d
, (logZ)6

)
and so by Lemma 2.4 and (2.26), since d ≥ 3,

(2.28) B1 = AF
Z

2
d

V 2
+OF

((
Z

V d

) 1
d−1

+
Z

2
d

V 2(logZ)6
+
Z

1
d

V
(logZ)6(d−1)

)
.

Therefore the number of pairs of integers (x, y) which are in one of the admissible
squares is B1V

2 and so is

(2.29) AFZ
2
d +OF

(
Z

1
d−1V

d−2
d−1 +

Z
2
d

(logZ)6
+ Z

1
dV (logZ)6(d−1)

)
.

By Lemma 2.3

(2.30) NF (Z, (logZ)6) = AFZ
2
d +OF

(
Z

1
d−1 + Z

1
d (logZ)6 + Z

2
d (logZ)−6(d−2)

)
and so the number of pairs of integers (x, y) for which |F (x, y)| ≤ Z and max(|x|, |y|) ≤
Z

1
d (logZ)6 which are not in an admissible square is

(2.31) OF

(
Z

1
d−1V

d−2
d−1 + Z

2
d /(logZ)6 + Z

1
dV (logZ)6(d−1)

)
.

We may now apply the Chinese Remainder Theorem to conclude that within each
admissible square the number of integer pairs (x, y) for which F (x, y) is not divisible
by pk for any prime p with p ≤ 1

2kd logZ is precisely∏
p≤logZ/(2kd)

(
1− ρF (pk)

p2k

)
V 2.

Thus the number of integer pairs (x, y) in some admissible square and for which
F (x, y) is not divisible by pk for any prime p with p ≤ 1

2kd logZ is

(2.32) B1

∏
p≤logZ/(2kd)

(
1− ρF (pk)

p2k

)
V 2.
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Therefore, by (2.28), (2.31) and (2.32),

(2.33) NF,k

(
Z,

1

2kd
logZ

)
= AF

∏
p≤logZ/(2kd)

(
1− ρF (pk)

p2k

)
Z

2
d+

OF,k

(
Z

1
d−1V

d−2
d−1 + Z

1
dV (logZ)6(d−1) + Z

2
d /(logZ)6

)
.

By(2.26) and (2.33),
(2.34)

NF,k

(
Z,

1

2kd
logZ

)
= AF

∏
p≤logZ/(2kd)

(
1− ρF (pk)

p2k

)
Z

2
d +OF,k

(
Z

2
d /(logZ)6

)
.

Note that the number of integer pairs (a, b) with 0 ≤ a < pk and 0 ≤ b < pk

for which p divides both a and b is p2k−2. Further the number of pairs (a, b) for
which p does not divide both a and b and for which F (a, b) ≡ 0 (mod pk) is at
most dpk provided that p does not divide ∆(F ), see [35]. Thus for primes p which
do not divide ∆(F ), we have

(2.35) ρF (pk) ≤ p2k−2 + dpk ≤ (d+ 1)p2k−2,

since k ≥ 2. Put

P =
∏

p≤logZ/(2kd)

(
1− ρF (pk)

p2k

)
, P1 =

∏
p

(
1− ρF (pk)

p2k

)

and

t =
∑

p>logZ/(2kd)

log

(
1− ρF (pk)

p2k

)
.

Then

P1 − P = P (et − 1) = −P
(
−t− t2

2!
− t3

3!
− · · ·

)
.

Since t is negative,

(2.36) 0 ≤ P − P1 ≤ −Pt.

Further,

−t = OF,k

 ∑
p>logZ/(2kd)

ρF (pk)

p2k


and by (2.35),

(2.37) − t = OF,k

 ∑
p>logZ/(2kd)

1

p2

 .
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We have ∑
p>logZ/(2kd)

1

p2
=

∞∑
j=0

∑
2j logZ

2kd <p<2j+1 logZ
2kd

1

p2

and so, by the Prime Number Theorem,

(2.38)

∑
p>logZ/(2kd)

1

p2
= Ok

 ∞∑
j=0

(
2j+1 logZ

(j + 1) log 2 + log logZ

)
1

22j(logZ)2


= Ok

(
1

logZ log logZ

)
.

Therefore, by (2.36), (2.37) and (2.38),

(2.39) P = P1 +OF,k

(
1

logZ log logZ

)
.

It now follows from (2.34) and (2.39) that

(2.40) NF,k

(
Z,

1

2kd
logZ

)
= cF,kZ

2
d +OF,k

(
Z

2
d /(logZ log logZ)

)
,

as required.

We say that an integer h is essentially represented by F if whenever (x1, y1), (x2, y2)
are in Z2 and

F (x1, y1) = F (x2, y2) = h

then there exists A in AutF such that

A

(
x1
y1

)
=

(
x2
y2

)
.

We remark that if there is only one integer pair (x, y) for which F (x, y) = h then
h is essentially represented since I is in AutF .

For any positive number Z let R
(2)
F (Z) denote the number of integers h with

0 < |h| ≤ Z which are represented by F but which are not essentially represented
by F . For each binary form F with integer coefficients, non-zero discriminant and
degree d with d ≥ 3 we define βF in the following way. If F has a linear factor in
R[x, y] we put
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(2.41)

βF =



12

19
if d = 3 and F is irreducible over Q

4

7
if d = 3 and F has exactly one linear factor over Q

5

9
if d = 3 and F has three linear factors over Q

3

(d− 2)
√
d+ 3

if 4 ≤ d ≤ 8

1

d− 1
if d ≥ 9.

If F does not have a linear factor over R then d is even and we put

(2.42) βF =


3

d
√
d

if d = 4, 6, 8

1

d
if d ≥ 10.

In [37], Stewart and Xiao, building on work of Heath-Brown [14], Salberger
[31], [32] and Colliot-Thélène [14], proved the following result.

Lemma 2.6. Let F be a binary form with integer coefficients, non-zero discrimi-
nant and degree d with d ≥ 3. Then for each ε > 0,

R
(2)
F (Z) = OF,ε

(
ZβF+ε

)
where βF is given by (2.41) and (2.42).

The proof of Lemma 2.6 is based on the p-adic determinant method of Heath-
Brown as elaborated in [14].

Recall that if F is a binary form we denote by Λ the sublattice of Z2 consisting
of integer pairs (u, v) for which A

(
u
v

)
is in Z2 for all A in AutF . Further, if AutF

is conjugate to D3,D4 and D6 we define Λi for i = 1, 2, 3, 4 as in our discussion
following Table 1 in the introduction.

Lemma 2.7. Let F be a binary form with integer coefficients, non-zero discrimi-
nant and degree d ≥ 3. If A is an element of order 3 in AutF then

Λ(A2) = Λ(A).

If AutF is equivalent under conjugation in GL2(Q) to D3,D4 or D6 then

Λi ∩ Λj = Λ for i 6= j.

Lemma 2.7 is Lemma 3.2 of [37] .
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3. Outline of the proof of Theorem 1.2

Let N1 denote the number of integer pairs (x, y) for which

(i) 0 < |F (x, y)| ≤ Z,

and

(ii) pk - F (x, y) for 1 ≤ p ≤ 1
2kd logZ.

By Lemma 2.5

(3.1) N1 = cF,kZ
2
d +OF,k

(
Z

2
d /(logZ log logZ)

)
.

Our objective is to show that the number N of integer pairs for which (i) holds
and

(iii) pk - F (x, y) for p a prime,

satisfies a similar estimate to (3.1). To that end let N2 denote the number of
integer pairs (x, y) for which (i) holds and p divides both x and y for some prime
p > 1

2kd logZ.
Let F (1, 0) = u and F (0, 1) = v. Notice that we may suppose that uv 6= 0

since if uv = 0 we may replace F by FA where A is a unimodular 2× 2 matrix and
FA(1, 0)FA(0, 1) 6= 0. Next observe that if x and y are integers and p is a prime
which divides F (x, y) and y but does not divide x then p divides u. Similarly if
p divides F (x, y) and x but does not divide y then p divides v. We shall suppose
that Z is sufficiently large that

(3.2) |uv| < 1

2kd
logZ.

Thus if p is larger than 1
2kd logZ, divides F (x, y) and does not divide both x and y

then p does not divide either x or y. Let N3 denote the number of pairs of integers
(x, y) for which (i) holds and for some prime p with

1

2kd
logZ < p ≤ (logZ)9

we have pk|F (x, y) and p - gcd(x, y). Let N4 denote the number of integer pairs
(x, y) for which (i) holds and for some prime p with

(logZ)9 < p ≤ Z
2
d

(logZ)9
,

pk|F (x, y) and p - gcd(x, y). Finally let N5 denote the number of integer pairs
(x, y) for which (i) holds and for some prime p with

Z
2
d

(logZ)9
< p,



18 C.L. Stewart and S.Y. Xiao

pk|F (x, y) and p - gcd(x, y). Then

(3.3) N = N1 +O(N2 +N3 +N4 +N5).

In order to establish Theorem 1.2 it suffices, by (3.1) and (3.3), to prove that

Ni = OF,k

(
Z

2
d /u(z)

)
for i = 2, 3, 4 and 5 where

(3.4) u(z) = logZ log logZ

when k and r satisfy (1.4) with (k, r) not (2, 6) or (3, 8),

(3.5) u(z) = (logZ)
(d−2)δ
d

with δ = 0.7043 when (k, r) is (2, 6) and

(3.6) u(z) = (log logZ/ log log logZ)1−
2
d

when (k, r) is (3, 8).

We may suppose that F factors over Q as

(3.7) F (x, y) =

t∏
i=1

Fi(x, y)

with Fi in Z[x, y] and irreducible over Q for i = 1, · · · , t. Let ri be the degree of
Fi for i = 1, · · · , t and put

(3.8) r = max(r1, · · · , rt).

4. An estimate for N2 and for N3

Notice that if p divides a and b and 0 < |F (a, b)| ≤ Z then |F (a, b)| = pd|F (a/p, b/p)|,
so p ≤ Z 1

d . As a consequence

(4.1) N2 = O

 ∑
1

2kd logZ<p≤Z
1
d

∣∣∣∣{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ Z

pd

}∣∣∣∣
 .

Further, by Lemma 2.1, for each prime p with p ≤ Z 1
d ,

(4.2)

∣∣∣∣{(x, y) ∈ Z2 : 0 < |F (x, y)| ≤ Z

pd

}∣∣∣∣ = AF
Z

2
d

p2
+OF

((
Z

pd

) 1
d−1

)
.
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Thus by (4.1) and (4.2),

(4.3) N2 = OF

 ∑
1

2kd logZ<p

1

p2

Z
2
d

 .

It now follows from (2.38) and (4.3) that

(4.4) N2 = OF,k

(
Z

2
d /(logZ log logZ)

)
.

The integer pairs (a, b) with F (a, b) ≡ 0 (mod pk) and for which p does not
divide both a and b lie in at most d sublattices Lθ of Z2, provided that p does not
divide the discriminant ∆(F ) of F , see [10]. Further, if p does not divide uv then
each sublattice Lθ is defined by a congruence of the form

a ≡ θb (mod pk)

for some integer θ with 0 ≤ θ < pk. Let (a1, a3) and (a2, a4) be a basis for Lθ
chosen so that max(|a1|, |a2|, |a3|, |a4|) is minimized. Then

max(|a1|, |a2|, |a3|, |a4|) ≤ pk.

Put
FLθ (x, y) = F (a1x+ a2y, a3x+ a4y)

and notice that
|NF (Z) ∩ Lθ| = NFLθ (Z).

Observe that
H(FLθ ) ≤ 4dpkdH(F ).

Therefore by Lemma 2.1

NFLθ (Z) = AFLθZ
2
d +OF

(
pkd(d−2)Z

1
d−1

)
and, since the lattice Lθ has determinant pk,

(4.5) NFLθ (Z) =
AFZ

2
d

pk
+OF

(
pkd(d−2)Z

1
d−1

)
.

Thus

N3 = OF,k

Z 2
d

∑
1

2kd logZ<p≤(logZ)9

1

pk


= OF,k

Z 2
d

∑
1

2kd logZ<p

1

p2

 ,

and so, by (2.38),

(4.6) N3 = OF,k

(
Z

2
d /(logZ log logZ)

)
.
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5. An estimate for N4

In order to estimate N4 we note that

(5.1) N4 = O
(
N

(1)
4 +N

(2)
4

)
where N

(1)
4 is the number of integer pairs (x, y) for which

(5.2) max(|x|, |y|) ≤ Z 1
d (logZ)7/2

and for which pk divides F (x, y) for some p with

(5.3) (logZ)9 < p ≤ Z 2
d /(logZ)9

which does not divide both x and y. Further N
(2)
4 is the number of integer pairs

(x, y) for which 0 < |F (x, y)| ≤ Z and

max(|x|, |y|) > Z
1
d (logZ)7/2.

By Lemma 2.2 we have, since d is at least 3,

(5.4) N
(2)
4 = OF

(
Z

2
d /(logZ)

7
2

)
.

It remains only to estimate N
(1)
4 and we shall do so by a modification of an argu-

ment of Greaves [10] based on the geometry of numbers.

Recall (3.7). For i = 1, . . . , t we let N
(1)
4,i be the number of integer pairs (x, y)

for which F (x, y) 6= 0, (5.2) holds and pk divides Fi(x, y) for some prime satisfying
(5.3) which does not divide both x and y. Notice that if p divides Fi(x, y) and
Fj(x, y) with i 6= j then p divides ∆(F ). We may suppose that Z is sufficiently
large that (logZ)9 exceeds |∆(F )|. Then

(5.5) N
(1)
4 = O(N

(1)
4,1 + · · ·+N

(1)
4,t ).

Suppose that (a, b) is an integer pair for which pk divides Fi(a, b) for some
prime p satisfying (5.3) which does not divide both a and b. Then, since p does
not divide uv by (3.2) and (5.3), (a, b) belongs to one of at most ri lattices Lθ
defined by a congruence

a ≡ θb (mod pk).

Following Greaves [10] we let M = M(θ, pk) denote the minimal positive value of
max(|a|, |b|) as we range over (a, b) in Lθ. For any real number X let Nθ,k(X)
denote the number of pairs (a, b) in Lθ for which |a| ≤ X and |b| ≤ X. Then, by
Lemma 1 of [10],

(5.6) Nθ,k(X) ≤ 4X2

pk
+O

(
X

M

)
+O (1) .
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(Note that in the statement of Lemma 1 of [10] a term O (1) has been omitted.)

It then follows from (5.6) with X = Z
1
d (logZ)

7
2 that

N
(1)
4,i ≤

∑
(logZ)9<p≤Z

2
d (logZ)−9

∑
θ

Nθ,k(X)

≤
∑

(logZ)9<p≤Z
2
d (logZ)−9

∑
θ

(
4Z

2
d (logZ)7

pk
+O

(
Z

1
d (logZ)

7
2

M(θ, pk)

)
+O (1)

)
.

For each prime p we have at most d terms θ in the inner sum. Thus

N
(1)
4,i = OF

Z 2
d (logZ)7

∑
(logZ)9<p≤Z

2
d (logZ)−9

1

pk


(5.7)

+OF

Z 1
d (logZ)

7
2

∑
(logZ)9<p≤Z

2
d (logZ)−9

∑
θ

1

M(θ, pk)

+OF

(
Z

2
d (logZ)−10

)
.

Certainly

∑
(logZ)9<p≤Z

2
d (logZ)−9

1

pk
= O

 ∑
(logZ)9<p

1

pk

(5.8)

= O

(
1

(logZ)9(k−1)

)
= O

(
1

(logZ)9

)
.

Further, since M(θ, pk) is at least 1,

(5.9)
∑

(logZ)9<p≤Z
1
2d (logZ)2

∑
θ

1

M(θ, pk)
= OF

(
Z

1
2d (logZ)2

)
.

It remains to estimate S where

S =
∑

Z
1
2d (logZ)2<p<Z

2
d (logZ)−9

∑
θ

1

M(θ, pk)
.

Notice that if ri = 1 then Fi(x, y) = OF (Z
1
d (logZ)

7
2 ) and so if pk divides Fi(x, y)

then, since k ≥ 2, p = OF (Z
1
2d (logZ)

7
4 ).Thus if ri = 1 then

(5.10) S = OF (1).
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We shall now estimate S under the assumption that ri > 1. We put S = S1+S2

where S1 is the sum over pairs p, θ with

M(θ, pk) ≥ Z
1
d

(logZ)5

and S2 is the sum over the other pairs (p, θ). Certainly

S1 = OF

 ∑
p≤Z

2
d (logZ)−9

(logZ)5

Z
1
d

(5.11)

= OF

(
Z

1
d

(logZ)5

)
.

On the other hand S2 consists of the sum over pairs p, θ with

1 ≤M ≤ Z
1
d

(logZ)5
,

and p > Z
1
2d (logZ)2. To each pair p, θ we may associate a pair of integers (r, s)

for which max(|r|, |s|) = M(θ, pk). Note that since ri > 1 we have Fi(r, s) 6= 0.

Further there are at most OF (1) pairs (p, θ) with p > Z
1
2d (logZ)2 which can be

associated with a given pair (r, s) since Fi(r, s) = OF (Z
ri
d ). Thus

S2 = O


∑

1≤s≤Z
1
d (logZ)−5

1

s

∑
0≤r≤s

∑
pk|F (r,s)
F (r,s)6=0

p>Z
1
2d (logZ)2

1

(5.12)

= OF,k

(
Z

1
d (logZ)−5

)
.

Therefore, by (5.5), (5.7), (5.8), (5.9), (5.10), (5.11) and (5.12),

(5.13) N
(1)
4 = OF,k

(
Z

2
d /(logZ)

3
2

)
.

Further, by (5.1), (5.4) and (5.13),

(5.14) N4 = OF,k

(
Z

2
d /(logZ)

3
2

)
.

6. An estimate for N5

For any real number T let B∗F,k(T ) denote the number of pairs of integers (x, y)

with max(|x|, |y|) ≤ T and for which F (x, y) is divisible by pk with p a prime larger
than T 2/(log T )12. We shall suppose that T 2/(log T )12 exceeds |∆(F )|. Then

(6.1) B∗F,k(T ) = O(B∗F1,k(T ) + ...+B∗Ft,k(T )).
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If r ≤ 2k + 1 then Greaves used Selberg’s sieve to prove that

(6.2) B∗Fi,k(T ) = OF,k

(
T 2− 1

20

)
for i = 1, · · · , t. This follows from the proof of Lemma 4 of [10] on taking x = T
and η = (log T )−16; Greaves required the constraint η ≥ (log T )−2 but it may be
replaced with the weaker constraint η ≥ (log T )−16. Xiao dealt with the case when

7

18
<
k

r
<

1

2

in [41] by means of the determinant method applied to weighted projective spaces.
It follows from [41] that in this case

(6.3) B∗Fi,k(T ) = OF,k
(
T 2/(log T )4

)
for i = 1, · · · , t. Therefore for k

r >
7
18

(6.4) B∗F,k(T ) = OF,k
(
T 2/(log T )4

)
.

By a result of Helfgott, see the proof of Theorem 5.2 of [15], when (k, r) is (2, 6)

(6.5) B∗F,2(T ) = OF,2
(
T 2/(log T )δ

)
where

δ = 0.7043.

Hooley in 2009 established an asymptotic estimate for the number of integer
pairs (x, y) in a box for which F (x, y) is cubefree when F is a binary form of
degree 8 with integer coefficients which is irreducible over the rationals, see [25]
and Theorem 2 of [26]. Xiao [42] extended this work to decomposable forms F
and an examination of his proof yields an explicit error term from which we find
that

(6.6) B∗F,3(T ) = OF
(
T 2/(log log T/ log log log T )

)
when (k, r) is (3, 8).

Define g(T ) by

(6.7) g(T ) =



(log T )4 if k
r >

7
18

(log T )δ if (k, r) = (2, 6)

log log T/ log log log T if (k, r) = (3, 8).

Then by (6.4), (6.5) and (6.6),

(6.8) B∗F,k(T ) = OF,k
(
T 2/g(T )

)
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for (k, r) satisfying (1.4).
Put

(6.9) f(T ) = g
(
T

1
d

) 1
d

.

Let N
(1)
5 be the number of integer pairs (x, y) for which F (x, y) 6= 0 and pk|F (x, y)

for some prime p with

(6.10) p > Z
2
d /(logZ)9

which does not divide both x and y and for which

(6.11) max(|x|, |y|) ≤ Z 1
d f(Z).

Further, write N
(2)
5 for the number of integer pairs (x, y) for which 0 < |F (x, y)| ≤

Z and

(6.12) max(|x|, |y|) > Z
1
d f(Z).

Notice that N5 = O
(
N

(1)
5 +N

(2)
5

)
. By Lemma 2.2,

(6.13) N
(2)
5 = OF,k

(
Z

2
d /f(Z)d−2

)
= OF,k

(
Z

2
d /g(Z

1
d )

d−2
d

)
.

Furthermore, on taking T = Z
1
d f(Z), we see from (6.8) and (6.9) that

N
(1)
5 = OF,k

(
Z

2
d f(Z)2/g(Z

1
d f(Z))

)
Since g(T ) is eventually increasing and tends to infinity with T it follows from (6.9)

that f(Z) is at least 1 for Z sufficiently large. We then have g(Z
1
d ) ≤ g(Z

1
d f(Z))

and so

N
(1)
5 = OF,k

(
Z

2
d f(Z)2/g(Z

1
d )
)

But f(Z)2/g(Z
1
d ) = f(Z)−d+2, by (6.9), and thus

N
(1)
5 = OF,k

(
Z

2
d /g(Z

1
d )

d−2
d

)
.

Therefore

(6.14) N5 = OF,k

(
Z

2
d /g(Z

1
d )

d−2
d

)
.

Theorem 1.2 now follows from (3.1), (3.3), (4.4), (4.6), (5.14), (6.7) and (6.14).

If F is a binary form with integer coefficients, nonzero discriminant and degree
at least 3 and k is an integer larger than 1 then there exists a positive monotone
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increasing function g1(t) on the positive real numbers with 0 ≤ g1(t) ≤ log(t+ 2)
for all positive real numbers t and

lim
t→∞

g1(t) =∞

such that

(6.15) B∗F,k(T ) = OF,k
(
T 2/g1(T )

)
,

subject to the abc conjecture. Granville [9] showed this when k = 2 and his
argument extends readily to the general case. Arguing as above we deduce that
Conjecture 1.4 holds for NF,k(Z). With this estimate for NF,k(Z) we are then able
to establish Conjecture 1.4 for RF,k(Z) as in the next section.

7. The proof of Theorems 1.1 and 1.3

If AutF = C1 then every integer pair (x, y) for which F (x, y) is essentially repre-
sented with 0 < |F (x, y)| ≤ Z gives rise to a distinct integer h with 0 < |h| ≤ Z.
It follows from Theorem 1.2 and Lemma 2.6 that

(7.1) RF,k(Z) = cF,kZ
2
d +OF,k

(
Z

2
d /u(z)

)
where u(z) is defined as in (3.4) when k and r satisfy (1.4) with (k, r) not (2, 6)
or (3, 8), as in (3.5) when (k, r) is (2, 6) and satisfies (3.6) when (k, r) is (3, 8).
Similarly if AutF = C2 then (7.1) holds with 1

2cF,k in place of cF,k.

Suppose now that AutF is conjugate to C3. Then for A in AutF with A 6= I
we have, by Lemma 2.7, Λ(A) = Λ(A2). Thus whenever (x, y) is in Λ, F (x, y) = h
and h is essentially represented there are exactly two other pairs (x1, y1), (x2, y2)
for which F (xi, yi) = h for i = 1, 2. When (x, y) is in Z2 but not in Λ and F (x, y)
is essentially represented then F (x, y) has exactly one representative.

Let {ω1, ω2} be a basis for Λ with ω1 = (a1, a3) and ω2 = (a2, a4) and such
that max(|a1|, |a2|, |a3|, |a4) is minimized. Recall that

Fω1,ω2(x, y) = F (a1x+ a2y, a3x+ a4y).

Since
|NF,k(Z) ∩ Λ| = NFω1,ω2 ,k

(Z),

by Theorem 1.2 we have

(7.2) |NF,k(Z) ∩ Λ| = c(Λ)Z
2
d +OF,k

(
Z

2
d /u(z)

)
.

Note that since ω1 and ω2 are chosen so that max(|a1|, |a2|, |a3|, |a4|) is minimized
the implicit constant in the error term may be determined in terms of F and
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k. By (7.2) and Lemma 2.6 the number of integer pairs (x, y) in Λ for which
0 < |F (x, y)| ≤ Z and F (x, y) is k-free and essentially represented is

c(Λ)Z
2
d +OF,k

(
Z

2
d /u(z)

)
.

Each pair (x, y) is associated with two other pairs which represent the same integer.
These pairs yield

(7.3)
c(Λ)

3
Z

2
d +OF,k

(
Z

2
d /u(z)

)
integers h with 0 < |h| ≤ Z. It now follows from Theorem 1.2 and Lemma 2.6 that
there are

(7.4) (cF,k − c(Λ))Z
2
d +OF,k

(
Z

2
d /u(z)

)
integer pairs (x, y) not in Λ for which F (x, y) is k-free and essentially represented
and each pair gives rise to an integer h with 0 < |h| ≤ Z which is uniquely
represented by F . It follows from (7.3) and (7.4) that when AutF is equivalent to
C3 we have

RF,k(Z) =

(
cF,k −

2

3
c(Λ)

)
Z

2
d +OF,k

(
Z

2
d /u(z)

)
.

A similar analysis applies to the case when AutF is equivalent to D1,D2,C4 or
C6. These groups are cyclic with the exception of D2 but D2/{±I} is cyclic and
that is sufficient for our purposes.

We are left with the possibility that AutF is conjugate to D3,D4 or D6. We
first consider the case when AutF is equivalent to D4. In this case (7.2) holds
as before and since each h which is essentially represented by F and for which
h = F (x, y) with (x, y) in Λ is represented by 8 integer pairs the number of k-free
integers h with 0 < |h| ≤ Z for which there exists an integer pair (x, y) in Λ with
F (x, y) = h is

(7.5)
c(Λ)

8
Z

2
d +OF,k

(
Z

2
d /u(z)

)
.

By Lemma 2.7 Λi ∩ Λj = Λ for 1 ≤ i < j ≤ 3 and so the number of integer pairs
(x, y) in Λ1,Λ2 or Λ3 but not in Λ for which F (x, y) is essentially represented and
k-free with 0 < |F (x, y)| ≤ Z is, by Theorem 1.2,

(c(Λ1) + c(Λ2) + c(Λ3)− 3c(Λ))Z
2
d +OF,k

(
Z

2
d /u(z)

)
.

Each such integer F (x, y) has precisely four representatives and so the terms in
Λ1,Λ2,Λ3 but not in Λ contribute

(7.6)
1

4
(c(Λ1) + c(Λ2) + c(Λ3)− 3c(Λ))Z

2
d +OF,k

(
Z

2
d /u(z)

)
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terms to RF,k(Z). Finally the terms (x, y) in NF,k(Z) but not in Λ1,Λ2 or Λ3 for
which F (x, y) is essentially represented have cardinality

(cF,k − c(Λ1)− c(Λ2)− c(Λ3) + 2c(Λ))Z
2
d +OF,k

(
Z

2
d /u(z)

)
.

Each integer represented by such a term has 2 representations and therefore these
terms contribute

(7.7)
1

2
(cF,k − c(Λ1)− c(Λ2)− c(Λ3) + 2c(Λ))Z

2
d +OF,k

(
Z

2
d /u(z)

)
terms to RF,k(Z). It now follows from (7.5), (7.6), (7.7) and Lemma 2.6 that

RF,k(Z) =
1

2

(
cF,k −

c(Λ1)

2
− c(Λ2)

2
− c(Λ3)

2
+

3c(Λ)

4

)
Z

2
d +OF,k

(
Z

2
d /u(z)

)
,

as required.

Next suppose that AutF is conjugate to D3. As before the pairs (x, y) in
NF,k(Z) ∩ Λ for which F (x, y) is essentially represented yield

(7.8)
c(Λ)

6
Z

2
d +OF,k

(
Z

2
d /u(z)

)
terms in RF,k(Z). Since Λi ∩ Λj = Λ for 1 ≤ i < j ≤ 3 by Lemma 2.7 the pairs
(x, y) in NF,k(Z) ∩ Λi for i = 1, 2, 3 which are not in Λ and which are essentially
represented contribute

(7.9)

(
c(Λ1)

2
+
c(Λ2)

2
+
c(Λ3)

2
− 3c(Λ)

2

)
Z

2
d +OF,k

(
Z

2
d /u(z)

)
terms to RF,k(Z). The pairs (x, y) in NF,k(Z) ∩ Λ4 which are not in Λ and for
which F (x, y) is essentially represented contribute

(7.10)

(
c(Λ4)

3
− c(Λ)

3

)
Z

2
d +OF,k

(
Z

2
d /u(z)

)
terms to RF,k(Z). Finally the pairs (x, y) in NF,k(Z) which do not lie in Λi for
i = 1, 2, 3, 4 contribute, by Lemma 2.7,

(7.11) (cF,k − c(Λ1)− c(Λ2)− c(Λ3)− c(Λ4) + 3c(Λ))Z
2
d +OF,k

(
Z

2
d /u(z)

)
terms to RF,k(Z). It then follows from (7.8), (7.9), (7.10), (7.11) and Lemma 2.6
that

RF,k(Z) =

(
cF,k −

c(Λ1)

2
− c(Λ2)

2
− c(Λ3)

2
− 2c(Λ4)

3
+

4c(Λ)

3

)
Z

2
d+OF,k

(
Z

2
d /u(z)

)
,

as required.
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When AutF is equivalent to D6 the analysis is the same as for D3 taking into
account the fact that AutF contains −I and so the weighting factor is one half of
what it is when AutF is equivalent to D3.

Finally we note that, since there is no prime p such that pk divides F (a, b)
for all pairs of integers (a, b), cF,k is a positive number. Since an integer which is
essentially represented by F has at most |AutF | representations we have

CF,k ≥ cF,k/|AutF |

and, since the order of the automorphism group of F is at most 12, the order of
D6, we deduce that CF,k is positive. This completes the proof of Theorems 1.1
and 1.3.
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