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Definition. An algebraic integer is the root of a monic polynomial in Z|x].

An algebraic number is the root of any non-zero polynomial in Z|x].

We are interested in studying the structure of the ring of algebraic integers in an algebraic
number field. A number field is a finite extension of Q. We’ll assume that the number fields
we consider are all subfields of C.

Definition. Suppose that K and L are fields with K C L. Then K is a subfield of L and
L is an extension field of K.

We denote the dimension of L as a vector space over K by [L: K] .

If [L: K] < oo, we say L is a finite extension of K.

Definition. Suppose that H is a field with K C H C L. Then we say H is an intermediate
field of K and L. Recall that [L : K] = [L : H|[H : K].

Definition. A polynomial f € Klz] is said to be irreducible over K iff whenever f = gh
with g, h € K|z], we have g or h constant.

Recall that K|z] is a Principal Ideal Domain.

Definition. Let K be a subfield of C and let § € C be an algebraic number. We denote
by K(6) the smallest subfield of C containing K and 0,

Definition. Let K be a subfield of C and let 6 € C to be algebraic over K. A polynomial
in K[z] is said to be a minimal polynomial of 6 over K if it is monic, has 6 as a root, and
has degree as small as possible with these properties.

Theorem 1. Let K C C. Let 0 € C be algebraic over K. Then there is a unique minimal
polynomial of 6 over K.

Proof:
Plainly there is at least one. Suppose that p;(z) and py(x) are minimal polynomials for 0
over K.
Consider p;(z) — pa(z). Since p1, ps are monic and of minimal degree, the degree of p;(x) —
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po(z) is strictly smaller than the degree of pi(x), or p;(z) = po(z).
In the former case, we contradict the minimality of the degree since p;(0) — pa(#) = 0. Thus
p1 = po and the result follows. 0

Thus we can speak of “the” minimal polynomial of 6 over K.

Definition. Let K C C. Let 6 be algebraic over K. The degree of 6 over K is the degree
of the minimal polynomial of § over K.

Remark. Let K € C and # € C with 6 algebraic over K. Let p(z) be the minimal
polynomial of  over K. Suppose f € K[x] with f(#) = 0. Then p | f in K[x]. To see this
note that by the Division Algorithm in Kz],

f(z) = q(x)p(x) + r(z) with r =0 or degr < degp
and ¢, € K[z]. But

f(0) = q(0)p(0) + r(6)

Thus r(f) = 0. If r is not identically zero, then p would not have minimal degree and so
r =0. Then p = f in K|x].

Theorem 2. Let K C C. If f € K|x] is irreducible in Klz| of degree n, then f has n
distinct roots in C.

Proof:
Suppose that in C|z],

f(@) = an(z — @)’ fi(2)
with a,, € C, o € C, f; € C[z]. Then
f'(x) = 2an(z — a) fi(2) + an(z — @) fi(2)
In particular, f'(a) = 0.
Let p be the minimal polynomial of o over K. Then p divides f and f’.
Thus f is not irreducible. The contradiction establishes the result. 0

2. LECTURE: FRIDAY, JANUARY 7, 2000

Let # € C and suppose that 6 is algebraic over a field K (K C C).

Definition.  Let p(z) be the minimal polynomial of 6 over K (i.e. p € Klz]). Let
0 =60,...,0, be the roots of p. 8 = 6,,...,0, are known as the conjugates of 0 over K.
When K = QQ we just refer to the conjugates of 6.

Theorem 3. Let K C C and let 6 € C be algebraic over K of degree n. Fvery element o in
K (0) has a unique representation in the form

a=ag+al+af*+ ... +a, 0" =r0)
with ag, ay, ... 0,1 € K.

Proof:
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Existence: We have K (6) = {f(e f,9 € Klz|,g(0) # 0}. Let « € K(f). Then o = f((eg
Let p be the m1n1mal polynomial for 6 over K.
Then p and g are coprime and so there exist s,¢ € K|x] with s(z)p(x) +t(z)g(z) = 1.
Thus t(0)g(f) = 1. Hence a = f(0)t(0).
Next, by the Division Algorithm,

f(x)t(x) = q(x)p(x) + r(z) with ¢,r € K[z] and r =0 or degr <n — 1

But then f(0)t(0) = r(f) hence a = r(), as required.
Uniqueness: Suppose a = r1(f) and o = ry(0), with ry,ry € K[z] of degree < n — 1.
Then 7 (z) — ro(x) is zero or has degree < n — 1.
But r1(0) — r2(0) = 0 and 0 has degree n over K.
Thus r1(x) = re(z), as required.

O

Note that K(0) = K[0].
Definition. Let R and S be rings. An injective homomorphism ¢ : R — S is said to be
an embedding of R in S.

Theorem 4. Let K be a subfield of C and let L be a finite extension of K. Every embedding
of K in C extends to exactly [L : K| embeddings of L in C.

Proof:
We prove this by induction on [L : K]:
If [L : K] =1, then the result is immediate.
Suppose that [L : K] > 1. Let o be an embedding of K into C.
Let a € L'\ K. Let p(x) be the minimal polynomial of o over K.
If p(z) = apa™+. .. +ao, let g(x) = o(ay,)z™+...+0(ag). Then g is irreducible over o(K).
Let B1, ..., B be the roots of g in C. For each root 5 of g we define the map A\s : K[a] — C
by

)\ﬂ(bg + blOé —|— e + bm_lam_l) = O'(b()) + O'(bl)ﬁ —|— e + O'(bm_1>ﬁm_1
We can check that A\g is a ring homomorphism which extends o. We have m distinct roots
B of g and so m embeddings of K(«) in C which extend o.
Further, there are no other such embeddings A since 0 = A(0) = A(p(«)) = g(A(«)), and we
see that A(«) is a root of g.
We now appeal to our inductive hypothesis. Each of the m embeddings of K («) in C extend
o [L : K(a)] embeddings of L in C and so we have [L : K(a)][K(a) : K] = [L : K]
embeddings of L in C extending o.
The result now follows (by induction). O

Theorem 5. Let K C L C C. Suppose that L is a finite extension of K. Then there is a
0 € L such that L = K(0).

Proof:
Since L is a finite extension of K, there exist algebraic numbers of, ...,
L:K(Oéa, ,Oé;v).

o, such that

n
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By induction it suffices to show that when n’ = 2 we can find 6 such that L = K(0).
Suppose that L = K(«, #) with «, § algebraic over K.

Let a = ay, ... ,a, be the conjugates of a over K and let 3 = (31,... , 3, be the conjugates
of B over K.

For each i # 1 and k we consider the equation a; + x(61 = a; + x5y

The linear equation has 1 solution. Choose ¢ € K, ¢ # 0 to avoid all such solutions. (Such a
choice is possible since K is infinite).

Put 0§ = a + ¢ = a; + ¢f1. Plainly K(0) C K(«, ().

Thus, it remains to show that «, § are in K (), hence that K(a, ) C K(0).

Since aw = 0 — ¢f3, it suffices to show that 3 € K(0).

Let f(x) be the minimal polynomial of o over K.

Let g(x) be the minimal polynomial of 3 over K. Notice that /3 is a root of the polynomial
f(0 — cz) since f(0 —cB) = f(a) =0.

Observe, by our choice of ¢, that 3 is the only common root of f(f — cz) and g(x).

Let h be the minimal polynomial of 5 over K(#). Note that f(0—cz) and g(z) are in K(0)|x].
Thus h divides f(0 — cz) and h divides g(x) in K(0)|x].

Since the only common root of f(6 — cx) and g(z) is 3, we conclude that A is linear.
Therefore there exist v;, 72 € K(0) with v; # 0 such that v, 5 4+ 75 = 0.

Therefore 5 € K(6), as required.

(The result follows by induction.) O
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3. LECTURE: MONDAY, JANUARY 10, 2000

Definition. Let K C L C C. We say that L is a normal extension of K if L is closed
under the process of taking conjugates over K.

Theorem 6. Let K C L C C with [L : K] < co. L is normal over K if and only if every
embedding of L in C which fizes each element of K is an automorphism of L.

Proof:
(=) By Theorem 5 there exists an o € L such that L = K(a) = K|a/.
Let a« = ay, ... ,a, be the conjugates of o over K.

There are n embeddings of L in C which fix K and they are given by Ay,... A,
where \;(a) =, fori=1,... ,n, and \;(t) =t for all t € K.

Since L is normal, it is closed under taking conjugates over K and so aq,... ,q, are
in L.
Thus A\; : L — L and so \; is an automorphism of L fori =1,... n.
(<) Let a € L. Consider K[a].
Let « = aq, ... ,a, be the conjugates of o over K.

By Theorem 4, every embedding of K[a] in C extends to an embedding of L in C.
Each such embedding is an automorphism by assumption.

Further, the embeddings of K[a] in C which fix K have the property that « is taken
to a conjugate of a.

Furthermore, there is an embedding for each conjugate of a.

Therefore, each conjugate of «v is in L, hence L is normal.

O

Remark. By Theorem 4, there are [L : K| embeddings of L in C which fix each element
of K.

By Theorem 6, L is normal over K iff there are [L : K] automorphisms of L which fix each
element of K.

Theorem 7. Let K CC. Let a = oy, ... ,qa, be in C with aq, ... ,a, algebraic over K.
Put L = K(ay, ... ,ap).

If the conjugates of ay, ... ,«a, over K are in L, then L is normal over K.

Proof:

We have K(aq,...,a,) = Klag, ... ,qy).
By Theorem 5, L = K[f], where 0 = f(aq,...,q,) with f € K[zq,... ,x,].
Let o be an embedding of L in C which fixes each element of K. Then 06 = f(oay,... ,00,).

Since oq; is an conjugate of o; for ¢ = 1,... ,n and since each conjugate of «; is in L, we
conclude that o6 is in L.
Therefore, o is an automorphism of L. Thus, by Theorem 6, L is normal over K. ([l

Corollary 8. Let K C C and let L C C with [L : K] finite. There is a finite extension H
of L, with H C C for which H is normal over K.
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Proof:

By Theorem 5, there is a 6 € L for which L = K(6).

Let 8 =6y,...,6, be the conjugates of 6 over K. Put H = K(0y,...,0,).

By the result of Theorem 7, H is normal over K. Plainly, H contains K. 0

Remark. H is also normal over L, e.g. take K = Q and L = Q(v/2).
Then L is not a normal extension of QQ since the map o : L — Q given by

o(t) =t for all t € Q and
o(V2) = wv/2 where w = 5"

is an embedding. However w+{/2 ¢ R and so w+y/2 ¢ Q(\‘Q/i) Therefore, o is not an auto-
morphism of L hence L is not a normal extension of Q.

Put H = Q(3/2, wv/2,w?y/2).

Then H is a normal extension of Q.

Observe that H = Q(v/2,wv/2) so [H : L] = 2.

4. LECTURE: WEDNESDAY, JANUARY 12, 2000

Definition. Let K C L C C, with [L : K] < co. We define the Galois group of L over K,
denoted by Gal(L/K), to be the set of automorphisms of L which fix each element of K.
The binary operation on the set is composition.

The identity element of the group is the identity map.

By Theorem 4 and Theorem 6, L is normal over K if and only if
|Gal(L/K)| =[L : K]
Definition. Let H be a subgroup of Gal(L/K). We define the fixed field Fy of H to be
the field {a € L | o(a) = a for all 0 € H}.
This is indeed a field since if o, 3 are in Fy, then so are of~! and a — S3.

Theorem 9. Let K C L C C with [L : K| < oo.
Suppose that L 1s a normal extension of K. Let G be the Galois group of L over K. K is
the fixed field of G and K is not the fixed field of any proper subgroup of G.

Proof:

Certainly K is fixed by every element of G. Suppose that a € L and « is in the fixed field
of G. Then K(«) is in the fixed field of G.

Since L is a normal extension of K, we have, by Theorem 4 and 6, that |G| = [L : K]. Thus
there are [L : K] embeddings of L in C which fix K («). Since [L : K] = [L: K(«)|[K(a) : K]
we see that [K(«): K] =1 hence o € K. Therefore K is in the fixed field of G.

Let H be a proper subgroup of G and suppose that K is in the fixed field of H. Let L = K|[a]

for a € L. Consider
fx)= 1] (z —0oa)

ocH
f(z) =2 — sy (ca)al =t + .+ (—=1)Hls pp (o7)
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where o&v = (01(a), ... ,01g|(a)) are the elements of H.
Further si,... sy are the elementary symmetric functions in the variables z1,... ,x, so
that
sl(xl,...,x‘m) :$1++I|H|
so(z1, ... ) = T1%T2 + To2Z3 + - + T|H|-17|H|
5|H‘((x1, c. ,x|H‘) =1 T|H|
Notice that os;(c&) = s;(c&) for ¢ = 1,... ,|H| and for all o € H. Thus, since K is the

fixed field of H we see that f € K|x].
Therefore the minimal polynomial of o over K divides f, hence

IL: K] =[K(a): K] <degf=|H|<|G|=|[L:K] (since L is normal over K)
This contradiction completes the proof. [l

Suppose that K C L C C, [L: K] < oo and L is normal over K. Let G be the Galois group
of L over K.

Let S; be the set of fields F' with K C F C L.

Let Sy be the set of subgroups H of G.

We define A : S; — Sy by A(F') = Gal(L/F).

We define p: Sy — Sy by u(H) = Fy (the fixed field of H).

Theorem 10 (Fundamental Theorem of Galois Theory). p and A are inverses of each other.
Suppose that N\(F') = H. Then F is normal over K if and only if H is a normal subgroup of
G.

Further, if F' is normal over K, then there is an isomorphism 6 : G/H — Gal(F/K) given
by 6(o + H) = o', where o’ is the automorphism of F' which fizes K induced by o.

Proof:
We first prove that p and A are inverses. Notice that

poNF) = u(Gal(L/F)) = fixed field of Gal(L/F)

and so by Theorem 9, pro A(F') = F. Then po A = id.

Next note that Ao u(H) = A\(Fy) = Gal(L/Fg).

Let H = Gal(L/Fy). By Theorem 9, Fy is the fixed field of H" and is not the fixed field of
any proper subgroup of H'. Thus H' C H.

But if o € H, then o is an automorphism of L fixing Fiy and so o is in Gal(L/Fy).

Thus H C H and so H = H'. Thus Ao u = id.

Observe that if H = Gal(L/F) and v € H,o € G then coyoo ™! € Gal(L/oF). Further, if
6 € Gal(L/oF) then 0~ 'oyoo € Gal(L/oF) = H. Thus Gal(L/oF) =cHo .

Next, note that F' is normal over K if and only if every embedding of F' in C which fixes K
is an automorphism of F'.

Each such embedding extends to an element of Gal(L/K) = G.

Thus F is normal <= ocF =F forallc € G < ocHo '=H forallo € G «<— H<G
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Let us now assume that F' is a normal extension of K.
Consider the group homomorphism A given by

A:G=Gal(L/K) — Gal(F/K)

by A(o) = oyr (This is well-defined since F' is a normal extension of K).
The map is certainly surjective, since every element of Gal(F/K') extends to an element of

G. Further, the kernel of A is Gal(L/F).
By the First Isomorphism Theorem (for Groups),

Gal(L/K)

Gal(L/F)  ClE/K)

5. LECTURE: FRIDAY, JANUARY 14, 2000

Recall that an algebraic integer is the root of a monic polynomial in Z[z].
Theorem 11. Let o be an algebraic integer. The minimal polynomial of v over Q s in
Z|x).

Proof:

Since « is an algebraic integer, then « is a root of some monic polynomial h € Z[z|. Let f
be the minimal polynomial of a.

Then h = f - g with f,g € Q[z]. But f is monic, and so g is monic.

Choose a,b € Z so that af,bg € Z[x] and are primitive, i.e. have content 1.

Thus abh = (af)-(bg). By Gauss’ Lemma, the product of primitive polynomials (in a Unique
Factorization Domain) is primitive and so a - b = 1.

Thus f € Z[z]. O
Remark. The only algebraic integers in Q are the ordinary integers.

Corollary 12. Let d be a squarefree integer. The set of algebraic integers in Q[\/a] 18

{r+svd|rscZ} when d =2 or3 (mod 4)
{%ﬁw,bez,azb (mod 2)}  whend=1 (mod 4)

Proof:
Let o = r + sv/d be in Q(\/E) so r,s are in Q.
If s =0 then r € Z. Suppose s # 0. Then the minimal polynomial of a over Q is given by

(x — (r+ sVd))(x — (r — sVd)) = 2* — 2rz + 1% — ds* € Q[z]

By Theorem 11, f € Z[z]. Thus 2r and r? — ds? are integers.
Note that if r is an integer, s is also an integer.

The other possibility is that » = § with a an integer = 1 (mod 2). Then, since r? — ds? is
an integer, we see then s = 2 with b =1 (mod 2) and a® — db* = 0 (mod 4)

In this case we have d =1 (mod 4). O
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We want to prove next that the set of all algebraic integers forms a ring, and that the set of
algebraic integers in any finite extension of Q forms a ring.
We need to show that if «, § are algebraic integers then so are a3 and a + .
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6. LECTURE: MONDAY, JANUARY 17, 2000

Theorem 13. Let a be a complex number. Then the following are equivalent:

i) « is an algebraic integer.

ii) the additive group of the ring Z[«a] is finitely generated.
iii) « is @ member of some subring of C having a finitely generated additive group.
iv) aA C A for some finitely generated additive subgroup A of C.

Proof:
[i) = ii)]: by Theorem 4 since Z[a] = {ap + a1a + ... + a,_1a""' | a; € Z} where n
is the degree of a over Q.
[ii) = iii)]: immediate
[iii) = iv)]: immediate

[iv) = 1)]: Suppose that ay, ... ,a, generate A.
Since oA = A, we have aa; = m; 1a1+- - - + = m,; »a,, for some integers m; 1, ... ,Mjy,,
fori=1,... n.
aq 0 aq 0
Thus (al,—M) | : | =| | . Since| : | #| ¢ | wehavedet(al, — M) =0.
Qp, 0 (079 0

Therefore, « is the root of a monic polynomial with integer coefficients.
Thus « is an algebraic integer.
O

Corollary 14. If o and B are algebraic integers, then o+ 3 and af3 are algebraic integers.

Proof:

Suppose that « has degree n and 3 has degree m.

Observe that Z[a, 3] is generated by {a'3? |i=0,... ,n—1,7=0,... ,m — 1} over Z.
Plainly a8 and « + 3 are in Z[a, §] and so the result follows from i) and iii) of Theorem
13. [l

Theorem 15. Let a be an algebraic number. There is a positive integer r such that ra is
an algebraic integer.

Proof:

Since « is an algebraic number, « is a root of a polynomial
q(z) =" + b, 2" 4+ by

with b,_1,... ,bp € Q. Clear the denominators to obtain a polynomial h(x) = a,z"+---+aq
with aqg, ... ,a, € Z such that h(a) = 0. Thus a," *h(a) = 0 and

an" (1) = (an2)" + n_1(an®)" 7t - 4 a1a," " 2 (anw) + aga," "t € Zz]

Therefore there is an nonzero integer r such that r« is an algebraic integer. Since whenever
[ is an algebraic integer, so is —f, the result follows. OJ
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By Corollary 14 and the second property above, we see that the set of algebraic integers is
a subring of C.

Let A denote the ring of algebraic integers. For any finite extension K of Q, let AN K be
the ring of algebraic integers of K.

AN K is also known as the number ring of K.

We have already determined the number ring of each quadratic extension of Q. We’ll now
determine the ring of algebraic integers of K when K is a cyclotomic extension Q, i.e. an
extension of QQ by a root of unity.

Let n € Z* and put ¢, = en .

The cyclotomic extensions Q((,),n = 1,2,... are fundamental in the following sense. They
are Galois extensions of Q with abelian Galois groups.

Further, any normal extension of @Q with an abelian Galois group is a subfield of Q((,) for
some n.

We'll prove the former assertion but not the latter.

For any positive integer n, we define @, (), the nth cyclotomic polynomial, by

Cu(x) = ][ (@=¢)

j=1,
(j,m)=1

7. LECTURE: WEDNESDAY, JANUARY 19, 2000
Theorem 16. O, (x) is irreducible in Q[z], forn=1,...

Proof:
We'll show that (2.7 = 1,... ,n with (j,n) = 1 are all the conjugates of (, or equivalently
that ®,, is the minimal polynomial of (,.
¢, is a root of 2 — 1 and is therefore an algebraic integer. Thus if we show that ® is the
minimal polynomial of ¢,, we conclude that ¢, € Z[z].
Let () be the minimal polynomial of (,, over Q. Since (, is a root of ™ —1, then r(z) | 2" —1
in Q[z]. The roots of 2™ — 1 are the n different nth roots of 1 in C and so the roots of r(z)
are of the form ¢* for some k € Z*.
Observe that if (n,k) > 1, then ¢* is a root of z@H — 1. Since (n 1s not a root of zTm — 1
we see that in this case ¢¥ is not a conjugate of ¢,.
Thus the only possible conjugates are those of the form ¢7; with j = 1,... ;n and (j,n) = 1.
To show this, it suffices to prove that if § = ! for some positive integer ¢ which is coprime
with n then, for each prime p which is coprime with n, 67 is a conjugate of 6.
We then show that (7 is a conjugate of ¢} by factoring j into prime factors and repeatedly
appending the result.
Accordingly, let f(z) be the minimal polynomial of 8 over Q[z]. Thus there exists g(z) € Q[z]
which is monic, such that

1 = f(2)g(x)
By Gauss’ lemma, f, g are in Z[z].
Since 6P is a root of ™ — 1, it is a root of either f(z) or g(x).
If 67 is a root of f(x), then it is a conjugate of 6, as required. Suppose then that 6” is a root
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of g(z). Then 0 is a root of g(aP). Thus f(z) | g(«P) in Q[z], hence in Z[x].

For any h(x) = ap + a1z + ... + a,2" in Z[z], we define the reduction of h mod p, denoted
by h(z), to be polynomial in (Z/pZ)|x] by
hx) =ay+@x+ - + "

where for any integer a, @ = a + pZ. B
Note that the mapping p : Z[x] — (Z/pZ)|x] given by p(h) = h, is a ring homomorphism.
Further, h(2?) = h(x)" since

R(2?) = ap + @y (a?) + - - - + @ (a?)" = a@” + @ P (2P) + - - + @, P(a?)" = h(z)’
Thus since f(z) divides g(2?) in Z[z], we see that f divides g(2?) in (Z/pZ)|x], and so divides
(g(z)) in (2/p2)[a).
Since (Z/pZ)[x] is a Unique Factorization Domain, there is an irreducible polynomial s(z)
in (Z/pZ)[r] which divides f and so also g in (Z/pZ)[z].
But 2" — 1 = f(z)g(x) in Z[z], hence 2" — 1 = f(x)g(x) in (Z/pZ)[z].
Thus s(z)? | 2" — 1 in (Z/pZ)[z] and so s(z) | nz" ! in (Z/pZ)|z].
Since p and n are coprime, then 7a™~! is not the zero polynomial. Thus s(x) = cx for some
nonzero ¢ € (Z/pZ)[x].
But since s(z) | 2™ — 1 in (Z/pZ)[x] we have a contradiction. The result now follows. O

Remark.

(1) ¢ for j =1,... ,n,(j,n) =1 are the conjugates of ¢,.

(2) [Q(¢n) - Q] = ¢(n) |
(3) Q(¢,) is a normal extension of Q since ¢! € Q(¢,) fory=1,...,n, (j,n) = 1.

8. LECTURE: FRIDAY, JANUARY 21, 2000

Theorem 17. Let n be a positive integer. The Galois group of Q((,) over Q is isomorphic
to (Z/nZ)*.

Proof:
The elements of the Galois group are the embeddings o of Q(¢,) in C defined by 04(¢,) = ¢*
for k=1,... ,n with (k,n) = 1 and such that ox(a) = a for all a € Q.
Let A : Gal(Q(¢,)/Q) — (Z/nZ)* by N o) = k + nZ.
Certainly A is a bijection. It remains then to show that A is a group homomorphism:
Mok ooy) = Nog) =kl +nZ = (k+nZ)(l + nZ) = Nok)A(op)

The result follows. 0

Theorem 18. Let n be a positive integer. If n is even, the only roots of unity in Q((,) are
the nth roots of unity. If n is odd, the only roots of unity in Q((,) are the 2nth roots of
unity.
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Proof:
If nis odd, Q(¢,) = Q(—¢,) = Q((2n) and so it suffices to prove the result when n is even.

Let v = 2 with ¢ and s coprime positive integers in Q(¢,). There exist integers v and w
such that

FCY = Q2 _ omi(Eedlnsly | omi(sdlen)y | 2mi(ptos)

Let b = lem(s, n) so that 7°¢* = Q(e*r") has degree ¢(b) over Q.

But we know that v and ¢, are in Q((,), and so Q(e*") is contained in Q(¢,), hence
w(n) > p(b). We have b = lem(n, s).

Thus if n = pi” - ph with py, ... ,p, primes and hy, ..., h, positive integers, then
b=pi - pMwitht >rand k; > h; fori=1,... 7.
Thus @(n) = (pi* —p1" ") -~ () — pj=") while (b) = (Pf* —p* ") -~ (i = pi* ™).
But ¢(n) > ¢(b). Note p(n) | ¢(b). Thus p(n) = ¢(b).
So n is even, we see that n = b. Thus, n = lem(n, s) hence s | n. Thus ¢ is an nth root of
unity. 0

Definition. Let K be a finite extension of Q. Say [K : Q] = n. Let o4,... ,0, denote the
embedding of K is C which fix Q.

For each @ € K we define the trace of a over K, denoted by Tg (), or when K and Q are
understood denoted by T(«a), by

TH (@) = o1(@) + -+ + on()

and similarly we define the norm of a over K, denoted by N§ (a) (or N(a)), by

NE(0) = 01(a) -0 0)
Remark. Note that the trace is additive:

T(a+0) = T(a) + T(B)
and the norm is multiplicative:

N(af) = N(«)N(f)

Further, if 7 € Q, and a € K, then T{ (ra) = rT{ () and N§ (ra) = r"N§ ()
Theorem 19. Let K be a finite extension of Q, with [K : Q] =n and let o € K.
Then TX (a) = 2(Tg“(a)) and N (a) = (NG ()i where d = [Q(c) : Q).

Proof:

Each of the d embeddings of Q(a) in C which fix Q extends to [K : Q(a)] = 5 embeddings
of K in C which fix Q by Theorem 4. The result now follows from the definition of norm
and trace. U
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9. LECTURE: MONDAY, JANUARY 24, 2000

Remark. Since the trace of a over Q(«) and the norm of a over Q(«) occur as coefficients
in the minimal polynomial of «, they are rational numbers and are even rational integers if
« is an algebraic integer.

Theorem 20. Let K be a finite extension of Q and let « € AN K.
ais a unit in AN K < N§ (o) = +1
(Here A denotes the ring of algebraic integers.)

Proof:
(=): ais a unit in A N K implies that there is a 8 in A N K such that a8 = 1.
Thus N§ (a3) = N§(1) = 1.
Since the norm is multiplicative,
NE(@NE(3) =1
But « and 3 are algebraic integers, hence N (ar) and N () are integers. Thus N§ (a) = £1.
(«<): Suppose N(g(a) = +1. Thus Ng(a)(a) = =+1.

Let a = aq,... ,a, be the conjugates of a over Q. Take
NQ(O‘)
168 =4ay -, = Ng (@)
o
Then af = 1. O

Observe that by Theorem 20, we se that if K is some finite extension of Q with K C C,
then the units of A N K form a multiplicative subgroup of C*.

What are the units in A N Q(v/D) where D is a squarefree integer? If D # 1 (mod 4), then
ANQ(VD)={{+mVD|{,meZ}.

Thus if & = ¢ + m+/D is a unit in A N Q(\/ﬁ), then

N“(a) = (¢ +mVD)(t —mVD) = 2 — Dm?* = £1

Thus we look for solutions of the Diophantine equation £ — Dm? = £1 in integers ¢ and m.
Suppose that D =1 (mod 4). Then
¢ +m\D

ANQ(VD) = {T\E,mEZ,EEm (mod 2)}

Thus we search for solutions of 2 — Dm? = +4 with ¢ and m odd in addition to solutions
of ¢ — Dm? = +1.

10. LECTURE: WEDNESDAY, JANUARY 26, 2000

Theorem 21. Let D be a squarefree negative integer. The units in A N @(\/ﬁ) are 1
unless D = —1 in which case they are £1,+1 or D = —3 in which case they are £1, %
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Proof:
If D# 1 (mod 4) then it suffices to look for solutions of the form z? — Dy? = +1.
Since D < 0 we need only consider 22 — Dy? = 1.

e If D = —1, we have the solutions (z,y) = (£1,0) = (0,£1) and the solutions
correspond to the units 41, +1.

e If D < —1, we see the only solutions are (x,y) = (£1,0). Thus £1 are the only units
in this case.

If D=1 (mod 4), we must also consider the solutions of the equation z* — Dy? = 44 in
odd integers z and y hence, since D < 0, of 22 — Dy? = 4.

o If D = —3, we have 22 4+ 3y® = 4 and so the complete set of solutions is given by
(z,y) = (£1,+£1). Thus the units in the ring of algebraic integers are +1, %‘/’_3

o If D < —3, then 22 — Dy? = 4 has no solutions, with # and y odd and the result
follows.

0

Suppose that D is a positive squarefree integer with D > 1. The unit group of A N Q(v/D)
is isomorphic to (Z/27Z) x Z.

The units are formed by solving the equations z? — Dy* = +1 and when D = 1 (mod 4),
2?2 — Dy? = 44 in integers x and y. There is an algorithm for finding solutions called the
continued fraction algorithm. It is based the following result. If |[N| < D, then all solutions
of 22 — dy? = N can be obtained as convergents from the continued fraction expansion of

VD.

Theorem 22. Let D be a squarefree integer with D > 1. There is a smallest unit larger
than 1 in ANQ(V/D). Let us denote it by €. The unit group of AN Q(v/D) is

{(-=D* | k€ {0,1},5 € Z}

Proof:
For the proof we’ll appeal to the following result.

Lemma 23 (Dirichlet’s Theorem). Let v be a real irrational number, and let QQ > 1 be an
integer. There exist integers p,q with 1 < q < Q such that |qgo — p| < %

Further, there exist infinitely many pairs of integers (p,q) for which ‘Oé — g’ < q%.

Proof:

Since « is irrational, and @) is at our disposal, the second assertion follows from the first.
We'll now prove the first assertion. For any real number x, let {z} denote the fractional part
of z, so x = [z] + {x} where [z] denotes the greatest integer less than or equal to x.
Consider the @ + 1 numbers 0,1, {a},... ,{(Q — 1)a}.

Notice that by the pigeonhole principle, there is an integer j with 1 < 5 < ¢ such that two of
the numbers are in the interval [%, é] Thus, either there exist integers n, m with n # m,

1 < n < @Q such that |[{na} — {ma}| < &, or there exists an integer n with 1 <n < Q —1
and t € {0,1} such that [{na} —t| < %
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In the first case,

1
(na — [na]) — (ma — [mal)| < 7
= |(n = m)a = (fna] = fma])| < &

Take ¢ = n —m and p = [na] — [ma] and the result follows since « is irrational and @ > 1
so strict inequality holds.
In the second case, |na — [na] —t] < é, and so take ¢ = n and p = [na] + t. The result

follows, as above. ]

11. LECTURE: FRIDAY, JANUARY 28, 2000

We now continue with the proof of the theorem. We first show that there exists an integer
m and infinitely many elements 3 of A N Q(v/D) for which Ng(\/ﬁ) (8) = N(B) =m.

Let 6 = p + ¢v'D with p,q € Z,q > 0.

Then [NO| = |p+ ¢v/D||p — ¢V D| = |2 + VD|¢* |2 = VD).

By Dirichlet’s Theorem, there exist infinitely many pairs (p, q) for which ¢ ‘5 — \/E‘ < 1.
For such p,q we have that ‘g + \/5‘ < 2v/D + 1. Thus there exist infinitely many 6 €

ANQ(v/D) for which |N0| < 2¢/D+1. for which N@ = m for infinitely many 6 € ANQ(+/D).
Let 01 =p1 +q1 \/E, Oy = po + q2\/5, and consider

0\ NO)
N (e?) = N6y
N1) _ m

NG = m = 1. Further, we can find infinitely

many 6’s such that if #; and 05 are in the set of 6’s with 6, = p; + ql\/ﬁ and 0y = po —|—q2\/5
then p; = ps (mod m) and ¢; = ¢2 (mod m).
Then let 6, be the conjugate of 5 over Q so that Nfy = 050, = m. Observe that

0 0, — 40 0, —0 — —
e R 05:1+(<p1 p2>+(Q1 ‘h)\/@egem@(@)
02 02 6202 m m

Since also N(g—; = 1, we see that g—; is a unit in ANQ(v/D). We next observe that if |m| > 2,
then z—; # 1.

If jm| < 2, it is enough to consider a third 6, say 65, and then one of
from —1.

Since +1 are the only roots of unity in ANQ(+/D), we can find a unit in A NQ(v/D) which
is not a root of unity.

We consider the set S = {y € ANQ(vVD) | v > 0,7 a unit}.

We have shown that S contains an element different from 1. Thus, on taking inverses if
necessary, it contains an element strictly greater than 1.

To complete our proof, we'll show that S = {€" | n € Z} where € is the smallest element of
S larger than 1.

since the norm is multiplicative, and then

01 02

61 02 0_1 . .
o g0 g IS different



PMATH 441/641 ALGEBRAIC NUMBER THEORY 17

Let v be an element of S;7y > 1. Then there are only finitely many elements (3 in S,
1 < B < 7 since
_p+qVD

b 2

for some p.q € Z7.

Since # > 1, we see that p and ¢ are not both negative. The conjugates of 3 are I# <
M. Therefore, both p and ¢ are primitive.

Let € be the smallest element of S which is strictly larger than 1. Suppose now that A € S
and ) is not of the form €" for any n € Z. Let n be such that € < A < "+,

Then % is in S and we get 1 < 6% < €. This contradicts the minimality of € and the result

n

follows. O

Definition. Let K C L C C with L a finite extension of K, say [L : K] =n. Let o1,... ,0,
be the embeddings of L in C which fix K. Let a € L, then the trace of a from L to K,
denoted TE(a), is given by

TE(Q) = o1(a) + -+ 0,(a)
The the norm from L to K of a, denoted by Nk («), is given by

Ng (o) = o1(a) -+ ou(a)
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12. LECTURE: MONDAY, JANUARY 31, 2000

Theorem 24. Let K, L,, and M be finite extensions of Q with K C L C M. Then, for all
ae M,

T (o) = T(T1' (o))
and

N (a) = Ng(Nt'(a))

Proof:

We'll prove the result for trace only (the norm works similarly).

Let o4, ... ,0, be the embeddings of L in C which fix K. Let 7y,... , 7, be the embeddings
of M in C which fix L.

Let N be a normal extension of Q which contains M. Each map o; and 7; can be extended
to an automorphism of N.

Let o,... ,00,7,..., 7, be some choice of extensions of oy,... ,0,,7,... , Ty respectively

Y n’

to automorphisms of N. Then

T(Ti' (@) = > _oi(d_mi(a) = D> ai(D>_7j(a)) = > oimj(a)
=1 j=1 =1 j=1 iZicn
<j<m

It remains to show that the nm embeddings of M in C which fix K are given by o7 ]‘ u
(where |M indicates the restriction to M) for i = 1,... ,n, j = 1,... ,m. Since there are
nm such embeddings, it suffices to show that they are distinct.
Suppose O‘ZT]‘M = 0,7,y Next let a be such that L = Klal.
Then 0;(a) = oj(a) = oj(7j(@)) = 0i7j,, (@) = 077 (@) = 0,7{(@) = oL(7{(@)) = 07(a) =
o ().

So since the behaviour of o; is completely determined by its action of o, we conclude that
o, =0, = T =1.

Next choose  so that M = L[f]. Then since o{7;,,(8) = 0i7s3,(3) we see that 7;(8) = 7(0).
Thus since the embeddings of M in C which fix L are determined by their effect on 3 we see

that 7; = 7, hence j = s. Then we have that o7 J|M, i1=1,...,n,1,...,m are all distinct
and the result follows. 0
Definition. Let K be an extension of Q of degree n and let o4,... , 0, be the embeddings
of K in C which fix Q. For any set {ay, ... ,a,} of of elements of K, we define the discrim-
inant of {ay, ... ,a,}, denoted by disc(ay, ... ,a,), as (det(o;(a))?

Note that the order in which we take a, ... , a,, or the order in which we take the embeddings
01,...,0, does not matter and so the discriminant is well-defined.

Theorem 25. Let K be an extension of Q of degree n. Let aq, ... ,ay, be in K. Then
disc(ov, ... , o) = det(TE (i)
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Proof:
Let oq,...,0, be the embeddings of K in C which fix Q. Then
(oj(i))(oi(y)) = (o1(uiay) + -+ + on(uay)) = Td(aiag’)

But disc(ay, ... ,a,) = (det(oi(a;)))? = det(oj(a;)) det(o;(c;)) = det((0;())(0i(ay))) =
det (T (ia))) O

13. LECTURE: WEDNESDAY, FEBRUARY 2, 2000

Corollary 26. Let K be an extension of Q with [K : Q] = n. Let aq,... ,a, be elements

of K. Then disc(ay, ... ,ay) is a rational number and if oy, ... ,«, are algebraic integers,
then disc(a, ... , ) is a rational integer.
Proof:

Since Téf (o) € Qfor 1 < i < n, 1 <j < n the first claim follows immediately from
Theorem 25.

Since the sum and product of two algebraic integers is an algebraic integer, then Téf (a5)
is an algebraic integer and hence a rational integer. The result again follows from Theorem
25. OJ

Let [K : Q] = n. Assume that {ay,...,a,} and {3,...,3,} are bases for K as a vector
space over Q. Then

ﬁk:chJaj fork=1,...,n

Jj=1
where the ¢ ;’s are in Q. Thus
51 Ci1  Cin &3]
671 Cn1 """ Cnn Qp

Let oq,...,0, be the embeddings of K in C which fix Q. We have o;(5)) = Z crjoi(o)
j=1

fori=1,... ,nand k=1,...,n. Therefore,

o1(B1) -+ ou(B) g o G or(an) -+ on(o)

Ul(ﬁn) T Un(ﬁﬂ) Cnl 7" Cnn Ul(an) e Un(an)
Then

disc(Bi, - - . , Ba) = (det(c;;))*disc(a, . .. , o) (1)
Let K = Q(6). Then {1,60,... ,0" 1} is a basis for K over Q. Notice that disc(1,6,...,6" 1) =
oi(1) ou(8) - on(0") 1 ooy(®) -+ (ou(0)"
(det | : )* = (det | : : )*

on(1) on(0) --- an(énfl) 1 0,(6) -+ (0,(0))" "
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Since this is a van der Monde determinant, then disc(1,6,...,0""') = (] (0:(0) — 0;(6)))*.
1<J

Notice that o1(f),...,0,(0) are the conjugates of § over Q, and so are distinct. Thus, in

particular, disc(1,6,...,0"1) # 0.

If (ay,...,q,) is a basis for K over Q and we take {£1,...,8,} to be {1,0,...,0" '} we

see from (1) that disc(1,0,...,6" 1) # 0 and det(c; ;) # 0.

We conclude that the discriminant of any basis for K over Q is nonzero.

Remark. If K C R, then by (1), the determinant of any basis for K over Q is positive

since plainly disc(1,6,...,0"1) is positive.

Theorem 27. Let [K : Q| =n, and let ay, ... ,a, bein K. We have disc(1,6,... ,0" 1) =0
iff aq, ..., ay are linearly dependent over Q.

Proof:

(«): Since aq,... ,a, are linearly dependent over Q, the columns of (0;(c;)) are linearly
dependent over Q. Thus the determinant of the matrix if 0, hence disc(1,6,...,0" ') = 0.

(=): If disc(1,0,... ,6"1) =0, then by (1), ay,... ,a, is not a basis for K over Q and thus
{ai,... ,a,} is not a linearly independent set. O

The following observation is useful for computing disc(1,6,...,0" ') where K = Q(6) and

[K : Q] =n. We have

dise(1,0,... 0" 1) = (—=1)"F"

where f is the minimal polynomial for 6 over Q.

Let 6 =604,...,0, be the conjugates of # over Q. We have
diSC(l,Q,... ,Qn_l) = H (91 —93')2

1<i<j<n

Ng (f'(6))

s
Il
—_
N
LS
b
£
Il
—_
e
Il
—
.
Il
—
N
I
<

IO (—1) 252 kH (ﬁf(gk )

and the result follows.

Let K be a finite extension of Q and let # € K. Suppose [K : Q] = n. Then we abbreviate
disc(1,6,...,0" 1) by disc(6).
Theorem 28. Letn be a positive integer and let ¢, = €*™/™. Then in Q((y), disc((,) divides

n?™ . Purther, if p is an odd prime, disc(¢,) = (=1 )p(p 1)p” 2
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Proof:

Let ®,,(x) be the nth cyclotomic polynomial. ®,,(x) is the minimal polynomial of (,. Thus
" —1=®,(x)g(x) where g € Z[z].

Note that nz"™' = ®,(z)¢ (z) + ®,/(2)g(x). Thus n(’n"’I ,.'(¢)9(Cn)- (%)

And so N@“")( ING (G = NG (@, <<n>>N@ “(g(Ga))-

Thus n#™ = +disc(1, Gy, - .. , CCMYNG (9(Ca)).-

Since g € Z[ | and ¢, is an algebralc integer, ¢((,) is an algebraic integer, and so N (¢ ( (Cn))
is an integer. Thus disc((,) | n*®
Let p be an odd prime. Then

P —1

d,(7) = — =1+ax+- 42"}

and g(x) = x — 1. Thus by (%),
p= Cp@;(gp)g(gp)

hence
Q » Q D Q 4 Q P
NG (p) = NG (GING  (@(G)NG ™ (G~ 1) (1)
But,
Ng(cp)((’p) — 5 _ 1 gince p is an odd prime (2)
NS(CP)(@;(Q))) = (—1)p(p 1)dlsc(CI,) since p is an odd prime (3)
Further,
Qé) L i~ :
Ng (G =1 =11 1) =10 - ¢) =2,(1) (4)
=1 j=1
and
p times
——
o,(1)=1+---+1=p (5)
Finally, we observe that
NG (p) = ! (6)
The result follows from (1) through (6). O
Definition. Let K be a finite extension of Q. A set of algebraic integers {ay,... ,as} is
said to be an integral basis for K if every v in AN K has a unique representation of the form
v =miaq + - -+ mgas with mq, ..., mg rational integers.

Note that an integral basis for K (over Q) is a basis for K over Q.

Note: span{ay,...,as} = K since if § € K, there exists a nonzero integer r such that
rf € AN K for which rf = mya; + - -+ + mgas and so 0 = "ty + -+ - + M.

Thus span{a, ... ,as} = K.
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Note: {aq,...,as} are linearly independent over Q since otherwise there exist rationals
t1,...,ts not all zero such that
tiog + -+ tsas =0

Clearing denominators we obtain a nontrivial integer linear combination of ay, ... , as which
is zero. We also have the trivial linear combination and this contradicts the uniqueness of
representation for an integral basis.
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14. LECTURE: MONDAY, FEBRUARY 7, 2000
Theorem 29. Let K be a finite extension of Q. Then K has an integral basis.

Proof:

Let 6 be an algebraic integer such that K = Q(#). Consider the set of all bases for K over
Q (as a vector space) whose elements are algebraic integers.

The set is nonempty since it contains the basis {1,6,... ,6""'} where n = [K : Q).

The discriminants of the bases in the set are integers since the bases consist of algebraic
integers. Thus the absolute values of the discriminants are positive integers. Note that they
are nonzero, since the discriminant of the basis is nonzero.

Choose a basis wy, . .. , w, for which |disc(wy, ... ,wy)| is minimal. We'll verify that {w, ... ,w,}
is an integral basis.

Suppose that {wi,... ,w,} is not an integral basis. Then there is a v € A N K for which
v = ajwy + - - + a,wy, but with not all the a}s in Z. So without loss of generality, suppose
that a; is not an integer.

Then a; = a+ r with a € Z and 0 < r < 1. Notice that wi*,... ,w,* is a basis for K over
Q consisting of algebraic integers if we put w;* = v — aw; and w;* = w; for i =2,... ,n. So

a —a ag -+ Qg

. 0 1 ... 0 .
disc(wi™, ... ,w,") = | det _ L , disc(wy, ... ,wy)
0 0o --- 1
= (a; — a)*disc(wy, . .. ,w,) = r’disc(wi, ... ,w,)

Thus |disc(w:*, ... ,w,*)| = r?|disc(wi, ... ,w,)| < |disc(wy, ... ,w,)| and this contradiction
completes the proof. O

Theorem 30. Let K be a finite extension of Q. All integral bases for K over Q have the
same discriminant.

Proof:
Let {aq,... ,an}, {f1,...,Bn} be two integral bases for K. Then

;= Zcijﬁi for some ¢;; € Z

i=1
Thus disc(ay, . .. , o) = (det(c;;))Adise(B, . .., Bn).
Since ¢;; € Zfori=1,... ,n,j=1,... ,n we see that det(c;;) € Z.
Thus disc(f, ..., [,) | disc(aq, ..., a,).
Similarly we see that disc(aq, ... ,ay) | disc(S, ..., Gn)-
Thus disc(a, ... ,ay) = disc(B, ..., [,). Since (det(c;;))? > 0, then we see that the two
discriminants are equal. 0

Definition. Let K be a finite extension of Q. The discriminant of K is the discriminant
of an integral basis for K.
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Remark. For any finite extension K of Q, the discriminant d of K is an integer with
|d| > 1.

It can be shown that if K # Q, then |d| > 1.

Let D be a squarefree integer with |D| # 1. What is the discriminant of Q(v/D)?

If D # 1 (mod 4), then {1,+/D} forms an integral basis for Q(v/D). Further,

disc(1, VD) = (det ( 1 _\/\/% ))2 =4D
If D=1 (mod 4), then the algebraic integers in Q(v/D) are of the form % with £,m € Z
and ¢ = m (mod 2).
Then {1, Y2} forms an integral basis for Q(v/D). We have

2
1 1+vVD 2
disc(1, #) = (det < ) 25 )) = (—v/D)?*=D
2

We will now prove that for each positive integer n € Z*, AN Q(¢,) = Z[¢,]. In particular,
{1,¢, ... ,¢¥™~1} is an integral basis for Q(¢,).

Notice that, as a consequence of Theorem 28, we then have, for p an odd prime, that the
discriminant of Q(¢,) is (—1)%]9(;0 —2).

15. LECTURE: WEDNESDAY, FEBRUARY 9, 2000

Theorem 31. Let K be a finite extension of Q, and let {a, ... ,a,} be a basis for K over
Q. Letd =disc{ay,... ,a,}. Ifa € ANK, there exist my, ... ,m, € Z such that d | m? for

i=1 n and o = TOLF AN
e y .

Proof:
Let 0q,...,0, be the embeddings of K in C. Write a = a1a7 + - - - + a,a, with a; € Q, for
i=1,...,n. Then oj(a) = a1oj(ov) + -+ + a,0,(a,) for j =1,... ,n. Thus

o1(ar) - o1(an) a o1(a)
on(ar) o op(ay) an on(a)
By Cramer’s Rule,
o) - o) o on(an)
det : :
a L Ol(an) ... 0'1 (a) DY O'n(an)
I det(o;(a;))

Thus a; = %, where 7y,... ,7, and § are algebraic integers and 6% = d(= disc(ay, ... ,an)).

Therefore, da; = ;. Note that da; € Q and 0+, is an algebraic integer. Thus da; is an
integer. Put m; = da; for j =1,... ,n.

. , 2 N2
It remains to show that d | ij for j = 1,...,n. But =~ = da? = d(%]) = ’YjQ for
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7=1,.

Thus ™4~ 5 € Q and is an algebraic integer, so 7 is an integer. Thus d | w2 for j =1,... ,n.
O

Let K be a finite extension of Q with [K : Q] = n. Let 6 be such that K = Q(#). The

embeddings of K in C are determined once we know the image of # under the embeddings.

6 must be sent to once of its conjugates.

Let § = 64,...,0, be the conjugates of §. For each i = 1,... ,n we have that 6; is also

a conjugate of 6. This follows from that fact the 6y,... 6, are the roots of the minimal

polynomial f of 6 over Q and f € R[z].

Thus the embeddings of K in C which do not map K into R come in pairs. These are known

as the complex embeddings and the balance are known as the real embeddings. Thus

n=ry+2r

where 1 is the number of real embeddings, and 2ry is the number of complex embeddings.
If 0 is a complex embedding, then it has the embedding & associated with it.

Proposition 32. Let K be a finite extension of Q with exactly 2ro complex embeddings. The
sign of the determinant of K is (—1)".

Proof:
Let {a1,...,a,} be an integral basis for K. Then disc(K) = (det(o;(c;)iz1.....n))?
Jj=1 n

yeen

O'l(Ckl) 0'1<Oén) O'1<Oél> O'l(C(n)
Notice that det(o;(a;))* = : : = (=1)" det :

Un(al) ce Un(an) O'n(Oq) ce On(an)
since complex conjugation induces r, row exchanges. Note that if 75 is even that det(o;(c;))
is real and if r5 is odd it is purely imaginary. The result follows on squaring the number. [

We now return to proving that Z[(,] is AN Q(¢,) for n = 1,.... We'll prove that initially
for the case when n = p” with p a prime and r € Z*.
Note that
p" P —1 o .
(= (Gr)) = =1+a+a? 4 g
i T —1
p)=1

(3,
In particular, ®,-(1) = p.

16. LECTURE: FRIDAY FEBRUARY 11, 2000

Theorem 33. Let p be a prime number and r a positive integer. The ring of algebraic
integers of Q(Cpr) is Z[(y]. (Here ¢, = €*™/™ forn =1,2,...).
Proof:

We have Q((,r) = Q(1 — ¢pr) and {1, (1 — Gr), ..., (1 — (r)®} is a basis for Q((,r) over Q,
where s = @(p").
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By Theorem 31, if « € ANQ({,), then

Coma A ma(l = Gr) A m (1= Gr) !
B d ()

where d = disc(1 — (,r). Note that
d= I (=) -0-G)*= I (G)—(G)* = disc(¢y)

1<i<j<p" 1<i<j<p”
(i,p)=1,(j,p)=1 (i,p)=1,(j,p)=1

By Theorem 28, disc((,r) is a power of p. Suppose that ANQ((,r) # Z[(yr]. Then ANQ((,r) #

Z[1 - Gy
Then by (*) and by the fact that disc((,r) is a power of p, we see that there is an o € ANQ((,r)

such that
= i+ (1 - Cp") +o 4+ 60— Cp’")s_

d
where /1, ...l are integers, not all of which are divisible by p.

Let ¢ be the smallest positive integer for which p f¢;. Then

gi(l — Cp")i_l toF 53(1 — Cp")s_
p

is an algebraic integer.

‘o

P

(Recall that p = @, H (1—¢0))

k}

(J p)

Since 1—z divides 1—z* in Z[x ] for k =1,... weseethat p = (1—(yr)°A where A € ANQ((pr)-
Therefore, (1 — ()" "My € ANQ(¢,yr) and so
. (1= ) A+ (1= )
(1= G )Ny = |
i (1 - Cp’)l

We conclude that 0 = 5 _éé ~ is an algebraic integer. Thus (1 — ()0 = ¢; and so

Q D Q pT' Q p"
NQ(C (0)N (¢ (1 . Cp’”) _ NQ(C )<€1)

Since 6 is an algebraic integer, then NS (G )(9) is an integer, and thus Ng (C”T)(l — (pr) divides
¢;*. But Ng(c“’r)(l — (pr) = p and this is a contradiction since p [ ;. O

Next stage: to pass from n = p" to a general positive integer n.

Definition. Let L be finite extensions of Q. The compositum of L and K, denoted LK,
is the smallest field containing L U K.

What is the connection between AN K, AN L, and AN LK?

Lemma 34. Let L and K be finite extensions of Q, with [K : Q] = m and [L : Q] = n.
Suppose that the degree of the compositum is maximal. Suppose that [LK : Q] =

Let o be an embedding of K in C, and let 7 be an embedding of L in C.

Then there is an embedding of LK in C which restricts to o on K and T on L.
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Proof:

o has n distinct extensions to embeddings LK in C, since [LK : K| = n; recall [LK : Q] =
mn and [K : Q] =m.

Each of the embeddings is distinct when restricted to L. We obtain in this way mn embed-
dings of LK in C. Since [LK : Q] = mn, this is all of them.

Thus one of them, restricted to L, is 7. 0
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17. LECTURE: MONDAY, FEBRUARY 14, 2000

Theorem 35. Let K and L be finite extensions of Q of degree m and n respectively. Let
R, S, and T denote AN K, AN L, and AN KL respectively. Suppose [KL : Q] = mn. Let
d = ged(disc(R), disc(S)). Then

1
=
T dRS

Proof:

Let {aq,... ,a,} be an integral basis for K and let {31,..., 3.} be an integral basis for L.
KL =span{a1 31, ... ,a,0n}. Since [KL : Q] = mn, we see {ay /1, ... ,q,0n} is a basis for
KL over Q.

Thus every « in KL has a representation of the form

o= Z Z aijiiﬁj
i=1j=1
where a;; fori=1,... ,m, 7 =1,... ,n and r are integers with
ged(aqy, .. Qmn, 1) =1
To prove the theorem it suffices to show that r | d. By symmetry it suffices to show that
r | disc(R).
By Lemma 34 every embedding o of K in C can be extended to an embedding ¢’ of KL in
C which fixes each element of L. Thus

n
a/.. . .
Putxizzﬂforzzl,...,m.
r

j=1

Thus o'(a) = i o ().

i=1

Therefore
or(ar) -+ op(am) ) o'(a)
om(ar) - op(am) T o' ()
We now solve for the x;’s using Cramer’s rule:
orlar) o o) o oiam)
det :
Um(Oél) . Um(ai) ce gm(am)

det(a(ay))
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Thus z; = % where A\; € A and 6?2 € disc(R). Accordingly disc(R)x; = 67; and v, is an
algebraic integer. But disc(R)x; € Q hence in Z.

Thus

" (disc(R)a;; ,

disc(R)x; = ) <M> Bjfori=1,...,m

; r

J=1
Since disc(R)x; is an integer and so is in S and since {fi,...,3,} is an integral basis

disc(R)ag; . : . . . :
for L, we see that M is an integer for ¢ = 1,...,m, 7 = 1,... ,n. Finally since
r

ged(r,aqy, ..., amy) = 1 we see that r | disc(R) as required. O

Theorem 36. Let n be a positive integer. The ring of algebraic integers of Q((,) is Z((,).

Proof:

We’ll prove by induction on r, the number of distinct prime factors of n.

If » = 1, the result follows from Theorem 33. Suppose the result holds for ¢ < r < k.

Let n = pit - E’“ where 01, ... ,{; are positive integers and py, ... ,p; are distinct primes.
By inductive hypothes&s

A N @(Cplh...pk_llk—l) - Z[Cplﬁ...pk_lek—l]
Also AN Q) = Z[G, 0
Note the compositum of Q(C gl_._pkillkil) and @(C zk) is Q(¢,). To see this note that by the
Euclidean algorithm there exist integers g and h such that ¢, = (Cplh---pk,l‘%fl)g(c o).

Thus Q(¢,) is in the compositum. "
But [Q(Gr) - Q) = ¢(n) = @(m™ -+ pra ™ )p(pf)-
Since [K : Q] < ¢(p* - 'pk—lg'“’l)%?(pik)-
Thus since Q((,) C K we see K = Q((,).
By Theorem 28,

ng(diSC(Q(Cplﬁl...pkfl‘fk—l)7diSC(Q(Cpik)) =1
Thus by Theorem 35,

ANQG) € (ANQG 0 v)ANQG))

hence

ANQG) C 2.y o2 ] = ZIC)
Since Z[(,] € AN Q(¢,) we see that Z[¢,] = AN Q(¢,). O

18. LECTURE: WEDNESDAY, FEBRUARY 16, 2000

Basic Problem: How do we compute the discriminant of a number field K7

Say K = Q(#) with 6 € A. A first step would be to compute disc(d). If disc(6) is squarefree
then we have found disc(K).

We will now give an easy way of computing disc(#). To do so, we introduce the notion of
the resultant of two polynomials.
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Definition. Let f(z),g(z) € Clz] with f(z) = au2"™ + -+ + a1x + ao and
9(x) = bpa™ + - - + by + by.
We define the resultant of f and g, denoted by R(f,g) by

an anfl o e ao 0 .. e 0
0 a - @ a o --- 0
o . 0 PR O an an—l ... ... aO
R=R(f,g)=det by b1 - by 0 v - 0
0 b, - b bo 0O .- 0
(T O O
Note: that R(f,g) is homogeneous of degree m in the a;’s and homogeneous of degree n in

the b;’s.
We claim that R(f,g) =0 <= f and g have a common factor in Q|x].
Note: f and g have a common root in C if and only if there exist h and k in C[z] with
h(z)f(x) = k(z)g(z) with deg(h) < m — 1 and deg(k) <n —1
(=) Wehavez—a | f(z) and z—a | g(x) in C[z] for some a € C. Thus f(z) = (r—a)k(x)
and g(z) = (x — a)h(z) with h,k € Clz],deg(h) < m — 1, deg(k) < n — 1. Then
W) f(x) = (z — a)h(x)k(z) = k(z)g(x).
(<) If h(x)f(z) = k(z)g(x) with deg(k) < n —1 and deg(h) < m — 1, then on comparing
degrees, we se that there is a root of g which is also a root of f.

Let
h(z) =cp 2™+ - +¢ with he Clx]
k(z) =dpz™'+---+dy with ke Cla]
Comparing coefficients of z" ™™~ xntm=2 29 on both sides of (*) we find that
A Co—1 = bpd,—1
AnCm—2 + Ap_1Cm—1 = bmdn72 + bmfldnfl
apgCo = bodo

We want to find a non-trivial solution to the above system of equations in the variables
€y -+, Cm—1, _d07 ce _dn—l'
Since we have m + n equations and m + n unknowns, we can find such a solutions if and

only if det(A) = 0 where

Qn, 0 by 0
ap—1 anp, bm—l bm
A= Qp—2 QGp-1 Qap bm—2 bm—l bm
0 ao 0 bO

But det(A) = det(AT) = R(f, g).
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19. LECTURE: FRIDAY, FEBRUARY 18, 2000

The coefficients aq, ... ,a,_1 can be expressed as a,, times an elementary symmetric function
of the roots x1,... ,x, of f.

Similarly the ;s for 0 < 7 < m — 1 are b,, times an elementary symmetric function of the
roots yi, ... ,y, of g.

The resultant of f and ¢ is homogenous of degree m in the a;’s and homogenous of degree
n in the b;’s. Therefore R(f,g) is a,™b," times a symmetric function of the z;’s times a
symmetric function of the y;’s

We now view z;’s and y;’s as indeterminants and so R(f,g) € Clx1,... ,Zn, Y1, Ym)-
Note that if z; = y; then R(f, g) = 0 and so z;—y; divides Rin Clz1, ... ,Zpn, Y1, ... , Ym]. But

x;—y; is a prime in the UFD Clzy, ... , 2, Y1, - .. , Ym) and so S divides R in Clz1, ... , zy, 1, - . -

where o
S =a,"by," H H(:c —
i=1j=1
Observe that since g(x) = by, [T72, (z — y;), we see that
S =a." [[ g(w:) (1)
i=1

Also note that f(z) = a, [T (x — z;) = (—=1)"a, [T}, (z; — x) hence

§ = (=1, T f(w0) )
j=1
iFrom (1), S is homogenous of degree n in the b;’s and from (2) S is homogenous of degree
m in the a;’s.
Thus R and S have the same degree while S divides R. Hence R = ¢S for some constant c.
By the definition of the resultant, we see that

R=a,"b," + -
while from (1),
S =a,"b," + -
and so R = S.
Let f(x) = 2" +a, 12" ' +---+ag € Z[z] and suppose f(z) = (r —aq) - (z — ) in C[z].
Then by (1),

RS =1 7o)
But .

—

=Y (z—a1) - (x—a) (2 —ay)

n
=1

.

—_—

where (x — ;) means that (z — ;) is removed from the product.
Thus /(a:) = TL-i (0 — ).
i

 Yrm)
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Hence

R(f, f/) = HH(% - Oéj)

i=1j=1

J#i
n(n—1)
=)= JI (w-a)?
1<i<j<n

Suppose that f € Z[z] is irreducible over Q and that 6 is a root of f.
Let 6 =64,... .0, be the conjugates of §. Then
n(n—1)

disc(0) = H (s — ;) =(=1)"z R(f,[)

1<i<j<n
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20. LECTURE: MONDAY, FEBRUARY 21, 2000

Example:
Let 6 be a root of f(z) = 23+ 2? — 22+ 8. Note that f is irreducible over Q by the rational
roots theorem. What is disc(6)?
Observe that
f'(z) = 32° + 22 — 2

Hence
11 -2 8 0
01 1 -2 8
R(f,fY=det| 3 2 =2 0 0
03 2 -2 0
oo 3 2 =2
-6 —112
—---—det< U —74 > = 2012 =4-503

Thus disc(d) = (—=1)*7 4 - 503 = —4 - 503

Put K = Q(#). What is disc(K)? It is either —4 - 503 or -503.

If {1,60,6%} is an integral basis for K, then disc(K) = —4 - 503. We’ll show that it isn’t by
showing that ‘922—’9 € AN K. We then conclude that disc(K) = —503.

Let 6 = 601, 0,, 05 be the conjugates of . Thus f(z) = (z — 61)(x — b;)(x — 63).

2 2 2 2 . 2
Further, &% = &tb 6ot 85 05 qpe the conjugates of &5, Thus

o () e () - (450)

is the minimal polynomial of QQTJFG and it suffices to show that g € Z[z].
Note that

01 + 05 + 05 = —1
0105 + 0105+ 0,05 = —2 3 since f(z) = 2® + 2% — 22 + 8
919293 - —8
Thus )
0.2 +0, 0240y 05°+05  0,2+0,2+052+60,+0,+ 04
+ + =
2 2 2 2
(01 + O3 + 63)? — 2(0102 + 0,03 + 0203) + (61 + 05 + 63)
2
(-1 =2(=2)+(-1) 4

- —-=2¢7
2 2

Next observe that
(912 + 91)(922 + 65) (1912 + 91)(032 + 03) (922 + 92)(032 + 03)
4 + 4 + 4

1
=3 (01202 4 0102% + 0,°05 + 0,02 + 0105 + 0,05% + 0,703 + 0103 + 02°05° + 0205 + 05°03 + 0203)
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1
= Z((9192 + 0505 + 9193)2 - 2(9129293 + 010,%05 + 9192933) + (6102 + 6103 + 60202) — 360,0203)

1
= J(4-16—-2+2+24)
=3€7Z
Finall
0 0 (621 0,) (6250 6:0,0,
( . )( . )( . >: 2 gy 1) (624 1)(05 1)

=—(01+1)(0:+1)(0s+1) € A

Thus (912;91 )(922;92)(932;93) is an integer. (In fact, it is equal to 101.)

Therefore disc(K) = —503.

Definition. Let L be a finite extension of Q. Suppose [L : Q] = n. Suppose that A € ANL
and that {1,\,\%,... ,A\""!} is an integral basis for L. We say that it is a power basis.
Dedekind showed that not all fields L have a power basis. In fact he showed that if L =
K = Q(#), as in the example, that K does not have a power basis.

We can check that disc(1, 6, 92;9) = —503 and hence that {1, 0, @} is an integral basis for
K.

Suppose A € AN K. We'll show disc(A) # —503. Note that

2

/\:a+b9+c<9 +0> with a,b,c € Z

Thus
2
N = a? + 020 + %(93 +20% + 0%) 4 2abb + ac(6* + 0) + be(6° + 6%)
We use 02 = —02 + 20 — 8 and 0* = —03 + 20 — 86.

Hence 6* + 26 + 62 = 262 —269 —8and 63+ 6% =20 — 8.
Thus A2 = A, + Ay0 + As (%) where

A = a®>—2c% —8bc
Ay = —2¢% 4+ 2ab + 2bc — b?
As = 2%+ 2ac+ 2

1 1 0 0 1
Al=|a b ¢ 0
A2 Al Ay A £

10 0’
disc(A) =det | a b ¢ - (—=503)
Ar Ay As

Therefore

But we have

10 0’
det| a b ¢ = (bA3 —cAs)? = (20° — b +b*c+2¢*)* = (c(b* —be))* =0 (mod 2)
A Ay Aj
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Thus disc(\) # —503 and so no power integral basis for K exists.

21. LECTURE: WEDNESDAY, FEBRUARY 23, 2000

Let K be a finite extension of Q. The irreducible elements of A N K are those o € AN K,
which are not zero or a unit, for which o = gy with 8,7 € AN K implies that 3 or v is a
unit. The irreducible elements in Z = A N Q are the primes.

In Z we have the Fundamental Theorem of Arithmetic. In general there is no analogue of
this result for A N K with irreducibles taking the role of the primes. (Recall Assignment 2
Question 1, where we showed that in Z(v/=5) = ANQ(+v/=5) there is not unique factorization
into irreducibles.)

However, we can recover unique factorization by passing to ideals.

Definition. A Dedekind domain is an integral domain R for which:

1) Every ideal in R is finitely generated.
2) Every prime ideal is a maximal ideal.
3) R is integrally closed in its field of fractions.

We’ll show that if K is a finite extension of Q then A N K is a Dedekind domain. Also, we
have unique factorization, up to reordering of ideals, into prime ideals in a Dedekind domain.
Remark.
i) The field of fractions of a ring R is {§ | a,b,€ R,b # 0}.
ii) An element # in a ring extension S of R is said to be integral over R if it is the root
of a monic polynomial with coefficients in R.
iii) A ring R in an extension ring S of R is said to be integrally closed if whenever 6 € S
and 6 is integral over R, then 6 € R.

Proposition 37. Let K be a finite extension of Q. Let I be a nonzero ideal in ANK. Then
there is a monzero integer a in I.

Proof:
Since [ is nonzero there is an element o € I with « # 0.
Let @ = aq,... ,a, be the conjugates of a.

Then Ng(a)(a) =a; -, €7\ {0}, say Ng(a)(a) =a.
Note that ay---a, € Aand ay---a, = & € Q(a) C K.
Thus as - - -, € AN K. Therefore a(ay---a,) € 1. O

Definition. Let K be a finite extension of Q and let I be an ideal in A N K. A set of
elements {aq,...,a,} from [ is said to be an integral basis for I if for every element of [
has a unique representation as an integer linear combination of aq, ... , a,.

Theorem 38. Let K be a finite extension of Q and let {wy,... ,w,} be an integral basis for
K. Let I be a nonzero ideal in AN K. Then there is an integral basis {1, ... ,a,} for I for
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which
Q1 = a1,1W1
Qg = Q21W1 + A2 2wW> . .
with a; ; € Z and a;; € Zt fori=1,....n
Qp = Ap1W1 + -+ Qp nWn
Proof:
It follows from Prop. 37 that there is a positive integer a in I. Thus aw; € [ fori=1,... n.
Now take a; to be a;w; where aq; is the smallest positive integer for which a;jw; is in 1.
We then choose as, ... , @, so that a; = a; w1 +- - - +a;w; where a;; € Z* and a;1,... ,a;,-1
are in Z with a;; minimal, fori =1,... ,n.
ag; 0 - 0
. . . . ) Q21 Q22
We claim {ay,...,a,} is an integral basis for I. Since , ‘ has deter-
Qpp - Qpn
minant aqq - - - a,, 7 0 we see that aq, ..., «a, is a basis for K. Thus it suffices to prove that
every element 3 of I has a representation as an integral linear combination of aq, ... , a,.
Since wi, ... ,w, is an integral basis for K, there exist integers by,...,b, such that g =

biwy + -+ + bywy,.

Note: that b, is divisible by a,, by the minimality of a,,. For otherwise, we would have
b, = qa,, +r with 0 < r < a,, and then § —qa, € I and when expressed as a linear
combination of wy, ... ,w,, the coefficient of w, is positive and smaller than a,,,. This
contradicts the minimality of a,,,.

Thus b, = qa,, with ¢, € Z. We then consider 3 — ¢,a,, = w1 + - - cp_1wWn_1. By the
minimality of a,_1,-1 we see that a,,_1,-1 divides ¢,_; as before.
Continuing as before we find that 3 = q1a1 + - - - + gnv, With ¢, ... , g, integers. 0
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22. LECTURE: MONDAY, FEBRUARY 28, 2000
Theorem 39. Let K be a finite extension of Q. Then AN K is a Dedekind domain.

Proof:

It follows from Theorem 38 that every ideal in A N K is finitely generated.

To show that every prime ideal P is maximal, we first note that (A N K)/P is an integral
domain. Secondly we observe that if (A N K)/P is finite, then (A N K)/P is a field since
every finite integral domain is a field. If (AN K)/P is a field, then P is maximal.

Thus, it is enough to show that (A N K)/P is finite.

By Proposition 37, there is a positive integer a in P. Let {wy,... ,w,} be an integral basis
for AN K.

Note that every element in A N K is an integer linear combination of wy,... ,w, and that
a € P. Thus

(ANK)/P| < a"
Finally, let v = % with o, 3 € AN L, 3 # 0.
Suppose that ~ is the root of monic polynomial with coefficients in A N K, say

"4 a2+ ap with ag, ... 01 EANK

Since v = % we see that v € K. It suffices to show that v € A.

By Theorem 13 we need only show that ~ is an element of a subring of C which has a finitely
generated additive subgroup.

Consider S = Zlag,... ,an-1,7]. We claim that the additive subgroup of S is finitely
generated. Let [K : Q] =n, and let § € S.

We’ll show that 6 is an integral linear combination of terms of the form

g’ - 1?19 where 0 < j; < nfori=0,... ,m—1
Observe that it suffices to prove that when

bo

0 = ag ---an_lbnfwbm with b; > 0 for2=0,...,m

;. From the relation ™ = a,,_1Y™ ' -+ ag we can show that % is an integral linear combi-
nation of terms of the form

0 = gl - ty_yinm1nytm
with 0 < ¢,, <m and with a; >0 for:=20,... ,m — 1.
Let
file) = 2" +al? a4 4 al)
where agi) € Z is the minimal polynomial of o; for ¢ =0,... ,m.
We now reduce the powers of the o;’s using the relations given by the minimal polynomial
to give the result claimed. O

23. LECTURE: FRIDAY, MARCH 3, 2000

Theorem 40. Let R be a commutative ring. The following are equivalent:
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(1) Every ideal in R is finitely generated.
(2) Ewvery increasing sequence of ideals in R is eventually constant.
(3) Every nonempty set of ideals in R has a mazximal element.

Proof:
o [(1) = ()]
Let Iy C I, C I3 C --- be a sequence of ideals in R.
Let
I =U7,1,
then I is an ideal of R and I, C I for n =1,2,.... Since every ideal in R is finitely
generated there exist ay,... ,a, € R such that

I=(ay,...,a)

Thus a; € I,,, for some integer n; for i =1,... ,r.
Let N = max(nq,...,n,). Then

ICIyCINy C---C1T

and so [ = Iy = Iy, = --- as required.

°[(2) = ()]
Let S be a nonempty set of ideals in R. Let I; be an ideal of S.
Either I; is maximal or there exists Iy in S with [; € [5. Similarly, either I, is
maximal or there exists I,,,1 € S with I, & I, ;1.
By (2), this sequence terminates after finitely many steps.
The last term in the sequence is a maximal element of S.

. [(8) — (1)
Let I be an ideal of R.
Let S be the set of ideals contained in I which are finitely generated. S is nonempty
and so by (3) contains a maximal element M.
Notice that M = I, since otherwise M ¢ I, and then there exists an element § €
M\ I. Suppose M = (aq,...,qa,). Then My = (aq,... ,ap, () isin S and M € M;
which contradicts the fact that M is a maximal element of S. Then M = I and so [
is finitely generated.

[l

Lemma 41. In a Dedekind domain R, every nonzero ideal of R contains a product of prime

ideals from R.

Proof:
Let S be the set of nonzero ideals in R which do not contain a product of prime ideals from
R. If S is nonempty then, by (1) and (3) of Theorem 40, S contains a maximal element M.
M is not prime and thus there exist r,s € R\ M with rs € M. Consider

My, =M + (r), My = M + (s)

Since M is maximal in S, M & M; and M & Ms, so we see that M; and M, are not in S
and so both M; and Ms contain a product of prime ideals from R.
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But MM, C M, and thus M contains a product of prime ideals, which is a contradiction.
Thus S is empty. ([l

Lemma 42. Let I be a proper ideal in a Dedekind domain R. Let K denote the field of
fractions of R. Then there exists an element v € K with v & R such that vI C R.

Proof:

Note that we may assume I is nonzero, since the result holds for any v € K \ R in the case
of I = (0). So let a be a nonzero element of I.

Since [ is proper, a is not a unit, and so % ¢ R, while % € K.

By Lemma 41, (a) contains a product of prime ideals, Py,... ,P,, from R. Choose such a
product with r minimal. We have

Pl"'PTg(a)

Let S be the set of proper ideals containing I.
Then S is nonempty. since I € S and so, since R is a Dedekind domain, S contains a
maximal element M.
Note that M is a maximal ideal of R and so M is a prime ideal of R.
Thus M D Py ---P,. Observe that M D P; for some ¢ with 1 < ¢ <.
(To see this, note that if this were not true, then there is an element a; € P; with a; & M
fori=1,...,r.
But then a; - --a, € M and this contradicts the fact that M is a prime ideal.)
Without loss of generality, we may suppose that M 2O P;. (In fact M = P; since R is a
Dedekind domain.)
Recall that (o) D Py - - - P, and that r is minimal.
If r =1 we take v = X then since P; C (o) € I € R and prime ideals in Dedekind domains
are maximal ideals then

Pl = (Oé) =1

1

v = a(a) =R

as required.
If » > 1 we choose an element b in Ps---P,. and take v = g Note that Py ---P, is not
contained in (o) since r is minimal.

Thus v € K\ R. Then

Py P PPy (@)
« (0% «

as required. O

7]:ﬁfgé7j1§
a a
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24. LECTURE: MONDAY, MARCH 6, 2000

Theorem 43. Let R be a Dedekind domain and let I be an ideal of R. Then there exists an
tdeal J such that I.J is principal.

Proof:
If I = (0) result is immediate. So, suppose I # (0).
Let a € '\ {0}. Put
J={feR|pIC(a)}
Note that .J is an ideal and that JI C («).
It remains to show (a) C IJ hence that () = I.J.
Put B = é]J. Then B is an ideal of R.
If B is a proper ideal of R then by Lemma 42, there exists v € K \ R such that yB € R.
Since a € I we see that J C B. Thus vJ C vB C R.
Note that since yB C R we see that vJI = («). Therefore, by the definition of J, vJ C J.
Now J has a finitely generated additive subgroup and, as in the proof of Theorem 13 for
Dedekind domains, v € R.
The contradiction proves the result. 0

25. LECTURE: WEDNESDAY, MARCH 8, 2000

Corollary 44. If A, B,C are ideals with C # 0 in a Dedekind domain and AC' = BC, then
A=B.

Proof:
There exists an ideal J such that JC' = («) for some nonzero element «. Thus
JAC = JBC = (a)A=(a)B = aA=aB
Hence, since @ # 0, then A = B. O

Corollary 45. Let A and B be ideals in Dedekind domain R. Then A D B < A| B.

Proof:

(<) If A| B then there exists C' such that AC' = B implies A D B.
(=) Suppose A 2 B. The result holds with A = (0) so assume A # (0).
Then there exists an ideal J such that JA = («) with a # 0.
Then JA = () 2 JB, hence R 2 é
Let C = £JB. Note C is an ideal and AC = B.
U

Theorem 46. Every proper nonzero ideal in a Dedekind domain has a unique factorization,
up to reordering, into a product of prime ideals.
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Proof:

Let S be the set of nonzero proper ideals in R which cannot be written as a product of prime
ideals.

If S is not empty, there is a maximal element M € S.

Notice that M is contained in a maximal ideal P of R. Since M € S, then M ¢ P. By
Corollary 45, there exists an ideal C' such that M = PC.

Since M € S, C'is not a product of prime ideals. So C' € S and C O M, which is a
contradiction.

Thus S is empty. Now we show the factorization is unique up to reordering. Suppose that

i Pr= Qi Qs
with Py, ..., P. and Qq,... ,Q, prime ideals.
Then Py | Q1 -+ Qs hence P; D Q1 ...Qs.
Since P; is a prime ideal P; O @); for some 1 <17 < s.
Without loss of generality, we may suppose ¢ = 1, so that P; O Q1. In a Dedekind domain,
prime ideals are maximal ideals, so P; = Q).
By Corollary 44,
PZ"'PTZQQ"'QS
The result follows by induction. O

Remark. Let [K : Q] be finite. Since the ring of algebraic integers of K is a Dedekind
domain, we have unique factorization into prime ideals in A N K.

26. LECTURE: FRIDAY, MARCH 10, 2000

Theorem 47. Let [K : Q] < co. Factorization of elements of AN K into primes is unique
up to reordering if and only if every ideal in A N K is principal.

Proof:

(=) : It suffices to prove every prime ideal is principal. Let P be a prime ideal of AN K.
By By Proposition 37, P contains a nonzero rational integer a. Therefore P O (a).
Accordingly P | (a). Let a = 7 - - - m; be a representation of a as a product of primes
of AN K. (Note: a # £1 since P is a prime ideal.) Thus

(a) = (m) - (m)
and since P | (a) we see that P | (m;) for some ¢ with 1 < ¢ < ¢. Without loss of
generality, we may suppose P | ().
If we can show () is a prime ideal then P = (1) and the result follows.
Suppose (v € (m) with 5,7 € AN K. Then m | f7 and on examining the prime
factorization of 3 and -y we see that m; | § or m; | v. Thus (m) is a prime ideal.
(<) : Assume 7y -+, = Ay -+ Ag with 7wy, ... ;7 A1, ... , As primes in AN K. Then

(m) - () = (A1) -+ (As)

It suffices to show that if 7 is a prime in A N K then (7) is a prime ideal since the
result then follows from the above equality and the fact the in AN K we have unique
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factorization into prime ideals.
Suppose (m) = BC' for some ideals B and C' in A N K. Since every ideal is principal
in AN K we have B = (3), C = (y) for 5,7vin AN K.

Thus (7) = (8)(v) = (B7). In other words, - is a unit. Since 7 is a prime we see

that either 5 or v is a unit and thus B or C is (1), hence (7) is a prime ideal.
0

Let K = Q(v/—D) where D is a squarefree positive integer. Gauss conjectured that A N K
had unique factorization into primes only if D =1,2,3,7,11,19,43,67, 163.

In 1934 Heilbrann proved that there is at most one more D other than those in Gauss’ list.
In 1969 Baker and Stark independently proved that the above is a complete list.

Let K be a finite extension of Q and let P be a prime ideal of A N K. Let a be a positive
integer in AN K. Note a > 1.

Let a = p;---p, with py, ..., p, primes in Z.

Then (a) = (p1) - (pr), hence P D (a) or P | (a) hence P | (p;) for some prime p;.

In fact there is only one such prime p. Suppose P | (¢) also with ¢ a prime in Z different
from p. There there exist integers a and b such that

ap+bg =1
hence
(@)(p) + (b)(g) = (1)
and then P | (1) which is a contradiction.

Thus to determine all prime ideals of A N K it suffices to determine the prime ideal decom-
position of (p) in A N K as p ranges over the rational primes.
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27. LECTURE: MONDAY, MARCH 13, 2000

Definition. Let K be a finite extension of Q, and let p be a prime in Z. We say that p
be a prime in Z. We say that p ramifies in K if there is a prime ideal P in A N K such that
P?|(p)in ANK.

Dedekind proved that p ramifies in K if and only if p divides the discriminant of K.

Theorem 48. Let K be a finite extension of Q and let D be the discriminant of K. If p is
a prime in Z and p [ D then p is unramified.

Proof:
Suppose P? | (p) for some prime ideal P in AN K and some p in Z.
Then (p) = P?Q for some ideal Q in AN K. Let a € PQ with o € P?Q so that o€ ANK.

Note that a? € P?Q* C (p) so O‘;f € AN K. Therefore, for any § € AN K, @ cANK.
Further,
(aB)” (aB)”
75 ((af)) = Tg(pT) = pTg(T)
and so p | T ((af)?). Further,
(T5 (aB))? = (O o(ap))?, o an embedding from K to Q

=Y o(af)+pyforye ANK

= o((aB)’) +pv

=T5 ((aB)") +pv
Therefore, p | (T (af))?, hence p | TS (af3).
Let wy,... ,w, be an integral basis for K.
We have o« = aywy + -+ - + a,w, for some ay,... ,a, € Z. Since o & (p), we see that p [ a;
for some ¢ with 1 < i < n. Without loss of generality, we may suppose p [ a;.
By our earlier remarks, we see that p ,(Tg(awi) fori=1,...,n.
Thus p | T (a1w1 + -+ - + apwn)wr 50 p | S5y ap TS (wjws).
Denote T/ by T. Then

aT(wiwy) - a1 T(wiwy)
2D — det T(w?wl) e T(w?wn)
T(w;lwl) - T(w;lwn)
a;T(ww) + -+ a, T (wpw1) -+ a1T(wwy) + -+ apn T (wpwy)
et T(w?wl) e T(w?wn)
T(w;lwl) e T(w;lwn)

Thus by (*), we have p | a;D. Since p [ ai, we see that p | D and the result follows. O
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28. LECTURE: WEDNESDAY, MARCH 15, 2000

Let [K : Q] < co. Let a € AN K. We have defined the norm of a, N§ (). We now extend
this notion to ideals.

Definition. We define the norm of an ideal I in AN K, denoted N(I) or N§ (I) or ||I]| to
be (AN K)/I|. In other words, N(I) is the number of cosets mod I in AN K or the number
of residue classes modulo / in AN K.

Theorem 49. Let K be a finite extension of Q and let I be an ideal in AN K. Let
{aq,... ,an} be an integral basis for I. Then

2

disc(ay, ..., o) where D = disc(K)

D

N(I) =

Proof:
Every integral basis for I has the same discriminant.
Let {w1,... ,w,} be an integral basis for AN K and {a,...,a,} be an integral basis for I

of the form given by Theorem 38.
2

a; 0 -~ 0
. (21 Q22 0 '

Then disc(ay, ... ,a,) = | det _ _ _ disc(wy, ... ,wy)

a/nl “ .. “ . ann

disc(ay, ... ,ap) 9

D - (all ann)
Recall a;; € Z* for i = 1,... ,n. Hence
disc(ay, ... ,ap)|?
=qa . ann
D 11

Thus it suffices to prove that N(I) = ay1 - - app.
First we show that if

riwy + -+ Tawn = Sqwp + -+ Spw, (mod T)
with 0 <7; <a;and 0<s; <a; fori=1,...,n.
Then r; = s; for i = 1,... ,n. This shows N(I) > a1 - - app.

Note (r1 — s1)wy + -+ + (ry, — Sp)wy, € 1.
Recall from the proof of Theorem 38 that a,, was the smallest positive integer occurring as

the coefficient of w,, in a linear combination of wy, ... ,w, which is in I.
Therefore ay,, | 7, — $, and since 0 < 7, < a,, and 0 < s, < a,, we see 1, = S,.
Similarly ay,—15-1 | "p—1 — Sp—1 and 80 rp_y = Sp_1,... 71 = 1.

Thus N(I) > aqy - - - app.
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Let vy € AN K so v = biwy + -+ + byw, with by,... b, € Z. Then there exist integers
qiy... ap and rq, ... ,r, with 0 <r; <a;; for2=1,... ,n such that
T = 101 4+ qnOnnT1W1 +---+ T'nWn
But then v = rjwy + -+ - + rpw, (mod I).
Thus N(I) < ag - - app.
Therefore N(I) = ay1 - apy.
O

Theorem 50. Let K be a finite extension of Q and let I be a principal ideal of A N K.
Suppose I = («). Then
N(I) = |N§ (o)

Proof:

Let wy,... ,w, be an integral basis for AN K.

Then aws, ... ,aw, be an integral basis for I.

Let o4, ... ,0, be the embeddings of K in C which fix Q. We have
o1(awy) - o(awy,) o1(@) 0 o1(w1) -+ op(wy)
on(awr) -+ op(awy,) 0 on(@) op(wr) -+ op(wn)

Thus by Theorem 49,

N(I) = || det = |NE (o)
0 on(a)

29. LECTURE: FRIDAY, MARCH 17, 2000

Theorem 51 (Fermat’s Theorem). Let [K : Q] < oo and let P be a prime ideal of AN K.
Let o € AN K such that P [ (a). Then a¥P)~1 =1 (mod P).

Proof:

Let f1,...,08n@) be a complete set of residues modulo P and suppose that SByp) = 0
(mod P).

Then afy,...,afn@p) is also a complete set of residues modulo P since if af; = af;

(mod P), then P | (a)(8; — B;) and so P | (B — ;).
Thus 5; = §; (mod P) and so ¢ = j.
Thus we see that (af:1)(afs) - (afnp)-1) = B1f2- - Bnp)—1 (mod P) so

OéN(,P)_l(ﬁl Ce /BN(P)*1> = 61 cee ﬁN(’P)fl (mod P)
and therefore
NPt =1 (mod P)
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Proposition 52. Let [K : Q] < oo and let I be an ideal of AN K. Then N(I) € I.

Proof:
Let ay,... ,an() be a complete set of residues modulo /. Then

I+a,1+a,...,1+axm

is also a complete set of residues modulo 1.

Therefore,
I+o)+-+1+anp) =a1+---+ayy (modI)
hence
N({I)=0 (modI)
as required. 0

Remark. It follows immediately from Proposition 52 that if K is a finite extension of Q,
then for each positive integer a there are only finitely many ideals in AN K with norm equal
to a.
Note that if we can show the norm is multiplicative on ideals of AN K. then we can conclude:
(1) If N(I) is a prime in Z then [ is a prime ideal; for if I = AB, then N(I) = N(A) -
N(B), hence either N(A) =1 or N(B) = 1.
(2) If P is a prime ideal in AN K with [K : Q] = n and P | (p) with p a prime in Z then
N(P) | p" hence N(P) = p for some f with 1 < f < n.

Definition. Let [K : Q] < oo and let B and C be ideals in A N K. We say that D is the
greatest common divisor (of ideals) B and C' if

D|Band D|C
and whenever F' | B and E | C, then E | D.

Note that if a greatest common divisor exists, then it is uniquely determined since if D and
E are greatest common divisors of A and B then D | E and E | D hence E C D and D C E.
So E=D.

Suppose that B = (aq,...,qa,) and C = (f1,...,05s). Then D = (ay,... , ., 01,...,0s) is
the greatest common divisor of B and C.

To see this, note that B C D since «q,... ,q, are in D, and so D | B. Similarly D | C.

If E is a common divisor of B and C, then E | B so E contains (31, ... , #5. Thus

Eg(ala--' >ar7ﬁ17"' a/gs):D

so B | D.

Therefore D is in fact the greatest common divisor of A and B. We denote this by ged(A, B)
or (A, B).

Alternatively, if Py, ..., P, are the distinct prime ideals which divide AB and

A=P4 P with0<e; fori=1,...,r

and
B=P/ Pl with0< fiforj=1,...,r
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then ‘ .

ng(A, B) _ lem(el,fl) L. Prmm(er,fr)
Definition. If gcd(A, B) = (1), then we say that A and B are relatively prime (as ideals)
Note if (av) = BL then we denote L by %.

Lemma 53. Let [K : Q] < 0o and let B and C' be nonzero ideals in AN K. Then there is
an element oo € B such that gcd(%, C)=(1).

Proof:

Note that if C'= (1) then any « in B will do.

If C'# (1), then we can express C' as a nonempty product of prime ideals of A N K.

Let Py, ..., P, be the distinct prime powers of C'. The argument proceeds by induction on
r.

First consider the case » = 1. In this case we choose « in B but not in BP;.

Such a choice is possible since otherwise B = BPy, hence P; = (1) which is a contradiction.
We have (o) = BE for some ideal E in AN K since B O («) hence B | (o). Thus % =F
and it suffices to show that P; f E.

Note that if gcd(E, C) = Pym then E = P, F and thus (o) = BE = BP, F.

In particular, BP; | (a) hence BP; O («) and so a € BP; which is a contradiction. The
result follows for r = 1.

Let Py, ..., P, be the distinct prime ideals dividing C'.

We prove the result by induction on r.

We now make the inductive assumption that the result follows holds for ¢ < k£ < r.

Let » »
B, =BP,---P,,---P,=B—1 "
P,
form=1,...,r.
We can find an element «,,, in B,, for m = 1,...,r such that gcd(%—:),Bm) = 1 by our

inductive hypothesis. Put

a=o1+ -+ o
Since B D B,, form =1,... ,r we have that « € B. Note that « & BP,, form =1,... r.
To see this, observe that o € BP,, for some m with 1 < m < r, then since «o; € BP,, for
1 # m, we find that a,, € BP,,.
Thus (a,,) € BP,, hence BP,, | (auy,). Therefore Py, | %.

Since Py,..., P, are distinct prime ideals, we see that P, | (g’n’z) and this contradicts the
that that gcd(%,Pm) =1.
Suppose now that gcd(%, C) # 1. Then

P | ged <%,Pm> forsomenforl <m<r
Thus Py, | % or equivalently BP,, | (a). Thus BP D («) and so a@ € BP,, which is a
contradiction. Thus gcd(%)) = (1). O
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30. LECTURE: MONDAY, MARCH 20, 2000

Theorem 54. Let [K : Q] < oo and let B and C be ideals in AN K. Then N(BC) =

N(B)N(C).

Proof:

By Lemma 53 there is an element v € B such that ged(3,C) = 1.

Let oy, ..., an(p)y be a complete set of residues modulo B, and let 3, ... , By(c) be a complete

set of residues modulo C.
Note that the numbers «; +B; are distinct modulo B for 1 <i < N(B) and 1 < 57 < N(C).
To see this, suppose o; +v0; = oy, + 70 (mod BC). Then
a; — o =B — B;) (mod BC)

Thus o; — a; =0 (mod B) and so i = k. Therefore,

v(Be—B;) =0 (mod BC)
Since gcd(%,C’) =1 we see that ged((y), BC) =. Thus §;, — f; =0 (mod C), hence ¢ = j.
Therefore, N(BC) > N(B)N(C).
Pick @« € AN K. Then it remains to show that

a=owo;+706; (mod BC) for i,j with 1 <i < N(B),1<j < N(C)
Now a = «; (mod B) for some i with 1 < ¢ < N(B). Since o« — a; is in B and since
ged((), BC) = B we can write o« — ; in the form v6 4+ A with # € AN K and A\ € BC.
Then we put § = ; (mod C) with 1 <¢ < N(C) and we find that
a—a; =70 +(6 = F;) + A
Since § — 3; € C and ged((v), BC) = B we see that
1B =B;)+AreBC

and hence that
a=a;+v0; (mod BC)
Therefore N(B) - N(C) > N(BC') and so N(B) - N(C) = N(BC). O

31. LECTURE: WEDNESDAY, MARCH 22, 2000

Definition. Let [K : Q] < co. Let A and B be ideals in AN K. We define a relation ~ on
the ideals of A N K in the following way: we write A ~ B if there exist nonzero elements a
and [ of AN K such that (o)A = (5)B.

Note that ~ is an equivalence relation since:
(1) A~ Asince A= (1)A = A(1).
(2) If A ~ B, then there exist o, 5 € AN K with o # 0 such that (o)A = (5)B. But
then (8)B = (a)A so B ~ A.
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(3) If A~ B and B ~ C, then there exist «, 5 such that (o)A = (5)B and there exist
7,0 such that (y)B = (9)C.

Therefore,
(M)A = ()(B)B = (8)(6)C
so (ya)A = ($9)C and thus A ~ C.
Definition. The equivalence classes under ~ are known as ideal classes. The number of
equivalence classes, denoted by h or hg, is called the class number of K.

If h =1, then all of the ideals of AN K are principal. To see this, note that if B is an ideal of
ANK, then B ~ (1). Thus there exist a, # € AN K with «, 5 # 0 such that («)(1) = (5)B.
In other words, (a) = (5)B.

Note that a € (a) and the elements of the right hand side are of the form £ with § € AN K.
Thus § € AN K. Note that (a) = (5)(3).
Thus (8)B = (3)(§) hence B = 3.

We next define the binary operation of multiplication on the set of ideal classes.

Definition. Let [K : Q], and let A, B be ideals in AN K. Denote the ideal classes of which
A and B are representatives by [A] and [B] respectively. Then we define - by

[A] - [B] = [AB]

We must now check that this multiplication is well-defined. So suppose that A ~ C' and
B ~ D; then we must show that AB ~ CD.
Since A ~ (|, there exist o,y € AN K, af # 0 with (a)A = (v)C; and since B ~ D, there
exist 3,0 € AN K, (3,0 # 0 with (8)B = (§)D.
But then

()A- (B = (1)C - ())D
and hence (ay)AB = (80)CD and so AB ~ CD.

Let C ={[A] | A# 0, A an ideal of AN K}.
With the above definition of multiplication, C is an abelian group. Let us check the proper-
ties:
(1) Associativity: [A] - ([B] -
[AB] - [C] = (4] - [B]) - [C]
(2) Identity element: [(1)]-[B] = [B] = [B] - [(1)].
(3) Inverses: Consider [B]. Let b be an integer in B. Then B D (b), so there exists C'
such that BC' = (b).
Then the ideal class [B] - [C] = [(b)] = [(1)].
Then C is a group under -.
It is abelian since [A][B] = [B][A].
Definition. C is called the ideal class group of K.

[C]) = [A] - [BC] = [A(BC)] = [ABC] = [(AB)C] =
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32. LECTURE: FRIDAY, MARCH 24, 2000

Theorem 55. Let [K : Q] < oco. Let A be an ideal in AN K. Then there exists a positive
number ¢y and an element a € A with a # 0 such that

[NE (@) < coN(4)
(Note: ¢y depends on K but not on A.)

Proof:
Let wy, ... ,w, be an integral basis for K. Put t = [(NA)/™]; here n = [K : Q.
Consider the number ( of the form

0 =ciwi+-+cpw, where 0 < ¢; <tfori=1,...,n

There are (t + 1)" > N(A) such numbers and so two of them, 3; and (3, say, are congruent
modulo A. So let

Oé:ﬁl —ﬁ2:t1w1++tnwn with ‘tly St
Note that oo € A. Let o4, ... ,0, be the embeddings of K in C which fix Q. Then

‘fll oj(a)

N ()] =

n

[Ttoj(ws) + -+ tnffj(wn))|

J=1

H |t1| |UJ w1) + et |tn| |0j(wn)|)

| /\

ﬁ (loy(@n)l + -+ + los(wa)])
< (N(A))co where ¢y = f[1(|0j(w1)’ + -4 oj(wn)])

Note that a # 0 since 3; # [s.

We'll show later that we can take co = /| D|.
Theorem 56. Let [K : Q] < co. The class number h of K is finite.

Proof:

We'll show that every ideal class of A N K contains an ideal of A N K of norm at most cy; ¢
from Theorem 55.

Since there are only finitely many ideals of a given norm, the result forms.

Let I be an ideal in A N K. Then there is an ideal A in A N K such that

[A~ (1) (1)
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By Theorem 55 there is an element o € A with a # 0,
Recall that ’Néf(a)‘ = N(a).
Since o € A there exists an ideal B with AB = («). Thus

BA~ (1) (2)

iFrom (1) and (2) we see that B ~ [. But since the norm function is multiplicative on
ideals, then

NE ()| < coN(A).

N(A)-N(B)=N(AB) = N(a) < ¢gN(A)
Hence N(B) < ¢ as required. O

Remark. Let [K : Q] < co. Let A and B be ideals in AN K. Then [A"] = [(1)] by
Lagrange’s Theorem.
Further, if ¢ if a positive integer with (¢, h) = 1 and if
[A%] = [BY] then [A] = [B]

To see this note that there are integers r and s such that rq — sh = 1.
Then note that

[A?] = [B”] hence [AA®"] = [BB*"]
and so by our previous result, we have [A] = [B].
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33. LECTURE: MONDAY, MARCH 27, 2000

Example:

Let us determine the ideal class group C of Q(v/—23). (We'll assume ¢y < 4/|D| in Theorem
55).

Since —23 = 1 (mod 4) we see that ¢y < /23 and so we need only consider ideals of norm
at most 4 as possible representatives of the different ideal classes.

We have
(2) = (2, 2552)(2, 25 ) = PP

say and note that P and P’ are prime ideals since they have norm 2.
Also,

(3) = (3a = 2_23)(3> L 2_23) = QQ’
where Q, Q' are prime ideals.
Thus the ideals of A N K of norm at most 4, are
(1),P,P,Q,Q, PP, P, P*

Note that PP" = (2) ~ (1).
Consider

NG (V=23)(“Hy=2) = 2
then a? + 23> = 8, hence b = 0. But then a? = 8, which is a contradiction. Thus there is
no principal ideal of norm 2.
Therefore,

P (1), P (1)
Further,

PQ = (6,2(14),3(1E), (L E)

Since (1’\QT%)(1+‘§’_%) = 6 we see that PQ = (:=42%) and so PQ ~ (1).

Similarly, P'Q" = (L\Q_QS) and so P'Q’ ~ (1).

Therefore PP'Q" ~ P hence Q' ~ P (since PP’ ~ (2)) and also we have P"PQ ~ P’ hence
Q~P.

This leaves us with

(1), P, P, P, P"

Notice that N(3=23) = 8 = N(3==2),
Observe that (34=23) /(3¥=23) is not a unit in Q(y/—23), hence there are at least 2 distinct
principal ideals of norm 8. The ideals of norm 8 are:

P*,P*P PP P”
Note that P?P’ £ (1) since P £ (1), and PP o (1) since P’ £ (1).
Thus P? and P'* are principal so P? ~ (1) and P ~ (1).
Thus P'P? ~ P’ hence P* ~ P
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Also PP ~ P hence P"? ~ P.
Thus we are left with

(1),P, and P?
as possible representatives of distinct ideal classes.
Note P 7 (1). Also P? (1) since otherwise

PP~ (1) = P’~P = P~ (1),since P* ~ (1)
This a contradiction.

Further, P? ~ P since otherwise P ~ (1), which is a contradiction.

Thus h =3 and C = Z/3Z.

Hilbert conjectured and Furtivangler proved the following:

Let [K : Q] < co. There exists an extension £ of K with the following properties:

1) [F: K| =hg

) E is Galois over K.

) The ideal class group of K is isomorphic to the Galois group of E over K.

) Every ideal of A N K becomes a principal ideal of A N E.

) Every prime ideal P of A N K decomposes into the product of hTK prime ideals in
A N E where f is the order of [P] in the ideal class group of AN E.

There is a unique field F satisfying 1, ... ,5 and it is known as the Hilbert class field of K.

(
(2
(3
(4
(5

Lattices
Let aq, ..., a, be vectors in R™ which are linearly independent over RR.
The set of all points of the form

oy + -+ upay,, withu, € Zfore=1,...,n

denoted A, is a lattice in R”, with basis aq, ... , a,.
Notice that the basis aq, ... , q, is not uniquely determined by A. Let

n
o =Y v (1)
=1

where the v; ;’s are integers with det((v;;)) = £1.

Then

; = Z wl-yja; (2)

j=1
where the w; ;’s are integers and det((w;;)) = £1.
Then
A=Awoy - +uya, |wZ,i=1,... ,n}
={uia} - +upd, | wZi=1,... ,n}

Thus o, ... ,al is also a basis for A. In fact, if {ay,... ,a,} and {a],... ,al,} are bases for

A, then (1) and (2) hold for some choice of integers v; ; and w ;.
To see that det((v;;)) = £1 and det((w;;)) = £1 we can substitute (2) into (1) and note
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that o has a unique representation as an integral linear combination of o, ... ,a/, as a!.
Thus
S i :{ 1 ifi=k
i 0 otherwise
Thus
1 0
det(v; ;) det(w; ;) = det =1
0 1
Since v; ;, w;, € Z we see that det((v;;)) = £1 and det((w;;)) = £1.
Thus if {aq,... ,a,} and {a], ..., } are bases for A then
det(aq, ... ,a, =det(al, ..., al)

and so we can define d(A), the determinant of A, by
d(A) = |det(aq, ... ,ay)|
Example:

Ao={(u1,... ,up) ER" |u; €Zfori=1,... ,n}

34. LECTURE: WEDNESDAY, MARCH 29, 2000

Theorem 57 (Blichfeldt’s Theorem). Let m,n € Z*, let A be a lattice in R™ and let S be a
set in R"™ with Lebesgue measure ju(S).
Suppose
u(S) > md(A)
or u(S) > md(A) and S is compact
Then there exist m+ 1 distinct points 1, ... , Ty 0 S such that all differences x; — x; are
m A, forl1 <u,5 <m+1.

Proof:
Let aq, ... ,a, be a basis for A and put
P={ab+ - 4+a,0,|0<6; <1lfori=1,... ,n}

Note that every point z in R has a unique representation of the form A+~ with A € A and
v € P. Also note that u(P) = d(A).
For A € A we let R()\) denote that set of points v € P such that A+ v € S. Then

AX%M(R(A)) = () (1)
Suppose now that u(S) > md(A) hence that p(S) > mu(P), so

S w(R(A) > mp(P)
AEA
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Thus there is a point vy in P which occurs in at least m + 1 set 7(\). In particular, there
exist A\y,... , Ama1 € Asuch that v+ N\, € Sfori=1,... ,m+ 1.
Then put x; = \; + vy fori=1,... ,m+ 1, we find that

z; —x; € A\ {0} fori #j

We now consider the case where u(S) = md(A) and S is compact.
Let €1, ... be a sequence of decreasing positive real numbers tending to 0.
Then consider S, = (1 +¢,)S. Notice that

u(Sr) = (1 +€)"u(S) > p(S)
so that we can apply the first part of the theorem to get distinct points z;, in S, for
j=1,...,m+ 1 whose differences are in A.
Since S is compact in R" it is closed and bounded. We can extract a subsequence of the
indices r such that on the subsequence the x;,’s converge to 2, € S for i =1,... ,;m + 1.
Notice that z;, — x;, € A for each r and that A is discrete. Thus for r > rg, x;, — ;. is

constant.
Therefore, 7 — z} € A. O

Definition. A subset S of R" is symmetric about the origin if whenever z is in S then —z
isin S.

A subset S of R" is convex if whenever x and y are in S then for all A € R with 0 < A <1,
we have \x + (1 - Ny € S

Theorem 58 (Minkowski’s Theorem). Let m,n € Z* and let A be a lattice in R™. Let S be
a subset of R™ with Lebesque measure pu(S). Suppose that S is convex and symmetric about
the origin. If either
p(S) > m2"d(A)
or u(S) =m2"d(A) and S is compact
then there exist m pairs £X; for j =1,... ,m of lattice points, different from 0, in S.

Proof:

We first apply Theorem 57 to the set %S .

It has volume 11(35) = 77 p(5), hence by Theorem 57 there exist m+1 points 321, . .. , 3Zn11
in %S such that the differences %xz — %xj are in A. Note that %xz — %xj # 0 for ¢ # j.

We order the z;’s, 1 > z9 > ... > 41 so that z; > x; whenever the first nonzero co-
ordinate of z; — z; (reading from left to right) is positive.

Take \; = %xj — %xmﬂ fory=1,...,m.

Then £Xq, ..., %\, are all distinct. Further, —%me € S since S is symmetric about the
origin.

Further, since S is convex,

1 1 .
)\J:§ZEJ+§<—$m+1)€Sf0rj:1, ,m
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Remark. Minkowski’s Theorem is best possible, as the following example shows:

Let m,n € Z*. Put S = {(x1,... ,x,) € R" | |z1] < m, x| for j =2,... ,n}

Then u(S) = m2" = m2"d(Ag) where Ag = {(u1,... ,uy,) |u; € Zfori=1,... n} the only
lattice points of Ag in S different from 0 are +(7,0,...,0) fori=1,... ,m — 1.

35. LECTURE: FRIDAY, MARCH 31, 2000

Let [K : Q] = n. Suppose K = Q(0) for § € K. Let § = 6,,...,0, be the conjugates of 6.
There are n distinct embeddings of K in C which fix Q, say oy, ... ,0,. They are determined
from the fact that o;(0) =0, fori=1,... ,n.

We may suppose that o; : K — R for i =1,... ,n and that o; is not an embedding in R for

t=r1+1,...,r +ry, and we may suppose that o, 1; =0, 1pp fori=1,... .
For any x € K we define o(x) by
o(z) = (01(2), ..., Ory 4y (1))

Now we have 0 : K — R x C™ and o is an injective ring homomorphism. We can identify
C with R? in the usual way and so view o as a map from K to R®. With this assumption
we have:

Lemma 59. Let A be a non-zero ideal in AN K. Then o(A) is a lattice A in R", and

d(A) =272 |D|'* N(A)

Proof:
Let aq,...,a, be an integral basis for A. The co-ordinates of o(«;) with respect to the
canonical basis for R" are given by

(01 (ai)v cee 50y (ai)> Re(o-ﬁ-i-l(ai))v Im(grl-i-l(ai))’ R Im(UTH-TQ (aZ)))
Let Dy be the determinant of the matrix whose ¢th row is given above.
Notice that

Do = (L) det(o5(a))

—2i
since for any z € C, Re(z) = £ and Im(z) =
But by Theorem 49, we have

z—Z
zi "

det(;(a)) = [D|Y* N(4)
Thus Dy # 0 so 0(A) is a lattice A in R™ and
1
d(A) = |Do| = o |DI'"* N(4)
as required. O

Theorem 60. Let A be a non-zero ideal in A N K. Then there exists a non-zero element o

i A for which )
NE@| < (Z) VDl M)

r2
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Proof:
Let t € RT and define S; by
Sy = {(x1,...,zp) ER" | |z <tfori=1,...,r

Note that S; is convex and symmetric about the origin and
w(Sy) = 2w "
Now, we choose t so that
i = 2"212 ID|"* N(A)

- () )

Then by Minkowski’s Theorem there is a non-zero lattice point of o(A) in S;. Let o be the
corresponding element in A.

SO

Then
n 1 o
NE (@) =TT oi(e)| = [TToi(e)| - ([T on+il@)ari(a)
i=1 i=1 i=1
r1 T
= [T oi(a)] - [T(Re(or,1())* + Im(r,45(a))?)
i=1 j=1
2\"?
< =(2) DN
T
OJ
Remark. If we choose S; to be Sy = {(z1,... ,x,) | Xiv; |z;] <t} and use the arithmetic-
geometric mean inequality, we can sharpen Theorem 60 to

AN nl
NE@] < (D) 2D N

(e
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