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Definition. An algebraic integer is the root of a monic polynomial in Z[x].
An algebraic number is the root of any non-zero polynomial in Z[x].

We are interested in studying the structure of the ring of algebraic integers in an algebraic
number field. A number field is a finite extension of Q. We’ll assume that the number fields
we consider are all subfields of C.

Definition. Suppose that K and L are fields with K ⊆ L. Then K is a subfield of L and
L is an extension field of K.
We denote the dimension of L as a vector space over K by [L : K] .
If [L : K] <∞, we say L is a finite extension of K.

Definition. Suppose that H is a field with K ⊆ H ⊆ L. Then we say H is an intermediate
field of K and L. Recall that [L : K] = [L : H][H : K].

Definition. A polynomial f ∈ K[x] is said to be irreducible over K iff whenever f = gh
with g, h ∈ K[x], we have g or h constant.

Recall that K[x] is a Principal Ideal Domain.

Definition. Let K be a subfield of C and let θ ∈ C be an algebraic number. We denote
by K(θ) the smallest subfield of C containing K and θ,

Definition. Let K be a subfield of C and let θ ∈ C to be algebraic over K. A polynomial
in K[x] is said to be a minimal polynomial of θ over K if it is monic, has θ as a root, and
has degree as small as possible with these properties.

Theorem 1. Let K ⊆ C. Let θ ∈ C be algebraic over K. Then there is a unique minimal
polynomial of θ over K.

Proof:
Plainly there is at least one. Suppose that p1(x) and p2(x) are minimal polynomials for θ
over K.
Consider p1(x)− p2(x). Since p1, p2 are monic and of minimal degree, the degree of p1(x)−
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p2(x) is strictly smaller than the degree of p1(x), or p1(x) = p2(x).
In the former case, we contradict the minimality of the degree since p1(θ)− p2(θ) = 0. Thus
p1 = p2 and the result follows. �

Thus we can speak of “the” minimal polynomial of θ over K.

Definition. Let K ⊆ C. Let θ be algebraic over K. The degree of θ over K is the degree
of the minimal polynomial of θ over K.

Remark. Let K ∈ C and θ ∈ C with θ algebraic over K. Let p(x) be the minimal
polynomial of θ over K. Suppose f ∈ K[x] with f(θ) = 0. Then p | f in K[x]. To see this
note that by the Division Algorithm in K[x],

f(x) = q(x)p(x) + r(x) with r = 0 or deg r < deg p

and q, r ∈ K[x]. But
f(θ) = q(θ)p(θ) + r(θ)

Thus r(θ) = 0. If r is not identically zero, then p would not have minimal degree and so
r = 0. Then p = f in K[x].

Theorem 2. Let K ⊆ C. If f ∈ K[x] is irreducible in K[x] of degree n, then f has n
distinct roots in C.

Proof:
Suppose that in C[x],

f(x) = an(x− α)2f1(x)

with an ∈ C, α ∈ C, f1 ∈ C[x]. Then

f ′(x) = 2an(x− α)f1(x) + an(x− α)2f ′1(x)

In particular, f ′(α) = 0.
Let p be the minimal polynomial of α over K. Then p divides f and f ′.
Thus f is not irreducible. The contradiction establishes the result. �

2. Lecture: Friday, January 7, 2000

Let θ ∈ C and suppose that θ is algebraic over a field K (K ⊆ C).
Definition. Let p(x) be the minimal polynomial of θ over K (i.e. p ∈ K[x]). Let
θ = θ1, . . . , θn be the roots of p. θ = θ1, . . . , θn are known as the conjugates of θ over K.
When K = Q we just refer to the conjugates of θ.

Theorem 3. Let K ⊆ C and let θ ∈ C be algebraic over K of degree n. Every element α in
K(θ) has a unique representation in the form

α = a0 + a1θ + a2θ
2 + . . .+ an−1θ

n−1 = r(θ)

with a0, a1, . . . , an−1 ∈ K.

Proof:
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Existence: We have K(θ) = {f(θ)
g(θ)

: f, g ∈ K[x], g(θ) 6= 0}. Let α ∈ K(θ). Then α = f(θ)
g(θ)

.

Let p be the minimal polynomial for θ over K.
Then p and g are coprime and so there exist s, t ∈ K[x] with s(x)p(x)+ t(x)g(x) = 1.
Thus t(θ)g(θ) = 1. Hence α = f(θ)t(θ).
Next, by the Division Algorithm,

f(x)t(x) = q(x)p(x) + r(x) with q, r ∈ K[x] and r = 0 or deg r ≤ n− 1

But then f(θ)t(θ) = r(θ) hence α = r(θ), as required.
Uniqueness: Suppose α = r1(θ) and α = r2(θ), with r1, r2 ∈ K[x] of degree ≤ n− 1.

Then r1(x)− r2(x) is zero or has degree ≤ n− 1.
But r1(θ)− r2(θ) = 0 and θ has degree n over K.
Thus r1(x) = r2(x), as required.

�

Note that K(θ) = K[θ].

Definition. Let R and S be rings. An injective homomorphism ϕ : R → S is said to be
an embedding of R in S.

Theorem 4. Let K be a subfield of C and let L be a finite extension of K. Every embedding
of K in C extends to exactly [L : K] embeddings of L in C.

Proof:
We prove this by induction on [L : K]:
If [L : K] = 1, then the result is immediate.
Suppose that [L : K] > 1. Let σ be an embedding of K into C.
Let α ∈ L \K. Let p(x) be the minimal polynomial of α over K.
If p(x) = amx

m+ . . .+a0, let g(x) = σ(am)xm+ . . .+σ(a0). Then g is irreducible over σ(K).
Let β1, . . . , βm be the roots of g in C. For each root β of g we define the map λβ : K[α]→ C

by
λβ(b0 + b1α + . . .+ bm−1α

m−1) = σ(b0) + σ(b1)β + . . .+ σ(bm−1)βm−1

We can check that λβ is a ring homomorphism which extends σ. We have m distinct roots
β of g and so m embeddings of K(α) in C which extend σ.
Further, there are no other such embeddings λ since 0 = λ(0) = λ(p(α)) = g(λ(α)), and we
see that λ(α) is a root of g.
We now appeal to our inductive hypothesis. Each of the m embeddings of K(α) in C extend
to [L : K(α)] embeddings of L in C and so we have [L : K(α)][K(α) : K] = [L : K]
embeddings of L in C extending σ.
The result now follows (by induction). �

Theorem 5. Let K ⊆ L ⊆ C. Suppose that L is a finite extension of K. Then there is a
θ ∈ L such that L = K(θ).

Proof:
Since L is a finite extension of K, there exist algebraic numbers α′1, . . . , α

′
n′ such that

L = K(α′1, . . . , α
′
n′).
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By induction it suffices to show that when n′ = 2 we can find θ such that L = K(θ).
Suppose that L = K(α, β) with α, β algebraic over K.
Let α = α1, . . . , αn be the conjugates of α over K and let β = β1, . . . , βm be the conjugates
of β over K.
For each i 6= 1 and k we consider the equation α1 + xβ1 = αi + xβk.
The linear equation has 1 solution. Choose c ∈ K, c 6= 0 to avoid all such solutions. (Such a
choice is possible since K is infinite).
Put θ = α + cβ = α1 + cβ1. Plainly K(θ) ⊆ K(α, β).

Thus, it remains to show that α, β are in K(θ), hence that K(α, β) ⊆ K(θ).
Since α = θ − cβ, it suffices to show that β ∈ K(θ).
Let f(x) be the minimal polynomial of α over K.
Let g(x) be the minimal polynomial of β over K. Notice that β is a root of the polynomial
f(θ − cx) since f(θ − cβ) = f(α) = 0.
Observe, by our choice of c, that β is the only common root of f(θ − cx) and g(x).
Let h be the minimal polynomial of β over K(θ). Note that f(θ−cx) and g(x) are in K(θ)[x].
Thus h divides f(θ − cx) and h divides g(x) in K(θ)[x].
Since the only common root of f(θ − cx) and g(x) is β, we conclude that h is linear.
Therefore there exist γ1, γ2 ∈ K(θ) with γ1 6= 0 such that γ1β + γ2 = 0.
Therefore β ∈ K(θ), as required.
(The result follows by induction.) �
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3. Lecture: Monday, January 10, 2000

Definition. Let K ⊆ L ⊆ C. We say that L is a normal extension of K if L is closed
under the process of taking conjugates over K.

Theorem 6. Let K ⊆ L ⊆ C with [L : K] < ∞. L is normal over K if and only if every
embedding of L in C which fixes each element of K is an automorphism of L.

Proof:

(⇒) By Theorem 5 there exists an α ∈  L such that L = K(α) = K[α].
Let α = α1, . . . , αn be the conjugates of α over K.
There are n embeddings of L in C which fix K and they are given by λ1, . . . , λn
where λi(α) = αi for i = 1, . . . , n, and λi(t) = t for all t ∈ K.
Since L is normal, it is closed under taking conjugates over K and so α1, . . . , αn are
in L.
Thus λi : L→ L and so λi is an automorphism of L for i = 1, . . . , n.

(⇐) Let α ∈ L. Consider K[α].
Let α = α1, . . . , αn be the conjugates of α over K.
By Theorem 4, every embedding of K[α] in C extends to an embedding of L in C.
Each such embedding is an automorphism by assumption.
Further, the embeddings of K[α] in C which fix K have the property that α is taken
to a conjugate of α.
Furthermore, there is an embedding for each conjugate of α.
Therefore, each conjugate of α is in L, hence L is normal.

�

Remark. By Theorem 4, there are [L : K] embeddings of L in C which fix each element
of K.
By Theorem 6, L is normal over K iff there are [L : K] automorphisms of L which fix each
element of K.

Theorem 7. Let K ⊆ C. Let α = α1, . . . , αn be in C with α1, . . . , αn algebraic over K.
Put L = K(α1, . . . , αn).
If the conjugates of α1, . . . , αn over K are in L, then L is normal over K.

Proof:
We have K(α1, . . . , αn) = K[α1, . . . , αn].
By Theorem 5, L = K[θ], where θ = f(α1, . . . , αn) with f ∈ K[x1, . . . , xn].
Let σ be an embedding of L in C which fixes each element of K. Then σθ = f(σα1, . . . , σαn).
Since σαi is an conjugate of αi for i = 1, . . . , n and since each conjugate of αi is in L, we
conclude that σθ is in L.
Therefore, σ is an automorphism of L. Thus, by Theorem 6, L is normal over K. �

Corollary 8. Let K ⊆ C and let L ⊆ C with [L : K] finite. There is a finite extension H
of L, with H ⊆ C for which H is normal over K.
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Proof:
By Theorem 5, there is a θ ∈ L for which L = K(θ).
Let θ = θ1, . . . , θn be the conjugates of θ over K. Put H = K(θ1, . . . , θn).
By the result of Theorem 7, H is normal over K. Plainly, H contains K. �

Remark. H is also normal over L, e.g. take K = Q and L = Q( 3
√

2).
Then L is not a normal extension of Q since the map σ : L→ Q given by

σ(t) = t for all t ∈ Q and

σ(
3
√

2) = w
3
√

2 where w = e
2πi
3

is an embedding. However w 3
√

2 6∈ R and so w 3
√

2 6∈ Q( 3
√

2). Therefore, σ is not an auto-
morphism of L hence L is not a normal extension of Q.
Put H = Q( 3

√
2, w 3
√

2, w2 3
√

2).
Then H is a normal extension of Q.
Observe that H = Q( 3

√
2, w 3
√

2) so [H : L] = 2.

4. Lecture: Wednesday, January 12, 2000

Definition. Let K ⊆ L ⊆ C, with [L : K] <∞. We define the Galois group of L over K,
denoted by Gal(L/K), to be the set of automorphisms of L which fix each element of K.
The binary operation on the set is composition.
The identity element of the group is the identity map.

By Theorem 4 and Theorem 6, L is normal over K if and only if

|Gal(L/K)| = [L : K]

Definition. Let H be a subgroup of Gal(L/K). We define the fixed field FH of H to be
the field {α ∈ L | σ(α) = α for all σ ∈ H}.
This is indeed a field since if α, β are in FH , then so are αβ−1 and α− β.

Theorem 9. Let K ⊆ L ⊆ C with [L : K] <∞.
Suppose that L is a normal extension of K. Let G be the Galois group of L over K. K is
the fixed field of G and K is not the fixed field of any proper subgroup of G.

Proof:
Certainly K is fixed by every element of G. Suppose that α ∈ L and α is in the fixed field
of G. Then K(α) is in the fixed field of G.
Since L is a normal extension of K, we have, by Theorem 4 and 6, that |G| = [L : K]. Thus
there are [L : K] embeddings of L in C which fix K(α). Since [L : K] = [L : K(α)][K(α) : K]
we see that [K(α) : K] = 1 hence α ∈ K. Therefore K is in the fixed field of G.

Let H be a proper subgroup of G and suppose that K is in the fixed field of H. Let L = K[α]
for α ∈ L. Consider

f(x) =
∏
σ∈H

(x− σα)

f(x) = x|H| − s1( ~σα)x|H|−1 + . . .+ (−1)|H|s|H|( ~σα)
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where ~σα = (σ1(α), . . . , σ|H|(α)) are the elements of H.
Further s1, . . . , s|H| are the elementary symmetric functions in the variables x1, . . . , xn so
that

s1(x1, . . . , x|H|) = x1 + · · ·+ x|H|
s2(x1, . . . , x|H|) = x1x2 + x2x3 + · · ·+ x|H|−1x|H|
...
s|H|((x1, . . . , x|H|) = x1 · · ·x|H|

Notice that σsi( ~σα) = si( ~σα) for i = 1, . . . , |H| and for all σ ∈ H. Thus, since K is the
fixed field of H we see that f ∈ K[x].
Therefore the minimal polynomial of α over K divides f , hence

[L : K] = [K(α) : K] ≤ deg f = |H| < |G| = [L : K] (since L is normal over K)

This contradiction completes the proof. �

Suppose that K ⊆ L ⊆ C, [L : K] <∞ and L is normal over K. Let G be the Galois group
of L over K.
Let S1 be the set of fields F with K ⊆ F ⊆ L.
Let S2 be the set of subgroups H of G.
We define λ : S1 → S2 by λ(F ) = Gal(L/F ).
We define µ : S2 → S1 by µ(H) = FH (the fixed field of H).

Theorem 10 (Fundamental Theorem of Galois Theory). µ and λ are inverses of each other.
Suppose that λ(F ) = H. Then F is normal over K if and only if H is a normal subgroup of
G.
Further, if F is normal over K, then there is an isomorphism δ : G/H → Gal(F/K) given
by δ(σ +H) = σ′, where σ′ is the automorphism of F which fixes K induced by σ.

Proof:
We first prove that µ and λ are inverses. Notice that

µ ◦ λ(F ) = µ(Gal(L/F )) = fixed field of Gal(L/F )

and so by Theorem 9, µ ◦ λ(F ) = F . Then µ ◦ λ = id.
Next note that λ ◦ µ(H) = λ(FH) = Gal(L/FH).
Let H ′ = Gal(L/FH). By Theorem 9, FH is the fixed field of H ′ and is not the fixed field of
any proper subgroup of H ′. Thus H ′ ⊆ H.
But if σ ∈ H, then σ is an automorphism of L fixing FH and so σ is in Gal(L/FH).
Thus H ⊆ H ′ and so H = H ′. Thus λ ◦ µ = id.
Observe that if H = Gal(L/F ) and γ ∈ H, σ ∈ G then σ ◦ γ ◦ σ−1 ∈ Gal(L/σF ). Further, if
θ ∈ Gal(L/σF ) then σ−1 ◦ γ ◦ σ ∈ Gal(L/σF ) = H. Thus Gal(L/σF ) = σHσ−1.
Next, note that F is normal over K if and only if every embedding of F in C which fixes K
is an automorphism of F .
Each such embedding extends to an element of Gal(L/K) = G.

Thus F is normal ⇐⇒ σF = F for all σ ∈ G ⇐⇒ σHσ−1 = H for all σ ∈ G ⇐⇒ H�G
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Let us now assume that F is a normal extension of K.
Consider the group homomorphism λ given by

λ : G = Gal(L/K)→ Gal(F/K)

by λ(σ) = σ|F (This is well-defined since F is a normal extension of K).
The map is certainly surjective, since every element of Gal(F/K) extends to an element of
G. Further, the kernel of λ is Gal(L/F ).
By the First Isomorphism Theorem (for Groups),

Gal(L/K)

Gal(L/F )
∼= Gal(F/K)

�

5. Lecture: Friday, January 14, 2000

Recall that an algebraic integer is the root of a monic polynomial in Z[x].
Theorem 11. Let α be an algebraic integer. The minimal polynomial of α over Q is in
Z[x].

Proof:
Since α is an algebraic integer, then α is a root of some monic polynomial h ∈ Z[x]. Let f
be the minimal polynomial of α.
Then h = f · g with f, g ∈ Q[x]. But f is monic, and so g is monic.
Choose a, b ∈ Z so that af, bg ∈ Z[x] and are primitive, i.e. have content 1.
Thus abh = (af)·(bg). By Gauss’ Lemma, the product of primitive polynomials (in a Unique
Factorization Domain) is primitive and so a · b = 1.
Thus f ∈ Z[x]. �

Remark. The only algebraic integers in Q are the ordinary integers.

Corollary 12. Let d be a squarefree integer. The set of algebraic integers in Q[
√
d] is{

{r + s
√
d | r, s ∈ Z} when d ≡ 2 or 3 (mod 4)

{a+b
√
d

2
| a, b ∈ Z, a ≡ b (mod 2)} when d ≡ 1 (mod 4)

Proof:
Let α = r + s

√
d be in Q(

√
d) so r, s are in Q.

If s = 0 then r ∈ Z. Suppose s 6= 0. Then the minimal polynomial of α over Q is given by

(x− (r + s
√
d))(x− (r − s

√
d)) = x2 − 2rx+ r2 − ds2 ∈ Q[x]

By Theorem 11, f ∈ Z[x]. Thus 2r and r2 − ds2 are integers.
Note that if r is an integer, s is also an integer.
The other possibility is that r = a

2
with a an integer ≡ 1 (mod 2). Then, since r2 − ds2 is

an integer, we see then s = b
2

with b ≡ 1 (mod 2) and a2 − db2 ≡ 0 (mod 4)
In this case we have d ≡ 1 (mod 4). �
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We want to prove next that the set of all algebraic integers forms a ring, and that the set of
algebraic integers in any finite extension of Q forms a ring.
We need to show that if α, β are algebraic integers then so are αβ and α + β.



10 PMATH 441/641 ALGEBRAIC NUMBER THEORY

6. Lecture: Monday, January 17, 2000

Theorem 13. Let α be a complex number. Then the following are equivalent:

i) α is an algebraic integer.
ii) the additive group of the ring Z[α] is finitely generated.

iii) α is a member of some subring of C having a finitely generated additive group.
iv) αA ⊆ A for some finitely generated additive subgroup A of C.

Proof:

[i) ⇒ ii)]: by Theorem 4 since Z[α] = {a0 + a1α + . . . + an−1α
n−1 | ai ∈ Z} where n

is the degree of α over Q.
[ii) ⇒ iii)]: immediate
[iii) ⇒ iv)]: immediate
[iv) ⇒ i)]: Suppose that a1, . . . , an generate A.
Since αA = A, we have αai = mi,1a1+· · ·+ = mi,nan for some integers mi,1, . . . ,mi,n,
for i = 1, . . . , n.

Thus (αIn−M)


a1
...
an

 =


0
...
0

. Since


a1
...
an

 6=


0
...
0

 we have det(αIn −M) = 0.

Therefore, α is the root of a monic polynomial with integer coefficients.
Thus α is an algebraic integer.

�

Corollary 14. If α and β are algebraic integers, then α+ β and αβ are algebraic integers.

Proof:
Suppose that α has degree n and β has degree m.
Observe that Z[α, β] is generated by {αiβj | i = 0, . . . , n− 1, j = 0, . . . ,m− 1} over Z.
Plainly αβ and α + β are in Z[α, β] and so the result follows from i) and iii) of Theorem
13. �

Theorem 15. Let α be an algebraic number. There is a positive integer r such that rα is
an algebraic integer.

Proof:
Since α is an algebraic number, α is a root of a polynomial

q(x) = xn + bn−1x
n−1 + · · ·+ b0

with bn−1, . . . , b0 ∈ Q. Clear the denominators to obtain a polynomial h(x) = anx
n+ · · ·+a0

with a0, . . . , an ∈ Z such that h(α) = 0. Thus an
n−1h(α) = 0 and

an
n−1h(x) = (anx)n + an−1(anx)n−1 + · · ·+ a1an

n−2(anx) + a0an
n−1 ∈ Z[x]

Therefore there is an nonzero integer r such that rα is an algebraic integer. Since whenever
β is an algebraic integer, so is −β, the result follows. �
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By Corollary 14 and the second property above, we see that the set of algebraic integers is
a subring of C.
Let A denote the ring of algebraic integers. For any finite extension K of Q, let A ∩K be
the ring of algebraic integers of K.
A ∩K is also known as the number ring of K.
We have already determined the number ring of each quadratic extension of Q. We’ll now
determine the ring of algebraic integers of K when K is a cyclotomic extension Q, i.e. an
extension of Q by a root of unity.
Let n ∈ Z+ and put ζn = e

2πi
n .

The cyclotomic extensions Q(ζn), n = 1, 2, . . . are fundamental in the following sense. They
are Galois extensions of Q with abelian Galois groups.
Further, any normal extension of Q with an abelian Galois group is a subfield of Q(ζn) for
some n.
We’ll prove the former assertion but not the latter.
For any positive integer n, we define Φn(x), the nth cyclotomic polynomial, by

Φn(x) =
n∏
j=1,

(j,n)=1

(x− ζjn)

7. Lecture: Wednesday, January 19, 2000

Theorem 16. Φn(x) is irreducible in Q[x], for n = 1, . . .

Proof:
We’ll show that ζjn,j = 1, . . . , n with (j, n) = 1 are all the conjugates of ζn or equivalently
that Φn is the minimal polynomial of ζn.
ζn is a root of xn − 1 and is therefore an algebraic integer. Thus if we show that Φ is the
minimal polynomial of ζn, we conclude that ζn ∈ Z[x].
Let r(x) be the minimal polynomial of ζn over Q. Since ζn is a root of xn−1, then r(x) | xn−1
in Q[x]. The roots of xn − 1 are the n different nth roots of 1 in C and so the roots of r(x)
are of the form ζkn for some k ∈ Z+.

Observe that if (n, k) > 1, then ζkn is a root of x
n

(n,k) − 1. Since ζn is not a root of x
n

(n,k) − 1
we see that in this case ζkn is not a conjugate of ζn.
Thus the only possible conjugates are those of the form ζjn; with j = 1, . . . , n and (j, n) = 1.
To show this, it suffices to prove that if θ = ζtn for some positive integer t which is coprime
with n then, for each prime p which is coprime with n, θp is a conjugate of θ.
We then show that ζjn is a conjugate of ζjn by factoring j into prime factors and repeatedly
appending the result.
Accordingly, let f(x) be the minimal polynomial of θ overQ[x]. Thus there exists g(x) ∈ Q[x]
which is monic, such that

xn − 1 = f(x)g(x)

By Gauss’ lemma, f, g are in Z[x].
Since θp is a root of xn − 1, it is a root of either f(x) or g(x).
If θp is a root of f(x), then it is a conjugate of θ, as required. Suppose then that θp is a root
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of g(x). Then θ is a root of g(xp). Thus f(x) | g(xp) in Q[x], hence in Z[x].

For any h(x) = a0 + a1x + . . . + anx
n in Z[x], we define the reduction of h mod p, denoted

by h(x), to be polynomial in (Z/pZ)[x] by

h(x) = a0 + a1x+ · · ·+ anx
n

where for any integer a, a = a+ pZ.
Note that the mapping µ : Z[x]→ (Z/pZ)[x] given by µ(h) = h, is a ring homomorphism.

Further, h(xp) = h(x)
p

since

h(xp) = a0 + a1(xp) + · · ·+ ar(x
p)r = a0

p + a1
p(xp) + · · ·+ ar

p(xp)r = h(x)
p

Thus since f(x) divides g(xp) in Z[x], we see that f divides g(xp) in (Z/pZ)[x], and so divides
(g(x))p in (Z/pZ)[x].
Since (Z/pZ)[x] is a Unique Factorization Domain, there is an irreducible polynomial s(x)
in (Z/pZ)[x] which divides f and so also g in (Z/pZ)[x].
But xn − 1 = f(x)g(x) in Z[x], hence xn − 1 = f(x)g(x) in (Z/pZ)[x].
Thus s(x)2 | xn − 1 in (Z/pZ)[x] and so s(x) | nxn−1 in (Z/pZ)[x].
Since p and n are coprime, then nxn−1 is not the zero polynomial. Thus s(x) = cx for some
nonzero c ∈ (Z/pZ)[x].
But since s(x) | xn − 1 in (Z/pZ)[x] we have a contradiction. The result now follows. �

Remark.

(1) ζjn for j = 1, . . . , n,(j, n) = 1 are the conjugates of ζn.
(2) [Q(ζn) : Q] = ϕ(n)
(3) Q(ζn) is a normal extension of Q since ζ in ∈ Q(ζn) for  = 1, . . . , n, (j, n) = 1.

8. Lecture: Friday, January 21, 2000

Theorem 17. Let n be a positive integer. The Galois group of Q(ζn) over Q is isomorphic
to (Z/nZ)∗.

Proof:
The elements of the Galois group are the embeddings σk of Q(ζn) in C defined by σk(ζn) = ζkn
for k = 1, . . . , n with (k, n) = 1 and such that σk(a) = a for all a ∈ Q.
Let λ : Gal(Q(ζn)/Q)→ (Z/nZ)∗ by λ(σk) = k + nZ.
Certainly λ is a bijection. It remains then to show that λ is a group homomorphism:

λ(σk ◦ σ`) = λ(σk`) = k`+ nZ = (k + nZ)(`+ nZ) = λ(σk)λ(σ`)

The result follows. �

Theorem 18. Let n be a positive integer. If n is even, the only roots of unity in Q(ζn) are
the nth roots of unity. If n is odd, the only roots of unity in Q(ζn) are the 2nth roots of
unity.
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Proof:
If n is odd, Q(ζn) = Q(−ζn) = Q(ζ2n) and so it suffices to prove the result when n is even.

Let γ = e2πi `
s with ` and s coprime positive integers in Q(ζn). There exist integers v and w

such that
γvζwn = e2πi( `v

s
+w
n

) = e2πi(
gcd(`n,s)

sn
) = e2πi(

gcd(s,n)
sn

) = e2πi( 1
lcm(s,n)

)

Let b = lcm(s, n) so that γvζwn = Q(e
2πi
b ) has degree ϕ(b) over Q.

But we know that γ and ζn are in Q(ζn), and so Q(e
2πi
b ) is contained in Q(ζn), hence

ϕ(n) ≥ ϕ(b). We have b = lcm(n, s).
Thus if n = ph1

1 · · · phrr with p1, . . . , pr primes and h1, . . . , hr positive integers, then

b = pk1
1 · · · pktt with t ≥ r and ki ≥ hi for i = 1, . . . , r.

Thus ϕ(n) = (ph1
1 − ph1−1

1 ) · · · (phrr − phr−1
r ) while ϕ(b) = (pk1

1 − pk1−1
1 ) · · · (phtt − pht−1

t ).
But ϕ(n) ≥ ϕ(b). Note ϕ(n) | ϕ(b). Thus ϕ(n) = ϕ(b).
So n is even, we see that n = b. Thus, n = lcm(n, s) hence s | n. Thus ϕ is an nth root of
unity. �

Definition. Let K be a finite extension of Q. Say [K : Q] = n. Let σ1, . . . , σn denote the
embedding of K is C which fix Q.
For each α ∈ K we define the trace of α over K, denoted by TK

Q
(α), or when K and Q are

understood denoted by T(α), by

TK
Q

(α) = σ1(α) + · · ·+ σn(α)

and similarly we define the norm of α over K, denoted by NK
Q

(α) (or N(α)), by

NK
Q

(α) = σ1(α) · · ·σn(α)

Remark. Note that the trace is additive:

T(α + β) = T(α) + T(β)

and the norm is multiplicative:

N(αβ) = N(α)N(β)

Further, if r ∈ Q, and α ∈ K, then TK
Q

(rα) = rTK
Q

(α) and NK
Q

(rα) = rnNK
Q

(α)

Theorem 19. Let K be a finite extension of Q, with [K : Q] = n and let α ∈ K.

Then TK
Q

(α) = n
d
(T
Q(α)
Q

(α)) and NK
Q

(α) = (N
Q(α)
Q

(α))
n
d where d = [Q(α) : Q].

Proof:
Each of the d embeddings of Q(α) in C which fix Q extends to [K : Q(α)] = n

d
embeddings

of K in C which fix Q by Theorem 4. The result now follows from the definition of norm
and trace. �
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9. Lecture: Monday, January 24, 2000

Remark. Since the trace of α over Q(α) and the norm of α over Q(α) occur as coefficients
in the minimal polynomial of α, they are rational numbers and are even rational integers if
α is an algebraic integer.

Theorem 20. Let K be a finite extension of Q and let α ∈ A ∩K.

α is a unit in A ∩K ⇔ NK
Q

(α) = ±1

(Here A denotes the ring of algebraic integers.)

Proof:
(⇒): α is a unit in A ∩K implies that there is a β in A ∩K such that αβ = 1.
Thus NK

Q
(αβ) = NK

Q
(1) = 1.

Since the norm is multiplicative,

NK
Q

(α)NK
Q

(β) = 1

But α and β are algebraic integers, henceNK
Q

(α) andNK
Q

(β) are integers. ThusNK
Q

(α) = ±1.

(⇐): Suppose NK
Q

(α) = ±1. Thus N
Q(α)
Q

(α) = ±1.
Let α = α1, . . . , αn be the conjugates of α over Q. Take

±β = ±α2 · · ·αn =
N
Q(α)
Q

(α)

α
Then αβ = 1. �

Observe that by Theorem 20, we se that if K is some finite extension of Q with K ⊆ C,
then the units of A ∩K form a multiplicative subgroup of C∗.
What are the units in A ∩Q(

√
D) where D is a squarefree integer? If D 6≡ 1 (mod 4), then

A ∩Q(
√
D) = {`+m

√
D | `,m ∈ Z}.

Thus if α = `+m
√
D is a unit in A ∩Q(

√
D), then

N
Q(α)
Q

(α) = (`+m
√
D)(`−m

√
D) = `2 −Dm2 = ±1

Thus we look for solutions of the Diophantine equation `−Dm2 = ±1 in integers ` and m.
Suppose that D ≡ 1 (mod 4). Then

A ∩Q(
√
D) =

{
`+m

√
D

2
| `,m ∈ Z, ` ≡ m (mod 2)

}
Thus we search for solutions of `2 −Dm2 = ±4 with ` and m odd in addition to solutions
of `−Dm2 = ±1.

10. Lecture: Wednesday, January 26, 2000

Theorem 21. Let D be a squarefree negative integer. The units in A ∩ Q(
√
D) are ±1

unless D = −1 in which case they are ±1,±i or D = −3 in which case they are ±1, ±1±
√
−3

2
.
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Proof:
If D 6≡ 1 (mod 4) then it suffices to look for solutions of the form x2 −Dy2 = ±1.
Since D < 0 we need only consider x2 −Dy2 = 1.

• If D = −1, we have the solutions (x, y) = (±1, 0) = (0,±1) and the solutions
correspond to the units ±1,±i.
• If D < −1, we see the only solutions are (x, y) = (±1, 0). Thus ±1 are the only units

in this case.

If D ≡ 1 (mod 4), we must also consider the solutions of the equation x2 − Dy2 = ±4 in
odd integers x and y hence, since D < 0, of x2 −Dy2 = 4.

• If D = −3, we have x2 + 3y2 = 4 and so the complete set of solutions is given by

(x, y) = (±1,±1). Thus the units in the ring of algebraic integers are ±1, ±1±
√
−3

2
.

• If D < −3, then x2 − Dy2 = 4 has no solutions, with x and y odd and the result
follows.

�

Suppose that D is a positive squarefree integer with D > 1. The unit group of A ∩Q(
√
D)

is isomorphic to (Z/2Z)× Z.
The units are formed by solving the equations x2 − Dy2 = ±1 and when D = 1 (mod 4),
x2 − Dy2 = ±4 in integers x and y. There is an algorithm for finding solutions called the
continued fraction algorithm. It is based the following result. If |N | < D, then all solutions
of x2 − dy2 = N can be obtained as convergents from the continued fraction expansion of√
D.

Theorem 22. Let D be a squarefree integer with D > 1. There is a smallest unit larger
than 1 in A ∩Q(

√
D). Let us denote it by ε. The unit group of A ∩Q(

√
D) is

{(−1)kεj | k ∈ {0, 1}, j ∈ Z}

Proof:
For the proof we’ll appeal to the following result.

Lemma 23 (Dirichlet’s Theorem). Let α be a real irrational number, and let Q > 1 be an
integer. There exist integers p, q with 1 ≤ q ≤ Q such that |qα− p| < 1

Q
.

Further, there exist infinitely many pairs of integers (p, q) for which
∣∣∣α− p

q

∣∣∣ < 1
q2 .

Proof:
Since α is irrational, and Q is at our disposal, the second assertion follows from the first.
We’ll now prove the first assertion. For any real number x, let {x} denote the fractional part
of x, so x = [x] + {x} where [x] denotes the greatest integer less than or equal to x.
Consider the Q+ 1 numbers 0, 1, {α}, . . . , {(Q− 1)α}.
Notice that by the pigeonhole principle, there is an integer j with 1 ≤ j ≤ q such that two of
the numbers are in the interval [ j−1

Q
, j
Q

]. Thus, either there exist integers n,m with n 6= m,

1 ≤ n ≤ Q such that |{nα} − {mα}| < 1
Q

, or there exists an integer n with 1 ≤ n ≤ Q− 1

and t ∈ {0, 1} such that |{nα} − t| < 1
Q

.
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In the first case,

|(nα− [nα])− (mα− [mα])| ≤ 1

Q

⇒ |(n−m)α− ([nα]− [mα])| ≤ 1

Q
Take q = n−m and p = [nα]− [mα] and the result follows since α is irrational and Q > 1
so strict inequality holds.
In the second case, |nα− [nα]− t| ≤ 1

Q
, and so take q = n and p = [nα] + t. The result

follows, as above. �

11. Lecture: Friday, January 28, 2000

We now continue with the proof of the theorem. We first show that there exists an integer

m and infinitely many elements β of A ∩Q(
√
D) for which N

Q(
√
D)

Q
(β) = N(β) = m.

Let θ = p+ q
√
D with p, q ∈ Z, q > 0.

Then |Nθ| =
∣∣∣p+ q

√
D
∣∣∣ ∣∣∣p− q√D∣∣∣ =

∣∣∣p
q

+
√
D
∣∣∣ q2

∣∣∣p
q
−
√
D
∣∣∣.

By Dirichlet’s Theorem, there exist infinitely many pairs (p, q) for which q2
∣∣∣p
q
−
√
D
∣∣∣ < 1.

For such p, q we have that
∣∣∣p
q

+
√
D
∣∣∣ < 2

√
D + 1. Thus there exist infinitely many θ ∈

A∩Q(
√
D) for which |Nθ| ≤ 2

√
D+1. for which Nθ = m for infinitely many θ ∈ A∩Q(

√
D).

Let θ1 = p1 + q1

√
D, θ2 = p2 + q2

√
D, and consider

N

(
θ1

θ2

)
=
N(θ1)

N(θ2)

since the norm is multiplicative, and then N(θ1)
N(θ2)

= m
m

= 1. Further, we can find infinitely

many θ’s such that if θ1 and θ2 are in the set of θ’s with θ1 = p1 + q1

√
D and θ2 = p2 + q2

√
D

then p1 = p2 (mod m) and q1 = q2 (mod m).
Then let θ′2 be the conjugate of θ2 over Q so that Nθ2 = θ2θ

′
2 = m. Observe that

θ1

θ2

= 1 +
θ1 − θ2

θ2

= 1 +

(
θ1 − θ2

θ2θ′2

)
θ′2 = 1 +

((
p1 − p2

m

)
+
(
q1 − q2

m

)√
D
)
θ′2 ∈ A ∩Q(

√
D)

Since also N( θ1
θ2

= 1, we see that θ1
θ2

is a unit in A∩Q(
√
D). We next observe that if |m| > 2,

then θ1
θ2
6= 1.

If |m| ≤ 2, it is enough to consider a third θ, say θ3, and then one of θ1
θ2
, θ2
θ3
, θ1
θ3

is different
from −1.
Since ±1 are the only roots of unity in A∩Q(

√
D), we can find a unit in A∩Q(

√
D) which

is not a root of unity.
We consider the set S = {γ ∈ A ∩Q(

√
D) | γ > 0, γ a unit}.

We have shown that S contains an element different from 1. Thus, on taking inverses if
necessary, it contains an element strictly greater than 1.
To complete our proof, we’ll show that S = {εn | n ∈ Z} where ε is the smallest element of
S larger than 1.
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Let γ0 be an element of S, γ0 > 1. Then there are only finitely many elements β in S,
1 < β < γ0 since

β =
p+ q

√
D

2
for some p.q ∈ Z+.

Since β > 1, we see that p and q are not both negative. The conjugates of β are p−q
√
D

2
<

p+q
√
D

2
. Therefore, both p and q are primitive.

Let ε be the smallest element of S which is strictly larger than 1. Suppose now that λ ∈ S
and λ is not of the form εn for any n ∈ Z. Let n be such that εn < λ < εn+1.
Then λ

εn
is in S and we get 1 < λ

εn
< ε. This contradicts the minimality of ε and the result

follows. �

Definition. Let K ⊆ L ⊆ C with L a finite extension of K, say [L : K] = n. Let σ1, . . . , σn
be the embeddings of L in C which fix K. Let α ∈ L, then the trace of α from L to K,
denoted TLK(α), is given by

TLK(α) = σ1(α) + · · ·+ σn(α)

The the norm from L to K of α, denoted by NL
K(α), is given by

NL
K(α) = σ1(α) · · ·σn(α)
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12. Lecture: Monday, January 31, 2000

Theorem 24. Let K,L,, and M be finite extensions of Q with K ⊆ L ⊆ M . Then, for all
α ∈M ,

TMK (α) = TLK(TML (α))

and
NM
K (α) = NL

K(NM
L (α))

Proof:
We’ll prove the result for trace only (the norm works similarly).
Let σ1, . . . , σn be the embeddings of L in C which fix K. Let τ1, . . . , τm be the embeddings
of M in C which fix L.
Let N be a normal extension of Q which contains M . Each map σi and τi can be extended
to an automorphism of N .
Let σ′1, . . . , σ

′
n, τ

′
1, . . . , τ

′
m be some choice of extensions of σ1, . . . , σn, τ1, . . . , τm respectively

to automorphisms of N . Then

TLK(TML (α)) =
n∑
i=1

σi(
m∑
j=1

τj(α)) =
n∑
i=1

σ′i(
m∑
j=1

τ ′j(α)) =
n∑

1≤i≤n
1≤j≤m

σ′iτ
′
j(α)

It remains to show that the nm embeddings of M in C which fix K are given by σ′iτ
′
j |M

(where |M indicates the restriction to M) for i = 1, . . . , n, j = 1, . . . ,m. Since there are
nm such embeddings, it suffices to show that they are distinct.
Suppose σ′iτ

′
j |M = σ′rτ

′
s|M . Next let α be such that L = K[α].

Then σi(α) = σ′i(α) = σ′i(τ
′
j(α)) = σ′iτ

′
j |M(α) = σ′rτ

′
s|M(α) = σ′rτ

′
s(α) = σ′r(τ

′
s(α)) = σ′r(α) =

σr(α).
So since the behaviour of σi is completely determined by its action of α, we conclude that
σi = σr =⇒ r = i.
Next choose β so thatM = L[β]. Then since σ′iτj |M(β) = σ′iτs|M(β) we see that τj(β) = τs(β).

Thus since the embeddings of M in C which fix L are determined by their effect on β we see
that τj = τs hence j = s. Then we have that σ′iτ

′
j |M , i = 1, . . . , n, 1, . . . ,m are all distinct

and the result follows. �

Definition. Let K be an extension of Q of degree n and let σ1, . . . , σn be the embeddings
of K in C which fix Q. For any set {α1, . . . , αn} of of elements of K, we define the discrim-
inant of {α1, . . . , αn}, denoted by disc(α1, . . . , αn), as (det(σi(αk))

2.

Note that the order in which we take α1, . . . , αn or the order in which we take the embeddings
σ1, . . . , σn does not matter and so the discriminant is well-defined.

Theorem 25. Let K be an extension of Q of degree n. Let α1, . . . , αn be in K. Then

disc(α1, . . . , αn) = det(TK
Q

(αiαj))
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Proof:
Let σ1, . . . , σn be the embeddings of K in C which fix Q. Then

(σj(αi))(σi(αj)) = (σ1(αiαj) + · · ·+ σn(αiαj)) = T J
Q

(αiαj)

But disc(α1, . . . , αn) = (det(σi(αj)))
2 = det(σj(αi)) det(σi(αj)) = det((σj(αi))(σi(αj))) =

det(TK
Q

(αiαj)) �

13. Lecture: Wednesday, February 2, 2000

Corollary 26. Let K be an extension of Q with [K : Q] = n. Let α1, . . . , αn be elements
of K. Then disc(α1, . . . , αn) is a rational number and if α1, . . . , αn are algebraic integers,
then disc(α1, . . . , αn) is a rational integer.

Proof:
Since TK

Q
(αiαj) ∈ Q for 1 ≤ i ≤ n, 1 ≤ j ≤ n the first claim follows immediately from

Theorem 25.
Since the sum and product of two algebraic integers is an algebraic integer, then TK

Q
(αiαj)

is an algebraic integer and hence a rational integer. The result again follows from Theorem
25. �

Let [K : Q] = n. Assume that {α1, . . . , αn} and {β1, . . . , βn} are bases for K as a vector
space over Q. Then

βk =
n∑
j=1

ck,jαj for k = 1, . . . , n

where the ck,j’s are in Q. Thus
β1
...
βn

 =


c1,1 · · · c1,n

...
...

cn,1 · · · cn,n



α1
...
αn


Let σ1, . . . , σn be the embeddings of K in C which fix Q. We have σi(βk) =

n∑
j=1

ck,jσi(αk)

for i = 1, . . . , n and k = 1, . . . , n. Therefore,
σ1(β1) · · · σn(β1)

...
...

σ1(βn) · · · σn(βn)

 =


c1,1 · · · c1,n

...
...

cn,1 · · · cn,n



σ1(α1) · · · σn(α1)

...
...

σ1(αn) · · · σn(αn)


Then

disc(β1, . . . , βn) = (det(ci,j))
2disc(α1, . . . , αn) (1)

LetK = Q(θ). Then {1, θ, . . . , θn−1} is a basis forK overQ. Notice that disc(1, θ, . . . , θn−1) =

(det


σ1(1) σ1(θ) · · · σ1(θn−1)

...
...

σn(1) σn(θ) · · · σn(θn−1)

)2 = (det


1 σ1(θ) · · · (σ1(θ))n−1

...
...

1 σn(θ) · · · (σn(θ))n−1

)2
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Since this is a van der Monde determinant, then disc(1, θ, . . . , θn−1) = (
∏
i<j

(σi(θ)− σj(θ)))2.

Notice that σ1(θ), . . . , σn(θ) are the conjugates of θ over Q, and so are distinct. Thus, in
particular, disc(1, θ, . . . , θn−1) 6= 0.
If (α1, . . . , αn) is a basis for K over Q and we take {β1, . . . , βn} to be {1, θ, . . . , θn−1} we
see from (1) that disc(1, θ, . . . , θn−1) 6= 0 and det(ci,j) 6= 0.
We conclude that the discriminant of any basis for K over Q is nonzero.

Remark. If K ⊆ R, then by (1), the determinant of any basis for K over Q is positive
since plainly disc(1, θ, . . . , θn−1) is positive.

Theorem 27. Let [K : Q] = n, and let α1, . . . , αn be in K. We have disc(1, θ, . . . , θn−1) = 0
iff α1, . . . , αn are linearly dependent over Q.

Proof:
(⇐): Since α1, . . . , αn are linearly dependent over Q, the columns of (σi(αj)) are linearly
dependent over Q. Thus the determinant of the matrix if 0, hence disc(1, θ, . . . , θn−1) = 0.
(⇒): If disc(1, θ, . . . , θn−1) = 0, then by (1), α1, . . . , αn is not a basis for K over Q and thus
{α1, . . . , αn} is not a linearly independent set. �

The following observation is useful for computing disc(1, θ, . . . , θn−1) where K = Q(θ) and
[K : Q] = n. We have

disc(1, θ, . . . , θn−1) = (−1)
n(n−1)

2 NK
Q

(f ′(θ))

where f is the minimal polynomial for θ over Q.
Let θ = θ1, . . . , θn be the conjugates of θ over Q. We have

disc(1, θ, . . . , θn−1) =
∏

1≤i<j≤n
(θi − θj)2

We have f(x) = (x− θ1) · · · (x− θn) and so

f ′(x) =
n∑
j=1

n∏
i=1,i6=j

(x− θi) =⇒ NK
Q

(f ′(θ)) =
n∏
k=1

f ′(θk) =
n∏
k=1

(
n∏

i=1,i6=j
(θk − θi))

Note that (θi − θj)(θj − θi) = −(θi − θj)2. Thus∏
1≤i<j≤n

(θi − θj)2 = (−1)
n(n−1)

2

n∏
k=1

(
n∏

i=1,i6=j
(θk − θi))

and the result follows.

Let K be a finite extension of Q and let θ ∈ K. Suppose [K : Q] = n. Then we abbreviate
disc(1, θ, . . . , θn−1) by disc(θ).

Theorem 28. Let n be a positive integer and let ζn = e2πi/n. Then in Q(ζn), disc(ζn) divides

nϕ(n). Further, if p is an odd prime, disc(ζp) = (−1)
p(p−1)

2 pp−2.



PMATH 441/641 ALGEBRAIC NUMBER THEORY 21

Proof:
Let Φn(x) be the nth cyclotomic polynomial. Φn(x) is the minimal polynomial of ζn. Thus
xn − 1 = Φn(x)g(x) where g ∈ Z[x].
Note that nxn−1 = Φn(x)g′(x) + Φn

′(x)g(x). Thus nζn
n−1 = Φn

′(ζn)g(ζn). (∗)
And so N

Q(ζn)
Q

(n)N
Q(ζn)
Q

(ζn−1
n ) = N

Q(ζn)
Q

(Φ′n(ζn))N
Q(ζn)
Q

(g(ζn)).

Thus nϕ(n) = ±disc(1, ζn, . . . , ζ
ϕ(n)−1
n )N

Q(ζn)
Q

(g(ζn)).

Since g ∈ Z[x] and ζn is an algebraic integer, g(ζn) is an algebraic integer, and soN
Q(ζn)
Q

(g(ζn))

is an integer. Thus disc(ζn) | nϕ(n).
Let p be an odd prime. Then

Φp(x) =
xp − 1

x− 1
= 1 + x+ · · ·+ xp−1

and g(x) = x− 1. Thus by (∗),
p = ζpΦ

′
p(ζp)g(ζp)

hence

N
Q(ζp)
Q

(p) = N
Q(ζp)
Q

(ζp)N
Q(ζp)
Q

(Φ′p(ζp))N
Q(ζp)
Q

(ζp − 1) (1)

But,

N
Q(ζp)
Q

(ζp) = e( 2πi
p

)
p(p−1)

2 = 1 since p is an odd prime (2)

N
Q(ζp)
Q

(Φ′p(ζp)) = (−1)
p(p−1)

2 disc(ζp) since p is an odd prime (3)

Further,

N
Q(ζp)
Q

(ζp − 1) =
p−1∏
j=1

(ζjp − 1) =
p−1∏
j=1

(1− ζjp) = Φp(1) (4)

and

Φp(1) =

p times︷ ︸︸ ︷
1 + · · ·+ 1 = p (5)

Finally, we observe that

N
Q(ζp)
Q

(p) = pp−1 (6)

The result follows from (1) through (6). �

Definition. Let K be a finite extension of Q. A set of algebraic integers {α1, . . . , αs} is
said to be an integral basis for K if every γ in A∩K has a unique representation of the form
γ = m1α1 + · · ·+msαs with m1, . . . ,ms rational integers.

Note that an integral basis for K (over Q) is a basis for K over Q.
Note: span{α1, . . . , αs} = K since if θ ∈ K, there exists a nonzero integer r such that
rθ ∈ A ∩K for which rθ = m1α1 + · · ·+msαs and so θ = m1

r
α1 + · · ·+ ms

r
αs.

Thus span{α1, . . . , αs} = K.
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Note: {α1, . . . , αs} are linearly independent over Q since otherwise there exist rationals
t1, . . . , ts not all zero such that

t1α1 + · · ·+ tsαs = 0

Clearing denominators we obtain a nontrivial integer linear combination of α1, . . . , αs which
is zero. We also have the trivial linear combination and this contradicts the uniqueness of
representation for an integral basis.
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14. Lecture: Monday, February 7, 2000

Theorem 29. Let K be a finite extension of Q. Then K has an integral basis.

Proof:
Let θ be an algebraic integer such that K = Q(θ). Consider the set of all bases for K over
Q (as a vector space) whose elements are algebraic integers.
The set is nonempty since it contains the basis {1, θ, . . . , θn−1} where n = [K : Q].
The discriminants of the bases in the set are integers since the bases consist of algebraic
integers. Thus the absolute values of the discriminants are positive integers. Note that they
are nonzero, since the discriminant of the basis is nonzero.
Choose a basis ω1, . . . , ωn for which |disc(ω1, . . . , ωn)| is minimal. We’ll verify that {ω1, . . . , ωn}
is an integral basis.
Suppose that {ω1, . . . , ωn} is not an integral basis. Then there is a γ ∈ A ∩ K for which
γ = a1ω1 + · · ·+ anωn, but with not all the a′is in Z. So without loss of generality, suppose
that a1 is not an integer.
Then a1 = a + r with a ∈ Z and 0 < r < 1. Notice that ω1

∗, . . . , ωn
∗ is a basis for K over

Q consisting of algebraic integers if we put ω1
∗ = γ − aω1 and ωi

∗ = ωi for i = 2, . . . , n. So

disc(ω1
∗, . . . , ωn

∗) =

det


a1 − a a2 · · · an

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 disc(ω1, . . . , ωn)

= (a1 − a)2disc(ω1, . . . , ωn) = r2disc(ω1, . . . , ωn)

Thus |disc(ω1
∗, . . . , ωn

∗)| = r2 |disc(ω1, . . . , ωn)| < |disc(ω1, . . . , ωn)| and this contradiction
completes the proof. �

Theorem 30. Let K be a finite extension of Q. All integral bases for K over Q have the
same discriminant.

Proof:
Let {α1, . . . , αn}, {β1, . . . , βn} be two integral bases for K. Then

αj =
n∑
i=1

cijβi for some cij ∈ Z

Thus disc(α1, . . . , αn) = (det(cij))
2disc(β, . . . , βn).

Since cij ∈ Z for i = 1, . . . , n, j = 1, . . . , n we see that det(cij) ∈ Z.
Thus disc(β, . . . , βn) | disc(α1, . . . , αn).
Similarly we see that disc(α1, . . . , αn) | disc(β, . . . , βn).
Thus disc(α1, . . . , αn) = ±disc(β, . . . , βn). Since (det(cij))

2 > 0, then we see that the two
discriminants are equal. �

Definition. Let K be a finite extension of Q. The discriminant of K is the discriminant
of an integral basis for K.
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Remark. For any finite extension K of Q, the discriminant d of K is an integer with
|d| ≥ 1.
It can be shown that if K 6= Q, then |d| > 1.

Let D be a squarefree integer with |D| 6= 1. What is the discriminant of Q(
√
D)?

If D 6≡ 1 (mod 4), then {1,
√
D} forms an integral basis for Q(

√
D). Further,

disc(1,
√
D) = (det

(
1
√
D

1 −
√
D

)
)2 = 4D

If D ≡ 1 (mod 4), then the algebraic integers in Q(
√
D) are of the form `+m

√
D

2
with `,m ∈ Z

and ` ≡ m (mod 2).

Then {1, 1+
√
D

2
} forms an integral basis for Q(

√
D). We have

disc(1, 1+
√
D

2
) =

(
det

(
1 1+

√
D

2

1 1−
√
D

2

))2

= (−
√
D)2 = D

We will now prove that for each positive integer n ∈ Z+, A ∩ Q(ζn) = Z[ζn]. In particular,
{1, ζn, . . . , ζϕ(n)−1

n } is an integral basis for Q(ζn).
Notice that, as a consequence of Theorem 28, we then have, for p an odd prime, that the

discriminant of Q(ζp) is (−1)
p−1

2 p(p− 2).

15. Lecture: Wednesday, February 9, 2000

Theorem 31. Let K be a finite extension of Q, and let {α1, . . . , αn} be a basis for K over
Q. Let d = disc{α1, . . . , αn}. If α ∈ A∩K, there exist m1, . . . ,mn ∈ Z such that d | m2

i for
i = 1, . . . , n and α = m1α1+...+mnαn

d
.

Proof:
Let σ1, . . . , σn be the embeddings of K in C. Write α = a1α1 + · · ·+ anαn with ai ∈ Q, for
i = 1, . . . , n. Then σj(α) = a1σj(α1) + · · ·+ anσj(αn) for j = 1, . . . , n. Thus

σ1(α1) · · · σ1(αn)
...

...
σn(α1) · · · σn(αn)



a1
...
an

 =


σ1(α)

...
σn(α)


By Cramer’s Rule,

aj =

det


σ1(α1) · · · σ1(α) · · · σn(α1)

...
...

σ1(αn) · · · σ1(α) · · · σn(αn)


det(σi(αj))

Thus aj = γj
δ

, where γ1, . . . , γn and δ are algebraic integers and δ2 = d(= disc(α1, . . . , αn)).
Therefore, daj = δγj. Note that daj ∈ Q and δγj is an algebraic integer. Thus daj is an
integer. Put mj = daj for j = 1, . . . , n.

It remains to show that d | mj
2 for j = 1, . . . , n. But mj

2

d
= da2

j = d
(
γj
δ

)2
= γj

2 for
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j = 1, . . . , n.

Thus mj
2

d
∈ Q and is an algebraic integer, so mj

2

d
is an integer. Thus d | wj2 for j = 1, . . . , n.

�

Let K be a finite extension of Q with [K : Q] = n. Let θ be such that K = Q(θ). The
embeddings of K in C are determined once we know the image of θ under the embeddings.
θ must be sent to once of its conjugates.
Let θ = θ1, . . . , θn be the conjugates of θ. For each i = 1, . . . , n we have that θi is also
a conjugate of θ. This follows from that fact the θ1, . . . , θn are the roots of the minimal
polynomial f of θ over Q and f ∈ R[x].
Thus the embeddings of K in C which do not map K into R come in pairs. These are known
as the complex embeddings and the balance are known as the real embeddings. Thus

n = r1 + 2r2

where r1 is the number of real embeddings, and 2r2 is the number of complex embeddings.
If σ is a complex embedding, then it has the embedding σ associated with it.

Proposition 32. Let K be a finite extension of Q with exactly 2r2 complex embeddings. The
sign of the determinant of K is (−1)r2.

Proof:
Let {α1, . . . , αn} be an integral basis for K. Then disc(K) = (det(σi(αj)i=1,... ,n

j=1,... ,n
))2

Notice that det(σi(αj))
2 =


σ1(α1) · · · σ1(αn)

...
...

σn(α1) · · · σn(αn)

 = (−1)r2 det


σ1(α1) · · · σ1(αn)

...
...

σn(α1) · · · σn(αn)


since complex conjugation induces r2 row exchanges. Note that if r2 is even that det(σi(αj))
is real and if r2 is odd it is purely imaginary. The result follows on squaring the number. �

We now return to proving that Z[ζn] is A ∩ Q(ζn) for n = 1, . . . . We’ll prove that initially
for the case when n = pr with p a prime and r ∈ Z+.
Note that

Φpr(x) =
pr∏
j=1

(j,p)=1

(x− (ζpr)
j) =

xp
r − 1

xpr−1 − 1
= 1 + x+ xp

r−1

+ · · ·+ x(p−1)pr−1

In particular, Φpr(1) = p.

16. Lecture: Friday February 11, 2000

Theorem 33. Let p be a prime number and r a positive integer. The ring of algebraic
integers of Q(ζpr) is Z[ζpr ]. (Here ζn = e2πi/n for n = 1, 2, . . . ).

Proof:
We have Q(ζpr) = Q(1 − ζpr) and {1, (1 − ζpr), . . . , (1 − ζpr)s} is a basis for Q(ζpr) over Q,
where s = ϕ(pr).
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By Theorem 31, if α ∈ A ∩Q(ζpr), then

α =
m1 +m2(1− ζpr) + · · ·+ms(1− ζpr)s−1

d
(∗)

where d = disc(1− ζpr). Note that

d =
∏

1≤i≤j≤pr
(i,p)=1,(j,p)=1

((1− (ζpr)
i)− (1− (ζpr)

j))2 =
∏

1≤i≤j≤pr
(i,p)=1,(j,p)=1

((ζ ipr)− (ζjpr))
2 = disc(ζpr)

By Theorem 28, disc(ζpr) is a power of p. Suppose that A∩Q(ζpr) 6= Z[ζpr ]. Then A∩Q(ζpr) 6=
Z[1− ζpr ].
Then by (∗) and by the fact that disc(ζpr) is a power of p, we see that there is an α ∈ A∩Q(ζpr)
such that

α =
`1 + `2(1− ζpr) + · · ·+ `s(1− ζpr)s−1

d
where `1, . . . , `s are integers, not all of which are divisible by p.
Let i be the smallest positive integer for which p 6 | `i. Then

γ =
`i(1− ζpr)i−1 + · · ·+ `s(1− ζpr)s−1

p

is an algebraic integer.

(Recall that p = Φpr(1) =
pr∏
j=1

(j,p)=1

(1− ζjpr)).

Since 1−x divides 1−xk in Z[x] for k = 1, . . . we see that p = (1−ζpr)sλ where λ ∈ A∩Q(ζpr).
Therefore, (1− ζpr)s−iλγ ∈ A ∩Q(ζpr) and so

(1− ζpr)s−iλγ =
γ`i(1− ζpr)i−1 + · · ·+ `s(1− ζpr)s

(1− ζpr)i

We conclude that θ = `i
1−ζpr

is an algebraic integer. Thus (1− ζpr)θ = `i and so

N
Q(ζpr )
Q

(θ)N
Q(ζpr )
Q

(1− ζpr) = N
Q(ζpr )
Q

(`i)

Since θ is an algebraic integer, then N
Q(ζpr )
Q

(θ) is an integer, and thus N
Q(ζpr )
Q

(1−ζpr) divides

`i
s. But N

Q(ζpr )
Q

(1− ζpr) = p and this is a contradiction since p 6 | `i. �

Next stage: to pass from n = pr to a general positive integer n.

Definition. Let L be finite extensions of Q. The compositum of L and K, denoted LK,
is the smallest field containing L ∪K.

What is the connection between A ∩K, A ∩ L, and A ∩ LK?

Lemma 34. Let L and K be finite extensions of Q, with [K : Q] = m and [L : Q] = n.
Suppose that the degree of the compositum is maximal. Suppose that [LK : Q] = mn.
Let σ be an embedding of K in C, and let τ be an embedding of L in C.
Then there is an embedding of LK in C which restricts to σ on K and τ on L.
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Proof:
σ has n distinct extensions to embeddings LK in C, since [LK : K] = n; recall [LK : Q] =
mn and [K : Q] = m.
Each of the embeddings is distinct when restricted to L. We obtain in this way mn embed-
dings of LK in C. Since [LK : Q] = mn, this is all of them.
Thus one of them, restricted to L, is τ . �
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17. Lecture: Monday, February 14, 2000

Theorem 35. Let K and L be finite extensions of Q of degree m and n respectively. Let
R, S, and T denote A ∩K, A ∩ L, and A ∩KL respectively. Suppose [KL : Q] = mn. Let
d = gcd(disc(R), disc(S)). Then

T ⊆ 1

d
RS

Proof:
Let {α1, . . . , αn} be an integral basis for K and let {β1, . . . , βm} be an integral basis for L.
KL = span{α1β1, . . . , αnβm}. Since [KL : Q] = mn, we see {α1β1, . . . , αnβm} is a basis for
KL over Q.
Thus every α in KL has a representation of the form

α =
m∑
i=1

n∑
j=1

aijαiβj
r

where aij for i = 1, . . . ,m, j = 1, . . . , n and r are integers with

gcd(a11, . . . , amn, r) = 1

To prove the theorem it suffices to show that r | d. By symmetry it suffices to show that
r | disc(R).
By Lemma 34 every embedding σ of K in C can be extended to an embedding σ′ of KL in
C which fixes each element of L. Thus

σ′(α) =
m∑
i=1

 n∑
j=1

aijαiβj
r

σ(αi)

Put xi =
n∑
j=1

aijβj
r

for i = 1, . . . ,m.

Thus σ′(α) =
m∑
i=1

σ(αi)xi.

Therefore 
σ1(α1) · · · σ1(αm)

...
. . . · · ·

σm(α1) · · · σm(αm)




x1
...
xm

 =


σ′(α)

...
σ′(α)


We now solve for the xi’s using Cramer’s rule:

xi =

det


σ1(α1) · · · σ1(αi) · · · σ1(αm)

... · · ·
σm(α1) · · · σm(αi) · · · σm(αm)


det(σi(αj))
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Thus xi = γi
δ

where λi ∈ A and δ2 ∈ disc(R). Accordingly disc(R)xi = δγi and δγi is an
algebraic integer. But disc(R)xi ∈ Q hence in Z.
Thus

disc(R)xi =
n∑
j=1

(
disc(R)aij

r

)
βj for i = 1, . . . ,m.

Since disc(R)xi is an integer and so is in S and since {β1, . . . , βn} is an integral basis

for L, we see that
disc(R)aij

r
is an integer for i = 1, . . . ,m, j = 1, . . . , n. Finally since

gcd(r, a11, . . . , amn) = 1 we see that r | disc(R) as required. �

Theorem 36. Let n be a positive integer. The ring of algebraic integers of Q(ζn) is Z(ζn).

Proof:
We’ll prove by induction on r, the number of distinct prime factors of n.
If r = 1, the result follows from Theorem 33. Suppose the result holds for q ≤ r ≤ k.
Let n = p`11 · · · p`kk where `1, . . . , `k are positive integers and p1, . . . , pk are distinct primes.
By inductive hypothesis,

A ∩Q(ζp1
`1 ···pk−1

`k−1 ) = Z[ζp1
`1 ···pk−1

`k−1 ]

Also A ∩Q(ζ
p
`k
k

) = Z[ζ
p
`k
k

]

Note the compositum of Q(ζp1
`1 ···pk−1

`k−1 ) and Q(ζ
p
`k
k

) is Q(ζn). To see this note that by the

Euclidean algorithm there exist integers g and h such that ζn = (ζp1
`1 ···pk−1

`k−1 )g(ζ
p
`k
k

)h.

Thus Q(ζn) is in the compositum.

But [Q(ζn) : Q] = ϕ(n) = ϕ(p1
`1 · · · pk−1

`k−1)ϕ(p`kk ).

Since [K : Q] ≤ ϕ(p1
`1 · · · pk−1

`k−1)ϕ(p`kk ).
Thus since Q(ζn) ⊆ K we see K = Q(ζn).
By Theorem 28,

gcd(disc(Q(ζp1
`1 ···pk−1

`k−1 ), disc(Q(ζ
p
`k
k

)) = 1

Thus by Theorem 35,

A ∩Q(ζn) ⊆ (A ∩Q(ζp1
`1 ···pk−1

`k−1 ))(A ∩Q(ζ
p
`k
k

))

hence
A ∩Q(ζn) ⊆ Z[ζp1

`1 ···pk−1
`k−1 ]Z[ζ

p
`k
k

] = Z[ζn]

Since Z[ζn] ⊆ A ∩Q(ζn) we see that Z[ζn] = A ∩Q(ζn). �

18. Lecture: Wednesday, February 16, 2000

Basic Problem: How do we compute the discriminant of a number field K?
Say K = Q(θ) with θ ∈ A. A first step would be to compute disc(θ). If disc(θ) is squarefree
then we have found disc(K).
We will now give an easy way of computing disc(θ). To do so, we introduce the notion of
the resultant of two polynomials.
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Definition. Let f(x), g(x) ∈ C[x] with f(x) = anx
n + · · · + a1x + a0 and

g(x) = bmx
m + · · ·+ b1x+ b0.

We define the resultant of f and g, denoted by R(f, g) by

R = R(f, g) = det



an an−1 · · · a0 0 · · · · · · 0
0 an · · · a1 a0 0 · · · 0
...

. . . . . .
...

0 · · · 0 an an−1 · · · · · · a0

bm bm−1 · · · b0 0 · · · · · · 0
0 bm · · · b1 b0 0 · · · 0
...

. . . . . .
...

0 · · · bm bm−1 · · · · · · · · · b0


Note: that R(f, g) is homogeneous of degree m in the ai’s and homogeneous of degree n in
the bj’s.
We claim that R(f, g) = 0 ⇐⇒ f and g have a common factor in Q[x].
Note: f and g have a common root in C if and only if there exist h and k in C[x] with
h(x)f(x) = k(x)g(x) with deg(h) ≤ m− 1 and deg(k) ≤ n− 1

(⇒) We have x−α | f(x) and x−α | g(x) in C[x] for some α ∈ C. Thus f(x) = (x−α)k(x)
and g(x) = (x − α)h(x) with h, k ∈ C[x],deg(h) ≤ m − 1, deg(k) ≤ n − 1. Then
h(x)f(x) = (x− α)h(x)k(x) = k(x)g(x).

(⇐) If h(x)f(x) = k(x)g(x) with deg(k) ≤ n− 1 and deg(h) ≤ m− 1, then on comparing
degrees, we se that there is a root of g which is also a root of f .

Let
h(x) = cm−1x

m−1 + · · ·+ c0 with h ∈ C[x]
k(x) = dn−1x

n−1 + · · ·+ d0 with k ∈ C[x]

Comparing coefficients of xn+m−1,xn+m−2,. . . ,x0 on both sides of (*) we find that

ancm−1 = bmdn−1

ancm−2 + an−1cm−1 = bmdn−2 + bm−1dn−1
...

a0c0 = b0d0

We want to find a non-trivial solution to the above system of equations in the variables
c0, . . . , cm−1,−d0, . . . ,−dn−1.
Since we have m + n equations and m + n unknowns, we can find such a solutions if and
only if det(A) = 0 where

A =


an 0 bm 0
an−1 an bm−1 bm
an−2 an−1 an bm−2 bm−1 bm

...
. . . . . .

0 a0 0 b0


But det(A) = det(AT ) = R(f, g).
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19. Lecture: Friday, February 18, 2000

The coefficients a1, . . . , an−1 can be expressed as an times an elementary symmetric function
of the roots x1, . . . , xn of f .
Similarly the bj’s for 0 ≤ j ≤ m − 1 are bm times an elementary symmetric function of the
roots y1, . . . , yn of g.
The resultant of f and g is homogenous of degree m in the ai’s and homogenous of degree
n in the bj’s. Therefore R(f, g) is an

mbm
n times a symmetric function of the xi’s times a

symmetric function of the yj’s.
We now view xi’s and yj’s as indeterminants and so R(f, g) ∈ C[x1, . . . , xn, y1, . . . , ym].
Note that if xi = yj then R(f, g) = 0 and so xi−yj divides R in C[x1, . . . , xn, y1, . . . , ym]. But
xi−yj is a prime in the UFD C[x1, . . . , xn, y1, . . . , ym] and so S dividesR in C[x1, . . . , xn, y1, . . . , ym]
where

S = an
mbm

n
n∏
i=1

m∏
j=1

(xi − yj)

Observe that since g(x) = bm
∏m
j=1(x− yj), we see that

S = an
m

n∏
i=1

g(xi) (1)

Also note that f(x) = an
∏n
i=1(x− xi) = (−1)nan

∏n
i=1(xi − x) hence

S = (−1)mnbm
n

m∏
j=1

f(yi) (2)

¿From (1), S is homogenous of degree n in the bj’s and from (2) S is homogenous of degree
m in the ai’s.
Thus R and S have the same degree while S divides R. Hence R = cS for some constant c.
By the definition of the resultant, we see that

R = an
mbm

n + · · ·
while from (1),

S = an
mbm

n + · · ·
and so R = S.
Let f(x) = xn + an−1x

n−1 + · · ·+ a0 ∈ Z[x] and suppose f(x) = (x−α1) · · · (x−αn) in C[x].
Then by (1),

R(f, f ′) =
n∏
i=1

f ′(αi)

But

f ′(x) =
n∑
i=1

(x− α1) · · · ̂(x− αi) · · · (x− αn)

where ̂(x− αi) means that (x− αi) is removed from the product.
Thus f ′(αi) =

∏
j=1
j 6=i

(αi − αj).
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Hence
R(f, f ′) =

∏
i=1

∏
j=1
j 6=i

(αi − αj)

= (−1)
n(n−1)

2

∏
1≤i≤j≤n

(αi − αj)2

Suppose that f ∈ Z[x] is irreducible over Q and that θ is a root of f .
Let θ = θ1, . . . , θn be the conjugates of θ. Then

disc(θ) =
∏

1≤i≤j≤n
(αi − αj)2 = (−1)

n(n−1)
2 R(f, f ′)
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20. Lecture: Monday, February 21, 2000

Example:
Let θ be a root of f(x) = x3 + x2− 2x+ 8. Note that f is irreducible over Q by the rational
roots theorem. What is disc(θ)?
Observe that

f ′(x) = 3x2 + 2x− 2

Hence

R(f, f ′) = det


1 1 −2 8 0
0 1 1 −2 8
3 2 −2 0 0
0 3 2 −2 0
0 0 3 2 −2


= · · · = det

(
−6 −112
14 −74

)
= 2012 = 4 · 503

Thus disc(θ) = (−1)
3(3−1)

2 4 · 503 = −4 · 503.
Put K = Q(θ). What is disc(K)? It is either −4 · 503 or -503.
If {1, θ, θ2} is an integral basis for K, then disc(K) = −4 · 503. We’ll show that it isn’t by

showing that θ2−θ
2
∈ A ∩K. We then conclude that disc(K) = −503.

Let θ = θ1, θ2, θ3 be the conjugates of θ. Thus f(x) = (x− θ1)(x− θ2)(x− θ3).

Further, θ2+θ
2

= θ1
2+θ1
2

, θ2
2+θ2
2

, θ3
2+θ3
2

are the conjugates of θ2+θ
2

. Thus

g(x) =

(
x−

(
θ1

2 + θ1

2

))(
x−

(
θ2

2 + θ2

2

))(
x−

(
θ3

2 + θ3

2

))

is the minimal polynomial of θ2+θ
2

and it suffices to show that g ∈ Z[x].
Note that

θ1 + θ2 + θ3 = −1
θ1θ2 + θ1θ3 + θ2θ3 = −2
θ1θ2θ3 = −8

 since f(x) = x3 + x2 − 2x+ 8

Thus
θ1

2 + θ1

2
+
θ2

2 + θ2

2
+
θ3

2 + θ3

2
=
θ1

2 + θ2
2 + θ3

2 + θ1 + θ2 + θ3

2

=
(θ1 + θ2 + θ3)2 − 2(θ1θ2 + θ1θ3 + θ2θ3) + (θ1 + θ2 + θ3)

2

=
(−1)2 − 2(−2) + (−1)

2
=

4

2
= 2 ∈ Z

Next observe that

(θ1
2 + θ1)(θ2

2 + θ2)

4
+

(θ1
2 + θ1)(θ3

2 + θ3)

4
+

(θ2
2 + θ2)(θ3

2 + θ3)

4

=
1

4
(θ1

2θ2
2 + θ1θ2

2 + θ1
2θ2 + θ1θ2 + θ1

2θ3
2 + θ1θ3

2 + θ1
2θ3 + θ1θ3 + θ2

2θ3
2 + θ2θ3

2 + θ2
2θ3 + θ2θ3)
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=
1

4
((θ1θ2 + θ2θ3 + θ1θ3)2 − 2(θ1

2θ2θ3 + θ1θ2
2θ3 + θ1θ2θ3

3) + (θ1θ2 + θ1θ3 + θ2θ2)− 3θ1θ2θ3)

=
1

4
(4− 16− 2 + 2 + 24)

= 3 ∈ Z
Finally, (

θ1
2 + θ1

2

)(
θ2

2 + θ2

2

)(
θ3

2 + θ3

2

)
=
θ1θ2θ3

8
(θ1 + 1)(θ2 + 1)(θ3 + 1)

= −(θ1 + 1)(θ2 + 1)(θ3 + 1) ∈ A
Thus ( θ1

2+θ1
2

)( θ2
2+θ2
2

)( θ3
2+θ3
2

) is an integer. (In fact, it is equal to 101.)
Therefore disc(K) = −503.

Definition. Let L be a finite extension of Q. Suppose [L : Q] = n. Suppose that λ ∈ A∩L
and that {1, λ, λ2, . . . , λn−1} is an integral basis for L. We say that it is a power basis.

Dedekind showed that not all fields L have a power basis. In fact he showed that if L =
K = Q(θ), as in the example, that K does not have a power basis.

We can check that disc(1, θ, θ
2+θ
2

) = −503 and hence that {1, θ, θ2+θ
2
} is an integral basis for

K.
Suppose λ ∈ A ∩K. We’ll show disc(λ) 6= −503. Note that

λ = a+ bθ + c

(
θ2 + θ

2

)
with a, b, c ∈ Z

Thus

λ2 = a2 + b2θ2 +
c2

4
(θ3 + 2θ3 + θ2) + 2abθ + ac(θ2 + θ) + bc(θ3 + θ2)

We use θ2 = −θ2 + 2θ − 8 and θ4 = −θ3 + 2θ2 − 8θ.
Hence θ4 + 2θ3 + θ2 = 2θ2 − 6θ − 8 and θ3 + θ2 = 2θ − 8.
Thus λ2 = A1 + A2θ + A3

(
θ2+θ

2

)
where

A1 = a2 − 2c2 − 8bc
A2 = −2c2 + 2ab+ 2bc− b2

A3 = 2b2 + 2ac+ c2

Therefore  1
λ
λ2

 =

 1 0 0
a b c
A1 A2 A3


 1

θ
θ2+θ

2



disc(λ) = det

 1 0 0
a b c
A1 A2 A3


2

· (−503)

But we have

det

 1 0 0
a b c
A1 A2 A3


2

= (bA3− cA2)2 = (2b3− bc2 + b2c+2c3)2 ≡ (c(b2− bc))2 ≡ 0 (mod 2)
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Thus disc(λ) 6= −503 and so no power integral basis for K exists.

21. Lecture: Wednesday, February 23, 2000

Let K be a finite extension of Q. The irreducible elements of A ∩K are those α ∈ A ∩K,
which are not zero or a unit, for which α = βγ with β, γ ∈ A ∩K implies that β or γ is a
unit. The irreducible elements in Z = A ∩Q are the primes.
In Z we have the Fundamental Theorem of Arithmetic. In general there is no analogue of
this result for A ∩K with irreducibles taking the role of the primes. (Recall Assignment 2
Question 1, where we showed that in Z(

√
−5) = A∩Q(

√
−5) there is not unique factorization

into irreducibles.)
However, we can recover unique factorization by passing to ideals.
Definition. A Dedekind domain is an integral domain R for which:

1) Every ideal in R is finitely generated.
2) Every prime ideal is a maximal ideal.
3) R is integrally closed in its field of fractions.

We’ll show that if K is a finite extension of Q then A ∩K is a Dedekind domain. Also, we
have unique factorization, up to reordering of ideals, into prime ideals in a Dedekind domain.

Remark.

i) The field of fractions of a ring R is {a
b
| a, b,∈ R, b 6= 0}.

ii) An element θ in a ring extension S of R is said to be integral over R if it is the root
of a monic polynomial with coefficients in R.

iii) A ring R in an extension ring S of R is said to be integrally closed if whenever θ ∈ S
and θ is integral over R, then θ ∈ R.

Proposition 37. Let K be a finite extension of Q. Let I be a nonzero ideal in A∩K. Then
there is a nonzero integer a in I.

Proof:
Since I is nonzero there is an element α ∈ I with α 6= 0.
Let α = α1, . . . , αn be the conjugates of α.

Then N
Q(α)
Q

(α) = α1 · · ·αn ∈ Z \ {0}, say N
Q(α)
Q

(α) = a.
Note that α2 · · ·αn ∈ A and α2 · · ·αn = a

α
∈ Q(α) ⊆ K.

Thus α2 · · ·αn ∈ A ∩K. Therefore α(α2 · · ·αn) ∈ I. �

Definition. Let K be a finite extension of Q and let I be an ideal in A ∩ K. A set of
elements {α1, . . . , αn} from I is said to be an integral basis for I if for every element of I
has a unique representation as an integer linear combination of α1, . . . , αn.

Theorem 38. Let K be a finite extension of Q and let {ω1, . . . , ωn} be an integral basis for
K. Let I be a nonzero ideal in A∩K. Then there is an integral basis {α1, . . . , αn} for I for
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which

α1 = a1,1ω1

α2 = a2,1ω1 + a2,2ω2
...
αn = an,1ω1 + · · ·+ an,nωn

with ai,j ∈ Z and ai,i ∈ Z+ for i = 1, . . . , n

Proof:
It follows from Prop. 37 that there is a positive integer a in I. Thus aωi ∈ I for i = 1, . . . , n.
Now take α1 to be a1,1ω1 where a1,1 is the smallest positive integer for which a1,1ω1 is in I.
We then choose α2, . . . , αn so that αi = ai,1ω1 + · · ·+ai,iωi where ai,i ∈ Z+ and ai,1, . . . , ai,i−1

are in Z with ai,i minimal, for i = 1, . . . , n.

We claim {α1, . . . , αn} is an integral basis for I. Since


a11 0 · · · 0
a21 a22 0
...

. . .
an1 · · · ann

 has deter-

minant a11 · · · ann 6= 0 we see that α1, . . . , αn is a basis for K. Thus it suffices to prove that
every element β of I has a representation as an integral linear combination of α1, . . . , αn.
Since ω1, . . . , ωn is an integral basis for K, there exist integers b1, . . . , bn such that β =
b1ω1 + · · ·+ bnωn.

Note: that bn is divisible by ann by the minimality of ann. For otherwise, we would have
bn = qann + r with 0 < r < ann and then β− qαn ∈ I and when expressed as a linear
combination of ω1, . . . , ωn, the coefficient of ωn is positive and smaller than ann. This
contradicts the minimality of ann.

Thus bn = qann with qn ∈ Z. We then consider β − qnαn = c1ω1 + · · · cn−1ωn−1. By the
minimality of an−1,n−1 we see that an−1,n−1 divides cn−1 as before.
Continuing as before we find that β = q1α1 + · · ·+ qnαn with q1, . . . , qn integers. �
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22. Lecture: Monday, February 28, 2000

Theorem 39. Let K be a finite extension of Q. Then A ∩K is a Dedekind domain.

Proof:
It follows from Theorem 38 that every ideal in A ∩K is finitely generated.
To show that every prime ideal P is maximal, we first note that (A ∩K)/P is an integral
domain. Secondly we observe that if (A ∩ K)/P is finite, then (A ∩ K)/P is a field since
every finite integral domain is a field. If (A ∩K)/P is a field, then P is maximal.
Thus, it is enough to show that (A ∩K)/P is finite.
By Proposition 37, there is a positive integer a in P . Let {ω1, . . . , ωn} be an integral basis
for A ∩K.
Note that every element in A ∩ K is an integer linear combination of ω1, . . . , ωn and that
a ∈ P . Thus

|(A ∩K)/P| ≤ an

Finally, let γ = α
β

with α, β ∈ A ∩ L, β 6= 0.

Suppose that γ is the root of monic polynomial with coefficients in A ∩K, say

xn + αn−1x
n−1 + · · ·+ α0 with α0, . . . , αn−1 ∈ A ∩K

Since γ = α
β

we see that γ ∈ K. It suffices to show that γ ∈ A.

By Theorem 13 we need only show that γ is an element of a subring of C which has a finitely
generated additive subgroup.
Consider S = Z[α0, . . . , αn−1, γ]. We claim that the additive subgroup of S is finitely
generated. Let [K : Q] = n, and let θ ∈ S.
We’ll show that θ is an integral linear combination of terms of the form

α0
j0 · · ·αm−1

jm−1γjm where 0 ≤ ji < n for i = 0, . . . ,m− 1

Observe that it suffices to prove that when

θ = α0
b0 · · ·αn−1

bn−1γbm with bi ≥ 0 for i = 0, . . . ,m

¿From the relation γm = αm−1γ
m−1 · · ·α0 we can show that γbm is an integral linear combi-

nation of terms of the form
θ = α0

`0 · · ·αn−1
`n−1γ`m

with 0 < `m < m and with αi ≥ 0 for i = 0, . . . ,m− 1.
Let

fi(x) = xti + a
(i)
ti−1

xti−1 + · · ·+ a
(i)
0

where a
(i)
j ∈ Z is the minimal polynomial of αi for i = 0, . . . ,m.

We now reduce the powers of the αi’s using the relations given by the minimal polynomial
to give the result claimed. �

23. Lecture: Friday, March 3, 2000

Theorem 40. Let R be a commutative ring. The following are equivalent:
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(1) Every ideal in R is finitely generated.
(2) Every increasing sequence of ideals in R is eventually constant.
(3) Every nonempty set of ideals in R has a maximal element.

Proof:

• [(1) =⇒ (2)]
Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be a sequence of ideals in R.
Let

I = ∪∞n=1In
then I is an ideal of R and In ⊆ I for n = 1, 2, . . . . Since every ideal in R is finitely
generated there exist a1, . . . , ar ∈ R such that

I = (a1, . . . , ar)

Thus ai ∈ Ini for some integer ni for i = 1, . . . , r.
Let N = max(n1, . . . , nr). Then

I ⊆ IN ⊆ IN+1 ⊆ · · · ⊆ I

and so I = IN = IN+1 = · · · as required.
• [(2) =⇒ (3)]

Let S be a nonempty set of ideals in R. Let I1 be an ideal of S.
Either I1 is maximal or there exists I2 in S with I1 6⊆ I2. Similarly, either In is
maximal or there exists In+1 ∈ S with In 6⊆ In+1.
By (2), this sequence terminates after finitely many steps.
The last term in the sequence is a maximal element of S.
• [(3) =⇒ (1)]

Let I be an ideal of R.
Let S be the set of ideals contained in I which are finitely generated. S is nonempty
and so by (3) contains a maximal element M .
Notice that M = I, since otherwise M 6⊆ I, and then there exists an element β ∈
M \ I. Suppose M = (α1, . . . , αn). Then M1 = (α1, . . . , αn, β) is in S and M 6⊆M1

which contradicts the fact that M is a maximal element of S. Then M = I and so I
is finitely generated.

�

Lemma 41. In a Dedekind domain R, every nonzero ideal of R contains a product of prime
ideals from R.

Proof:
Let S be the set of nonzero ideals in R which do not contain a product of prime ideals from
R. If S is nonempty then, by (1) and (3) of Theorem 40, S contains a maximal element M .
M is not prime and thus there exist r, s ∈ R \M with rs ∈M . Consider

M1 = M + (r), M2 = M + (s)

Since M is maximal in S, M 6⊆ M1 and M 6⊆ M2, so we see that M1 and M2 are not in S
and so both M1 and M2 contain a product of prime ideals from R.
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But M1M2 ⊆ M , and thus M contains a product of prime ideals, which is a contradiction.
Thus S is empty. �

Lemma 42. Let I be a proper ideal in a Dedekind domain R. Let K denote the field of
fractions of R. Then there exists an element γ ∈ K with γ 6∈ R such that γI ⊆ R.

Proof:
Note that we may assume I is nonzero, since the result holds for any γ ∈ K \R in the case
of I = (0). So let a be a nonzero element of I.
Since I is proper, a is not a unit, and so 1

a
6∈ R, while 1

a
∈ K.

By Lemma 41, (a) contains a product of prime ideals, P1, . . . ,Pr, from R. Choose such a
product with r minimal. We have

P1 · · · Pr ⊆ (a)

Let S be the set of proper ideals containing I.
Then S is nonempty. since I ∈ S and so, since R is a Dedekind domain, S contains a
maximal element M .
Note that M is a maximal ideal of R and so M is a prime ideal of R.
Thus M ⊇ P1 · · · Pr. Observe that M ⊃ Pi for some i with 1 ≤ i ≤ r.
(To see this, note that if this were not true, then there is an element ai ∈ Pi with ai 6∈ M
for i = 1, . . . , r.
But then a1 · · · ar ∈M and this contradicts the fact that M is a prime ideal.)
Without loss of generality, we may suppose that M ⊇ P1. (In fact M = P1 since R is a
Dedekind domain.)
Recall that (α) ⊇ P1 · · · Pr and that r is minimal.
If r = 1 we take γ = 1

α
then since P1 ⊆ (α) ⊆ I 6⊆ R and prime ideals in Dedekind domains

are maximal ideals then
P1 = (α) = I

γI =
1

α
(α) = R

as required.
If r > 1 we choose an element b in P2 · · · Pr and take γ = b

α
. Note that P2 · · · Pr is not

contained in (α) since r is minimal.
Thus γ ∈ K \R. Then

γI =
b

α
I ⊆ b

α
P1 ⊆

(b)P1

α
⊆ P2 · · · PrP1

α
⊆ (α)

α
= R

as required. �
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24. Lecture: Monday, March 6, 2000

Theorem 43. Let R be a Dedekind domain and let I be an ideal of R. Then there exists an
ideal J such that IJ is principal.

Proof:
If I = (0) result is immediate. So, suppose I 6= (0).
Let α ∈ I \ {0}. Put

J = {β ∈ R | βI ⊆ (α)}
Note that J is an ideal and that JI ⊆ (α).
It remains to show (α) ⊆ IJ hence that (α) = IJ .
Put B = 1

α
IJ . Then B is an ideal of R.

If B is a proper ideal of R then by Lemma 42, there exists γ ∈ K \R such that γB 6⊆ R.
Since α ∈ I we see that J ⊆ B. Thus γJ ⊆ γB ⊆ R.
Note that since γB ⊆ R we see that γJI = (α). Therefore, by the definition of J , γJ ⊆ J .
Now J has a finitely generated additive subgroup and, as in the proof of Theorem 13 for
Dedekind domains, γ ∈ R.
The contradiction proves the result. �

25. Lecture: Wednesday, March 8, 2000

Corollary 44. If A,B,C are ideals with C 6= 0 in a Dedekind domain and AC = BC, then
A = B.

Proof:
There exists an ideal J such that JC = (α) for some nonzero element α. Thus

JAC = JBC =⇒ (α)A = (α)B =⇒ αA = αB

Hence, since α 6= 0, then A = B. �

Corollary 45. Let A and B be ideals in Dedekind domain R. Then A ⊇ B ⇐⇒ A | B.

Proof:

(⇐) If A | B then there exists C such that AC = B implies A ⊇ B.
(⇒) Suppose A ⊇ B. The result holds with A = (0) so assume A 6= (0).

Then there exists an ideal J such that JA = (α) with α 6= 0.
Then JA = (α) ⊇ JB, hence R ⊇ 1

α
.

Let C = 1
α
JB. Note C is an ideal and AC = B.

�

Theorem 46. Every proper nonzero ideal in a Dedekind domain has a unique factorization,
up to reordering, into a product of prime ideals.
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Proof:
Let S be the set of nonzero proper ideals in R which cannot be written as a product of prime
ideals.
If S is not empty, there is a maximal element M ∈ S.
Notice that M is contained in a maximal ideal P of R. Since M ∈ S, then M 6⊆ P . By
Corollary 45, there exists an ideal C such that M = PC.
Since M ∈ S, C is not a product of prime ideals. So C ∈ S and C ⊇ M , which is a
contradiction.
Thus S is empty. Now we show the factorization is unique up to reordering. Suppose that

P1 · · · Pr = Q1 · · ·Qs

with P1, . . . ,Pr and Q1, . . . , Qs prime ideals.
Then P1 | Q1 · · ·Qs hence P1 ⊇ Q1 . . . Qs.
Since P1 is a prime ideal P1 ⊇ Qi for some 1 ≤ i ≤ s.
Without loss of generality, we may suppose i = 1, so that P1 ⊇ Q1. In a Dedekind domain,
prime ideals are maximal ideals, so P1 = Q1.
By Corollary 44,

P2 · · · Pr = Q2 · · ·Qs

The result follows by induction. �

Remark. Let [K : Q] be finite. Since the ring of algebraic integers of K is a Dedekind
domain, we have unique factorization into prime ideals in A ∩K.

26. Lecture: Friday, March 10, 2000

Theorem 47. Let [K : Q] <∞. Factorization of elements of A ∩K into primes is unique
up to reordering if and only if every ideal in A ∩K is principal.

Proof:

(⇒) : It suffices to prove every prime ideal is principal. Let P be a prime ideal of A∩K.
By By Proposition 37, P contains a nonzero rational integer a. Therefore P ⊇ (a).
Accordingly P | (a). Let a = π1 · · ·πt be a representation of a as a product of primes
of A ∩K. (Note: a 6= ±1 since P is a prime ideal.) Thus

(a) = (π1) · · · (πt)
and since P | (a) we see that P | (πi) for some i with 1 ≤ i ≤ t. Without loss of
generality, we may suppose P | (π1).
If we can show (π1) is a prime ideal then P = (π1) and the result follows.
Suppose βγ ∈ (π1) with β, γ ∈ A ∩ K. Then π1 | βγ and on examining the prime
factorization of β and γ we see that π1 | β or π1 | γ. Thus (π1) is a prime ideal.

(⇐) : Assume π1 · · ·πr = λ1 · · ·λs with π1, . . . , πr, λ1, . . . , λs primes in A ∩K. Then

(π1) · · · (πr) = (λ1) · · · (λs)
It suffices to show that if π is a prime in A ∩K then (π) is a prime ideal since the
result then follows from the above equality and the fact the in A∩K we have unique
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factorization into prime ideals.
Suppose (π) = BC for some ideals B and C in A ∩K. Since every ideal is principal
in A ∩K we have B = (β), C = (γ) for β, γ in A ∩K.
Thus (π) = (β)(γ) = (βγ). In other words, π

βα
is a unit. Since π is a prime we see

that either β or γ is a unit and thus B or C is (1), hence (π) is a prime ideal.

�

Let K = Q(
√
−D) where D is a squarefree positive integer. Gauss conjectured that A ∩K

had unique factorization into primes only if D = 1, 2, 3, 7, 11, 19, 43, 67, 163.
In 1934 Heilbrann proved that there is at most one more D other than those in Gauss’ list.
In 1969 Baker and Stark independently proved that the above is a complete list.
Let K be a finite extension of Q and let P be a prime ideal of A ∩K. Let a be a positive
integer in A ∩K. Note a > 1.
Let a = p1 · · · pr with p1, . . . , pr primes in Z.
Then (a) = (p1) · · · (pr), hence P ⊇ (a) or P | (a) hence P | (pi) for some prime pi.
In fact there is only one such prime p. Suppose P | (q) also with q a prime in Z different
from p. There there exist integers a and b such that

ap+ bq = 1

hence
(a)(p) + (b)(q) = (1)

and then P | (1) which is a contradiction.
Thus to determine all prime ideals of A ∩K it suffices to determine the prime ideal decom-
position of (p) in A ∩K as p ranges over the rational primes.
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27. Lecture: Monday, March 13, 2000

Definition. Let K be a finite extension of Q, and let p be a prime in Z. We say that p
be a prime in Z. We say that p ramifies in K if there is a prime ideal P in A ∩K such that
P2 | (p) in A ∩K.

Dedekind proved that p ramifies in K if and only if p divides the discriminant of K.

Theorem 48. Let K be a finite extension of Q and let D be the discriminant of K. If p is
a prime in Z and p 6 | D then p is unramified.

Proof:
Suppose P2 | (p) for some prime ideal P in A ∩K and some p in Z.
Then (p) = P2Q for some ideal Q in A∩K. Let α ∈ PQ with α 6∈ P2Q so that α

p
∈ A∩K.

Note that α2 ∈ P2Q2 ⊆ (p) so α2

p
∈ A ∩K. Therefore, for any β ∈ A ∩K, (αβ)p

p
∈ A ∩K.

Further,

TKQ ((αβ)p) = TKQ (p
(αβ)p

p
) = pTKQ (

(αβ)p

p
)

and so p | TKQ ((αβ)p). Further,

(TKQ (αβ))p = (
∑
σ

σ(αβ))p, σ an embedding from K to Q

=
∑
σ

σ(αβ)p + pγ for γ ∈ A ∩K

=
∑
σ

σ((αβ)p) + pγ

= TKQ ((αβ)p) + pγ

Therefore, p | (TKQ (αβ))p, hence p | TKQ (αβ).
Let ω1, . . . , ωn be an integral basis for K.
We have α = a1ω1 + · · · + anωn for some a1, . . . , an ∈ Z. Since α 6∈ (p), we see that p 6 | ai
for some i with 1 ≤ i ≤ n. Without loss of generality, we may suppose p 6 | a1.
By our earlier remarks, we see that p 6 | TKQ (αωi) for i = 1, . . . , n.

Thus p | TKQ (a1ω1 + · · ·+ anωn)ω1 so p | ∑n
j=1 akT

K
Q (ωjωi).

Denote TKQ by T . Then

a1D = det


a1T (ω1ω1) · · · a1T (ω1ωn)
T (ω2ω1) · · · T (ω2ωn)

...
...

T (ωnω1) · · · T (ωnωn)



= det


a1T (ω1ω1) + · · ·+ anT (ωnω1) · · · a1T (ω1ωn) + · · ·+ anT (ωnωn)

T (ω2ω1) · · · T (ω2ωn)
...

...
T (ωnω1) · · · T (ωnωn)


Thus by (*), we have p | a1D. Since p 6 | a1, we see that p | D and the result follows. �
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28. Lecture: Wednesday, March 15, 2000

Let [K : Q] <∞. Let α ∈ A ∩K. We have defined the norm of α, NK
Q

(α). We now extend
this notion to ideals.

Definition. We define the norm of an ideal I in A∩K, denoted N(I) or NK
Q

(I) or ‖I‖ to
be |(A ∩K)/I|. In other words, N(I) is the number of cosets mod I in A∩K or the number
of residue classes modulo I in A ∩K.

Theorem 49. Let K be a finite extension of Q and let I be an ideal in A ∩ K. Let
{α1, . . . , αn} be an integral basis for I. Then

N(I) =

∣∣∣∣∣disc(α1, . . . , αn)

D

∣∣∣∣∣
1
2

where D = disc(K)

Proof:
Every integral basis for I has the same discriminant.
Let {ω1, . . . , ωn} be an integral basis for A ∩K and {α1, . . . , αn} be an integral basis for I
of the form given by Theorem 38.

Then disc(α1, . . . , αn) =

det


a11 0 · · · 0
a21 a22 0
...

. . .
...

an1 · · · · · · ann




2

disc(ω1, . . . , ωn)

=⇒ disc(α1, . . . , αn)

D
= (a11 · · · ann)2

Recall aii ∈ Z+ for i = 1, . . . , n. Hence∣∣∣∣∣disc(α1, . . . , αn)

D

∣∣∣∣∣
1
2

= a11 · · · ann

Thus it suffices to prove that N(I) = a11 · · · ann.
First we show that if

r1ω1 + · · ·+ rnωn ≡ s1ω1 + · · ·+ snωn (mod I)

with 0 ≤ ri ≤ aii and 0 ≤ si ≤ aii for i = 1, . . . , n.
Then ri = si for i = 1, . . . , n. This shows N(I) ≥ a11 · · · ann.
Note (r1 − s1)ω1 + · · ·+ (rn − sn)ωn ∈ I.
Recall from the proof of Theorem 38 that ann was the smallest positive integer occurring as
the coefficient of ωn in a linear combination of ω1, . . . , ωn which is in I.
Therefore ann | rn − sn and since 0 ≤ rn ≤ ann and 0 ≤ sn ≤ ann we see rn = sn.
Similarly an−1,n−1 | rn−1 − sn−1 and so rn−1 = sn−1, . . . , r1 = s1.
Thus N(I) ≥ a11 · · · ann.
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Let γ ∈ A ∩ K so γ = b1ω1 + · · · + bnωn with b1, . . . , bn ∈ Z. Then there exist integers
q1, . . . , an and r1, . . . , rn with 0 ≤ ri ≤ aii for i = 1, . . . , n such that

γ = q1α11 + · · ·+ qnαnnr1ω1 + · · ·+ rnωn

But then γ ≡ r1ω1 + · · ·+ rnωn (mod I).
Thus N(I) ≤ a11 · · · ann.
Therefore N(I) = a11 · · · ann.

�

Theorem 50. Let K be a finite extension of Q and let I be a principal ideal of A ∩ K.
Suppose I = (α). Then

N(I) =
∣∣∣NK
Q

(α)
∣∣∣

Proof:
Let ω1, . . . , ωn be an integral basis for A ∩K.
Then αω1, . . . , αωn be an integral basis for I.
Let σ1, . . . , σn be the embeddings of K in C which fix Q. We have

σ1(αω1) · · · σ1(αωn)
...

. . .
...

σn(αω1) · · · σn(αωn)

 =


σ1(α) 0

. . .
0 σn(α)



σ1(ω1) · · · σ1(ωn)

...
. . .

...
σn(ω1) · · · σn(ωn)


Thus by Theorem 49,

N(I) =

∣∣∣∣∣∣∣∣
det


σ1(α) 0

. . .
0 σn(α)




2∣∣∣∣∣∣∣∣
1
2

=
∣∣∣NK
Q

(α)
∣∣∣

�

29. Lecture: Friday, March 17, 2000

Theorem 51 (Fermat’s Theorem). Let [K : Q] < ∞ and let P be a prime ideal of A ∩K.
Let α ∈ A ∩K such that P 6 | (α). Then αN(P)−1 ≡ 1 (mod P).

Proof:
Let β1, . . . , βN(P) be a complete set of residues modulo P and suppose that βN(P) ≡ 0
(mod P).
Then αβ1, . . . , αβN(P) is also a complete set of residues modulo P since if αβi ≡ αβj
(mod P), then P | (α)(βi − βj) and so P | (βi − βj).
Thus βi ≡ βj (mod P) and so i = j.
Thus we see that (αβ1)(αβ2) · · · (αβN(P)−1) ≡ β1β2 · · · βN(P)−1 (mod P) so

αN(P)−1(β1 · · · βN(P)−1) ≡ β1 · · · βN(P)−1 (mod P)

and therefore
αN(P)−1 ≡ 1 (mod P)

�
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Proposition 52. Let [K : Q] <∞ and let I be an ideal of A ∩K. Then N(I) ∈ I.

Proof:
Let α1, . . . , αN(I) be a complete set of residues modulo I. Then

1 + α1, 1 + α2, . . . , 1 + αN(I)

is also a complete set of residues modulo I.
Therefore,

(1 + α1) + · · ·+ (1 + αN(I)) ≡ α1 + · · ·+ αN(I) (mod I)

hence
N(I) ≡ 0 (mod I)

as required. �

Remark. It follows immediately from Proposition 52 that if K is a finite extension of Q,
then for each positive integer a there are only finitely many ideals in A∩K with norm equal
to a.
Note that if we can show the norm is multiplicative on ideals of A∩K. then we can conclude:

(1) If N(I) is a prime in Z then I is a prime ideal; for if I = AB, then N(I) = N(A) ·
N(B), hence either N(A) = 1 or N(B) = 1.

(2) If P is a prime ideal in A∩K with [K : Q] = n and P | (p) with p a prime in Z then
N(P) | pn hence N(P) = pf for some f with 1 ≤ f ≤ n.

Definition. Let [K : Q] < ∞ and let B and C be ideals in A ∩K. We say that D is the
greatest common divisor (of ideals) B and C if

D | B and D | C
and whenever E | B and E | C, then E | D.

Note that if a greatest common divisor exists, then it is uniquely determined since if D and
E are greatest common divisors of A and B then D | E and E | D hence E ⊆ D and D ⊆ E.
So E = D.
Suppose that B = (α1, . . . , αr) and C = (β1, . . . , βs). Then D = (α1, . . . , αr, β1, . . . , βs) is
the greatest common divisor of B and C.
To see this, note that B ⊆ D since α1, . . . , αr are in D, and so D | B. Similarly D | C.
If E is a common divisor of B and C, then E | B so E contains β1, . . . , βs. Thus

E ⊇ (α1, . . . , αr, β1, . . . , βs) = D

so E | D.
Therefore D is in fact the greatest common divisor of A and B. We denote this by gcd(A,B)
or (A,B).
Alternatively, if P1, . . . ,Pr are the distinct prime ideals which divide AB and

A = P1
e1 · · · Prer with 0 ≤ ei for i = 1, . . . , r

and
B = P1

f1 · · · Prfr with 0 ≤ fj for j = 1, . . . , r
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then
gcd(A,B) = P1

min(e1,f1) · · · Prmin(er,fr)

Definition. If gcd(A,B) = (1), then we say that A and B are relatively prime (as ideals)

Note if (α) = BL then we denote L by (α)
B

.

Lemma 53. Let [K : Q] < ∞ and let B and C be nonzero ideals in A ∩K. Then there is

an element α ∈ B such that gcd( (α)
B
, C) = (1).

Proof:
Note that if C = (1) then any α in B will do.
If C 6= (1), then we can express C as a nonempty product of prime ideals of A ∩K.
Let P1, . . . ,Pr be the distinct prime powers of C. The argument proceeds by induction on
r.
First consider the case r = 1. In this case we choose α in B but not in BP1.
Such a choice is possible since otherwise B = BP1, hence P1 = (1) which is a contradiction.

We have (α) = BE for some ideal E in A ∩K since B ⊇ (α) hence B | (α). Thus (α)
B

= E
and it suffices to show that P1 6 | E.
Note that if gcd(E,C) = P1m then E = P1F and thus (α) = BE = BP1F .
In particular, BP1 | (α) hence BP1 ⊇ (α) and so α ∈ BP1 which is a contradiction. The
result follows for r = 1.
Let P1, . . . ,Pr be the distinct prime ideals dividing C.
We prove the result by induction on r.
We now make the inductive assumption that the result follows holds for q ≤ k ≤ r.
Let

Bm = BP1 · · · P̂m · · · Pr = B
P1 · · · Pr
Pm

for m = 1, . . . , r.
We can find an element αm in Bm for m = 1, . . . , r such that gcd( (αm)

Bm
, Bm) = 1 by our

inductive hypothesis. Put
α = α1 + · · ·+ αr

Since B ⊃ Bm for m = 1, . . . , r we have that α ∈ B. Note that α 6∈ BPm for m = 1, . . . , r.
To see this, observe that α ∈ BPm for some m with 1 ≤ m ≤ r, then since αi ∈ BPm for
i 6= m, we find that αm ∈ BPm.
Thus (αm) ⊆ BPm hence BPm | (αm). Therefore Pm | (αm)

B
.

Since P1, . . . ,Pr are distinct prime ideals, we see that Pm | (αm)
Bm

and this contradicts the

that that gcd( (α)
Bm
,Pm) = 1.

Suppose now that gcd( (α)
B
, C) 6= 1. Then

Pm | gcd

(
(α)

Bm

,Pm
)

for some n for 1 ≤ m ≤ r

Thus Pm | (α)
B

or equivalently BPm | (α). Thus BP ⊃ (α) and so α ∈ BPm which is a

contradiction. Thus gcd( (α)
C

) = (1). �
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30. Lecture: Monday, March 20, 2000

Theorem 54. Let [K : Q] < ∞ and let B and C be ideals in A ∩ K. Then N(BC) =
N(B)N(C).

Proof:
By Lemma 53 there is an element γ ∈ B such that gcd( γ

B
, C) = 1.

Let α1, . . . , αN(B) be a complete set of residues modulo B, and let β1, . . . , βN(C) be a complete
set of residues modulo C.
Note that the numbers αi+γBj are distinct modulo B for 1 ≤ i ≤ N(B) and 1 ≤ j ≤ N(C).
To see this, suppose αi + γβj = αk + γβ` (mod BC). Then

αi − αk = γ(β` − βj) (mod BC)

Thus αi − αj ≡ 0 (mod B) and so i = k. Therefore,

γ(β` − βj) ≡ 0 (mod BC)

Since gcd( (γ)
B
, C) = 1 we see that gcd((γ), BC) =. Thus β` − βj ≡ 0 (mod C), hence ` = j.

Therefore, N(BC) ≥ N(B)N(C).
Pick α ∈ A ∩K. Then it remains to show that

α = αi + γβj (mod BC) for i, j with 1 ≤ i ≤ N(B), 1 ≤ j ≤ N(C)

Now α ≡ αi (mod B) for some i with 1 ≤ i ≤ N(B). Since α − αi is in B and since
gcd((γ), BC) = B we can write α − αi in the form γβ + λ with β ∈ A ∩ K and λ ∈ BC.
Then we put β ≡ βj (mod C) with 1 ≤ i ≤ N(C) and we find that

α− αj = γβj + γ(β − βj) + λ

Since β − βj ∈ C and gcd((γ), BC) = B we see that

γ(β − βj) + λ ∈ BC
and hence that

α ≡ αi + γβj (mod BC)

Therefore N(B) ·N(C) ≥ N(BC) and so N(B) ·N(C) = N(BC). �

31. Lecture: Wednesday, March 22, 2000

Definition. Let [K : Q] <∞. Let A and B be ideals in A∩K. We define a relation ∼ on
the ideals of A ∩K in the following way: we write A ∼ B if there exist nonzero elements α
and β of A ∩K such that (α)A = (β)B.

Note that ∼ is an equivalence relation since:

(1) A ∼ A since A = (1)A = A(1).
(2) If A ∼ B, then there exist α, β ∈ A ∩K with αβ 6= 0 such that (α)A = (β)B. But

then (β)B = (α)A so B ∼ A.
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(3) If A ∼ B and B ∼ C, then there exist α, β such that (α)A = (β)B and there exist
γ, δ such that (γ)B = (δ)C.
Therefore,

(γ)(α)A = (γ)(β)B = (β)(δ)C

so (γα)A = (βδ)C and thus A ∼ C.

Definition. The equivalence classes under ∼ are known as ideal classes. The number of
equivalence classes, denoted by h or hK , is called the class number of K.

If h = 1, then all of the ideals of A∩K are principal. To see this, note that if B is an ideal of
A∩K, then B ∼ (1). Thus there exist α, β ∈ A∩K with α, β 6= 0 such that (α)(1) = (β)B.
In other words, (α) = (β)B.
Note that α ∈ (α) and the elements of the right hand side are of the form βθ with θ ∈ A∩K.
Thus α

β
∈ A ∩K. Note that (α) = (β)(α

β
).

Thus (β)B = (β)(α
β
) hence B = α

β
.

We next define the binary operation of multiplication on the set of ideal classes.

Definition. Let [K : Q], and let A,B be ideals in A∩K. Denote the ideal classes of which
A and B are representatives by [A] and [B] respectively. Then we define · by

[A] · [B] = [AB]

We must now check that this multiplication is well-defined. So suppose that A ∼ C and
B ∼ D; then we must show that AB ∼ CD.
Since A ∼ C, there exist α, γ ∈ A ∩K,αβ 6= 0 with (α)A = (γ)C; and since B ∼ D, there
exist β, δ ∈ A ∩K, β, δ 6= 0 with (β)B = (δ)D.
But then

(α)A · (β)B = (γ)C · (δ)D
and hence (αγ)AB = (βδ)CD and so AB ∼ CD.

Let C = {[A] | A 6= 0, A an ideal of A ∩K}.
With the above definition of multiplication, C is an abelian group. Let us check the proper-
ties:

(1) Associativity: [A] · ([B] · [C]) = [A] · [BC] = [A(BC)] = [ABC] = [(AB)C] =
[AB] · [C] = ([A] · [B]) · [C]

(2) Identity element: [(1)] · [B] = [B] = [B] · [(1)].
(3) Inverses: Consider [B]. Let b be an integer in B. Then B ⊇ (b), so there exists C

such that BC = (b).
Then the ideal class [B] · [C] = [(b)] = [(1)].

Then C is a group under ·.
It is abelian since [A][B] = [B][A].

Definition. C is called the ideal class group of K.
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32. Lecture: Friday, March 24, 2000

Theorem 55. Let [K : Q] < ∞. Let A be an ideal in A ∩K. Then there exists a positive
number c0 and an element α ∈ A with α 6= 0 such that∣∣∣NK

Q
(α)

∣∣∣ ≤ c0N(A)

(Note: c0 depends on K but not on A.)

Proof:
Let ω1, . . . , ωn be an integral basis for K. Put t = [(NA)(1/n)]; here n = [K : Q].
Consider the number β of the form

β = c1ω1 + · · ·+ cnωn where 0 ≤ ci ≤ t for i = 1, . . . , n

There are (t + 1)n > N(A) such numbers and so two of them, β1 and β2 say, are congruent
modulo A. So let

α = β1 − β2 = t1ω1 + · · ·+ tnωn with |ti| ≤ t

Note that α ∈ A. Let σ1, . . . , σn be the embeddings of K in C which fix Q. Then∣∣∣NK
Q

(α)
∣∣∣ =

∣∣∣∣∣∣
n∏
j=1

σj(α)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∏
j=1

(t1σj(ω1) + · · ·+ tnσj(ωn))

∣∣∣∣∣∣
≤

n∏
j=1

(|t1| |σj(ω1)|+ · · ·+ |tn| |σj(ωn)|)

≤ tn
n∏
j=1

(|σj(ω1)|+ · · ·+ |σj(ωn)|)

≤ (N(A))c0 where c0 =
n∏
j=1

(|σj(ω1)|+ · · ·+ |σj(ωn)|)

Note that α 6= 0 since β1 6= β2.
�

We’ll show later that we can take c0 =
√
|D|.

Theorem 56. Let [K : Q] <∞. The class number h of K is finite.

Proof:
We’ll show that every ideal class of A∩K contains an ideal of A∩K of norm at most c0; c0

from Theorem 55.
Since there are only finitely many ideals of a given norm, the result forms.
Let I be an ideal in A ∩K. Then there is an ideal A in A ∩K such that

IA ∼ (1) (1)
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By Theorem 55 there is an element α ∈ A with α 6= 0,
∣∣∣NK
Q

(α)
∣∣∣ ≤ c0N(A).

Recall that
∣∣∣NK
Q

(α)
∣∣∣ = N(α).

Since α ∈ A there exists an ideal B with AB = (α). Thus

BA ∼ (1) (2)

¿From (1) and (2) we see that B ∼ I. But since the norm function is multiplicative on
ideals, then

N(A) ·N(B) = N(AB) = N(α) ≤ c0N(A)

Hence N(B) ≤ c0 as required. �

Remark. Let [K : Q] < ∞. Let A and B be ideals in A ∩ K. Then [Ah] = [(1)] by
Lagrange’s Theorem.
Further, if q if a positive integer with (q, h) = 1 and if

[Aq] = [Bq] then [A] = [B]

To see this note that there are integers r and s such that rq − sh = 1.
Then note that

[Aqr] = [Bqr] hence [AAsh] = [BBsh]

and so by our previous result, we have [A] = [B].
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33. Lecture: Monday, March 27, 2000

Example:

Let us determine the ideal class group C of Q(
√
−23). (We’ll assume c0 ≤

√
|D| in Theorem

55).
Since −23 ≡ 1 (mod 4) we see that c0 ≤

√
23 and so we need only consider ideals of norm

at most 4 as possible representatives of the different ideal classes.
We have

(2) = (2, 1+
√
−23

2
)(2, 1−

√
−23

2
) = PP ′

say and note that P and P ′ are prime ideals since they have norm 2.
Also,

(3) = (3, 1−
√
−23

2
)(3, 1+

√
−23

2
) = QQ′

where Q,Q′ are prime ideals.
Thus the ideals of A ∩K of norm at most 4, are

(1),P ,P ′,Q,Q′,PP ′,P2,P ′2

Note that PP ′ = (2) ∼ (1).
Consider

NQ
Q

(
√
−23)(a+b

√
−23

2
) = 2

then a2 + 23b2 = 8, hence b = 0. But then a2 = 8, which is a contradiction. Thus there is
no principal ideal of norm 2.
Therefore,

P 6∼ (1), P ′ 6∼ (1)

Further,

PQ = (6, 2(1−
√
−23

2
), 3(1−

√
−23

2
), (1−

√
−23

2
)2)

Since (1−
√
−23

2
)(1+

√
−23

2
) = 6 we see that PQ = (1−

√
−23

2
) and so PQ ∼ (1).

Similarly, P ′Q′ = (1+
√
−23

2
) and so P ′Q′ ∼ (1).

Therefore PP ′Q′ ∼ P hence Q′ ∼ P (since PP ′ ∼ (2)) and also we have P ′PQ ∼ P ′ hence
Q ∼ P ′.
This leaves us with

(1),P ,P ′,P2,P ′2

Notice that N(3+
√
−23

2
) = 8 = N(3−

√
−23

2
).

Observe that (3+
√
−23

2
)/(3−

√
−23

2
) is not a unit in Q(

√
−23), hence there are at least 2 distinct

principal ideals of norm 8. The ideals of norm 8 are:

P3,P2P ′,PP ′2,P ′3

Note that P2P ′ 6∼ (1) since P 6∼ (1), and P ′2P 6∼ (1) since P ′ 6∼ (1).
Thus P3 and P ′3 are principal so P3 ∼ (1) and P ′3 ∼ (1).
Thus P ′P3 ∼ P ′ hence P2 ∼ P ′.
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Also PP ′3 ∼ P hence P ′2 ∼ P.
Thus we are left with

(1),P , and P2

as possible representatives of distinct ideal classes.
Note P 6∼ (1). Also P2 6∼ (1) since otherwise

P2 ∼ (1) =⇒ P3 ∼ P =⇒ P ∼ (1), since P3 ∼ (1)

This a contradiction.
Further, P2 ∼ P since otherwise P ∼ (1), which is a contradiction.
Thus h = 3 and C ∼= Z/3Z.

Hilbert conjectured and Furtivangler proved the following:
Let [K : Q] <∞. There exists an extension E of K with the following properties:

(1) [E : K] = hK
(2) E is Galois over K.
(3) The ideal class group of K is isomorphic to the Galois group of E over K.
(4) Every ideal of A ∩K becomes a principal ideal of A ∩ E.
(5) Every prime ideal P of A ∩ K decomposes into the product of hK

f
prime ideals in

A ∩ E where f is the order of [P ] in the ideal class group of A ∩ E.

There is a unique field E satisfying 1, . . . , 5 and it is known as the Hilbert class field of K.

Lattices
Let α1, . . . , αn be vectors in Rn which are linearly independent over R.
The set of all points of the form

u1α1 + · · ·+ unαn, with ui ∈ Z for i = 1, . . . , n

denoted Λ, is a lattice in Rn, with basis α1, . . . , αn.
Notice that the basis α1, . . . , αn is not uniquely determined by Λ. Let

α′i =
n∑
j=1

vi,jαj (1)

where the vi,j’s are integers with det((vi,j)) = ±1.
Then

αi =
n∑
j=1

wi,jα
′
j (2)

where the wi,j’s are integers and det((wi,j)) = ±1.
Then

Λ = {u1α1 · · ·+ unαn | uiZ, i = 1, . . . , n}
= {u1α

′
1 · · ·+ unα

′
n | uiZ, i = 1, . . . , n}

Thus α′1, . . . , α
′
n is also a basis for Λ. In fact, if {α1, . . . , αn} and {α′1, . . . , α′n} are bases for

Λ, then (1) and (2) hold for some choice of integers vi,j and wi,j.
To see that det((vi,j)) = ±1 and det((wi,j)) = ±1 we can substitute (2) into (1) and note
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that α′i has a unique representation as an integral linear combination of α′1, . . . , α
′
n as α′i.

Thus ∑
j

vi,jwj,k =

{
1 if i = k
0 otherwise

Thus

det(vi,j) det(wj,k) = det


1 0

. . .
0 1

 = 1

Since vi,j, wj,k ∈ Z we see that det((vi,j)) = ±1 and det((wj,k)) = ±1.
Thus if {α1, . . . , αn} and {α′1, . . . , α′n} are bases for Λ then

det(α1, . . . , αn = det(α′1, . . . , α
′
n)

and so we can define d(Λ), the determinant of Λ, by

d(Λ) = |det(α1, . . . , αn)|
Example:

Λ0 = {(u1, . . . , un) ∈ Rn | ui ∈ Z for i = 1, . . . , n}
d(Λ0) = 1

34. Lecture: Wednesday, March 29, 2000

Theorem 57 (Blichfeldt’s Theorem). Let m,n ∈ Z+, let Λ be a lattice in Rn and let S be a
set in Rn with Lebesgue measure µ(S).
Suppose

µ(S) > md(Λ)

or µ(S) ≥ md(Λ) and S is compact

Then there exist m+ 1 distinct points x1, . . . , xm+1 in S such that all differences xi− xj are
in Λ, for 1 ≤ i, j ≤ m+ 1.

Proof:
Let α1, . . . , αn be a basis for Λ and put

P = {α1θ1 + · · ·+ αnθn | 0 ≤ θi < 1 for i = 1, . . . , n}
Note that every point x in Rn has a unique representation of the form λ+ γ with λ ∈ Λ and
γ ∈ P . Also note that µ(P ) = d(Λ).
For λ ∈ Λ we let R(λ) denote that set of points ν ∈ P such that λ+ ν ∈ S. Then∑

λ∈Λ

µ(R(λ)) = µ(S) (1)

Suppose now that µ(S) > md(Λ) hence that µ(S) > mµ(P ), so∑
λ∈Λ

µ(R(λ)) > mµ(P )
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Thus there is a point ν0 in P which occurs in at least m + 1 set r(λ). In particular, there
exist λ1, . . . , λm+1 ∈ Λ such that ν0 + λi ∈ S for i = 1, . . . ,m+ 1.
Then put xi = λi + ν0 for i = 1, . . . ,m+ 1, we find that

xi − xj ∈ Λ \ {0} for i 6= j

We now consider the case where µ(S) = md(Λ) and S is compact.
Let ε1, . . . be a sequence of decreasing positive real numbers tending to 0.
Then consider Sr = (1 + εr)S. Notice that

µ(Sr) = (1 + εr)
nµ(S) > µ(S)

so that we can apply the first part of the theorem to get distinct points xj,r in Sr for
j = 1, . . . ,m+ 1 whose differences are in Λ.
Since S is compact in Rn it is closed and bounded. We can extract a subsequence of the
indices r such that on the subsequence the xj,r’s converge to x′j ∈ S for i = 1, . . . ,m+ 1.
Notice that xj,r − xi,r ∈ Λ for each r and that Λ is discrete. Thus for r > r0, xj,r − xi,r is
constant.
Therefore, x′j − x′i ∈ Λ. �

Definition. A subset S of Rn is symmetric about the origin if whenever x is in S then −x
is in S.
A subset S of Rn is convex if whenever x and y are in S then for all λ ∈ R with 0 ≤ λ ≤ 1,
we have λx+ (1− λ)y ∈ S

Theorem 58 (Minkowski’s Theorem). Let m,n ∈ Z+ and let Λ be a lattice in Rn. Let S be
a subset of Rn with Lebesgue measure µ(S). Suppose that S is convex and symmetric about
the origin. If either

µ(S) > m2nd(Λ)

or µ(S) = m2nd(Λ) and S is compact

then there exist m pairs ±λj for j = 1, . . . ,m of lattice points, different from ~0, in S.

Proof:
We first apply Theorem 57 to the set 1

2
S.

It has volume µ(1
2
S) = 1

2n
µ(S), hence by Theorem 57 there exist m+1 points 1

2
x1, . . . ,

1
2
xm+1

in 1
2
S such that the differences 1

2
xi − 1

2
xj are in Λ. Note that 1

2
xi − 1

2
xj 6= 0 for i 6= j.

We order the xi’s, x1 > x2 > . . . > xm+1 so that xi > xj whenever the first nonzero co-
ordinate of xi − xj (reading from left to right) is positive.
Take λj = 1

2
xj − 1

2
xm+1 for j = 1, . . . ,m.

Then ±λ1, . . . ,±λm are all distinct. Further, −1
2
xm+1 ∈ S since S is symmetric about the

origin.
Further, since S is convex,

λj =
1

2
xj +

1

2
(−xm+1) ∈ S for j = 1, . . . ,m

�
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Remark. Minkowski’s Theorem is best possible, as the following example shows:
Let m,n ∈ Z+. Put S = {(x1, . . . , xn) ∈ Rn | |x1| < m, |xj| for j = 2, . . . , n}
Then µ(S) = m2n = m2nd(Λ0) where Λ0 = {(u1, . . . , un) | ui ∈ Z for i = 1, . . . , n} the only
lattice points of Λ0 in S different from 0 are ±(i, 0, . . . , 0) for i = 1, . . . ,m− 1.

35. Lecture: Friday, March 31, 2000

Let [K : Q] = n. Suppose K = Q(θ) for θ ∈ K. Let θ = θ1, . . . , θn be the conjugates of θ.
There are n distinct embeddings of K in C which fix Q, say σ1, . . . , σn. They are determined
from the fact that σi(θ) = θi for i = 1, . . . , n.
We may suppose that σi : K → R for i = 1, . . . , n and that σi is not an embedding in R for
i = r1 + 1, . . . , r1 + r2, and we may suppose that σr1+i = σr1+r2+i for i = 1, . . . , r2.
For any x ∈ K we define σ(x) by

σ(x) = (σ1(x), . . . , σr1+r2(x))

Now we have σ : K → R
r1 ×Cr2 and σ is an injective ring homomorphism. We can identify

C with R2 in the usual way and so view σ as a map from K to Rn. With this assumption
we have:
Lemma 59. Let A be a non-zero ideal in A ∩K. Then σ(A) is a lattice Λ in Rn, and

d(Λ) = 2−r2 |D|1/2 N(A)

Proof:
Let α1, . . . , αn be an integral basis for A. The co-ordinates of σ(αi) with respect to the
canonical basis for Rn are given by

(σ1(αi), . . . , σr1(αi),Re(σr1+1(αi)), Im(σr1+1(αi)), . . . , Im(σr1+r2(αi)))

Let D0 be the determinant of the matrix whose ith row is given above.
Notice that

D0 =
(

1

−2i

)r2
det(σj(αi))

since for any z ∈ C, Re(z) = z+z
z

and Im(z) = z−z
zi

.
But by Theorem 49, we have

det(σj(αi)) = |D|1/2 N(A)

Thus D0 6= 0 so σ(A) is a lattice Λ in Rn and

d(Λ) = |D0| =
1

2r2
|D|1/2 N(A)

as required. �

Theorem 60. Let A be a non-zero ideal in A ∩K. Then there exists a non-zero element α
in A for which ∣∣∣NK

Q
(α)

∣∣∣ ≤ ( 2

π

)r2 √
|D| N(A)
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Proof:
Let t ∈ R+ and define St by

St = {(x1, . . . , xn) ∈ Rn | |xi| ≤ t for i = 1, . . . , r1

and x2
r1+2j+1 + x2

r1+2j+2 ≤ t2 for j = 0, . . . , r2 − 1}
Note that St is convex and symmetric about the origin and

µ(St) = 2r1πr2tn

Now, we choose t so that

2r1πr2tn = 2n
1

2r2
|D|1/2 N(A)

so

t =
((

2

π

)r2
|D|1/2 N(A)

)1/n

Then by Minkowski’s Theorem there is a non-zero lattice point of σ(A) in St. Let α be the
corresponding element in A.
Then ∣∣∣NK

Q
(α)

∣∣∣ =

∣∣∣∣∣
n∏
i=1

σi(α)

∣∣∣∣∣ =

∣∣∣∣∣
r1∏
i=1

σi(α)

∣∣∣∣∣ ·
∣∣∣∣∣
r2∏
i=1

σr1+i(α)σr1+i(α)

∣∣∣∣∣
=

∣∣∣∣∣
r1∏
i=1

σi(α)

∣∣∣∣∣ ·
r2∏
j=1

(Re(σr1+j(α))2 + Im(σr1+j(α))2)

≤ tn =
(

2

π

)r2
|D|1/2 N(A)

�

Remark. If we choose St to be St = {(x1, . . . , xn) | ∑n
i=1 |xi| ≤ t} and use the arithmetic-

geometric mean inequality, we can sharpen Theorem 60 to∣∣∣NK
Q

(α)
∣∣∣ ≤ ( 4

π

)r2 n!

nn
|D|1/2 N(A)
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