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Let vy, ..., v, be linearly independent vectors in R™. The set
A={ajv1 + -+ apvy, : (a1,...,a,) € Z" }

is said to be a lattice with basis vy, ..., v,.

Note that since vy, ..., v, are linearly independent, each element of A has a unique representation as a linear
combination of vy, ..., v,. Further, the coefficients in the representation are integer.

Observe that the basis vy, ..., v, is not uniquely determined by A. In particular, let A be an n X n matrix
with integer entries and determinant £1 and put

V1 w1
A =1 :
vn wn
We claim that wq, ..., w, is also a basis for A. Certainly wy, ..., w, are linearly independent vectors in R™.
Secondly note that
U1 w1 1
=A"1] and A7t = adj A
- det(A) Y
Up Wp,

Recall that the 4, j-th entry of adj A is the cofactor of a;;. But the cofactor is an integer and det(A) = %1
so v; can be expressed as an integer linear combination of wy, ..., w,. Thus every element of A is an integer
linear combination of wy, ..., w,. Thus wy, ..., w, is also a basis for A.

Suppose now that vy, ..., v, is a basis for A and that wy, ..., w, is also a basis for A. We’ll now show that
they are related as above. In particular since vy, ..., v, is a basis we can express w; for i = 1, ..., n as an
integer linear combination of vy, ..., v,. Thus there is an n x n matrix A with integer entries such that

U1 wq

w1 U1
B =
Wy, Un,
Therefore
w1 w1
AB | : = :
W, Wn,

hence AB =1 so det A-det B =1. But det A and det B are integers so det A = +£1.
We are now in a position to define the determinant d(A) of A. Let vy, ..., v, be a basis for A. We put

d(A) = |det(vy, ..., v,)|



Here (vy,...,v,) represents the matrix obtained by writing the v;s with respect to the standard basis
(1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1) in R™.

Notice that d(A) does not depend on the choice of basis vy, ..., v, since if wy, ..., w, is another basis for A
then there is a matrix A with det(A) = +1 such that

U1 w1
Al : =
Un Wn

and we see that
|det(wy, ..., wy)| = |det(A)| - |det(vy,...,v,)| = |det(vy, ... ,v,)]

Remark: Since vy, ..., v, are linearly independent we see that d(A) > 0.

The simplest lattice in R™ is Ay where Ay is generated by (1,0, ...,0), (0,1,0,...,0), ..., (0,...,0,1). Then
d(Ag) = 1.

Let A and A; be lattices in R™. If A1 C A then Ay is said to be a sublattice of A. Note that if wq, ..., w, are

linearly independent vectors in a lattice A in R™ then they generate a sublattice A; of A and there is a matrix
A with integer entries such that
U1 w1

Let D = |det(A)| and note that D is a positive integer. Further
_|det(wy, ... wy)| det(wr, ..., wy)]  d(Ay)

|det(vy, ..., v0)|] d(A) —d(A)
where A; is the lattice generated by wq, ..., w,. D is known as the index of A; in A.
Suppose that A is a lattice in R™ and A; is a sublattice of A of index D. Let vy, ..., v, be a basis for A and
wy, ..., wy be a basis for A;. Then we have a matrix A with integer entries and |det(A)| = D such that
U1 w1
A =1 :
Up wy,
Thus
(% w1
! djA |
= det A Y S
Un W,
and so
Duvq D wq
: =——adjA
det A ad
D’Un Wp,
hence Dwv; is an integer linear combination of wy, ..., w, for ¢ = 1, ..., n. In particular Dv; € A; for
1=1,...,n.

Theorem 1: Let A; be a sublattice of the lattice A in R™.
A) If vy, ..., v, is a basis for A then there is a basis wy, ..., w, of A; such that

w1 = a11v1

Wo = A21V1 + G22V2

Wy = Gp1V1 + - + AppUn



where
i) the a;;s are integers
i) aj; >0fori=1,...,n

iil) 0<a; <ajjforl<j<i<n.

B) If wy, ..., w, is a basis Ay then there is a basis vy, ..., v, for A such that (1) holds with

i) the a;;s are integers

i) aj; >0fori=1,...,n

i) 0<a; <ayforl<j<i<n.

Proof:

A) Let D be the index of A; in A. For each ¢ with 1 < i < n there exist vectors

Wi = Qi V1 + 0+ Qs

in A; with a;; € Z and a;; > 0 since Dv; € A;. We choose w; for ¢ =1, ..., n in such a way that a;; is
positive and as small as possible. Since wy, ..., w, are in Ay we have bjw; + - -+ + byw, in A; for any
integers by, ..., by.

We claim that wq, ..., w, for a basis for A;.

If not then there is a vector z in A; which is not of the form byw; + - - - + bw,, with by, ..., b, integers.
Then there exist integers ¢y, ..., ¢, such that z = c;v; + - -+ + ¢,v,. We now choose z in A; for which
the representation has ¢;41 = - -+ = ¢, = 0 with ¢ minimal. In particular z = cyv1 + -+ - + ¢;v;.

Let ¢; = qa;; +r with 0 < r < a;;. Then

z—qw; = (c1 — qai;)vr + -+ Tv;

Note that z — qw; € A; and is an integer linear combination of vy, ..., v;. Further note that r # 0 since
7 is minimal. But this contradicts the minimal choice of a;;. Thus wy, ..., w, forms a basis for A;.
It remains to check that iii) holds. To obtain iii) we replace w; by w} for i =1, ..., n where

/
w; = bjywy + -+ by w1 + wy,

with the b;;s integers to be chosen. Note that wi, ..., w), is a basis for A; and that

n
r_ /
W; = ;01 + e+ agv
with al, = a;; for i =1, ..., n. Further for j < ¢ we have
/
@iy = bijajj +bij1105415 + -+ biio10io1,5 + Qi
For each ¢ we now choose b; ;_1, b;i—2, ..., b; 1 in that order so that 0 < a;j <aj; = agj as required.
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Theorem 1: Let A; be a sublattice of A in R™.
A) v

B) If wy, ..., w, is a basis for A;, then there is a basis vy, ..., v, of A such that (1) holds, i) and ii) hold,
and

i)’ 0 < a;j < a, for 1 <j <i<n.



Proof B): Let wy, ..., w, be a basis for A;.
Let D be the index of A; in A. Recall that DA is a sublattice of A;. In particular, by part A), there is a basis
Dvy, ..., Dv, of DA such that

DUl = a11W1

Dvn = Anp1W1 + -+ AppWy,

with a;; € Z.
Put
ai1
A =
(n1 Anpn
w1 U1
A =D
wTL Un
and so
w1 U1
| _-p adj A
] det(A)
W, Un
Further,
b11
adjA = :
bnl T bnn
with b;; € Z. Note that w; can be expressed as a rational linear combination of vi, ..., v, and that it is an
integral linear combination of vy, ..., v,.
Thus we obtain (1) with i) holding. To obtain ii), it suffices to change the sign of v; if necessary, fori =1, ..., n.

Finally, to obtain iii)’, we replace v; by v}, where
/
Uy = €U+ Ci—1Vi—1 + Uy
where the ¢;;s are integers chosen as in A) to ensure iii)’.

Corollary 1: Let A be a lattice in R™, and let wyq, ..., w,, be linearly independent vectors of A. Then there
exists a basis vy, ..., v, of A for which

w1 = 41101

W2 = A21V1 + G22V2

Wi = Am1V1 + ° + GmmUm
with a;js in Z, a;; > 0, and 0 < a;; < a4 for 1 <j <i<m.

Proof: Extend w1, ..., w,, to aset of n linearly independent vectors wy, ..., w, of A. Consider the sublattice
A7 generated by the basis w1, ..., w,, and apply Theorem 1.

Corollary 2: Let wy, ..., wy,, be linearly independent vectors from a lattice A in R™, with m < n. There
exist W41, - .., Wy in A such that wy, ..., w, is a basis for A, if and only if every vector ajwy + - - - + apmwp,
in Awitha; e Rfori=1,..., mhasinfact a; € Zfori=1, ..., m.

Proof: —: immediate.



<=: We apply Corollary 1 to get a basis vy, ..., v, of A with
w1 = a1nn
ai; € Z,a;; >0
W = Am1V1 +  + GmmUm

Thus, v, = a—ilwl, and we get by hypothesis i € Z, hence ajq = 1Y.

Next, we = as1v1 + a2v2, hence iwg = %wlm + vy, = a9 = 1.
In this way, we find a11 = ags =+ = amm = 1
Then w1, ..., Wy, Vmt1, ---, Uy is a basis for A.
Corollary 3: Let vy, ..., v, be a basis for A and let w = ajv1+---+ayv, bein A, soa; € Zfori=1, ..., n.
Let m be an integer with 1 <m <n — 1.
Then
V1, ..., Um—1, w can be extended to a basis for A <= gecd(am,...,a,) = 1.

Proof: =: Let g = ged(am, - - -, an).

If v1, ..., Vm—1, w can be extended by say w41, ..., Wy to a basis for A, then
W— a1V — *** — Amp—1Um—1 = AmUm + -+ + ApVUy
therefore
é(w — 11 = = Am1Um—1) = P+ + oy
Now, %t €Z,fort=m,...,n
Thus éw — %Ul — = a’"g’lvm_l is in A. We now apply Corollary 2 to conclude % € Z, hence g = 1.
<—=: We wish to find w41, ..., w, in A for which vy, ..., Vm—1, W, Wpt1, ..., Wy is a basis for A.
Then:
V1 = U1
Um—-1 = Um—1
w=a1v1 + -+ aQnUy + -+ apvy
wm+1:blvl+"'+bmvm+"'+bnvn bzGZ
Wy, = 21V1 + *** + ZmUm + -+ - + 20y z; €7
It suffices to show that we can choose the coefficients by, ..., by, ..., 21, ..., z, as integers in such a way
that the associated coefficient matrix has determinant +1. Notice that it is enough to show that the row
(@m, - .., ayn) can be extended to an (n —m+1) X (n —m+ 1) matrix with integer entries and determinant +1.
Consider the standard lattice Ay in R"~™T1. Tt now suffices to show that we can extend (am,...,a,) to a
basis for Ag. We appeal to Corollary 2. Notice that if @ € R with « # 0, and a(am,...,a,) is in Ag, then
a€Q,say a= % with p and ¢ coprime non-zero integers.
Then
a a
<pm,m,p") € Ay
q q
hence ¢ | pam, ..., q | pan, and so, since p and ¢ are coprime, ¢ | ged(am, ..., an).

1>a11 = :I:]., a1 >0
2y,



Recall the standard dot product of two vectors v = (aq,...,a,) and w = (by,...,b,) in R™, given by v-w =
a1by + -+ apby,. Let vy, ..., v, be a basis for a lattice A in R™. Since vq, ..., v, are linearly independent,
there exist vectors vj, ..., v} such that
. 1 ifi=j
vl v = e
/ 0 ifi#j

vY, ..., v are linearly independent, and they generate a lattice A* in R™. A* is known as the polar lattice of
A, and one can show that it does not depend on the choice of basis for A.

Theorem 2: Let A be a lattice in R™. The polar lattice A* of A consists of all vectors v* in R™ for which
v* - v for all v in A. Further,
d(A) - d(A*) = 1.

Proof: If vy, ..., vy, is...
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Theorem 2: Let A be a lattice. The polar lattice of A consists of the vectors v* such that v* - v is an integer
for all v in A. A is the polar lattice of A*.
d(A)d(A") =1

Proof: Let vy, ..., v, be a basis for A and let v{, ..., v} be a basis for A*.
If v is in A then there exist integers a1, ..., a, such that

v=ai1v1 + -+ anvy
while if v* is in A* then there exist integers by, ..., b, such that
v* =bv] + -+ byuy.
In particular
n
vtev = Z a;b;
i=1
which is an integer.

Now let w be a vector for which w - v is an integer for all v in A. Then there exist integers ¢y, ..., ¢, such
that w-v; =¢; fori=1, ..., n.
Put v* = c1v] + - - - + ¢} so v* € A*. But then

(w—0v*)v;,=0 fori=1,...,n.

But vy, ..., v, are linearly independent in R™ and so w = v* hence w € A*.

By what we have just proved we now see that A is the polar lattice of A*. Finally,
det(vy,...,v}) - det(vy,...,v,) =1,

and so
d(A*)d(A) = 1.

Notice that if w = (y1,...,yn) is in R™ the set of x = (x1,...,2,) € R™ for which z - w = 0 is given by
(21,...,2,) for which
T+t Tayn =0

and so it determines a hyperplane in R"”.

Proposition 3: Let A be a lattice in R™ and let v be a vector in R™. There exist n — 1 linearly independent
vectors wy, ..., Wp—1 in Awithwu-w; =0fori=1, ..., n—1if and only if u = ¢t-w* with £ € R and w* € A*.



Proof: =: By Corollary 1 of Theorem 1 there is a basis v1, ..., v, of A such that

W; = a;1V1 + -+ a;v; with aij € Z and a; #0

fori=1,...,n—1. Sinceu-w; =0fori=1,..., nweseethat u-v; =0fori=1,...,n—1. Put u-v, =t,
for some ¢t € R. Observe that if v}, ..., v} is a polar basis for A* then u = tv}; as required.

—: Hfw* =0thenu=0andsou-w; =0fori=1,..., n—1. Suppose w* # (0,...,0). Put w* =m v}
where m is a positive integer and v} is such that % -0} is not in A* for any integer k with & > 2. (v} is said
to be primitive for A*.) By Corollary 2 of Theorem 1 we can extend v] to a basis v], v3, ..., v} of A*. Let
V1, ..., Uy be a basis for the polar lattice A of A*. Then v{ -v; =0 for j =2, ..., n and so w*-v; = 0 for
J=2,...,n as required.

Remark: It follows from the proof of Proposition 3 that if w* € A* then we can associate to it a lattice A(w™*)
in R*~! (with basis vg, ..., v,).

Let U be the unit interval given by
U={teR:0<t<1},

and let U™ be the unit n-cube given by
Ut ={(x1,...,2p) ER":0<z; <1lfori=1,...,n}
Let U denote the closure of U". For & = (x1,...,2,) € R® we denote
] = max |zi|.

This is known as the house of . If @ = (z1,...,z,) € Ay then we say that @ is an integer point. For any set
T in R™ and « in R™ we define T' 4+ x by

T+x={y+x:yeT}.

Further for any A € R we define AT by
N ={ ) y:yeT}

Theorem 4 (Blichfeldt, 1914): Let P be a non-empty set of points in R™ which is invariant by translation
by integer points and has precisely N points in U".

Let A be a subset of R™ of positive Lebesgue measure p(A). Then there is an @ in U™ such that A+« contains
at least N - u(A) points of P. Further if A is compact then there is an @ in U™ such that A4 « contains more
than N - u(A) points of P.

Proof: For any set S in R™ we let v(S) be the number of points of P in S. Let p1, ..., py be the N points
of P in U™. We put

Pi={pi+g:9€ A}

for i =1, ..., N. Since P is invariant by translation by integer points, or equivalently be elements of Ay,

N
p=|]JP.
i=1
Further we have P; N P; = () for i # j. Now for any S C R" let v;(S) denote the number of points of P; in S
fori=1,..., N.
Let x be the characteristic function of A% . Then

vi(A+z) =Y x(pi+9g-=)
geEAy

3)is 1 if argument is in A



we have

[ wtasarta= [ 3 xpitg-a)de

geio

_ /U
/Rn x(z)dz
1(A)

Thus
/n v(A+x)de = Nu(A).

Therefore there is some element « in U™ such that v(A+x1) > Nu(A) and so A+ contains at least Nyu(A)
points of P.

If A is compact and Nu(A) is not an integer there is nothing more to prove. Suppose Nu(A) = h for h € Z*.
For k=1, 2, ... we define A; by
A= (14 1)A.

By what we have just proved for each positive integer k there is an xj in U™ such that

U(Ak —l—azk) >h+1.
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Blichfeldt’s theorem
It remains to consider the case when A is compact and Nu(A) is an integer h. For k = 1,2, ... we put
Ap=(1+ %)A By what we have just proved there is a sequence of points ), € U™, k=1, 2, ... for which

v(Ag + k) > h+1

Since x; € U" and U" is compact there is a subsequence xy;, j = 1, 2, ... which converges to a point « in

U". Since A is compact the sets Aj, + @, are uniformly bounded and so contain only finitely many points of
P.

Each of the sets Ay, + xx; contain at least h + 1 points of P and so we may assume by taking a further
subsequence that there are h + 1 points of P say ui, ..., upy1 which occur in each set Akj + Ty, . A+xis
compact and in fact contains uy, ..., up4q for if not then u; ¢ A+ @ for some ¢ with 1 <i < h+ 1. But then
u; is a positive distance from u; to A + @ and this can’t be since xj, —  and the distance from a point in
Ay, to the nearest point in A tends to zero as k; — oo. Thus A+ @ contains h+ 1 of the points of P. We now
choose g so that * — g € U™ and then A + & — g then has h + 1 points of P as required since P is invariant
by translation by integer points.

Let S C R™. S is said to be symmetric about the origin (or symmetric) if whenever € S then —x € S. S
is said to be convex if whenever x, y are in S and A € R with 0 < A < 1 then Az + (1 — \)y € S. In other
words S is convex if whenever  and y are in S the line segment joining them is also in S.

Theorem 5 (Minkowski’s Convex Body Theorem, 1896) Let A be a convex subset of R” which is symmetric
about the origin and has volume p(A). If p(A) > 2™ or if A is compact and p(A) > 2™ then A contains an
integer point different from the O.

Proof: Notice that y(3A) > 1 or if A is compact p(3A) > 1. By Blichfeldt’s Theorem applied to 3 A where
P = Ay, there exists an @ in U™ for which %A + @ contains two distinct integer points g; and g,. Notice
that g1 — « and g, — x are in %A and so g —x = %wl and go —x = %(Eg for 1, x2 € A. By symmetry,
—(92 — @) =x — g2 = 3(—w2) with —@5 € A. Since A is convex x; + (—2) is in A thus

gi—T+xr—go=g1—g2 €A

But g1 — g2 € Ay and since g; and g are distinct g — go # 0.



Remark: Note that Minkowski’s Convex Body Theorem is best possible in the sense that the conclusion does
not hold with 2™ replaced by a smaller number as the example

A={(t1,...,tn) eER": |t <1,i=1,...,n}.

One can also check that the hypothesis of symmetry and convexity can’t be omitted.

Theorem 6 (Minkowski’s Linear Forms Theorem): Let B = (B;;) be an n X n matrix with real entries and

non-zero determinant. Let ¢q, ..., ¢, be positive real numbers with ¢; - -+ ¢, > |det B|. Then there exists an
integer point © = (z1,...,z,) different from 0 for which

|Bz’,1$1+"'+Bi,nl‘n‘<ci fori=1,...,n—1
and

IBnlxl + -+ Bnnxn| S Cn.
Proof: Let Ly(x), ..., L,(x) be linear forms given by
Li(x) = Bjyx1 + -+ + Binxy, fori=1,...,n.

Next put,
Li(x) = L Li(x) fori=1,...,n.

ci

Then we wish to solve the system

|Li(z)| < 1 fore=1,...,n—1
and
L (@) < 1.
The absolute value of the determinant of the matrix determined by the coefficients of L, ..., L], is at most 1.
Thus we may assume that ¢; =--- =¢, =1 and 0 < |det B| < 1.

Let A be the set of & € R™ for which
|L;(x)| <1 fori=1,...,n.

Certainly A is symmetric about the origin. Also A is convex since if  and y are in A then for any \ with
0<A<1

|Li(Adx + (1 = AN)y)| = [AN(Baz1 + -+ Binzn) + (1 = X)(Biiyi + - - - + BinYn)|
< ANBjxi+ -+ Binzp| + (1 = X)|Biays + - - - + Binyn|
<A+1-X=1
Further we remark that 1

n(A) = |det(B)]| u(U")

where B = (Bj;) and U™ = {(t1,...,t,) €R™: [t;| <1}. Therefore u(A) > 2". By Minkowski’s Convex
Body Theorem there is an integer point & with  # 0 in A.

Finally to get strict inequality in the first n — 1 inequalities we introduce for each € > 0 the set A, given by
the inequalities
|Li(x)] < 1 fori=1,...,n—1

and
|Ln ()] <1+e.

Then p(Ae) > (14 €)2™ > 2™ and so we may apply Minkowski’s Convex Body Theorem to find an integer
point x. in A, with . # 0. Now take any sequence €; of positive reals which decreases to 0. Associated to



it we get a sequence ., of integer points different from 0. Since (J,-; A, is bounded there exists an integer
point x in infinitely many of the sets A. hence x satisfies

|L;(x)| < 1 fori=1,...,n—1

and
|Ln(z)| < 1.
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Theorem 7: Let a;; be real numbers, with 1 <7 < n, 1 < j < m, and let @ be a real number with @ > 1.
Then there exist integers q1, ..., ¢, and pq, ..., p, with

0< < Qv/m
nax [gj] < Q

and .
|ailq1+"'+aiQO*pi|§a fori=1,..., n.

(This was proved in 1842 by Dirichlet under the assumption that @ is an integer.)

We have the following consequence of Theorem 7:

Corollary: Let a;; be real numbers with 1 < ¢ < n, 1 < j < m. Suppose that for some ¢ with 1 <
t<mn, 1, a4, ..., agy are linearly independent over the rationals. Then there exist infinitely many coprime
m + n-tuples of integers (¢1,...,¢qm,P1,-..,Pn) With ¢ = maxi<j<m|g;| > 0 and

|04i1ql+-“+amqm—pz’\<m fori=1,...,n (2)
Proof: Take @ = 2. By Theorem 7 there exists a solution qi, ..., ¢m, P1, ---, Pn of (2). We now divide
through by the ged of g1, ..., Gm, P1, -- -, Pn to give us a solution of (2) with a coprime m + n-tuple. Thus

we may suppose, without loss of generality, ged(q1, ..., ¢m,p1,-..,Pn) = 1. Let
|Q10¢t1 +oF Q7rzatm| = 0y

and 6; > 0 since 1, ayq, ..., sy are linearly independent over Q.

We now apply Theorem 7 with @ so that é < &t to get a new m + n-tuple satisfying (2). We remove the
ged to make the m + n-tuple coprime. Repeating this process gives us infinitely many coprime m + n-tuples
satisfying (2).

Proof of Theorem 7: Put | = m +n and consider the [ linear forms L4, ..., L; in @ = (z1,..., ;) given by
Li(x) = fori=1,...,m
and
Lm+]‘($) = ;171 ++O‘jmxm — Tm+4j fOI'j = 1, ey N
Note that the determinant of the matrix associated with Lq, ..., L; is (—=1)™.

Let @ > 1 and apply Minkowski’s Linear Forms Theorem to the system of inequalities:

|Li(z)] < Q'™ fori=1,...,m (3)
and 1

Ln@| < forj=1 .o (1)
to find a non-zero integer point x satisfying (3) and (4). We now put ¢; = z; fori =1, ..., m and p; = &y,

for j=1,..., n. Then
q = max|q;| < Q"™

10



and

loj1g1 + - + QjmGm — pj| < o
It remains to check that ¢ # 0. Suppose otherwise. Then ¢ =--- = ¢,, =0 so

1
|pj\§a forj=1,..., n.

But @ > 1sop; =---=p, =0 and this contradicts the fact that « is a non-zero point. The result follows.

Theorem 8: Let A be a lattice in R™ and let A be a convex set in R™ which is symmetric about the origin
and has volume greater than 2"d(A), or if A is compact has volume > 2"d(A). Then A contains a point of A
different from 0.

Proof: Suppose v1, ..., v, is a basis for A. Let v; = (oj1,...,¢5,) for j = 1,..., n. Let T be the linear
transformation from R™ to R™ associated with the matrix («;;). Then A = T'Ay. Notice that u(T*A) =
d(A)~tp(A) and that T~1A is a convex set which is symmetric about the origin. The result now follows from
Minkowski’s Convex Body Theorem.

Proposition 9: Let R be a positive real number and let n be a positive integer. The volume of the sphere
. . . n/2
of radius R in R" is w, R™ where w,, = m

Proof: If suffices to prove that w,, is the volume of the unit sphere given by
{(z1,...,2,) ER" raf+ - +22 <1}
We have w; = 2 and wy = w. We now proceed inductively. Suppose n > 3. Then
1,1
Wy = / dl‘l d.i?n = / / (/ g($17~-~7xn)> dl‘n_l dxn,
—1 —1 Rn—2
it 422 <1

where ¢ is the characteristic function of the unit sphere.) Thus

Wy, = / Wnoo(l—a22 | — xi)("_z)/g dz,,—1 dz,

n—

x?_,+af <1

n—1

= Wp_2 / (1-— 2 = xi)("_z)/Q dz,,_1 dz,

a}_ +a? <1

Change to polar coordinates (r,6). Thus

27 1
Wy, = wn_g/ / (1- 1"2)("*2)/21" dr do
o Jo
1

= 27T0Jn_2/ (1 —r2)=2/2p qp
0

vy 2\n/2
= 2TTwp_2 [0 —=(1—=77)

2T
= —Wnp-2
n
Thus
2w 2w 27 2w @
Woy = — - e — i =
2n 2(n—1) 4 2 n!
while
2T 2 2T 9 "
Wan = . ) R _ .
T 1 2n—10 3 (n+tDn—-1)-- 2.1

4)This not necessary; can ignore.
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The result follows on noting that I'(z + 1) = zI'(z) for z > 0 and that I'(3) = /7.
Theorem 10: Let A be a lattice in R™. There is a non-zero element & € A for which
O<x-®=a2+ - +a2 <4w; d(A)¥m.
Proof: We apply Theorem 8 to the set
A={zeR":af+ - +22 <t}
with t = 4(w; 'd(A))?/™. Then
H(A) = wpt"? = w2 d(A)
= 2"d(A)
A is convex, symmetric about the origin and compact and the result now follows from Theorem 8.
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Theorem 10 is close to the truth since Minkowski constructed for each n € Z*t a lattice A in R™ for which

i sz > (wtd(A) ™.
L x > (w, d(4))

In particular Theorem 10 can’t be improved by more than a factor of 4. Rogers was able to improve on
Theorem 10 somewhat. He replaced 4w=2/" in Theorem 10 by 4(%)2/ "™ where o, is the quotient of two
geometrical figures with the property that o, ~ 75 as n — co. We have

2/n
w2/ L’ 4(0”> o 4&);2/” -~ 2£
&

b
" 2 W, Te Te

How about other convex bodies of interest? For each A € R with A > 0 define
A = Ay = {(z1, .., 20) ER™ : |zy| + -+ |za| <A}
Thus in R?,

(0,2)
A)\t

(=A.0) (A, Q)

Define for n € Z*
+
AE\") :A:{':{(xl,...,xn)GIR":)\Za?iZOfori:I,...,n5)}

The volume of A is 2"A™ times the volume of A .

1 1—x1 l—z1—2x2——Tpn_1
M(Af):// / dz,, --- dz;
0 0 0
1 17&71 1711?17-“71371_2
:// .../ (1_m1_x2_..._xn_1)dxn_1...dxl
0 0 0
1 1—z1 l—z1——Tp_3 1— _ .= 2
[ N ™
0 0 0

5) Also require £1 + - -+ + xn < A (correction from next class).

12



Notice that

/u (u _ l,)n e — u (u _ x)n—&-l un+l
0

n! D
Therefore 1
M(Af):*,
SO on\n
(n)y _
p(AL) = =

Further observe that AE\”) is symmetric about the origin. Furthermore it is convex since if v is a real number
with0 <~y <land = (z1,...,2,), ¥y = (y1,--.,Yn) € Ay then

ye 4+ (1 =7y = (yo1 + (1 =7y1,. -, 70 + (1 = 7)yn) € Ax

since
[y + 1 =)yl + -+ vzn + 0 = Yynl < y(lzal+ -+ znl) + (0 =)yl + -+ [yal)
<A+ A =)A= A
Theorem 11: Let A be a lattice in R™. Then there is a non-zero point = (z1,...,%,) in A with

1|+ o [z] < (nd(A)
Proof: We apply Theorem 8 to the set Ag\") where A = (n!d(A))'/™. Then the volume of A(A”) is 2"d(A). The
set is convex, symmetric about 0 and compact and so the result follows.

We may apply Theorem 8 to sets which contain sets which are convex, symmetric, and of large enough volume.
In this connection we introduce for each n € Z* and A € R, A > 0,

Bg\n):{(;vl,...mn)ER"I|9C1"'$n|§>\n}~

Bf\n) is not convex. However we can appeal to the arithmetic—geometric mean inequality: Given non-negative

real numbers x1, ..., x, we have
X1 + P + T

(.%‘1'“33”)1/" < -

Thus BE\") contains Agf\) and Ag:f\) is convex.

Theorem 12: Let C' = (¢;;) be a non-singular n x n matrix with entries from R and put
Li(x) =cipxy + -+ + cinp fori=1,...,n

Then there exists an integer point x different from 0 for which
n!
|L1(®@) -+ L ()] < - |det(C)].

Proof: We apply Theorem 11 with the lattice A determined by the row vectors of C' and the region Bg\n)

where A = M Since B;n) contains Anyz\) the result follows.
Let Ay be a sublattice of a lattice A in R™. We can put an equivalence relation ~ (~4,) on A by the rule

Ty ~ x5 if and only if &1 — x5 € A;. ~ is an equivalence relation on A and it partitions A into a finite set of
equivalence classes.

Proposition 13: Let A; be a sublattice of a lattice A in R™. The index of A; in A is the number of equivalence
classes of A under ~y ;.

Proof: By Theorem 1 we can find bases vy, ..., v, for A and w1, ..., w, for A; of the form given in Theorem 1.
Then the index is H?zl ay;. We claim that every vector u in A is equivalent to precisely one of g1v1+- - -+ ¢, vy,
with 0 < ¢; < ay; for i =1, ..., n. This will prove the result.
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Let w = wyv; + -+ + upv, € A. First we shift u by a multiple w,, to find an equivalent vector with nth
coordinate in the range 0 < ¢, < ay,,. Next we subtract a multiple w,_; from this vector to get g,_1 in
the range 0 < ¢,,—1 < @p—1,,—1. Continuing in this way we see that u is equivalent to a vector of the form
Qv+ -+ qu, with 0 < ¢; < a4 for ¢ = 1, ..., n. It remains to show that no two vectors of the form
Qv+ -+ quv, with 0 < ¢; < aq; for i =1, ..., n are equivalent under ~.
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Corrections: Addition of absolute values to |det(C')| in Theorem 12.

(Ag\"))'*':{(:vl,...,gcn)ER":552-207 i=1,...,n, x14+-+x, <A}

Proposition 13: ...
Every vector in A is equivalent to a vector of the form givy + -+ + ¢uv, with 0 < ¢; < ay fori=1, ..., n.

Finally we should show that all vectors of the above form are inequivalent. So suppose two are equivalent,
their difference rvy + -+ 4+ rpv, is in Ay with |r;| < ay; for i = 1, ..., n. Let j be the largest integer for
which r; # 0. Then we replace w; in the basis wy, ..., w, of A; by w; minus a multiple of rvy +--- 4+ 7r,v,
so that the resulting basis is in lower triangular form but with a;; replaced by a smaller non-negative integer.
The final reduction (to Hermite normal form) doesn’t change the diagonal. But the resulting determinant is
different which gives a contradiction. Therefore the index is H?:l Wis-

Let A be a convex subset of R™ which is symmetric about the origin and of finite volume. Let A be a lattice
in R™. Minkowski introduced the successive minima A, ..., A, associated with A and A by putting

Aj =inf{ X € R: AA contains j linearly independent vectors of A }.

Then
0</\1§/\2§"'§/\n<00.

Minkowski, in what is known as Minkowski’s Second Theorem on Convex Bodies proved that

2"d(A

2 <y Aapu(4) < 2d(4).9
n!

We won’t give a proof: the upper bound is tricky.

The result is sharp in the sense that neither the upper bound or the lower bound can be improved in general.

Take any positive real numbers 71, ..., v, with 0 < v <75 < --- <, < co. Consider the lattice generated
by
(71,0,...,0), (0,72,0,...,0), ..., (0,...,0,7).
Let A be the cube A = {(21,...,2n) ER" || <1, i=1,...,n}. “Plainly” \(A4,4) = \; = ; for
i=1, ..., n. Further d(A) =~ ---7,. Thus
Aves Anp(A) =y 92" = 2"d(4),
so the upper bound is sharp.
IfwenowtakeA:Agn) ={xeR":|z1|+ -+ |z, <1} then
Ai(A,A) =X ;= fori =1, ..., n as before.

We have
27L 27L

"nl T onl

A App(A) =1y, d(A)
and so the lower bound is sharp.

Sometimes it is useful to have another characterization of a lattice.

S upper bound implies A7 u(A) < 27d(A) = Minkowski’s Convex Body Theorem
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Theorem 14: A subset A of R” is a lattice in R™ if and only if
i) If a, b are in A the a + b and a — b are in A.
ii) A contains n linearly independent points aq, ..., a,.
iii) A is a discrete set, in other words it has no limit points.
Proof: (=) Follows immediately from the definition of a lattice.

(«<=) We prove this by induction on n. For n = 1 we note by ii) that A contains a non-zero point a. By i) A
contains 0 and —a. Further since A is discrete there is a smallest positive real number a in A. Then by 1)

A={ga:g€eZ}

as required.

Suppose the result holds for dimension n — 1 with n > 2. We may choose our coordinate system in R™
so that n — 1 linearly independent points of A lie in a subspace of the form R"~! x {0} so x,, = 0. Then
A = ANR" ! x {0} projects down to a subset of R"~! which is a lattice by our inductive hypothesis. Let
by, ..., b,_1 be a basis for A’. Then A contains a point of the form b, = (b1, ...,bnn) with by, > 0. In
fact there is a point b,, of this form with b,, minimal. Suppose otherwise. Then we can find a sequence
b9 = (67, ...,b%)) in A with bY) > 0 and

bglj,z—>Oasj—>oo.

But we can translate b%j) bgjzl, ceey bglem, 0) are in the

compact set

by some linear combination of by, ..., b,_1 so that (

{>\1b1 +o A Apmibpr |>‘1‘ < 1}

so thus the b&? )s are all in a compact set and so have a limit point contradicting the fact that A is discrete.
We now claim that every element of A is an integer linear combination of by, ..., b,. Let d € A with
d=(dy,...,d,). Then

d
d’:d—[ "]bne/l.

b'fLTl
The nth coordinate of d’ is non-negative and smaller than b,,,,. Therefore it is 0. Thus d’ € A’ and so is an
integer linear combination of by, ..., b,_1. Therefore d is an integer linear combination of by, ..., b,. Thus
A is a lattice basis by, ..., b, and the result follows.
Proposition 15: Let n, m, ky, ..., ky, be positive integers and let a;;,7 =1, ..., m, 7 =1, ..., n be integers.
The set A of points u = (u1, ..., u,) in R” with integral coordinates satisfying

n
Z%‘WEO (mod k;) fori=1,....,m
j=1

is a lattice in R™ with d(A) < ky - -« k.
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Proposition 15: Let n, m, ki, ..., ky, be positive integers and let a;; (1 <i <m, 1 < j < n) be integers.
The set A of points u = (uy,...,u,) with integer coordinates satisfying

Z%"%‘EO (mod k;) fori=1,...,m
j=1

is a lattice with determinant d(A) < ky -+ k.

Proof: First we remark that A is a subset of Ay and so is discrete. Next we observe that

(k1 ks 0,0, 0), (0,1 Ky 0, ..., 0), ooy (0,0, 0, Ky -+ ki)
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are n linearly independent points in A. Finally we have that if uw = (u1,...,u,) and v = (v1,...,v,) are in A
then u 4+ v are in A since

Zaij(uj :I:vj)z (Zaijuj) + (Zaijvj) =0+0=0 (mod k1) forizl, ey, M.
j=1 j=1 j=1

Thus by Theorem 14, A is a lattice in R™ and so is a sublattice of Ag.
Let I denote the index of A in Ag. Then I = 44 Byt d(Ap) =1 and so I = d(A). It remains to estimate

d(Ao) "
the index of A in Ag. By Proposition 13 this is the number of equivalence classes of Ay under ~ 4. Notice that
u, v € Ay are equivalent if u — v € A hence, with w = (uq,...,u,) and v = (v1,...,v,), if

Zaij(uj —v;) =0 (modk;) fori=1,..., m.
j=1

Thus I = d(A) < ky -+ k.

Theorem 16: (Lagrange’s Theorem). Every positive integer can be expressed as the sum of four squares of
integers.

Proof: We may restrict our attention, without loss of generality, to integers m with m > 1 which are squarefree.
Let m = py - - - p, with pq, ..., p, distinct primes.

We now remark that for every prime p there exist integers a, and b, for which
a§+b§+150 (mod p).

If p = 2 we take a, = 1, b, = 0. If p is odd then the integers a® with 0 < a < %p are distinct mod p. (Consider

a? — a3 = (a1 — az)(a1 + az) (mod p).) Similarly the integers —1 — b with 0 < b < p are distinct mod p.

Therefore, since 3(p + 1) + 1(p + 1) > p there must exist integers a, and b, with ai = —1 — b2 (mod p) as
required.

We define the lattice A in R* as the set of points (uq,us,u3,us) with integer coordinates satisfying
U1 = ap,uz + by, us  (mod p;)
and fori=1,...,r
up = bp,uz — ap,ua  (mod p;).
Further d(A) < (p1---p.)? = m2.
Let A = { (1,22, 23,24) € R* : 23 + 23 + 23 + 23 <2m }. A is the sphere of radius v2m in R*. Thus it is

a convex set which is symmetric about the origin and it has volume %2(\/ 2m)* = 27%2m?2. Since 2m2m? >

24m? > 24d(A) there is a non-zero point (uy,us,us,us) of A in A by Theorem 8. In particular
0 < uf+us +u3+ul <2m. (5)
But
ui + 3 +uj + ui = (ap,us + by, ua)? + (bp,us — ap,ug)® +ui +uj  (mod p;)
(a2, + b2+ L)uj + (ap + b5, 4+ 1)uj (mod p;)

(ap, +bp, +1)(ui +u3) (mod p;)
0 (modp;) fori=1,...,r

By the Chinese Remainder Theorem
ut +ud+ui+ui=0 (modm).

By (5), u? + u3 + u + uj = m as required.
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In many combinatorial settings it is important to find short vectors in a lattice in an efficient way. Finding
the shortest vector in a given lattice, with respect to the usual Euclidean distance, is a difficult problem, it is
NP-hard as shown by Ajtai. However, if we look for only a “short” vector in the lattice we can do so efficiently.
The algorithm we use is the L3-algorithm. Here L? stands for Lenstra, Lenstra, and Lovész.

Let by, ..., b, be a basis for a lattice A in R™. Let (-,-) denote the usual inner product in R”. The Gram-—
Schmidt orthogonalization produces orthogonal vectors by, ..., b, and real numbers p;; with (1 < j < i <n)
inductively by

4

(bi7
(bj,

)
;)

Note that l~)2 is the projection of b; on the orthogonal complement of Sp{Bl, el l~)i,1}. Further Sp{b;,...,b;} =
Sp{by,...,b;} fori=1,..., n.
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Let by, ..., b, be linearly independent vectors in R™. Apply Gram—Schmidt to get

<.

[« 0

i—1
bi=b;— > pib; and =
j=1

131, ceey b, orthogonal linearly independent vectors in R"™.

b; is the projection of b; on the orthogonal complement of Sp{by,...,b;_1}. Further

Sp{bi,...,b;} = Sp{by,...,b;} fori=1,...,n.

Definition: A basis by, ..., b, for a lattice A in R™ is said to be reduced if
i) |Mij|§%for1§j<i§n
i) 1B + prii—1bi—1|? > 3|bi_y|* for 2 <i <.

Here |x| is the Euclidean length of , so || = x - .

Remarks

1. The vectors l~)1 + Ni,i—ll;i—l and lN)i_l are the projections of b; and b;_; respectively on the orthogonal
complement of Sp{by,...,b;_2}.

2. The constant % is somewhat arbitrary, it could have been replaced by y for any y with i <y<l
Objective:

1. Describe properties of a reduced basis for a lattice A.

2. Give an algorithm (the L?’—algorithm) for efficiently transforming a basis to a reduced basis.

Proposition 17: Let by, ..., b, be a reduced basis for a lattice 4 in R™ and let by, ..., b, be the vectors
obtained be applying the Gram—Schmidt process. Then

i) b <27 bP for1<j<i<n

ii) d(4) < [ba] -+ [by| < 27D/ d(4)

i) |by| < 2(0=D/4g(A)L /™
Proof: By the definition of a reduced basis

|b; +Mz’,i—15i—1|2 > %|Bi—1|2 with [pi-1] < 3.
Thus
|b; + ,Ui,z'—ll;i—1|2 = (b; + pii-1bi—1,b; + ,Ui,i—ll;i—l)
= |I~)i|2+/‘l“12,i—1‘l~)i—l|27 for Z:2a ceey T

17



Thus

2
> (3 —pi1) bl
Z %‘ 7,71|2
or equivalently |l~)1-71|2 < 2|l~)i|2~
Thus, by induction, ~ L
b, <2 for1<j<i<n (6)
Now
i1
2 52 72
[bi* = bi” + > u;1bs]
j=1
i i1
< b <1 +) }12”>
j=1
<o (1+5(2" - 2)
SO

bi|” < 2076, fori=1,...,n. (7)
Thus, by (6) and (7),
‘bj|2 < 2j_1‘l~)j|2 < 9i—1. 2i_j|5i|2 _ 2i—1|l~)i|2 forl<j<i<n
and this proves i).
Note that d(A) = |det(by,...,b,)| and so by Hadamard’s inequality,
d(A) < |by] -+ |byl.

By construction

d(A) = |det(by, ..., by)| = |det(by, ..., by,)|.
But by, ..., b, are orthogonal and so
d(A) = |det(by, ..., b,)| = |by]- - |bnl.
By i) ‘ )
b <20-V/2|p;|  for1<i<n.

and so ~ }
by|---|bn] <20 91/2, ..2("‘1)/2‘b1| by = 2”("—1)/4d(/1)

and this proves ii).

To prove iii) we apply i) with j = 1. Then

by <20-V/2|b,|,  fori=1,...,n.
Thus
‘b1| < 2(n71)/4d(/1)1/n
Proposition 18: Let by, ..., b, be a reduced basis for a lattice A in R™. Then for any vector & in A with

x # 0 we have
b1 [* < 2" af?
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Proof: Write x = ¢1b1 + - - - + gnb,, with g1, ..., g, integers and
m:/\161+"'+/\nl~)n

with Ay, ..., A, real numbers. Let i be the largest index for which g; # 0. Then by construction \; = g;.
Thus R R
@|* > A7 |bi|* > [by”

and by Proposition 17 i),
2 2| > 2 by > (b [

are required.

Proposition 19: Let by, ..., b, be a reduced basis for a lattice A in R™. Let xi, ..., &; be t linearly
independent vectors from A. Then

b)* < 2" Pmax{|e, %, @ Ty forj=1,..., ¢

Proof: Write «; = g1;b1 + - - + gn;bn with g;; € Z for 1 < j <t,1 < i <n. For each j let i(j) be the largest
index for which g;; is non-zero. Just as in the proof of Proposition 18

2 7 2
|z > |bij|™

Renumber the x;s so that i(1) < i(2) < --- < i(t). Observe that j < i(j) since otherwise @y, ..., ; would
be in Sp{by,...,b;_1} which contradicts the assumption that 1, ..., «; are linearly independent. Thus by
Proposition 17 i),

b7 < 20D 1b P < 2Dtz forj=1,...,t
Since i(j) < n our result follows.
We now describe the L3-algorithm for transforming a basis by, ..., by for alattice A in R" to a reduced basis
for A. The first step is to apply Gram-Schmidt and compute by, ..., b, and the p;;s. During the course of

the algorithm we will change the b;s and each time we recompute the i)js and the pi;;s.
At each step of the algorithm there is a current subscript k with & in {1,...,n 4+ 1}. We start with k = 2.

We shall now iterate a sequence of steps which starts from and returns to a situation where the following
conditions are satisfied

1) pj <sfor1<j<i<k
and

2) |b; + pii—1bi1| > 3|y [P for 1 < i<k
Note that 1) and 2) hold for k£ = 2.
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kEe{l,...,n+1}. Start with k = 2.
Return to situation:

1) |piy) < g for1<j<i<k
and

2) |b; + pii—1bi1]? > 3|bi|? for 1 < i < k.
Plainly 1) and 2) hold when k = 2.

If Kk =n+ 1 then the basis is reduced and the algorithm terminates. If 1 < k < n then we first achieve
k1| < 3. (8)

If (8) does not hold then let r be the closest integer to py x—1 and replace by by by — rby_1 in our basis.
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This has the effect of replacing pg x—1 by pxr—1 — 7 and |pg k-1 — 7| < % The numbers pg; with j <k —1
are replaced by pg; — rpk—1;. The other p;;s and b;s with ¢ different from k£ and k& — 1 with ¢ < k are not
changed. We may now assume that (8) holds.

We now distinguish two cases:
Case 1: If £ > 2 and R R ~
|br + uk,k—1bk—1|2 < %|bk—1|2
then we interchange by and by_1 in our basis (so i # k, k — 1). We leave the other b;s unchanged. Notice
that by, by_1 and the numbers pi p—1, ftk—1,5, Bkjs Mk, Mik—1 for j < k—1and i > k are changed. let us call

our new basis ¢i, ..., ¢, so that ¢; = b; for i # k, k — 1 and ¢x—1 = by, cx = by—1. Note that ¢;_; is the
projection of by on the orthogonal complement of the span of {b1,...,bx_2} and so éx_1 = by, + pg r—1bk—1.
Therefore

L2 2
|Ck_1| < %|bk_1| .
In particular the “new” |bj_1|” is less than 3 of the “old” |br_1]>. We now replace k by k — 1 and return to
the start of the algorithm.
Case 2: If k=1 or

b + pr 10k 1|” > 3|bp_1|?
then we achieve |py;| < % for 1 < j < k—1; wereplace k by k+ 1 and we return to the start of the algorithm.

To achieve |ug;| < % for 1 < j <k —1 we do the following. First note that g 1 < % Then let [ be the
largest integer with 1 <1 < k — 1 for which || > % Let r be the integer closest to uy; and replace by by
by, — rb;. Note that py; is then replaced by pr — r and |ug — r| < %

We now recalculate py, ; for j < 1. We then repeat the process until we have
|Mkj\§% for1<j<k-1.

We shall now show that the algorithm terminates after only finitely many steps. We introduce the quantities
for1<i<n.
d; = det((b;, by)) for 1 < j<i, 1<1<i
= det((b17 cee b’L) : (b17 ) bi)tr)
= det((b1,-..,b;) - (br,...,b))")

since the determinant does not change if we add a multiple of one row to another. We put D = H?zl d;. Note
that d,, = d(A)%. Further,

d; = (|f,1| . ‘BZDQ = det((lf)l7 .. JN)Z) . (51, .. .,Bi)tr)
= det((b,...,bi) - (by,...,b)")

= d(A;)?
where A; is the lattice generated by by, ..., b; in the i-dimensional subspace of R spanned by these vectors.
Note that D changes only if one of the b;s changes and this only occurs in case 1. Further in case 1 we
interchange by, and by_1. Since d; = (|by]- - |b;|)? we see that d; only changes when i = k — 1 in which case

it gets smaller by a factor of at least 3/4. Further D is smaller by a factor of at least 3/4. To complete our
argument we’ll show that D is bounded from below in terms of A.

Put m(A) =min{xz-x:x € A, ¢ # 0}. By Theorem 10,
m(4i) < 4w d(4:)*"
hence

di Z m(/lz)zél_zoﬂ

Since m(4;) > m(A), o
di > m(A)47W2, fori=1,...,n.
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Thus

as required.

Therefore we can pass through case 1 only finitely many times. In case 1, k decreases by 1. In case 2, k
increases by 1 and so after finitely many steps £ = n + 1 and our algorithm terminates.

In fact the algorithm is efficient. Lenstra, Lenstra, and Lovasz proved that if A is a sublattice of Ay with basis
by, ..., b, and if B is a real number with B > 2 and
bi|> < B fori=1,...,n

then the number of arithmetical operations needed for the L3-algorithm is O(n*log B) and the integers on
which these operations are performed have binary length O(nlog B). By an arithmetical operation I mean an
addition, subtraction, multiplication, or division, and by the binary length of an integer n, I mean the length
or number of digits in the base 2 expansion of n. The algorithm runs in polynomial time in terms of B.
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The L3-algorithm can be used to find a short vector in a lattice A. We just put a basis for the lattice in

reduced form by, ..., b,. Then by is a short vector in A.
Let a1, ..., a, be in R and let € be a real number with 0 < ¢ < 1. How do we produce efficiently a positive
integer ¢ and integers pq, ..., p, for which

lga; — pi| < € fori=1,...,n,

with 1 < g < on(n+1)/4g—n?7

If 1, ..., ap and € are in Q then we can use L3 to find ¢ in polynomial time in terms of the input. First
recall, by Theorem 7, on taking ¢ = %, that such a ¢ exists with

1<g<e™

We consider the lattice A generated by the rows of the matrix

n+1
1 0 0 0
0 1 0 O
n+1 where § = 2~ H1)/4ent1
0 O 1 0
a1 ag oy O

Note that d(A) = §. By L*® we can find a small non-zero vector b (= by) in the lattice with

b= (qoq — p1,qo2 — P2, .., Q0 — Pp, q9)

where ¢ and p1, ..., p, are integers. Note that we may suppose that ¢ > 0 by replacing b by —b if necessary.
Further by Proposition 17 iii), we can find b with

|b| < 2n/4d(/1)1/(n+1) _ 2n/4§1/(n+1) _ 2n/4 . 2771/46 — e

Since |b| < e and € < 1 we see that ¢ # 0 since in that case |b| = |(p1,...,Pn,0)| > 1 since py, ..., p, are not
all zero as we have supposed b # 0. Thus

1< g<onint/aen,
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What if we want to find a small linear form with integer coefficients in oy, ..., a,?7 Given € with 0 < e < 1
how do we find efficiently integers ¢1, ..., ¢, and p such that

|q1a1+"'+Qnan_p|<6

and with
1 < max|g;| < o(nt1)/4—1/n9

Again by Theorem 7 the objective is best possible up to the factor 2(n+1/4,

We consider the lattice A generated by the rows of the matrix

1 0 --- 0
ap 6§ 0 el/my "t
. . where § = <21/4) .
o, 0 )

A typical vector b in A is of the form

((hal + -+ guan — D,y Q157 qQ(sa ceey qn(s)

with ¢1, ..., ¢, and p integers. By L? we can find a non-zero vector b in A of this form with b <
27/4d(A)Y (D) " and since d(A) = " = (25/4)”’“ we see that
< 9gn/4 € _
|b| <2 on/4
Further since b # 0 and € < 1 we have 0 < |b| < 1 hence ¢y, ..., ¢, are not all zero and so
0 < max|g; .

Finally suppose that a;; (1 < ¢ < n, 1 < j < m) are all real numbers and that € is a real number with
0 < e < 1. Consider the lattice A generated by the rows of the matrix

1
1 7).
11 ap1 0
Qlm - Qpm, o

Note that d(A) = 6™ = (2~ (tm=1/4 . gntm,
By L? there is a non-zero vector b in A with
b| < §m/(mtn)g(ntm—1)/4
—9—(ntm-1)/4 _ olntm—-1)/4 _

€ - €.

We have
b= (q1a11 + g1z + -+ + gmoim — p1,
Q1021 + @222 + -+ GmQ2m — P2, Q1001+ + GmOnm = Pns 10,420, - ., gm0)
with ¢q1, ..., ¢ and pq, ..., p, integers. Then

lgrain + -+ + gmaim — pi| < e fori=1,...,n

Tan m + n X m + n matrix where § = (2*<”+m’1)/4 . e)"/m+1
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and |g;0| < eforj=1,...,mso |g| < i 'e= (=) () gmn/m Further, as before the ¢;s are not all
Zero.

Theorem 7 tells us that we can make linear forms in the «;;s with integer coefficients which are simultaneously
close to integers. L gives us an efficient method for finding the associated integer coefficients. Can we do
better than Theorem 77 Not for real numbers in general, but for algebraic numbers «;; we can say more. It
follows from work of Schmidt that:

Theorem 20: Let 1, oy, ..., a;, be real algebraic numbers which are linearly independent over Q. Let § > 0.
There are only finitely many n-tuples of non-zero integers qi, ..., g, with

a1 gl g + -+ guan]] < 1
where for any real number z, ||z|| denotes the distance from z to the nearest integer.
Applying Theorem 20 to all finite subsets of {aq,...,a,} we deduce the following:
Corollary: Let 1, a1, ..., a, be real algebraic numbers which are linearly independent over Q. Let § > 0.
There are only finitely many n + 1-tuples of integers g1, ..., ¢, p with ¢ = max;|g;| > 0 for which

1
la1qr + -+ + angn — pl < P

Note the special case n = 1 is Roth’s Theorem.
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Corollary: Let 1, aq, ..., a, be real algebraic numbers which are Q-linearly independent. Let § > 0. There
are only finitely many n + 1-tuples of integers ¢, ..., ¢, and p with ¢ = max;|g;| > 0 for which

1
larqr + -+ + angn — pl < Pz

The special case when n = 1 is due to Roth. In particular, let 6 > 0, if « is an algebraic number then there
are only finitely many rationals p/q with ¢ > 0 for which

P 1
‘T CI' Rt

— Thue equations such as z* — 2y3 = 6, have only finitely many solutions in integers x and y. Roth obtained
the Fields Medal in 1958. Schmidt also proved:

Theorem 21: Suppose that oy, ..., a, are real algebraic numbers with 1, aq, ..., o, Q-linearly independent.
Let 6 > 0. There are only finitely many positive integers ¢ with

¢ ang] - llangll < 1.
Corollary: Let 1, ag, ..., a, be real algebraic numbers which are Q-linearly independent. Let § > 0. Then
there are only finitely many n-tuples of rationals (%1, ey %) with ¢ > 0 for which
Pl 1
¢ q q1+1/n+5‘

Theorems 20 and 21 are consequences of the following result.

Theorem 22: (Schmidt’s Subspace Theorem). Suppose Li(x), ..., L,(x) are linearly independent linear
forms in « = (x1,...,x,) with algebraic coefficients. Let § > 0. There are finitely many proper subspaces
Ty, ..., Ty of R™ such that every integer point @ = (z1,...,2,) with & # 0 for which

Ly(@) - Lo(a)| < mlé

lies in (at least) one of the subspaces.

23



Remarks:

1. The result is not effective in the sense that the proof does not yield a procedure for determining the
subspaces 11, ..., Ty.

2. The integer points in a proper subspace of R™ lie in a rational subspace of R", in other words in a
subspace determined by a linear form with rational coefficients.

3. The proof generalizes Roth’s Theorem, uses ideas from the geometry of numbers and is difficult.

Let us now deduce Theorem 21 from the Subspace Theorem. Let ¢ be a positive integer satisfying

¢ *llag]| - amgl < 1.
Choose integers p1, ..., p, such that ||a;q|| = |aiq — p;i|, for i =1, ..., n. Then put = (p1,...,Pn,q). Let
K;, K5 denote positive numbers which depend on aq, ..., a, and n only. Note that
[z] < Kiq.

We consider the linear forms

Li(X):aan+1—Xi fori:l,...,n
Ln+1(X) - XnJrl

Ly, ..., Lyy1 are n + 1-linearly independent linear forms with algebraic coefficients.
We have

[L1(@) -+ Lnga(®)| = [lawg] - [leng] -
SO

1 1
|L1($) . Ln+1(w)| < qf(; < —

ma/z’
for g sufficiently large, as we may assume.
By the Subspace Theorem z lies in one of finitely many proper subspaces T, ..., T,, of R"T!. Since x has

integer coordinates it lies in a proper rational subspace T. We can find ¢y, ..., ¢,41 in Q such that T is
determined by ¢1 X1 + -+ + ¢p+1Xpt1. Then

121+ -+ cpyr1ZTn+1 = 0. (9)
Since x € T,
|cl(a1q - pl) +oo Cn(anq - pn)l = ‘clalq +--Fepapg—capr— - — Cnpn'
= |cranq + -+ + cpang + et gl
=lcrar + -+ chan + cnr1lg > Kag
since 1, aq, ..., o, are linearly independent over Q. Thus

Kaq < |er(ang —p) + - + calang — pu)|
< el + -+ [enl

which implies ¢ is bounded as required.

We shall now deduce Theorem 20 from the Subspace Theorem.
Proof: By induction on n. For n = 1 the result holds by Theorem 21, say. Suppose n > 1. Assume that
q1, ---, Qn are non-zero integers with

§
|QI e qn|1+ HOZ1Q1 + -+ anqnl| <1
We now choose p, an integer, so that

latgr + - -+ angnl|| = |oag + -+ + angn — pl.
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Write @ = (z1,...,Znt1) = (q1,- -+, qn, D).
Let K3, K4 be positive numbers which depend on a4, ..., a,. Then

[x] = max(|q1],...,|qnl, [p]) < K3q

where ¢ = max;|¢;|. Put
Li(X)=X; fori=1,...,n

and
LnJrl(X) = O£1X1 + -4 aan — Xn+1.
Then

1 1
|Li(x) - Lpga(x)| = lg1 - gnlllargr + -+ + angal| < 5 < 5/2°
—EY

g1+ qn
for g sufficiently large. Then by the Subspace Theorem « lies in one of finitely many proper rational subspaces

of R™*1,
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We deduce Theorem 20 from the Subspace Theorem by induction on n. n =1 v'. Assume we have integers
q1, - - -, qn, not all zero, for which

1+6

Halq1+"'+anQnH|QI"'Qn| <L

Choose p to be the closest integer to aiq; + - - - + apgn so that a1q1 + -+ + ang, — p < 1. Write

x=1(q1,...,qn,p) and put
Li(X)=X;fori=1,...,n
and
Lipi(X)=a1Xqi+ -+ Xy, — Xppa-

We have n + 1 linearly independent forms with algebraic coefficients.

Note that
|Li(x) - Logi (@) = g1 gullloaq + - + angal|-
We have [z] < K1q where ¢ = max;|¢;| and K7, Ko, ... denote positive numbers which depend on oy, ..., a,
and n. Observe that 1 1
[L1(x) -+ Lnga ()] < 5 < ;
g+ al’ [

for ¢ sufficiently large, as we may assume. Then by the Subspace Theorem  lies in one of a finite collection of
proper rational subspaces of R"*!. Let T be such a subspace. Then T can be expressed as the set of rational
points (Y1, ..., Yns1) € R for which c191 + - 4 cng1Uns1 = 08 with ¢, ..., ¢,1 € Q and not all the ¢;s
are zero.

Suppose first that ¢; # 0 for some i with 1 <1i < n. Without loss of generality we may suppose ¢,, # 0. Then

c1q1 + - CpGn + Ccry1p =0

SO
CnQndn = —C10nq1 — = Cpn—10nQdn—-1 — Cpny10npP

Thus

lenllargr + -+ + angn — pl = [(cpor — cran)qn + -+ + (Cpn—1 — 10 gn—1 — (Cn + Crnt1)D)
<cna1 — o, (enon—1 + Ccp_10u)

=|cp +c o
| " nH TL| Cp + Cn+1Qn (Cn + CnJrlan)

dn—1 — P

)(I1+"~+

8) % defining equation of subspace
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Note that ¢, + ¢p1100, # 0 since 1, g, ..., a, are linearly independent over Q. Put

CnQy — CiQp .
af = ————" fori=1,...,n—1.
Cp + Cnt10p

Then
leallargr + -+ + angn — pl = |en + cnyranllaigr + - + oy _1¢n—1 — pl-
Therefore
lajqr + -+ al_1qn-1] < Ky < L
IELE n—14n—1 145 1+6/2
lq1 - qn| a1+ g
for ¢ sufficiently large.
We remark that 1, of, ..., o),_; are linearly independent over Q. To see this suppose that

Aoy 4+ A1, 1+ A =0
with Ay, ..., A, in Q. Then

Al(cnal - Clan) + -+ Anfl(cnanfl - Cnflan) + )\n(cn + Cn+1an) =0
Alcnal +-- 4+ /\nflcnanfl - (>\lcl + -+ )\nflcnfl + )\nCnJrl)an + )\ncn =0

But 1, g, ..., a, are linearly independent over Q and so, since ¢,, # 0, Ay = --- = A,, = 0. Then by induction
lg1l, - -, |gn| are bounded.
It remains to consider the case when ¢; = --- = ¢, =0 and ¢, 11 # 0. Then

Ccn+1p =0 SO p=0.

In this case s
1
g1+ qu| largr + -+ anga| < 1

S0

5 aq Q1

1+ qnl " o] <>q1+< - >qn1+qn <1
ap, ap
Put of = - fori=1,...,n—1.
Then 1, of, ..., al,_; are linearly independent over Q and so
5
@ g lnad g < 1

Therefore max;|g;| is bounded by induction. The result follows.

In a similar way we can deduce the following consequences of the Subspace Theorem.

Theorem 23: Let a;; (1 <i <n, 1< j < m) be real algebraic numbers and suppose that 1, a1, ..., Qim
are linearly independent over Q, for ¢ =1, ..., n. Let § > 0. Then there are only finitely many m-tuples of
non-zero integers (qi, ..., gm) for which

n
5
g1 | HHOéﬂfh oo Qg < 1
i=1

Results of this sort have application to the study of Diophantine equations such as Norm form equations.

For each dimension n let us consider those lattices with d(A) = 1. In this collection let us look for lattices A
for which the minimal non-zero distance between lattice points p(A) is large.

We define p,, forn =1, 2, ... by

sup min |z — y|
lattices A in R™ z,yed

Hn =
with d(A) =1 Y
= sup (u(4))
A in R™
d(A)=1
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It follows from Mahler’s Compactness Theorem that the supremum is actually a maximum. Lattices for
which the maximum is attained are known as extremal lattices. The values of p,, have been determined for
n=1, ..., 8 and they are

pr =1, po = /4/3, p3 = V2, pa = VA, s = V8, pe = K/64/3, pur = V64, ps = V2.

Not extremal Extremal
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We'll prove that pus = {/4/3. We first note that this is a lattice A in R? with d(A) = 1 and p(A) = /4/3.
We take the basis vectors for A to be ({/4/3,0), (1/4/3,/3/4). Observe that d(4) = 1 and that both
generating vectors have length ¢/4/3 and that this is the minimal distance between two distinct vectors in A:

(3v/4/3,/3/4)

(¥/4/3,0)

This is the maximum for suppose that A’ is a lattice in R? with d(A’) = 1 for which u(A’) > ¢/4/3. Then,
without loss of generality, we may suppose that a basis for A’ is of the form (a, 0), (b,1/a) with a > 0. Further,
by adding an appropriate multiple of (a,0) to (b,1/a) we may suppose that [b] < §.

Furthermore we may suppose that a = p(A’). If @ > {/4/3 then 3a* > 4 so 24*> > 4. But then (b, 1) is

closer to the origin than (a,0) since b? + a—lg < % + %aQ = a?, and this is a contradiction.

The first few extremal lattices can be represented by graphs. The graphs are Dynkin diagrams which arise
in the study of Lie groups. A graph will consist of n points which correspond to generators of the lattice.
Each of the generators will be of the same length. If two generators are not connected by an edge they are
orthogonal. If they are connected by an edge then the angle between them is 60° or Z. Finally we normalize
the length of the generators so that the determinant of the lattice is 1.
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Here are the graphs associated with extremal lattices for n =2, ..., 8.

These lattices give the values of p which I indicated were the extremal values. The difficult task is to prove
they are extremal.

We'll look more closely at the lattices associated with these diagrams. Let by, ..., b, be basis vectors in
such a lattice. We’ll assume initially that each vector is of length v/2. Notice that the inner product b; -
b; = |b;||bj|cosB;; where 6;; is the angle between the vectors b, and b;. Thus if the angle is 60° then
b; - b; :2cos§ =1.

Notice that if
B=(b;-bj)i=1,..,n then the det(B) = d(A)%.

j=1,....n
To see this let eq, ..., e, be the standard basis in R™ and put b; = 2;21 B;je; with B;; € R. Then

B = ((By)"(Bij))

and so
det(B) = (det(Bij))Q = d(A)2

Next we observe that each non-zero vector in A has length at least v/2. To see this suppose that b =
kiby + -+ k,by, is in A with kq, ..., k, integers, not all zero. Then

b-b= (klbl —|—+knbn) . (k1b1 —|—+knbn)

= zn:i:k‘ikj(bi -bj)

i=1 j=1
2 2
=2(ki+ -+ ki)+2 E kik;.
1<J
i and j connected
by an edge

This quantity is an even integer and so the length of b is at least /2.

Therefore to determine p(A) in each example it suffices to compute det B and then normalize the length of
the vectors so that d(A) = 1.

—o B = (2 1) and det B = 3.
A, 1 2

Thus it suffices to divide our basis vectors by /3 and then w(Ag) = 4 = /4/3. v

o B(A:(v2) =
As

O =N
[ NGRS

0
1 and sodet B=6 —2 = 4.
2

We must then divide by, by and bs by v/4 and so the minimal length of a vector in As is Gi\/% = 21/6,
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B(D4(V?2)) = and det B = 4.

Dy

O O~
— =N
o N~ O
N O~ O

Thus we must divide each vector b; by 4'/% = 21/% and so u(A4) = 2‘1//54 = 2l/4,

Let us look more closely at D4(1v/2). We claim that the lattice is the same as the lattice of vectors in R* of the
form (uy,us,us,us) with the u;s integers and uy + ug + uz +ug = 0 (mod 2). What are the shortest vectors
in the above lattice? They are

(£1,+1,0,0), (£1,0,+1,0), (+1,0,0,+1), (0,+1,0,+£1), (0, £1,=+1,0), (0,0, £1,£1).
One can check that the lattice is generated by
(15 07 07 1)’ (15 07 17 0)? (17 07 07 _1) and (07 1a 17 O)

Notice that

1 0 0 1 11 1 0 21 00
1 01 O 00 0 1] _ [1 2 11
10 0 -1 01 0 1) |01 20
01 1 0 1 0 -1 0 01 0 2
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Consider the lattice D4(\/§) in R*. It has diagram ‘—< and each basis vector has length v/2. In fact

Dy4(v/2) can be represented as the lattice A; in R* which is the sublattice of Ay given by the congruence
condition: (uq,us,us, uys) is in the lattice <= wuj +us+usz+ug =0 (mod 2). One can check that this lattice
is generated by

(2,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1).
2000
As a consequence d(Ay) = |det| 1§99 )| = 2. Equivalently it is generated by (1,0,0,1), (1,0,1,0), (1,0,0, —1)
1001
and (0,1,1,0). Notice that
B Btr
1 0 0 1 11 1 0 2 1 00
1 01 0 00 O 1| 1 2 11
1 0 0 -1 01 0 1| |01 20
01 1 0 1 0 -1 0 01 0 2

Thus A; is a representation for Dy(v/2).

We now put a sphere of radius ? = % around each lattice point in A;(D4(v/2)). Notice that any two lattice
points in A; differ by a vector of length at least /2. Thus the spheres may touch but they do not overlap in
a set of positive volume. Consider the sphere around (0,0, 0,0).

It is surrounded by several spheres which touch it. They are (+1,+1,0,0), (+1,0,4+1,0), (£1,0,0,=£1),
(0,£1,+1,0), (0,41,0,+1), (0,0,41,£1). Thus the central sphere is surrounded by (;1) -4 = 24 spheres which
touch it. Recently (2003) Oleg Musin proved that there is no configuration of 25 spheres of equal radius which
touch a central sphere of the same radius without overlap in R*.

Definition: The kissing number 7, for n =1, 2, ... is defined to be the maximum number of unit spheres in
R™ which can touch a central unit sphere so that their interiors do not overlap.
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Thus 74 > 24 by the example and 74 < 24 by the result of Musin. Plainly 7 = 2 and the hexagonal packing

gives 79 = 6. It is not so clear what 73 is at first glance. The standard cannonball packing gives 73 > 12.
There was a dispute between Newton and Gregory as to whether 73 was 12 or 13. The first correct proof that
73 = 12 is due to Schutte and van der Waerden in 1953.

Definition: A sphere packing of R™ is a collection of spheres in R™ of equal radius whose interiors do not
overlap. If the centres of the spheres occur at the points of a lattice we say that the packing is a lattice packing
(of spheres).

Given a sphere packing in R™ let p be the radius of the sphere and define A, the packing density, in the
following way. For any real number x let S, be a sphere of radius = in R™. We put

the number of spheres in the | S
—— \ collection of radius p inside SI(?O) Vo ume( p) 9)
A= lim O)
R—o0 volume(Sy ")

A measures the “proportion” of R™ covered by the spheres in the sphere packing.

We now define A,, forn=1, 2, ... by

A, =sup A4;
sphere packing
in R™

here the sup is taken over all sphere packings in R™. Similarly

An(L) = sup A;
lattice packing
in R™

here the sup is taken over all sphere packings in R™ which are lattice packings. Notice that if L is a lattice
then the largest radius py of spheres in a sphere packing associated with the lattice is % the minimal non-zero
distance between points in the lattice. If we consider the lattice packing of spheres of radius py around each
lattice point of A then

A(A) = volume S, _ volume S,
volume fundamental region of A d(A)
Certainly A, > A, (L) forn=1,2,.... In fact Ay = Ay(L), Ay = Ag(L). For n = 2 the hexagonal lattice

yields Ay. We have

3v/4/3)?
A2=A2(L)=7r(2 1/) z\/%=0.9069....

Let us compute the packing density A of D4. Since the minimal non-zero distance between two lattice points
in D4(\/§) is v/2 we may take py = %\/Q = % and we have

2 4

(&) =

———— = — =0.6169....
2 16

This is the largest lattice packing density known in R*.

A(Dy) =

It was proved by Korkine and Zolotareff in 1872 that
Ay(L) = Ay(Dy).

9) Let Sg» be the sphere of radius R centred at the origin.
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Let us consider the lattice of integer points in R™ denoted by Agy. The diagram is:

n times
L) [ ] L) L L)
We have d(Ap) = 1. The vectors of minimal non-zero length in Ay are (£1,0,...,0), ..., (0,...,0,£1) and

they are of length 1. Thus the lattice packing associated with Ay consists of spheres of radius % around each
integer point. Thus the packing density is
/2 1\"
rl+n/2)\2) °

In R?, it is 17 =0.785...,in R3 it is §=0529...,in R4, g—; = 0.308.... The kissing number associated with
A is 2n.

The lattice A3 associated with e—e—e may also be associated with > which we call D3. For n =3, 4, ...

we denote by D,, the lattice associated with

We can represent D,, as the sublattice of Ay given by
{(x1,...;2p) EZ" ;21 4+ +2,=0 (mod 2) }.

The lattice is generated by elements of length v/2, which is the minimal non-zero distance between vectors in
the lattice. We take:

(1,1,0,...,0)

(0,0,1,1,0,...,0) (0,...,0,1,1)

(0,1,1,0,...,0) o o
(~1,1,0,...,0)
Thus
-1 1 0 0 0
1 1 0 0 0
0 1 1 0 0
d(Dn(\/i))Z det| 0 o 1 1 oll=]-1-1-1-1=2

o 0 --- 0 1 1

The kissing number associated with the lattice D, (1/2) corresponds to the number of non-zero vectors of
minimal length, so it is 4 - (3) = 2n(n — 1). We have a central sphere around (0,...,0) of radius 3v2 =
% and it is touched by the 2n(n — 1) non-overlapping spheres of radius % around (+1,+1,0,...,0), ...,
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(0,...,0,+1,£1). Put spheres of radius \}5 around each lattice point to give a sphere packing. The sphere
packing density

7.(.71/2

20 (1 + n/2)2n/2"

A(D,(V2)) =

Note that .
A(D3) = —— =0.7405.. ..
(Ds) = T
The sphere packing of D3 corresponds to the cannonball packing. In 1831 Gauss proved that As(L) = A(Ds),
that is to say that D3 gives the sphere packing associated with a lattice of maximal density.

Kepler conjectured that A; = Az(L) = A(Ds3), or equivalently that the most efficient packing of spheres
in R3 is given by the cannonball packing. In 1958 Rogus proved Az < 0.7796 and in 1983 Lindsay proved
As <0.7784. (In 1993 Hsiang claimed a proof that Az = A(D3) and his “proof” appeared in a 92 page paper
in the International Journal of Mathematics.) Hales in 2005 in a 120 page paper in the Annals of Math gave a
proof of Kepler’s conjecture. It depended on a massive amount of computation and this part of the argument
is very hard to check.

Consider the kissing number problem in R3. Three spheres touching in R3:

The centres of the spheres form an equilateral triangle. Given a configuration of spheres of radius 1 touching
a central sphere of radius 1 we can associate to each sphere touching the central sphere a shadow or spherical

cap determined by a cone of radius % from the origin.

The surface area of the shadow is 2wh where h is the height of the spherical cap. Here h = 1 — @ SO

the area is (2 — v/3)m. The total surface area of the sphere is 47 and so the kissing number 73 is at most
(274\’/%” =8+ 4v/3 < 15. Thus 73 < 14. The packing associated with Ds gives 75 > 12.

In fact 73 = 12 as was first proved in 1953 by Schutte and van der Waerden. The following kissing numbers
are known: 7 = 2, 73 =6, 73 = 12, 7y = 24, 73 = 240 and 794 = 196,560. How do we find such results?

The arguments depend on linear programming and the study of positive semidefinite functions on the sphere
Sn~1in R™,

Let {x1,...,%,,} be points on S"~!in R". Thus «; -x; =1 fori =1, ..., m and x; € R™.

St ={(21,...,20) ER" 1af + -+l =1},
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Let 0;; be the distance between x; and x; on the surface of S"~1 5o the length of the geodesic between x;

and x;.

\V4

Z; €T

It is just the angle in radians determined by the points.

Notice that for any real numbers tq, ..., t,, we have

||t1$1 + -+ tmwm‘lz = (tlwl +-+ tmwmatlml + -+ tmwm)

zm: in: titj cos(&ij) Z 0
i=1 j=1

Equivalently the matrix

is positive semidefinite.
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Let 1, ..., T, be on S”~ 1 in R”. Let 6;; be the (angular) distance between x; and x; on sl
Z; @ €T
'
Notice that for any real numbers t1, ..., t,, we have

i1 + -+t || = (b1 + - F T, 11 + -+t )
m m
= Z Ztitj COSs Hij 2 0.
i=1j=1
Equivalently
tq
(t1,. . ytm) (cos@ij) Sl =0

tm

Thus the matrix (cos 6;;);
J

..,m 18 positive semi-definite.

.m

=1,.
=1,.

In 1943 Schoenberg proved that the matrix (chn) (cos(@ij)));ﬂ,“.,m is again positive semi-definite for any set

j=1,....m
of points x1, ..., &, on S"~! where the G;Cn)s are Gegenbauer polynomials.
Schoenberg also proved that if (f(cos6;;))i=1,....m is positive semi-definite for all choices of @1, ..., T, in

Jj=1,....m
S7=1 then f can be expressed as a linear combination (perhaps infinite) with non-negative coefficients of
Gegenbauer polynomials.

We may define polynomials C’,(cn) (t) by the expansion

o0

(1—2rt 472 E=m/2 = ZrkC,in)(t) forn=3,4,....
k=0
We then put
M (t
G\ (t) = 7’(“ )( ), so G\ (1) = 1.
(1)



We may also define G,(:b) (t) for n =1, 2, ... recursively by the rules

cMWy=1, G"M@H)=t and

2k +n — DG, () — (k- DG, (1)
k4+n-—3

G =

In the special case that n = 3 the polynomials are known as the Legendre polynomials.

Since (G( )(cos 0:5))i=1,...,m is positive semi-definite, if ay, ..., aq are non-negative real numbers then
J—l ,,,,,

(agGén) 4+ 4 adG&")(cos 0i;))

is also positive semi-definite. We put

f(n,ao, ..., ad)(t) = f(t) = aoGS () + - + aaGy (t)

and we define Sy(z1,..., @) by

i f(cosB;;)

T
Ms

Sf ($1, .
=1 j=1
d m m
=3 D G (cos(0:y)).
k=0  i=1j=1
Thus, since ag, ..., aq are non-negative and > ., Z;":l chn) (cosB;;) >0 for k=0, ..., d we see that
m
Sp(@1,. . xm) > a0 Y Gy (cos(B;)) = agm?. (10)
i=1 j=1
Let us suppose now that x1, ..., &, is a configuration of m points on $”~! which correspond to the m points

of contact by m spheres of I"adIUb 1 which surround S™~! in a kissing configuration. Then 6;; > % provided
that i # j hence cos(;;) < 1 for i # j.

Suppose that ag, ..., ag are non-negative real numbers for which f(¢) <0 for ¢ in the range [—1, %] Then
Sp(x1,...,2m) <mf(l) and so by (10), if ag > 0,
f)
ao
The strategy is now to choose ag, ..., aq so that f(t) < 0 for [~1, 1] and such that aq is large and f(1) is small.

There are two amazing applications of this approach. They were found independently in 1979 by Odlyzko and
Sloan and by Levenshtein and they treat the cases n = 8 and n = 24. For n = 8 we consider

8 8 8) 8 8 8 8
Ft) = G( )+ 16G( )+ 200G( + gng( )+ 122196(;( )+ g(l)ggG( ) gi?G( )

then
Pt = 22+ 1)+ D - ).

One can check that f(t) <0 for [-1, 3]. Thus 75 < % -z g—i ~/g: 240.
For n = 24 one can find a non-negative linear combination of the G1224)S to give f(t) where
F) = HFRE+ D+ 3)%(+ D" — (- 3)

and f(t) <0 for ¢ in [-1,1]. Thus
T24 S 196,560
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We’ll show that the Ejg lattice has kissing number 240 and the Leech lattice has kissing number 196,560. Thus
7g and 74 are determined. In general things don’t go quite so smoothly. This approach gives 73 < 13 and
T4 < 25, yet we know 73 = 12 and 74 = 24. The choice of ag, ..., aq is made after running linear programming
packages.

Let us now return to lattices. Recall Eg has diagram . With each vector normalized to

have length v/2 we have that the matrix B of inner products is

OO OO OO N
SO OO O~ N
O OO FENFEO
OO oo N OO
OO, NO OO
O NHEHOOOO
—NNR OO0 o oo
N OOO O oo

One can check that det B = 1. Notice that we may realize Eg(\/ﬁ) in the following way:

( ) % ) %a_%v_é)

SIS

I

=

’

=

(Oa 717 17 0705 07 070)
® L 4
(1,—1,0,0,0,0,0,0) (0,0,1, -1,

(0,0,0,—1,1,0,0,0) (0,0,0,0,0,—1,1,0)
® ® ° °
0,0,0,0) (0,0,0,0,1,—1,0,0) (0,0,0,0,0,0,1,—1)

= ‘—.MM—‘
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det(B(Es(v2))) = 1

All of the generating vectors have length /2. Further v/2 is the minimal distance between distinct points in

FEg(+/2). Thus we may put a sphere of radius g = % around each vector in the lattice. This will give us a

Eg(V2):

sphere packing of R® which is a lattice packing. Also the number of vectors in Eg(v/2) of length v/2 will be
the kissing number of the lattice.

Notice that 2- (3,4, 2 -1 -1 1 1 _1y—(1,1,1,-1,-1,—1,—1,—1) is in the lattice. To fix ideas, how
would we realize ( ,1,0,0,0, 0, ,0) in the lattice? Note that it suffices to realize (1,1,1,—-1,—1,—-1,—1,—-1) —
(1,1, 0 0,0,0,0,0) —(0,0,1,-1,0,0,0,0) = (0,0,0,0,—1,—1,—1, —1) or equivalently (0,0,0,0,1,1,1,1). But

note!?

(0,0,0,0,1,1,1,1) +(1,1,1,-1,-1,—-1,-1,-1) = (1,1,1,—-1,0,0,0,0)
(-1,-1,-1,1,1,1,1,1) + 2(1,-1,0,...,0) — 4(0,-1,1,0,...,0) = (1,1,-5,1,1,1,1,1)
= (1,1,0,0,0,0,0)—|—(0,0,—1,1,0,...,0)+(0,0,—1,0,1,0,0,0)+-~-+(0,0,—1,0,...,O,1)
Remark: Note that the integral span of the basis vectors on the bottom row consists of all integer vectors

whose sum of coordinates is zero. The sum of the coordinates of the vector (1,1,1,—-1,—1,—1,—1,—-1) is —2
hence we can realize all vectors whose sum is congruent to 0 (mod 2).

10) This bit caused some trouble; see the following remark instead.

35



Next note that (£1,£1,0,...,0) is in the lattice and in fact so is any vector which has two coordinates from
{1 —1} and the others 0. ThlS gives us 4 - ( ) 112 vectors of length v/2. These vectors together with
(2, %, %,—%7 —%, —%, —%, —7) allow us to show that the vectors (61%,62%, . .768%) are in the lattice where ¢;
is in {1,—1} and Hi:l ¢; = —1. There are 27 = 128 of these vectors of length /2. Thus we have found
112 + 128 = 240 such vectors.

Notice that there are no other vectors of length V2 in the lattice, since if one coordinate is % or larger in

absolute value, the vector is of length greater than /2, and if there are more than 2 coordinates of absolute
value at least one, then again the length exceeds v/2.

Therefore 75 (Es(v/2)) = 240 and since 75 < 240 we conclude that 75 = 240.
The packing density associated to Fg(v/2) is

wt 1 8 4 1
T(5) (ﬁ) i i

= =— =02 e
1 24 - 16 384 0-2537

This is the largest lattice packing density in R® and it is the largest packing density in R® known.

There are 240 vectors @ in Fg(v/2) for which x - & = 2. The next smallest norm in the lattice is 4 and there
are 2,160 vectors x in Eg(ﬂ) for which = - = 4.
These are of the form

(£2,0,0,...,0), (0,£2,0,...,0), ..., (0,...,0,£2).

Also (£1,+1,41,4+1,0,0,0,0) where +1, £1, 1, 41 is put in any 4 coordinates and

8
(e12,€22,...,€es1) where ¢; is in {1, -1} and Hq =1
i=1
and all permutations of the coordinates are allowed. There are 6,720 elements of norm 6, 17,520 of norm 8, and
30,240 of norm 10. In fact for each positive integer m the number N (m) of  in Eg(v/2) for which - = 2m
is given by
24003(m), and o3(m) = Z d3.

dlm
d>0
How do we get such a result?
Let A be a lattice in R™ with « -y € Z for any x, y in A. Suppose by, ..., b, is a basis for A and, as before,
put B = ((bi, b;))i=1,...n. Then for any x € A there exist integers k1, ..., k, such that
j=1,....n
x=kb +- -+ k,b,.
Then
x-x=ki(b,b)+---+k2(b,,b,)
=2 kik;(b;, b))
i<j
and so this is a quadratic form in (kq,...,k,). We have
k1
(kla"'akn)B
‘Z{:TL

Let ¢ = 2™ for 2 € C. We now define the theta function of the lattice A, denoted 6, (z) by

Z q(w z)/2 _ Z e(w 93)71'7,Z

xeA xzEA
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If B has integer entries and determinant 1 and @ - = 0 (mod 2) for all @ € A then it can be proved that
04(z) is a modular form of weight . What is the significance of this claim?

PMATH 944 Lecture 19: November 17, 2009

TALKS Tue—Fri Dec 1-4.
Recall ¢ = €?™**. We define the theta function of a lattice A in R” by
04(z) = Z q@®)/2,
xcA

If B has integer entries, determinant 1 and = - = 0 (mod 2) for all * € A then 6, is a modular form of
weight n/2.

Let (%) € SL(2,Z) so that a, b, c and d are integers with ad — bc = 1. SL(2,Z) is a group which acts on the
upper half plane H = {z € C: Im(z) > 0} by, for each g = (¢ }) € SL(2,Z) we put gz = “Zib Let k be an
integer. We say that a meromorphic function f: H — C is said to be weakly modular of weight 2k if

1o = e+ (EE0). o (o) €Stz

Note that if g = (¢%) = (1) then gz = z + 1 and so if f is weakly modular of weight 2k, f(z + 1) = f(2)
and so f can be expressed in terms of ¢ = e?™%*. In particular f determines a function f (q) where

f:{qeC:0<|¢<1}—=C.

f is meromorphic on the punctured dish {g € C:0 < |¢| <1 }~and if it extends to a meromorphic function
on all of the disc then we say that f is a modular function. If f is holomorphic on {g € C:0 < |¢| < 1} and
extends to a holomorphic function on {¢g € C: |q| < 1} then we say that f is a modular form.

The space of modular forms of weight 2k (k > 0), forms a vector space My over C of dimension dj where

(%], k=1 (mod6), k>0
HEVE 4L k#£1 (mod6), k>0
6 ) s v 2

Here [z] denotes the greatest integer less than or equal to .

The lattice A = Eg(v/2) determines 6, +(v2)(#) which is a modular form of weight 4. Thus 05 /5(2) lies in
My a vector space of dimension 1 over C Now Es(z) =1+4240>"7 , o3(n)q™ is in My. We have

)
Es \f) Z ra(m
m=0

where 74 (m) counts the number of vectors x in A = Eg(v/2) for which @ - & = 2m. Thus Ex(z) = 0, o (v2) (2)-

Associated to each lattice A in R™ is Aut(A), the group of symmetries of the lattice which fix the origin or
equivalently the set of isometries (distance preserving maps) of R™ which fix the origin and take the lattice to
itself. For each lattice A in R™, Aut(A) is a finite group. Each element of the group can be represented by an
orthogonal matrix.

The automorphism group of the hexagonal lattice A

\
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is generated by a rotation of § and a reflection around the line determined by any non-zero vector. Thus it
is isomorphic to the Dihedral group Ds.

The automorphism group of Eg (Fg(v/2)) is a group of order 24 .32 .52 . 7 and it permutes the 240 vectors
of minimal length transitively.

We’ll now construct an astonishing combinatorial object called the Leech lattice. It was found by Leech in
1965 and it was described by him in a paper in the Canadian Journal of Math in 1967. It is a lattice L in R?*
with determinant 1, the associated inner product matrix B has integer entries. The polar lattice L* of L is L,
in other words L is self-dual. Further if € L and x # 0 then

x-x >4
We’ll now construct the Leech lattice L following Leech and Milnar.

Let F3* be the 24 dimensional vector space over the field Fy = {0,1} of two elements.

Proposition 28: There exists a 12 dimensional subspace S of F3* with the following property. For every
non-zero vector 8 = (s1,...,824) in S the number of coordinates which are 1 is at least 8 and is congruent to
0 mod 4. Further (1,1,...,1) isin S.

To prove this we’ll realize S as the span of the rows of a 12 x 24 matrix over Fs which we shall construct. Let
A denote a symmetric 11 x 11 matrix whose first row is

11101101000

and whose remaining rows are obtained by permuting the rows cyclically to the left so

11101101000
11011010001
101 1010O0O0T11
01 1010O0O01T11
11010001110
A=]1 0 1 0 0 0 1 1 1 0 1
01 000111011
10001110110
00011101101
00111011010
01110110100

One may check that each pair of rows have exactly three columns consisting of two 1s.

Next let B be the symmetric 12 x 12 matrix obtained by adjoining a first row of the form (011---1) to A and
completing the first column to be (011---1)* also. Thus

o011 -~ 1

. 1
Since any two rows of A have exactly three columns of the form ( ) we see that

1
B?=BB" =1

We now put
C= (112 ‘ B) a 12 x 24 matrix

We claim that S is the subspace of F3* generated by the rows of C.

1) over Fo
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Recall: C:(IB),B:(} A )
i

— O
O =
o O
o O
=)

01110110100

We claim that the subspace S of F3* in Proposition 28 is generated by the rows of C. Let us consider the
subspace S7 generated by the rows of C.

First note that (1,1,1,...,1) is in Sy since we can obtain it by adding the rows of C over Fy. Next we remark
that the number of 1s in any row of C is either 8 or 12 and any two rows of C are orthogonal since any two
rows of A have precisely 3 1s in common columns.

For any 24-tuple s = (s1,...,s24) in F3* we put ||s|| equal to the number of coordinates of s which are 1. We
prove first that if s is a linear combination of rows of C then ||s|| =0 (mod 4).

To see this we remark that any two rows of C are orthogonal so that if we add one row of C' to another to get
a matrix C’ then the rows of C’ will be orthogonal. If a row s; is obtained by adding a row s of C to a row
r of C' then

[s1ll = llrll + IIs] — 2n (11)

where n denotes the number of columns for which both entries are 1. Since r and s are orthogonal n is even
and since r and s are in C, ||r| and ||s|| are in {8,12}. Thus |r|| = 0 (mod 4), ||s|| = 0 (mod 4) and so
by (11), ||s1]| =0 (mod 4). The result now follows by induction.

We are now in a position to prove that if s is a non-zero linear combination of the rows of C then ||s| > 8.
Since ||s|| =0 (mod 4) it suffices to prove that ||s|| > 5.

Suppose that s is a linear combination of k elements of C. If k£ = 1 then the result follows since ||s|| is 8 or 12.

If £ = 2 then since the rows of A have exactly three columns with two 1s and each row of A has 6 1s we find
that ||s|| is again 8 or 12.

If k£ = 3 then and s is the sum of the first row and two other rows then since the rows of A have exactly three
columns with two 1s we see that ||s|| = 8. On the other hand if the three rows do not include the first row
then the first 13 coordinates of s contain 4 1s. If there are no other 1s in s the sum of three rows of A give
the zero vector (0, ...,0) in F3! which does not happen. Thus ||s|| > 5 hence ||s|| > 8.

If £ = 4 then we see that the first 12 coordinates of s have 4 1s. If the remaining coordinates are 0 then the
sum of 4 rows of B are (0,0,...,0) which contradicts the fact that B is non-singular; recall B2 = BBY" =
Thus ||s|| > 5 hence ||s|| > 8.

Finally if £ > 5 then we get at least 5 1s in the first 12 coordinates and the result follows. Thus completes
the proof of Proposition 28. Take s = s;.

The construction of the Leech lattice

Let e; = (1,0,...,0), ..., eas = (0,...,0,1) in R?* and we put b; = %ei fori=1, ..., 24.
Let Ly be the lattice generated by b1, ..., bas in R2%. Let L be the sublattice of Ly whose elements are of
the form

t1by + - - - + tagboy
where tq, ..., to4 are integers satisfying either

(i) t1, ..., tog are even, t; + -+ +tog =0 (mod 8) and %(tl, .+, taq) reduced mod 2 lies in the subspace S
of Proposition 28.
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or

(i) t1, ..., tog are odd, t; + -+ 4+ togy = 4 (mod 8) and %(1 + t1,...,1 + tag) reduced mod 2 lies in the
subspace S of Proposition 28.

Notice that L is a lattice and hence a sublattice of L. To see this note that L contains 24 linearly independent
vectors since it contains 8bq, ..., 8byy. Further it is discrete since it is contained in L. Next observe that if
x € L then —x € L and if , y are in L then  +y € L since S is a subspace of F5*. L is the Leech lattice.

We now show that if @ is a vector in L then - = 0 (mod 2). If @ = t1b; + -+ + tagboy then - x =
$(t3 + -+ +t3,). Thus we want to prove that ¢ +--- +t3, = 0 (mod 16).

Consider first the case when 1, ..., ta4 are all even. Then if ¢, = 0 (mod 4) then t? = 0 (mod 16) and if
ti =2 (mod 4) then t? =4 (mod 16). Recall that if s € S then ||s|| =0 (mod 4) and so the number of indices
i for which t; = 2 (mod 4) is a multiple of 4 and thus

t2 4. +t2, =0 (mod 16).

On the other hand if t1, ..., tay are all odd then if ¢; = +1 (mod 8) we have t? =1 (mod 16) while if t; = 43
(mod 8) we have t? =9 (mod 16). Let o; be the number of ¢;s with ¢; = j (mod 8). Then

24 13, =y +9a3 + 95 +ay  (mod 16). (12)
We also have
24d=0a14+a3+as+ar=0 (mod 8) (13)
and, by the definition of L,
a1 —+ 3043 —+ 50&5 + 70[7 = 4 (IIlOd 8) (14)

Further, by Proposition 28,
a1 +a5 =0 (mod 4)

S0
2(a; +a5) =0 (mod 8). (15)

Adding (13) and (14) and subtracting (15) we find that
4(as +as) =4 (mod 8).
Thus as + a5 is odd. Therefore, by (12),
34+ 415, =24+8(az +as) =0 (mod 16)

as required.
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Handout: N

44
404
4004
40004
400004
4000004
22222222
400000004
4000000004
40000000004

1 222200002222

/3 4000000000004
22002200220022
202020202020202
2002200220022002
40000000000000004
202020022200000022
2002220020200000202
22002020200200002002
022220002000200020002
0000000022002200220022
00000000202020202020202
-311111111111111111111111

[N
o



A generator matrix for the Leech lattice L, in terms of the standard basis. Notice the index of L as a sublattice
of {ie Le } is 236
NG Ly« NG 24 .

Suppose that there is an element & € L with - x = 2. Write

x-x=1tby + -+ tagbay'?, t; € Z,

and then
$.$:%(t%+...+t§4):2
hence
t+ -+ 13, = 16.
Notice that if the ¢; are all odd then ¢2 + --- +t2, > 16. Thus t1, ..., ta4 are even. We have two possibilities,

one of the t;s is 4 and the others are 0 or four of the ¢;s are 2 and the others are 0. But ¢; + -+ +t4 =0
(mod 8) which excludes the first possibility. The second possibility is excluded by Proposition 28 since the
number of terms which are = 2 (mod 4) is either 0 or at least 8. Therefore there is no x € L for which
T-x=2.

Thus & -x >4 for x # 0 in L.

Next observe that for any x, y € L

zy=s(xty) (xty -z z-y- y)
and since z - z =0 (mod 2), for all z € L we see that ¢ -y € Z for all @, y € L.
L is a sublattice of Lg.

We can calculate the index of L in Lg. It is 8 - 411 .21 .1 =23.222. 211 .1 = 236 But d(Lg) = (%)24 =
W = 555 and so d(L) = 1.
Recall the notion of the polar lattice or dual lattice of a lattice A. Suppose by, ..., b, is a basis for A. Define
1, ..., b} so that
1 ifi=y
b b, = nreg

0 otherwise
Then bj, ..., b} is a basis for the polar lattice A* of A.
Recall:

Theorem 2: The polar lattice A* of a lattice A in R™ consists of all vectors v* in R™ for which v* - v is an
integer for all v in A. In addition d(A) - d(A*) =1

What is the polar lattice of the Leech lattice L? Note that since d(L) = 1 we have d(L*) = 1. Further x -y is
an integer for all @, y in L. Thus L* contains L and, since d(L) = d(L*) we see that L* = L. Thus the Leech
lattice is self-dual.

The theta series 01,(z) associated with the Leech lattice is a modular form of weight % = 12. The vector
space of modular forms of weight 12 has dimension 2 over C. With g = e?>™** we have

OL(z) =Y N(m)g™ =1+ 196,560¢" + 16773120¢° + - - -
n=0

In fact, for even positive integers m,

Nem) = g (o (5) - (%) 1)

12>bi: 1 e;

B
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where 011(n) = 3 g d'" and 7(n) is Ramanujan’s tau function defined by

d>0
Agu(z)=q [J(A=q™)* =D 7(m)q™
m=1 m=0

= q — 24¢% +252¢° — 1472¢" + - - .

Thus N(4) = ©220(2M 41 + 24) = 196,560.

Since N(2k) is an integer for k =1, 2, ... we see that o11(k) = 7(k) (mod 691) for k =1, 2, ....

Another representation for 6y (z) is

3
01(z) = ((‘)Es(ﬂ)(z)) — T720A94(2).
Examining coefficients in the above representation yields (16).

Since N(4) = 196,560 we see that this is the kissing number of L. But by our earlier analysis we see that it
is the kissing number of R%% 50 194 = 196,560.

What are the vectors of minimal length in L? There are 27 - 759 = 97,152 of the form

1

—(42,...,£2,0,...,0
\/g( )

b '8' )
where any choice of sign and position is permitted provided that ¢; +--- 4 t24 =0 (mod 8) and %(tl, ooy tog)

reduced mod 2 is in S. There are 2'2 .24 = 98,304 of the form %(:I:ES, +1,...,%1) where t; + -+ + tog =

4 (mod 8) and %(1 + t1,...,1 + ta4) reduced mod 2 is in S. Also there are 4 - (224) = 1104 of the form
(+4,+£4,0,...,0) where any choice of sign and position is permitted.

Notice that the sphere packing density in R?* associated with L is
12

0
— =0.001930....
21 0.001930

The automorphism group of L is Cog or .0 the 0th Conway group and it is of order 2%2.3°.5%.72.11-13-23.

The automorphism group permutes the 196,560 non-zero vectors of minimal length transitively. Further the
automorphism modulo its centre is a sporadic simple group of order 22! - 3% . 5% .72 .11-13-23. There are 26
sporadic simple groups.
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Sporadic simple groups
A group is said to be simple if it has no proper normal subgroup. Why are simple groups important?

Every finite group has a composition series
G<aG1 <Gy q--- G, ={1}

where G;y1 is a normal subgroup of G; for i = 1, ..., n — 1 and G;/G;y; is simple. Jordan and Holder
proved that the set of groups G;/G,41 for i = 1, ..., n—1 is uniquely determined or equivalently the sequence
(Gi/ GZ-H)?;f is determined up to permutation. Thus the simple groups are the building blocks or “primes”
of the set of finite groups.

If G is an abelian finite simple group then G is isomorphic to Z/pZ for some prime p.

The alternating groups A, are simple for n # 4. In fact there are several infinite families of simple groups
which have been found. In addition there are 26 finite simple groups which do not fit in these families and
they are known as the sporadic simple groups. The Classification Theorem tells us this is the complete list.
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12 of the 26 sporadic simple groups arise as subquotients of .0. Further the largest of the sporadic simple
groups M is known as the Monster or the Fischer—Griess group or the Friendly Giant. M can be constructed
from the Leech lattice, it was first discovered by Fischer and Griess in 1973 and formally constructed in 1980
by Griess. The order of M is

246,320 .59 . 76.112.13%.17-19-23-29-31-41-47-59 - 71

Monstrous Moonshine: Conway and Norton. (Borcherds)

A rich source of lattices is algebraic number theory. Let K = Q(¢) with [K : Q] = n. Let a € K then the
conjugates of a over Q are a = a1, ao, ..., o, where

oi(a) = oy fori=1,...,n

and o; is one of the n isomorphisms of K into C which fix Q. We have the notion of the norm and trace of «
given by
NK/@(Q) =1y
and
’I‘I‘K/Q(a) =ay+ -+ a,.

The embeddings (isomorphic injection) of K into C which fix Q can be split into r embeddings into R and 2s
embeddings into C which are not embeddings in R. We may denote them by o1, ..., 0, and 0,41, ..., Ort2s
where 0,1; = 0,151 for i =1, ..., s. We introduce the map v: K — R"™ by

v(a) = (o1(),...,00(a),Re(0r41()), Im(0,41()), ..., Re(0r4s(a)), Im(o,4 ().
Let Ok be the ring of algebraic integers of K. We can show that {v(«a) : @ € Ok } forms a lattice in R and
if A is a non-zero ideal of Ok then {v(a): a € A} is a sublattice of this lattice.
Let us consider the totally real case where = n. Then

via) -v(a)=ai+ - +ai = Trg/g(a?).

Further

by the arithmetic-geometric mean inequality. If « is a non-zero algebraic integer then so is a? hence a? - - - a2

which is Ng/g(e?) = (Ng/g(@))?, is a positive integer. Therefore if o is a non-zero algebraic integer

via) -via) >n

and this gives us a way to show that the minimal length of a non-zero vector in the lattice is large.

It is possible to realize many lattices in this way. For example the Leech lattice can be realized by considering

K = Q((39)-
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