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Let v1, . . . , vn be linearly independent vectors in Rn. The set

Λ = { a1v1 + · · ·+ anvn : (a1, . . . , an) ∈ Zn }

is said to be a lattice with basis v1, . . . , vn.

Note that since v1, . . . , vn are linearly independent, each element of Λ has a unique representation as a linear
combination of v1, . . . , vn. Further, the coefficients in the representation are integer.

Observe that the basis v1, . . . , vn is not uniquely determined by Λ. In particular, let A be an n × n matrix
with integer entries and determinant ±1 and put

A

v1
...
vn

 =

w1

...
wn


We claim that w1, . . . , wn is also a basis for Λ. Certainly w1, . . . , wn are linearly independent vectors in Rn.
Secondly note that v1

...
vn

 = A−1

w1

...
wn

 and A−1 =
1

det(A)
adjA

Recall that the i, j-th entry of adjA is the cofactor of aj,i. But the cofactor is an integer and det(A) = ±1
so vi can be expressed as an integer linear combination of w1, . . . , wn. Thus every element of Λ is an integer
linear combination of w1, . . . , wn. Thus w1, . . . , wn is also a basis for Λ.

Suppose now that v1, . . . , vn is a basis for Λ and that w1, . . . , wn is also a basis for Λ. We’ll now show that
they are related as above. In particular since v1, . . . , vn is a basis we can express wi for i = 1, . . . , n as an
integer linear combination of v1, . . . , vn. Thus there is an n× n matrix A with integer entries such that

A

v1
...
vn

 =

w1

...
wn


Similarly, there is an n× n matrix B with integer entries such that

B

w1

...
wn

 =

v1
...
vn


Therefore

AB

w1

...
wn

 =

w1

...
wn


hence AB = I so detA · detB = 1. But detA and detB are integers so detA = ±1.

We are now in a position to define the determinant d(Λ) of Λ. Let v1, . . . , vn be a basis for Λ. We put

d(Λ) = |det(v1, . . . , vn)|.
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Here (v1, . . . , vn) represents the matrix obtained by writing the vis with respect to the standard basis
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) in Rn.

Notice that d(Λ) does not depend on the choice of basis v1, . . . , vn since if w1, . . . , wn is another basis for Λ
then there is a matrix A with det(A) = ±1 such that

A

v1
...
vn

 =

w1

...
wn


and we see that

|det(w1, . . . , wn)| = |det(A)| · |det(v1, . . . , vn)| = |det(v1, . . . , vn)|
Remark: Since v1, . . . , vn are linearly independent we see that d(Λ) > 0.

The simplest lattice in Rn is Λ0 where Λ0 is generated by (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Then
d(Λ0) = 1.

Let Λ and Λ1 be lattices in Rn. If Λ1 ⊆ Λ then Λ1 is said to be a sublattice of Λ. Note that if w1, . . . , wn are
linearly independent vectors in a lattice Λ in Rn then they generate a sublattice Λ1 of Λ and there is a matrix
A with integer entries such that

A

v1
...
vn

 =

w1

...
wn

 .

Let D = |det(A)| and note that D is a positive integer. Further

D =
|det(w1, . . . , wn)|
|det(v1, . . . , vn)|

=
|det(w1, . . . , wn)|

d(Λ)
=

d(Λ1)

d(Λ)

where Λ1 is the lattice generated by w1, . . . , wn. D is known as the index of Λ1 in Λ.

Suppose that Λ is a lattice in Rn and Λ1 is a sublattice of Λ of index D. Let v1, . . . , vn be a basis for Λ and
w1, . . . , wn be a basis for Λ1. Then we have a matrix A with integer entries and |det(A)| = D such that

A

v1
...
vn

 =

w1

...
wn

 .

Thus v1
...
vn

 =
1

detA
adjA

w1

...
wn

 ,

and so Dv1
...

Dvn

 =
D

detA
adjA

w1

...
wn


hence Dvi is an integer linear combination of w1, . . . , wn for i = 1, . . . , n. In particular Dvi ∈ Λ1 for
i = 1, . . . , n.

Theorem 1: Let Λ1 be a sublattice of the lattice Λ in Rn.

A) If v1, . . . , vn is a basis for Λ then there is a basis w1, . . . , wn of Λ1 such that

w1 = a11v1

w2 = a21v1 + a22v2

...

wn = an1v1 + · · ·+ annvn

(1)
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where

i) the aijs are integers

ii) aii > 0 for i = 1, . . . , n

iii) 0 ≤ aij < ajj for 1 ≤ j < i ≤ n.

B) If w1, . . . , wn is a basis Λ1 then there is a basis v1, . . . , vn for Λ such that (1) holds with

i) the aijs are integers

ii) aii > 0 for i = 1, . . . , n

iii)′ 0 ≤ aij < aii for 1 ≤ j < i ≤ n.

Proof:

A) Let D be the index of Λ1 in Λ. For each i with 1 ≤ i ≤ n there exist vectors

wi = ai1v1 + · · ·+ aiivi

in Λ1 with aij ∈ Z and aii > 0 since Dvi ∈ Λ1. We choose wi for i = 1, . . . , n in such a way that aii is
positive and as small as possible. Since w1, . . . , wn are in Λ1 we have b1w1 + · · ·+ bnwn in Λ1 for any
integers b1, . . . , bn.

We claim that w1, . . . , wn for a basis for Λ1.

If not then there is a vector z in Λ1 which is not of the form b1w1 + · · ·+ bnwn with b1, . . . , bn integers.
Then there exist integers c1, . . . , cn such that z = c1v1 + · · ·+ cnvn. We now choose z in Λ1 for which
the representation has ci+1 = · · · = cn = 0 with i minimal. In particular z = c1v1 + · · ·+ civi.

Let ci = qaii + r with 0 ≤ r < aii. Then

z − qwi = (c1 − qaii)v1 + · · ·+ rvi.

Note that z− qwi ∈ Λ1 and is an integer linear combination of v1, . . . , vi. Further note that r ̸= 0 since
i is minimal. But this contradicts the minimal choice of aii. Thus w1, . . . , wn forms a basis for Λ1.

It remains to check that iii) holds. To obtain iii) we replace wi by w′
i for i = 1, . . . , n where

w′
i = bi1w1 + · · ·+ bi,i−1wi−1 + wi,

with the bijs integers to be chosen. Note that w′
1, . . . , w

′
n is a basis for Λ1 and that

w′
i = a′i1v1 + · · ·+ a′iivi

with a′ii = aii for i = 1, . . . , n. Further for j < i we have

a′ij = bijajj + bi,j+1aj+1,j + · · ·+ bi,i−1ai−1,j + aij .

For each i we now choose bi,i−1, bi,i−2, . . . , bi,1 in that order so that 0 ≤ a′ij < ajj = a′jj as required.
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Theorem 1: Let Λ1 be a sublattice of Λ in Rn.

A) ✓
B) If w1, . . . , wn is a basis for Λ1, then there is a basis v1, . . . , vn of Λ such that (1) holds, i) and ii) hold,

and

iii)′ 0 ≤ aij < aii, for 1 ≤ j < i ≤ n.
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Proof B): Let w1, . . . , wn be a basis for Λ1.
Let D be the index of Λ1 in Λ. Recall that DΛ is a sublattice of Λ1. In particular, by part A), there is a basis
Dv1, . . . , Dvn of DΛ such that

Dv1 = a11w1

...

Dvn = an1w1 + · · ·+ annwn

with aij ∈ Z.

Put

A =

a11
...

. . .

an1 · · · ann



A

w1

...
wn

 = D

v1
...
vn


and so w1

...
wn

 = D · adjA

det(A)

v1
...
vn


Further,

adjA =

b11
...

. . .

bn1 · · · bnn


with bij ∈ Z. Note that wi can be expressed as a rational linear combination of v1, . . . , vn and that it is an
integral linear combination of v1, . . . , vn.

Thus we obtain (1) with i) holding. To obtain ii), it suffices to change the sign of vi if necessary, for i = 1, . . . , n.

Finally, to obtain iii)′, we replace vi by v′i, where

v′i = ci1v1 + · · ·+ ci,i−1vi−1 + vi

where the cijs are integers chosen as in A) to ensure iii)′.

Corollary 1: Let Λ be a lattice in Rn, and let w1, . . . , wm be linearly independent vectors of Λ. Then there
exists a basis v1, . . . , vn of Λ for which

w1 = a11v1

w2 = a21v1 + a22v2

...

wm = am1v1 + · · ·+ ammvm

with aijs in Z, aii > 0, and 0 ≤ aij < aii for 1 ≤ j < i ≤ m.

Proof: Extend w1, . . . , wm to a set of n linearly independent vectors w1, . . . , wn of Λ. Consider the sublattice
Λ1 generated by the basis w1, . . . , wm and apply Theorem 1.

Corollary 2: Let w1, . . . , wm be linearly independent vectors from a lattice Λ in Rn, with m < n. There
exist wm+1, . . . , wn in Λ such that w1, . . . , wn is a basis for Λ, if and only if every vector a1w1 + · · ·+ amwm

in Λ with ai ∈ R for i = 1, . . . , m has in fact ai ∈ Z for i = 1, . . . , m.

Proof: =⇒: immediate.
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⇐=: We apply Corollary 1 to get a basis v1, . . . , vn of Λ with

w1 = a11v1

...

wm = am1v1 + · · ·+ ammvm

aij ∈ Z, aii > 0

Thus, v1 = 1
a11

w1, and we get by hypothesis 1
a11

∈ Z, hence a11 = 11).

Next, w2 = a21v1 + a22v2, hence
1

a22
w2 = a21

a22
w1

2) + v2, =⇒ a22 = 1.
In this way, we find a11 = a22 = · · · = amm = 1.
Then w1, . . . , wm, vm+1, . . . , vn is a basis for Λ.

Corollary 3: Let v1, . . . , vn be a basis for Λ and let w = a1v1+ · · ·+anvn be in Λ, so ai ∈ Z for i = 1, . . . , n.
Let m be an integer with 1 ≤ m ≤ n− 1.
Then

v1, . . . , vm−1, w can be extended to a basis for Λ ⇐⇒ gcd(am, . . . , an) = 1.

Proof: =⇒: Let g = gcd(am, . . . , an).
If v1, . . . , vm−1, w can be extended by say wm+1, . . . , wn to a basis for Λ, then

w − a1v1 − · · · − am−1vm−1 = amvm + · · ·+ anvn

therefore
1
g (w − a1v1 − · · · − am−1vm−1) =

am

g vm + · · ·+ an

g vn.

Now, at

g ∈ Z, for t = m, . . . , n

Thus 1
gw − a1

g v1 − · · · − am−1

g vm−1 is in Λ. We now apply Corollary 2 to conclude 1
g ∈ Z, hence g = 1.

⇐=: We wish to find wm+1, . . . , wn in Λ for which v1, . . . , vm−1, w, wm+1, . . . , wn is a basis for Λ.
Then:

v1 = v1

...

vm−1 = vm−1

w = a1v1 + · · ·+ amvm + · · ·+ anvn

wm+1 = b1v1 + · · ·+ bmvm + · · ·+ bnvn bi ∈ Z
...

wn = z1v1 + · · ·+ zmvm + · · ·+ znvn zi ∈ Z

It suffices to show that we can choose the coefficients b1, . . . , bn, . . . , z1, . . . , zn as integers in such a way
that the associated coefficient matrix has determinant ±1. Notice that it is enough to show that the row
(am, . . . , an) can be extended to an (n−m+1)× (n−m+1) matrix with integer entries and determinant ±1.

Consider the standard lattice Λ0 in Rn−m+1. It now suffices to show that we can extend (am, . . . , an) to a
basis for Λ0. We appeal to Corollary 2. Notice that if α ∈ R with α ̸= 0, and α(am, . . . , an) is in Λ0, then
α ∈ Q, say α = p

q with p and q coprime non-zero integers.
Then (

pam
q

, . . . ,
pan
q

)
∈ Λ0

hence q | pam, . . . , q | pan, and so, since p and q are coprime, q | gcd(am, . . . , an).

1)a11 = ±1, a11 > 0
2)= v1
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Recall the standard dot product of two vectors v = (a1, . . . , an) and w = (b1, . . . , bn) in Rn, given by v · w =
a1b1 + · · ·+ anbn. Let v1, . . . , vn be a basis for a lattice Λ in Rn. Since v1, . . . , vn are linearly independent,
there exist vectors v∗1 , . . . , v

∗
n such that

v∗j · vi =

{
1 if i = j

0 if i ̸= j

v∗1 , . . . , v
∗
n are linearly independent, and they generate a lattice Λ∗ in Rn. Λ∗ is known as the polar lattice of

Λ, and one can show that it does not depend on the choice of basis for Λ.

Theorem 2: Let Λ be a lattice in Rn. The polar lattice Λ∗ of Λ consists of all vectors v∗ in Rn for which
v∗ · v for all v in Λ. Further,

d(Λ) · d(Λ∗) = 1.

Proof: If v1, . . . , vn is. . .

PMATH 944 Lecture 3: September 22, 2009
Theorem 2: Let Λ be a lattice. The polar lattice of Λ consists of the vectors v∗ such that v∗ · v is an integer
for all v in Λ. Λ is the polar lattice of Λ∗.

d(Λ)d(Λ∗) = 1

Proof: Let v1, . . . , vn be a basis for Λ and let v∗1 , . . . , v
∗
n be a basis for Λ∗.

If v is in Λ then there exist integers a1, . . . , an such that

v = a1v1 + · · ·+ anvn

while if v∗ is in Λ∗ then there exist integers b1, . . . , bn such that

v∗ = b1v
∗
1 + · · ·+ bnv

∗
n.

In particular

v∗ · v =

n∑
i=1

aibi

which is an integer.

Now let w be a vector for which w · v is an integer for all v in Λ. Then there exist integers c1, . . . , cn such
that w · vi = ci for i = 1, . . . , n.
Put v∗ = c1v

∗
1 + · · ·+ cnv

∗
n so v∗ ∈ Λ∗. But then

(w − v∗) · vi = 0 for i = 1, . . . , n.

But v1, . . . , vn are linearly independent in Rn and so w = v∗ hence w ∈ Λ∗.

By what we have just proved we now see that Λ is the polar lattice of Λ∗. Finally,

det(v∗1 , . . . , v
∗
n) · det(v1, . . . , vn) = 1,

and so
d(Λ∗)d(Λ) = 1.

Notice that if w = (y1, . . . , yn) is in Rn the set of x = (x1, . . . , xn) ∈ Rn for which x · w = 0 is given by
(x1, . . . , xn) for which

x1y1 + · · ·+ xnyn = 0

and so it determines a hyperplane in Rn.

Proposition 3: Let Λ be a lattice in Rn and let u be a vector in Rn. There exist n− 1 linearly independent
vectors w1, . . . , wn−1 in Λ with u ·wi = 0 for i = 1, . . . , n− 1 if and only if u = t ·w∗ with t ∈ R and w∗ ∈ Λ∗.
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Proof: =⇒: By Corollary 1 of Theorem 1 there is a basis v1, . . . , vn of Λ such that

wi = ai1v1 + · · ·+ aiivi with aij ∈ Z and aii ̸= 0

for i = 1, . . . , n− 1. Since u ·wi = 0 for i = 1, . . . , n we see that u · vi = 0 for i = 1, . . . , n− 1. Put u · vn = t,
for some t ∈ R. Observe that if v∗1 , . . . , v

∗
n is a polar basis for Λ∗ then u = tv∗n as required.

⇐=: If w∗ = 0 then u = 0 and so u · wi = 0 for i = 1, . . . , n− 1. Suppose w∗ ̸= (0, . . . , 0). Put w∗ = m · v∗1
where m is a positive integer and v∗1 is such that 1

k · v∗1 is not in Λ∗ for any integer k with k ≥ 2. (v∗1 is said
to be primitive for Λ∗.) By Corollary 2 of Theorem 1 we can extend v∗1 to a basis v∗1 , v

∗
2 , . . . , v

∗
n of Λ∗. Let

v1, . . . , vn be a basis for the polar lattice Λ of Λ∗. Then v∗1 · vj = 0 for j = 2, . . . , n and so w∗ · vj = 0 for
j = 2, . . . , n as required.

Remark: It follows from the proof of Proposition 3 that if w∗ ∈ Λ∗ then we can associate to it a lattice Λ(w∗)
in Rn−1 (with basis v2, . . . , vn).

Let U be the unit interval given by
U = { t ∈ R : 0 ≤ t < 1 },

and let Un be the unit n-cube given by

Un = { (x1, . . . , xn) ∈ Rn : 0 ≤ xi < 1 for i = 1, . . . , n }.

Let U
n
denote the closure of Un. For x = (x1, . . . , xn) ∈ Rn we denote

|x| = max
i=1,...,n

|xi|.

This is known as the house of x. If x = (x1, . . . , xn) ∈ Λ0 then we say that x is an integer point. For any set
T in Rn and x in Rn we define T + x by

T + x = {y + x : y ∈ T }.

Further for any λ ∈ R we define λT by
λT = {λy : y ∈ T }.

Theorem 4 (Blichfeldt, 1914): Let P be a non-empty set of points in Rn which is invariant by translation
by integer points and has precisely N points in Un.

Let A be a subset of Rn of positive Lebesgue measure µ(A). Then there is an x in Un such that A+x contains
at least N ·µ(A) points of P . Further if A is compact then there is an x in Un such that A+x contains more
than N · µ(A) points of P .

Proof: For any set S in Rn we let υ(S) be the number of points of P in S. Let p1, . . . , pN be the N points
of P in Un. We put

Pi = {pi + g : g ∈ Λ0 }

for i = 1, . . . , N . Since P is invariant by translation by integer points, or equivalently be elements of Λ0,

P =
N∪
i=1

Pi.

Further we have Pi ∩ Pj = ∅ for i ̸= j. Now for any S ⊆ Rn let υi(S) denote the number of points of Pi in S
for i = 1, . . . , N .

Let χ be the characteristic function of A3). Then

υi(A+ x) =
∑
g∈Λ0

χ(pi + g − x)

3)is 1 if argument is in A
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we have ∫
Un

υi(A+ x) dx =

∫
Un

∑
g∈Λ0

χ(pi + g − x) dx

=

∫
Rn

χ(z) dz

= µ(A)

Thus ∫
Un

υ(A+ x) dx = Nµ(A).

Therefore there is some element x in Un such that υ(A+x1) ≥ Nµ(A) and so A+x1 contains at least Nµ(A)
points of P .

If A is compact and Nµ(A) is not an integer there is nothing more to prove. Suppose Nµ(A) = h for h ∈ Z+.
For k = 1, 2, . . . we define Ak by

Ak = (1 + 1
k )A.

By what we have just proved for each positive integer k there is an xk in Un such that

υ(Ak + xk) ≥ h+ 1.

PMATH 944 Lecture 4: September 24, 2009
Blichfeldt’s theorem
It remains to consider the case when A is compact and Nµ(A) is an integer h. For k = 1, 2, . . . we put
Ak = (1 + 1

k )A. By what we have just proved there is a sequence of points xk ∈ Un, k = 1, 2, . . . for which

υ(Ak + xk) ≥ h+ 1

Since xk ∈ U
n
and U

n
is compact there is a subsequence xkj , j = 1, 2, . . . which converges to a point x in

U
n
. Since A is compact the sets Ak + xk are uniformly bounded and so contain only finitely many points of

P .

Each of the sets Akj + xkj contain at least h + 1 points of P and so we may assume by taking a further
subsequence that there are h + 1 points of P say u1, . . . , uh+1 which occur in each set Akj + xkj . A + x is
compact and in fact contains u1, . . . , uh+1 for if not then ui /∈ A+x for some i with 1 ≤ i ≤ h+1. But then
ui is a positive distance from ui to A + x and this can’t be since xkj → x and the distance from a point in
Akj to the nearest point in A tends to zero as kj → ∞. Thus A+x contains h+1 of the points of P . We now
choose g so that x− g ∈ Un and then A+ x− g then has h+ 1 points of P as required since P is invariant
by translation by integer points.

Let S ⊆ Rn. S is said to be symmetric about the origin (or symmetric) if whenever x ∈ S then −x ∈ S. S
is said to be convex if whenever x, y are in S and λ ∈ R with 0 ≤ λ ≤ 1 then λx + (1 − λ)y ∈ S. In other
words S is convex if whenever x and y are in S the line segment joining them is also in S.

Theorem 5 (Minkowski’s Convex Body Theorem, 1896) Let A be a convex subset of Rn which is symmetric
about the origin and has volume µ(A). If µ(A) > 2n or if A is compact and µ(A) ≥ 2n then A contains an
integer point different from the 0.

Proof: Notice that µ( 12A) > 1 or if A is compact µ( 12A) ≥ 1. By Blichfeldt’s Theorem applied to 1
2A where

P = Λ0, there exists an x in Un for which 1
2A + x contains two distinct integer points g1 and g2. Notice

that g1 − x and g2 − x are in 1
2A and so g1 − x = 1

2x1 and g2 − x = 1
2x2 for x1, x2 ∈ A. By symmetry,

−(g2 − x) = x− g2 = 1
2 (−x2) with −x2 ∈ A. Since A is convex 1

2x1 +
1
2 (−x2) is in A thus

g1 − x+ x− g2 = g1 − g2 ∈ A.

But g1 − g2 ∈ Λ0 and since g1 and g2 are distinct g1 − g2 ̸= 0.
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Remark: Note that Minkowski’s Convex Body Theorem is best possible in the sense that the conclusion does
not hold with 2n replaced by a smaller number as the example

A = { (t1, . . . , tn) ∈ Rn : |ti| < 1, i = 1, . . . , n }.

One can also check that the hypothesis of symmetry and convexity can’t be omitted.

Theorem 6 (Minkowski’s Linear Forms Theorem): Let B = (Bij) be an n × n matrix with real entries and
non-zero determinant. Let c1, . . . , cn be positive real numbers with c1 · · · cn ≥ |detB|. Then there exists an
integer point x = (x1, . . . , xn) different from 0 for which

|Bi,1x1 + · · ·+Bi,nxn| < ci for i = 1, . . . , n− 1

and
|Bn1x1 + · · ·+Bnnxn| ≤ cn.

Proof: Let L1(x), . . . , Ln(x) be linear forms given by

Li(x) = Bi1x1 + · · ·+Binxn for i = 1, . . . , n.

Next put,
L′
i(x) =

1
ci
Li(x) for i = 1, . . . , n.

Then we wish to solve the system

|L′
i(x)| < 1 for i = 1, . . . , n− 1

and
|L′

n(x)| ≤ 1.

The absolute value of the determinant of the matrix determined by the coefficients of L′
1, . . . , L

′
n is at most 1.

Thus we may assume that c1 = · · · = cn = 1 and 0 < |detB| ≤ 1.

Let A be the set of x ∈ Rn for which

|Li(x)| ≤ 1 for i = 1, . . . , n.

Certainly A is symmetric about the origin. Also A is convex since if x and y are in A then for any λ with
0 ≤ λ ≤ 1

|Li(λx+ (1− λ)y)| = |λ(Bi1x1 + · · ·+Binxn) + (1− λ)(Bi1y1 + · · ·+Binyn)|
≤ λ|Bi1x1 + · · ·+Binxn|+ (1− λ)|Bi1y1 + · · ·+Binyn|
≤ λ+ 1− λ = 1

Further we remark that

µ(A) =
1

|det(B)|
· µ
(
Ũn
)

where B = (Bij) and Ũn = { (t1, . . . , tn) ∈ Rn : |ti| ≤ 1 }. Therefore µ(A) ≥ 2n. By Minkowski’s Convex
Body Theorem there is an integer point x with x ̸= 0 in A.

Finally to get strict inequality in the first n − 1 inequalities we introduce for each ϵ > 0 the set Aϵ given by
the inequalities

|Li(x)| < 1 for i = 1, . . . , n− 1

and
|Ln(x)| < 1 + ϵ.

Then µ(Aϵ) ≥ (1 + ϵ)2n > 2n and so we may apply Minkowski’s Convex Body Theorem to find an integer
point xϵ in Aϵ with xϵ ̸= 0. Now take any sequence ϵk of positive reals which decreases to 0. Associated to

9



it we get a sequence xϵk of integer points different from 0. Since
∪∞

k=1 Aϵk is bounded there exists an integer
point x in infinitely many of the sets Aϵ hence x satisfies

|Li(x)| < 1 for i = 1, . . . , n− 1

and
|Ln(x)| ≤ 1.

PMATH 944 Lecture 5: September 29, 2009
Theorem 7: Let αij be real numbers, with 1 ≤ i ≤ n, 1 ≤ j ≤ m, and let Q be a real number with Q > 1.
Then there exist integers q1, . . . , qm and p1, . . . , pn with

0 < max
1≤j≤m

|qj | < Qn/m

and

|αi1q1 + · · ·+ αimqm − pi| ≤
1

Q
for i = 1, . . . , n.

(This was proved in 1842 by Dirichlet under the assumption that Q is an integer.)

We have the following consequence of Theorem 7:
Corollary: Let αij be real numbers with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Suppose that for some t with 1 ≤
t ≤ n, 1, αt1, . . . , αtm are linearly independent over the rationals. Then there exist infinitely many coprime
m+ n-tuples of integers (q1, . . . , qm, p1, . . . , pn) with q = max1≤j≤m|qj | > 0 and

|αi1q1 + · · ·+ αimqm − pi| <
1

qm/n
for i = 1, . . . , n. (2)

Proof: Take Q = 2. By Theorem 7 there exists a solution q1, . . . , qm, p1, . . . , pn of (2). We now divide
through by the gcd of q1, . . . , qm, p1, . . . , pn to give us a solution of (2) with a coprime m + n-tuple. Thus
we may suppose, without loss of generality, gcd(q1, . . . , qm, p1, . . . , pn) = 1. Let

|q1αt1 + · · ·+ qmαtm| = δt

and δt > 0 since 1, αt1, . . . , αtm are linearly independent over Q.

We now apply Theorem 7 with Q so that 1
Q < δt to get a new m + n-tuple satisfying (2). We remove the

gcd to make the m+ n-tuple coprime. Repeating this process gives us infinitely many coprime m+ n-tuples
satisfying (2).

Proof of Theorem 7: Put l = m+n and consider the l linear forms L1, . . . , Ll in x = (x1, . . . , xl) given by

Li(x) = xi for i = 1, . . . , m

and
Lm+j(x) = αj1x1 + · · ·+ αjmxm − xm+j for j = 1, . . . , n.

Note that the determinant of the matrix associated with L1, . . . , Ll is (−1)n.

Let Q > 1 and apply Minkowski’s Linear Forms Theorem to the system of inequalities:

|Li(x)| < Qn/m for i = 1, . . . , m (3)

and

|Lm+j(x)| ≤
1

Q
for j = 1, . . . , n (4)

to find a non-zero integer point x satisfying (3) and (4). We now put qi = xi for i = 1, . . . , m and pj = xm+j

for j = 1, . . . , n. Then
q = max

i
|qi| < Qn/m

10



and

|αj1q1 + · · ·+ αjmqm − pj | ≤
1

Q
.

It remains to check that q ̸= 0. Suppose otherwise. Then q1 = · · · = qm = 0 so

|pj | ≤
1

Q
for j = 1, . . . , n.

But Q > 1 so p1 = · · · = pn = 0 and this contradicts the fact that x is a non-zero point. The result follows.

Theorem 8: Let Λ be a lattice in Rn and let A be a convex set in Rn which is symmetric about the origin
and has volume greater than 2nd(Λ), or if A is compact has volume ≥ 2nd(Λ). Then A contains a point of Λ
different from 0.

Proof: Suppose v1, . . . , vn is a basis for Λ. Let vj = (αj1, . . . , αjn) for j = 1, . . . , n. Let T be the linear
transformation from Rn to Rn associated with the matrix (αij). Then Λ = TΛ0. Notice that µ(T−1A) =
d(Λ)−1µ(A) and that T−1A is a convex set which is symmetric about the origin. The result now follows from
Minkowski’s Convex Body Theorem.

Proposition 9: Let R be a positive real number and let n be a positive integer. The volume of the sphere

of radius R in Rn is ωnR
n where ωn = πn/2

Γ (1+n/2) .

Proof: If suffices to prove that ωn is the volume of the unit sphere given by{
(x1, . . . , xn) ∈ Rn : x2

1 + · · ·+ x2
n ≤ 1

}
.

We have ω1 = 2 and ω2 = π. We now proceed inductively. Suppose n ≥ 3. Then

ωn =

∫
x2
1+···+x2

n≤1

dx1 · · · dxn =

∫ 1

−1

∫ 1

−1

(∫
Rn−2

g(x1, . . . , xn)

)
dxn−1 dxn,

where g is the characteristic function of the unit sphere.4) Thus

ωn =

∫
x2
n−1+x2

n≤1

ωn−2(1− x2
n−1 − x2

n)
(n−2)/2 dxn−1 dxn

= ωn−2

∫
x2
n−1+x2

n≤1

(1− x2
n−1 − x2

n)
(n−2)/2 dxn−1 dxn

Change to polar coordinates (r, θ). Thus

ωn = ωn−2

∫ 2π

0

∫ 1

0

(1− r2)(n−2)/2r dr dθ

= 2πωn−2

∫ 1

0

(1− r2)(n−2)/2r dr

= 2πωn−2

[ 1
0
− 1

n (1− r2)n/2

=
2π

n
ωn−2

Thus

ω2n =
2π

2n
· 2π

2(n− 1)
· · · 2π

4
· 2π
2

=
πn

n!

while

ω2n+1 =
2π

2n+ 1
· 2π

2n− 1
· · · 2π

3
· 2 =

πn

(n+ 1
2 )(n− 1

2 ) · · ·
3
2 · 1

2

.

4)This not necessary; can ignore.
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The result follows on noting that Γ (x+ 1) = xΓ (x) for x > 0 and that Γ ( 12 ) =
√
π.

Theorem 10: Let Λ be a lattice in Rn. There is a non-zero element x ∈ Λ for which

0 < x · x = x2
1 + · · ·+ x2

n ≤ 4(ω−1
n d(Λ))2/n.

Proof: We apply Theorem 8 to the set

A =
{
x ∈ Rn : x2

1 + · · ·+ x2
n ≤ t

}
with t = 4(ω−1

n d(Λ))2/n. Then

µ(A) = ωnt
n/2 = ωn2

nω−1
n d(Λ)

= 2nd(Λ)

A is convex, symmetric about the origin and compact and the result now follows from Theorem 8.

PMATH 944 Lecture 6: October 1, 2009
Theorem 10 is close to the truth since Minkowski constructed for each n ∈ Z+ a lattice Λ in Rn for which

min
x∈Λ\{0}

x · x ≥ (ω−1
n d(Λ))2/n.

In particular Theorem 10 can’t be improved by more than a factor of 4. Rogers was able to improve on
Theorem 10 somewhat. He replaced 4ω−2/n in Theorem 10 by 4( σn

ωn
)2/n where σn is the quotient of two

geometrical figures with the property that σn ∼ n
e2n/2 as n → ∞. We have

ω−2/n
n ∼ n

2πe
, 4

(
σn

ωn

)2/n

∼ n

πe
, 4ω−2/n

n ∼ 2n

πe

How about other convex bodies of interest? For each λ ∈ R with λ > 0 define

A
(n)
λ = Aλ = { (x1, . . . , xn) ∈ Rn : |x1|+ · · ·+ |xn| ≤ λ }.

Thus in R2,

-

6
(0, λ)

(λ, 0)

(0,−λ)

(−λ, 0)

Aλ:

Define for n ∈ Z+

A
(n)
λ

+
= A+

λ =
{
(x1, . . . , xn) ∈ Rn : λ ≥ xi ≥ 0 for i = 1, . . . , n5)

}
The volume of Aλ is 2nλn times the volume of A+

1 .

µ(A+
1 ) =

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−x2−···−xn−1

0

dxn · · · dx1

=

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xn−2

0

(1− x1 − x2 − · · · − xn−1) dxn−1 · · · dx1

=

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xn−3

0

(1− x1 − x2 − · · · − xn−2)
2

2
dxn−2 · · · dx1

5)Also require x1 + · · ·+ xn ≤ λ (correction from next class).
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Notice that ∫ u

0

(u− x)n

n!
dx =

[u

0

− (u− x)n+1

(n+ 1)!
=

un+1

(n+ 1)!
.

Therefore

µ(A+
1 ) =

1

n!
so

µ(A
(n)
λ ) =

2nλn

n!
.

Further observe that A
(n)
λ is symmetric about the origin. Furthermore it is convex since if γ is a real number

with 0 ≤ γ ≤ 1 and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Aλ then

γx+ (1− γ)y = (γx1 + (1− γ)y1, . . . , γxn + (1− γ)yn) ∈ Aλ

since

|γx1 + (1− γ)y1|+ · · ·+ |γxn + (1− γ)yn| ≤ γ(|x1|+ · · ·+ |xn|) + (1− γ)(|y1|+ · · ·+ |yn|)
≤ γλ+ (1− γ)λ = λ.

Theorem 11: Let Λ be a lattice in Rn. Then there is a non-zero point x = (x1, . . . , xn) in Λ with

|x1|+ · · ·+ |xn| ≤ (n! d(Λ))1/n.

Proof: We apply Theorem 8 to the set A
(n)
λ where λ = (n! d(Λ))1/n. Then the volume of A

(n)
λ is 2nd(Λ). The

set is convex, symmetric about 0 and compact and so the result follows.

We may apply Theorem 8 to sets which contain sets which are convex, symmetric, and of large enough volume.
In this connection we introduce for each n ∈ Z+ and λ ∈ R, λ ≥ 0,

B
(n)
λ = { (x1, . . . , xn) ∈ Rn : |x1 · · ·xn| ≤ λn }.

B
(n)
λ is not convex. However we can appeal to the arithmetic–geometric mean inequality: Given non-negative

real numbers x1, . . . , xn we have

(x1 · · ·xn)
1/n ≤ x1 + · · ·+ xn

n
.

Thus B
(n)
λ contains A

(n)
nλ and A

(n)
nλ is convex.

Theorem 12: Let C = (cij) be a non-singular n× n matrix with entries from R and put

Li(x) = ci1x1 + · · ·+ cinxn for i = 1, . . . , n.

Then there exists an integer point x different from 0 for which

|L1(x) · · ·Ln(x)| ≤
n!

nn
|det(C)|.

Proof: We apply Theorem 11 with the lattice Λ determined by the row vectors of C and the region B
(n)
λ

where λ = (n! det(C))1/n

n . Since B
(n)
λ contains A

(n)
nλ the result follows.

Let Λ1 be a sublattice of a lattice Λ in Rn. We can put an equivalence relation ∼ (∼Λ1) on Λ by the rule
x1 ∼ x2 if and only if x1 − x2 ∈ Λ1. ∼ is an equivalence relation on Λ and it partitions Λ into a finite set of
equivalence classes.

Proposition 13: Let Λ1 be a sublattice of a lattice Λ in Rn. The index of Λ1 in Λ is the number of equivalence
classes of Λ under ∼Λ1 .

Proof: By Theorem 1 we can find bases v1, . . . , vn for Λ and w1, . . . , wn for Λ1 of the form given in Theorem 1.
Then the index is

∏n
i=1 aii. We claim that every vector u in Λ is equivalent to precisely one of q1v1+ · · ·+qnvn

with 0 ≤ qi < aii for i = 1, . . . , n. This will prove the result.
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Let u = u1v1 + · · · + unvn ∈ Λ. First we shift u by a multiple wn to find an equivalent vector with nth
coordinate in the range 0 ≤ qn < an,n. Next we subtract a multiple wn−1 from this vector to get qn−1 in
the range 0 ≤ qn−1 < an−1,n−1. Continuing in this way we see that u is equivalent to a vector of the form
q1v1 + · · · + qnvn with 0 ≤ qi < aii for i = 1, . . . , n. It remains to show that no two vectors of the form
q1v1 + · · ·+ qnvn with 0 ≤ qi < aii for i = 1, . . . , n are equivalent under ∼.

PMATH 944 Lecture 7: October 6, 2009
Corrections: Addition of absolute values to |det(C)| in Theorem 12.

(A
(n)
λ )+ = { (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n, x1 + · · ·+ xn ≤ λ }

Proposition 13: . . .
Every vector in Λ is equivalent to a vector of the form q1v1 + · · ·+ qnvn with 0 ≤ qi < aii for i = 1, . . . , n.

Finally we should show that all vectors of the above form are inequivalent. So suppose two are equivalent,
their difference r1v1 + · · · + rnvn is in Λ1 with |ri| < aii for i = 1, . . . , n. Let j be the largest integer for
which rj ̸= 0. Then we replace wj in the basis w1, . . . , wn of Λ1 by wj minus a multiple of r1v1 + · · ·+ rnvn

so that the resulting basis is in lower triangular form but with ajj replaced by a smaller non-negative integer.
The final reduction (to Hermite normal form) doesn’t change the diagonal. But the resulting determinant is
different which gives a contradiction. Therefore the index is

∏n
i=1 aii.

Let A be a convex subset of Rn which is symmetric about the origin and of finite volume. Let Λ be a lattice
in Rn. Minkowski introduced the successive minima λ1, . . . , λn associated with Λ and A by putting

λj = inf{λ ∈ R : λA contains j linearly independent vectors of Λ }.

Then
0 < λ1 ≤ λ2 ≤ · · · ≤ λn < ∞.

Minkowski, in what is known as Minkowski’s Second Theorem on Convex Bodies proved that

2nd(Λ)

n!
≤ λ1 · · ·λnµ(A) ≤ 2nd(Λ).6)

We won’t give a proof: the upper bound is tricky.

The result is sharp in the sense that neither the upper bound or the lower bound can be improved in general.

Take any positive real numbers γ1, . . . , γn with 0 < γ1 ≤ γ2 ≤ · · · ≤ γn < ∞. Consider the lattice generated
by

(γ1, 0, . . . , 0), (0, γ2, 0, . . . , 0), . . . , (0, . . . , 0, γn).

Let A be the cube A = { (x1, . . . , xn) ∈ Rn : |xi| ≤ 1, i = 1, . . . , n }. “Plainly” λi(A,Λ) = λi = γi for
i = 1, . . . , n. Further d(Λ) = γ1 · · · γn. Thus

λ1 · · ·λnµ(A) = γ1 · · · γn2n = 2nd(Λ),

so the upper bound is sharp.

If we now take A = A
(n)
1 = {x ∈ Rn : |x1|+ · · ·+ |xn| ≤ 1 } then

λi(A,Λ) = λi = γi for i = 1, . . . , n as before.

We have

λ1 · · ·λnµ(A) = γ1 · · · γn
2n

n!
=

2n

n!
d(Λ)

and so the lower bound is sharp.

Sometimes it is useful to have another characterization of a lattice.

6)upper bound implies λn
1µ(A) ≤ 2nd(Λ) =⇒ Minkowski’s Convex Body Theorem
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Theorem 14: A subset Λ of Rn is a lattice in Rn if and only if

i) If a, b are in Λ the a+ b and a− b are in Λ.

ii) Λ contains n linearly independent points a1, . . . , an.

iii) Λ is a discrete set, in other words it has no limit points.

Proof: (=⇒) Follows immediately from the definition of a lattice.

(⇐=) We prove this by induction on n. For n = 1 we note by ii) that Λ contains a non-zero point a. By i) Λ
contains 0 and −a. Further since Λ is discrete there is a smallest positive real number a in Λ. Then by i)

Λ = { ga : g ∈ Z }

as required.

Suppose the result holds for dimension n − 1 with n ≥ 2. We may choose our coordinate system in Rn

so that n − 1 linearly independent points of Λ lie in a subspace of the form Rn−1 × {0} so xn = 0. Then
Λ′ = Λ ∩ Rn−1 × {0} projects down to a subset of Rn−1 which is a lattice by our inductive hypothesis. Let
b1, . . . , bn−1 be a basis for Λ′. Then Λ contains a point of the form bn = (b1n, . . . , bnn) with bnn > 0. In
fact there is a point bn of this form with bnn minimal. Suppose otherwise. Then we can find a sequence

b
(j)
n = (b

(j)
1n , . . . , b

(j)
nn) in Λ with b

(j)
nn > 0 and

b(j)nn → 0 as j → ∞.

But we can translate b
(j)
n by some linear combination of b1, . . . , bn−1 so that (b

(j)
1,n, . . . , b

(j)
n−1,n, 0) are in the

compact set
{λ1b1 + · · ·+ λn−1bn−1 : |λi| ≤ 1 }

so thus the b
(j)
n s are all in a compact set and so have a limit point contradicting the fact that Λ is discrete.

We now claim that every element of Λ is an integer linear combination of b1, . . . , bn. Let d ∈ Λ with
d = (d1, . . . , dn). Then

d′ = d−
[
dn
bnn

]
bn ∈ Λ.

The nth coordinate of d′ is non-negative and smaller than bnn. Therefore it is 0. Thus d′ ∈ Λ′ and so is an
integer linear combination of b1, . . . , bn−1. Therefore d is an integer linear combination of b1, . . . , bn. Thus
Λ is a lattice basis b1, . . . , bn and the result follows.

Proposition 15: Let n, m, k1, . . . , km be positive integers and let aij , i = 1, . . . , m, j = 1, . . . , n be integers.
The set Λ of points u = (u1, . . . , un) in Rn with integral coordinates satisfying

n∑
j=1

aijuj ≡ 0 (mod ki) for i = 1, . . . , m

is a lattice in Rn with d(Λ) ≤ k1 · · · km.

PMATH 944 Lecture 8: October 8, 2009
Proposition 15: Let n, m, k1, . . . , km be positive integers and let aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) be integers.
The set Λ of points u = (u1, . . . , un) with integer coordinates satisfying

n∑
j=1

aijuj ≡ 0 (mod ki) for i = 1, . . . , m

is a lattice with determinant d(Λ) ≤ k1 · · · km.

Proof: First we remark that Λ is a subset of Λ0 and so is discrete. Next we observe that

(k1 · · · km, 0, . . . , 0), (0, k1 · · · km, 0, . . . , 0), . . . , (0, . . . , 0, k1 · · · km)
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are n linearly independent points in Λ. Finally we have that if u = (u1, . . . , un) and v = (v1, . . . , vn) are in Λ
then u+ v are in Λ since

n∑
j=1

aij(uj ± vj) ≡
( n∑

j=1

aijuj

)
±
( n∑

j=1

aijvj

)
≡ 0± 0 ≡ 0 (mod ki) for i = 1, . . . , m.

Thus by Theorem 14, Λ is a lattice in Rn and so is a sublattice of Λ0.

Let I denote the index of Λ in Λ0. Then I = d(Λ)
d(Λ0)

. But d(Λ0) = 1 and so I = d(Λ). It remains to estimate

the index of Λ in Λ0. By Proposition 13 this is the number of equivalence classes of Λ0 under ∼Λ. Notice that
u, v ∈ Λ0 are equivalent if u− v ∈ Λ hence, with u = (u1, . . . , un) and v = (v1, . . . , vn), if

n∑
j=1

aij(uj − vj) ≡ 0 (mod ki) for i = 1, . . . , m.

Thus I = d(Λ) ≤ k1 · · · km.

Theorem 16: (Lagrange’s Theorem). Every positive integer can be expressed as the sum of four squares of
integers.

Proof:We may restrict our attention, without loss of generality, to integersm withm > 1 which are squarefree.
Let m = p1 · · · pr with p1, . . . , pr distinct primes.

We now remark that for every prime p there exist integers ap and bp for which

a2p + b2p + 1 ≡ 0 (mod p).

If p = 2 we take ap = 1, bp = 0. If p is odd then the integers a2 with 0 ≤ a < 1
2p are distinct mod p. (Consider

a21 − a22 = (a1 − a2)(a1 + a2) (mod p).) Similarly the integers −1 − b2 with 0 ≤ b < 1
2p are distinct mod p.

Therefore, since 1
2 (p + 1) + 1

2 (p + 1) > p there must exist integers ap and bp with a2p ≡ −1 − b2p (mod p) as
required.

We define the lattice Λ in R4 as the set of points (u1, u2, u3, u4) with integer coordinates satisfying

and

u1 ≡ apiu3 + bpiu4 (mod pi)

u2 ≡ bpiu3 − apiu4 (mod pi).
for i = 1, . . . , r

Further d(Λ) ≤ (p1 · · · pr)2 = m2.

Let A =
{
(x1, x2, x3, x4) ∈ R4 : x2

1 + x2
2 + x2

3 + x2
4 < 2m

}
. A is the sphere of radius

√
2m in R4. Thus it is

a convex set which is symmetric about the origin and it has volume π2

2 (
√
2m)4 = 2π2m2. Since 2π2m2 >

24m2 ≥ 24d(Λ) there is a non-zero point (u1, u2, u3, u4) of Λ in A by Theorem 8. In particular

0 < u2
1 + u2

2 + u2
3 + u2

4 < 2m. (5)

But

u2
1 + u2

2 + u2
3 + u2

4 ≡ (apiu3 + bpiu4)
2 + (bpiu3 − apiu4)

2 + u2
3 + u2

4 (mod pi)

≡ (a2pi
+ b2pi

+ 1)u2
3 + (a2pi

+ b2pi
+ 1)u2

4 (mod pi)

≡ (a2pi
+ b2pi

+ 1)(u2
3 + u2

4) (mod pi)

≡ 0 (mod pi) for i = 1, . . . , r

By the Chinese Remainder Theorem

u2
1 + u2

2 + u2
3 + u2

4 ≡ 0 (mod m).

By (5), u2
1 + u2

2 + u2
3 + u2

4 = m as required.
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In many combinatorial settings it is important to find short vectors in a lattice in an efficient way. Finding
the shortest vector in a given lattice, with respect to the usual Euclidean distance, is a difficult problem, it is
NP-hard as shown by Ajtai. However, if we look for only a “short” vector in the lattice we can do so efficiently.
The algorithm we use is the L3-algorithm. Here L3 stands for Lenstra, Lenstra, and Lovász.

Let b1, . . . , bn be a basis for a lattice Λ in Rn. Let (·, ·) denote the usual inner product in Rn. The Gram–
Schmidt orthogonalization produces orthogonal vectors b̃1, . . . , b̃n and real numbers µij with (1 ≤ j < i ≤ n)
inductively by

b̃i = bi −
i−1∑
j=1

µij b̃j and µij =
(bi, b̃j)

(b̃j , b̃j)
.

Note that b̃i is the projection of bi on the orthogonal complement of Sp{b̃1, . . . , b̃i−1}. Further Sp{b1, . . . , bi} =
Sp{b̃1, . . . , b̃i} for i = 1, . . . , n.
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Let b1, . . . , bn be linearly independent vectors in Rn. Apply Gram–Schmidt to get

b̃1, . . . , b̃n orthogonal linearly independent vectors in Rn.

b̃i is the projection of bi on the orthogonal complement of Sp{b1, . . . , bi−1}. Further

Sp{b1, . . . , bi} = Sp{b̃1, . . . , b̃i} for i = 1, . . . , n.

Definition: A basis b1, . . . , bn for a lattice Λ in Rn is said to be reduced if

i) |µij | ≤ 1
2 for 1 ≤ j < i ≤ n

ii) |b̃i + µi,i−1b̃i−1|2 ≥ 3
4 |b̃i−1|2 for 2 ≤ i ≤ n.

Here |x| is the Euclidean length of x, so |x|2 = x · x.

Remarks

1. The vectors b̃i + µi,i−1b̃i−1 and b̃i−1 are the projections of bi and bi−1 respectively on the orthogonal
complement of Sp{b1, . . . , bi−2}.

2. The constant 3
4 is somewhat arbitrary, it could have been replaced by y for any y with 1

4 < y < 1.

Objective:

1. Describe properties of a reduced basis for a lattice Λ.

2. Give an algorithm (the L3-algorithm) for efficiently transforming a basis to a reduced basis.

Proposition 17: Let b1, . . . , bn be a reduced basis for a lattice Λ in Rn and let b̃1, . . . , b̃n be the vectors
obtained be applying the Gram–Schmidt process. Then

i) |bj |2 ≤ 2i−1|b̃i|2 for 1 ≤ j ≤ i ≤ n

ii) d(Λ) ≤ |b1| · · · |bn| ≤ 2n(n−1)/4d(Λ)

iii) |b1| ≤ 2(n−1)/4d(Λ)1/n

Proof: By the definition of a reduced basis

|b̃i + µi,i−1b̃i−1|2 ≥ 3
4 |b̃i−1|2 with |µi,i−1| ≤ 1

2 .

Thus

|b̃i + µi,i−1b̃i−1|2 = (b̃i + µi,i−1b̃i−1, b̃i + µi,i−1b̃i−1)

= |b̃i|2 + µ2
i,i−1|b̃i−1|2, for i = 2, . . . , n.
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Thus

|b̃i|2 = |b̃i + µi,i−1b̃i−1|2 − µ2
i,i−1|b̃i−1|2

≥
(
3
4 − µ2

i,i−1

)
|b̃i−1|2

≥ 1
2 |b̃i−1|2

or equivalently |b̃i−1|2 ≤ 2|b̃i|2.

Thus, by induction,
|b̃j |2 ≤ 2i−j |b̃i|2 for 1 ≤ j ≤ i ≤ n. (6)

Now

|bi|2 = |b̃i|2 +
i−1∑
j=1

µ2
ij |b̃j |

2

≤ |b̃i|2
(
1 +

i−1∑
j=1

1
42

i−j

)
≤ |b̃i|2

(
1 + 1

4 (2
i − 2)

)
so

|bi|2 ≤ 2i−1|b̃i|2 for i = 1, . . . , n. (7)

Thus, by (6) and (7),

|bj |2 ≤ 2j−1|b̃j |2 ≤ 2j−1 · 2i−j |b̃i|2 = 2i−1|b̃i|2 for 1 ≤ j ≤ i ≤ n

and this proves i).

Note that d(Λ) = |det(b1, . . . , bn)| and so by Hadamard’s inequality,

d(Λ) ≤ |b1| · · · |bn|.

By construction
d(Λ) = |det(b1, . . . , bn)| = |det(b̃1, . . . , b̃n)|.

But b̃1, . . . , b̃n are orthogonal and so

d(Λ) = |det(b̃1, . . . , b̃n)| = |b̃1| · · · |b̃n|.

By i)
|bi| ≤ 2(i−1)/2|b̃i| for 1 ≤ i ≤ n.

and so
|b1| · · · |bn| ≤ 20 · 21/2 · · · 2(n−1)/2|b̃1| · · · |b̃n| = 2n(n−1)/4d(Λ)

and this proves ii).

To prove iii) we apply i) with j = 1. Then

|b1| ≤ 2(i−1)/2|b̃i|, for i = 1, . . . , n.

Thus
|b1| ≤ 2(n−1)/4d(Λ)1/n.

Proposition 18: Let b1, . . . , bn be a reduced basis for a lattice Λ in Rn. Then for any vector x in Λ with
x ̸= 0 we have

|b1|2 ≤ 2n−1|x|2
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Proof: Write x = g1b1 + · · ·+ gnbn with g1, . . . , gn integers and

x = λ1b̃1 + · · ·+ λnb̃n

with λ1, . . . , λn real numbers. Let i be the largest index for which gi ̸= 0. Then by construction λi = gi.
Thus

|x|2 ≥ λ2
i |b̃i|

2 ≥ |b̃i|2

and by Proposition 17 i),

2i−1|x|2 ≥ 2i−1|b̃i|2 ≥ |b1|2

are required.

Proposition 19: Let b1, . . . , bn be a reduced basis for a lattice Λ in Rn. Let x1, . . . , xt be t linearly
independent vectors from Λ. Then

|bj |2 ≤ 2n−1 max{|x1|2, . . . , |xt|2} for j = 1, . . . , t.

Proof: Write xj = g1jb1 + · · ·+ gnjbn with gij ∈ Z for 1 ≤ j ≤ t, 1 ≤ i ≤ n. For each j let i(j) be the largest
index for which gij is non-zero. Just as in the proof of Proposition 18

|xj |2 ≥ |b̃i(j)|
2
.

Renumber the xjs so that i(1) ≤ i(2) ≤ · · · ≤ i(t). Observe that j ≤ i(j) since otherwise x1, . . . , xj would
be in Sp{b1, . . . , bj−1} which contradicts the assumption that x1, . . . , xj are linearly independent. Thus by
Proposition 17 i),

|bj |2 ≤ 2i(j)−1|b̃i(j)|
2 ≤ 2i(j)−1|xj |2 for j = 1, . . . , t.

Since i(j) ≤ n our result follows.

We now describe the L3-algorithm for transforming a basis b1, . . . , bn for a lattice Λ in Rn to a reduced basis
for Λ. The first step is to apply Gram–Schmidt and compute b̃1, . . . , b̃n and the µijs. During the course of

the algorithm we will change the bjs and each time we recompute the b̃js and the µijs.

At each step of the algorithm there is a current subscript k with k in {1, . . . , n+ 1}. We start with k = 2.

We shall now iterate a sequence of steps which starts from and returns to a situation where the following
conditions are satisfied

1) µij ≤ 1
2 for 1 ≤ j < i < k

and

2) |b̃i + µi,i−1b̃i−1| ≥ 3
4 |b̃i−1|2 for 1 < i < k

Note that 1) and 2) hold for k = 2.
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k ∈ {1, . . . , n+ 1}. Start with k = 2.
Return to situation:

1) |µij | ≤ 1
2 for 1 ≤ j < i < k

and

2) |b̃i + µi,i−1b̃i−1|2 ≥ 3
4 |b̃i−1|2 for 1 < i < k.

Plainly 1) and 2) hold when k = 2.

If k = n+ 1 then the basis is reduced and the algorithm terminates. If 1 < k ≤ n then we first achieve

|µk,k−1| ≤ 1
2 . (8)

If (8) does not hold then let r be the closest integer to µk,k−1 and replace bk by bk − rbk−1 in our basis.
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This has the effect of replacing µk,k−1 by µk,k−1 − r and |µk,k−1 − r| ≤ 1
2 . The numbers µkj with j < k − 1

are replaced by µkj − rµk−1,j . The other µijs and bis with i different from k and k − 1 with i ≤ k are not
changed. We may now assume that (8) holds.

We now distinguish two cases:
Case 1: If k ≥ 2 and

|b̃k + µk,k−1b̃k−1|2 < 3
4 |b̃k−1|2

then we interchange bk and bk−1 in our basis (so i ̸= k, k − 1). We leave the other bis unchanged. Notice
that b̃k, b̃k−1 and the numbers µk,k−1, µk−1,j , µkj , µik, µi,k−1 for j < k− 1 and i > k are changed. let us call
our new basis c1, . . . , cn so that ci = bi for i ̸= k, k − 1 and ck−1 = bk, ck = bk−1. Note that c̃k−1 is the
projection of bk on the orthogonal complement of the span of {b1, . . . , bk−2} and so c̃k−1 = b̃k + µk,k−1b̃k−1.
Therefore

|c̃k−1|2 < 3
4 |b̃k−1|2.

In particular the “new” |b̃k−1|2 is less than 3
4 of the “old” |b̃k−1|2. We now replace k by k − 1 and return to

the start of the algorithm.
Case 2: If k = 1 or

|b̃k + µk,k−1b̃k−1|2 ≥ 3
4 |b̃k−1|2

then we achieve |µkj | ≤ 1
2 for 1 ≤ j ≤ k− 1; we replace k by k+1 and we return to the start of the algorithm.

To achieve |µkj | ≤ 1
2 for 1 ≤ j ≤ k − 1 we do the following. First note that µk,k−1 ≤ 1

2 . Then let l be the
largest integer with 1 ≤ l < k − 1 for which |µkl| > 1

2 . Let r be the integer closest to µkl and replace bk by
bk − rbl. Note that µkl is then replaced by µkl − r and |µkl − r| ≤ 1

2 .

We now recalculate µk,j for j < l. We then repeat the process until we have

|µkj | ≤ 1
2 for 1 ≤ j ≤ k − 1.

We shall now show that the algorithm terminates after only finitely many steps. We introduce the quantities
for 1 ≤ i ≤ n.

di = det((bj , bl)) for 1 ≤ j ≤ i, 1 ≤ l ≤ i

= det((b1, . . . , bi) · (b1, . . . , bi)tr)
= det((b̃1, . . . , b̃i) · (b̃1, . . . , b̃i)tr)

since the determinant does not change if we add a multiple of one row to another. We put D =
∏n

i=1 di. Note
that dn = d(Λ)2. Further,

di = (|b̃1| · · · |b̃i|)2 = det((b̃1, . . . , b̃i) · (b̃1, . . . , b̃i)tr)
= det((b1, . . . , bi) · (b1, . . . , bi)tr)
= d(Λi)

2

where Λi is the lattice generated by b1, . . . , bi in the i-dimensional subspace of Rn spanned by these vectors.
Note that D changes only if one of the b̃is changes and this only occurs in case 1. Further in case 1 we
interchange bk and bk−1. Since di = (|b̃1| · · · |b̃i|)2 we see that di only changes when i = k − 1 in which case
it gets smaller by a factor of at least 3/4. Further D is smaller by a factor of at least 3/4. To complete our
argument we’ll show that D is bounded from below in terms of Λ.

Put m(Λ) = min{x · x : x ∈ Λ, x ̸= 0 }. By Theorem 10,

m(Λi) ≤ 4(ω−1
i d(Λi))

2/i

hence
di ≥ m(Λi)

i4−iω2
i .

Since m(Λi) ≥ m(Λ),
di ≥ m(Λ)i4−iω2

i , for i = 1, . . . , n.
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Thus

D = d1 · · · dn ≥
(
m(Λ)

4

)n(n+1)/2

(ω1 · · ·ωn)
2

as required.

Therefore we can pass through case 1 only finitely many times. In case 1, k decreases by 1. In case 2, k
increases by 1 and so after finitely many steps k = n+ 1 and our algorithm terminates.

In fact the algorithm is efficient. Lenstra, Lenstra, and Lovász proved that if Λ is a sublattice of Λ0 with basis
b1, . . . , bn and if B is a real number with B ≥ 2 and

|bi|2 ≤ B for i = 1, . . . , n

then the number of arithmetical operations needed for the L3-algorithm is O(n4 logB) and the integers on
which these operations are performed have binary length O(n logB). By an arithmetical operation I mean an
addition, subtraction, multiplication, or division, and by the binary length of an integer n, I mean the length
or number of digits in the base 2 expansion of n. The algorithm runs in polynomial time in terms of B.
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The L3-algorithm can be used to find a short vector in a lattice Λ. We just put a basis for the lattice in
reduced form b1, . . . , bn. Then b1 is a short vector in Λ.

Let α1, . . . , αn be in R and let ϵ be a real number with 0 < ϵ < 1. How do we produce efficiently a positive
integer q and integers p1, . . . , pn for which

|qαi − pi| < ϵ for i = 1, . . . , n,

with 1 ≤ q ≤ 2n(n+1)/4ϵ−n?

If α1, . . . , αn and ϵ are in Q then we can use L3 to find q in polynomial time in terms of the input. First
recall, by Theorem 7, on taking ϵ = 1

Q , that such a q exists with

1 ≤ q ≤ ϵ−n.

We consider the lattice Λ generated by the rows of the matrix

n+1



n+1︷ ︸︸ ︷
1 0 · · · 0 0
0 1 0 0
...

. . .
...

0 0 1 0
α1 α2 · · · αn δ

 where δ = 2−n(n+1)/4ϵn+1.

Note that d(Λ) = δ. By L3 we can find a small non-zero vector b (= b1) in the lattice with

b = (qα1 − p1, qα2 − p2, . . . , qαn − pn, qδ)

where q and p1, . . . , pn are integers. Note that we may suppose that q ≥ 0 by replacing b by −b if necessary.
Further by Proposition 17 iii), we can find b with

|b| ≤ 2n/4d(Λ)1/(n+1) = 2n/4δ1/(n+1) = 2n/4 · 2−n/4ϵ = ϵ.

Since |b| ≤ ϵ and ϵ < 1 we see that q ̸= 0 since in that case |b| = |(p1, . . . , pn, 0)| ≥ 1 since p1, . . . , pn are not
all zero as we have supposed b ̸= 0. Thus

1 ≤ q ≤ 2n(n+1)/4ϵ−n.
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What if we want to find a small linear form with integer coefficients in α1, . . . , αn? Given ϵ with 0 < ϵ < 1
how do we find efficiently integers q1, . . . , qn and p such that

|q1α1 + · · ·+ qnαn − p| < ϵ

and with
1 ≤ max

i
|qi| ≤ 2(n+1)/4ϵ−1/n?

Again by Theorem 7 the objective is best possible up to the factor 2(n+1)/4.

We consider the lattice Λ generated by the rows of the matrix
1 0 · · · 0
α1 δ 0
...

. . .

αn 0 δ

 where δ =

(
ϵ1/n

21/4

)n+1

.

A typical vector b in Λ is of the form

(q1α1 + · · ·+ qnαn − p, q1δ, q2δ, . . . , qnδ)

with q1, . . . , qn and p integers. By L3 we can find a non-zero vector b in Λ of this form with |b| ≤
2n/4d(Λ)1/(n+1), and since d(Λ) = δn =

(
ϵ

2n/4

)n+1
we see that

|b| ≤ 2n/4 · ϵ

2n/4
= ϵ.

Further since b ̸= 0 and ϵ < 1 we have 0 < |b| < 1 hence q1, . . . , qn are not all zero and so

0 < max
i

|qi|.

Finally suppose that αij (1 ≤ i ≤ n, 1 ≤ j ≤ m) are all real numbers and that ϵ is a real number with
0 < ϵ < 1. Consider the lattice Λ generated by the rows of the matrix

1
. . .

1
α11 · · · αn1 δ
...

...
. . .

α1m · · · αnm δ


7).

Note that d(Λ) = δm = (2−(n+m−1)/4 · ϵ)n+m.

By L3 there is a non-zero vector b in Λ with

|b| ≤ δm/(m+n)2(n+m−1)/4

= 2−(n+m−1)/4 · ϵ · 2(n+m−1)/4 = ϵ.

We have

b = (q1α11 + q2α12 + · · ·+ qmα1m − p1,

q1α21 + q2α22 + · · ·+ qmα2m − p2, . . . , q1αn1 + · · ·+ qmαnm − pn, q1δ, q2δ, . . . , qmδ)

with q1, . . . , qm and p1, . . . , pn integers. Then

|q1αi1 + · · ·+ qmαim − pi| < ϵ for i = 1, . . . , n

7)an m+ n×m+ n matrix where δ = (2−(n+m−1)/4 · ϵ)n/m+1

22



and |qjδ| < ϵ for j = 1, . . . , m so |qj | < δ−1ϵ = 2(
n+m−1

4 )(n+m
m )ϵ−n/m. Further, as before the qis are not all

zero.

Theorem 7 tells us that we can make linear forms in the αijs with integer coefficients which are simultaneously
close to integers. L3 gives us an efficient method for finding the associated integer coefficients. Can we do
better than Theorem 7? Not for real numbers in general, but for algebraic numbers αij we can say more. It
follows from work of Schmidt that:

Theorem 20: Let 1, α1, . . . , αn be real algebraic numbers which are linearly independent over Q. Let δ > 0.
There are only finitely many n-tuples of non-zero integers q1, . . . , qn with

|q1 · · · qn|1+δ∥q1α1 + · · ·+ qnαn∥ < 1,

where for any real number x, ∥x∥ denotes the distance from x to the nearest integer.

Applying Theorem 20 to all finite subsets of {α1, . . . , αn} we deduce the following:

Corollary: Let 1, α1, . . . , αn be real algebraic numbers which are linearly independent over Q. Let δ > 0.
There are only finitely many n+ 1-tuples of integers q1, . . . , qn, p with q = maxi|qi| > 0 for which

|α1q1 + · · ·+ αnqn − p| < 1

qn+δ
.

Note the special case n = 1 is Roth’s Theorem.
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Corollary: Let 1, α1, . . . , αn be real algebraic numbers which are Q-linearly independent. Let δ > 0. There
are only finitely many n+ 1-tuples of integers q1, . . . , qn and p with q = maxi|qi| > 0 for which

|α1q1 + · · ·+ αnqn − p| < 1

qn+δ
.

The special case when n = 1 is due to Roth. In particular, let δ > 0, if α is an algebraic number then there
are only finitely many rationals p/q with q > 0 for which∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
.

=⇒ Thue equations such as x3−2y3 = 6, have only finitely many solutions in integers x and y. Roth obtained
the Fields Medal in 1958. Schmidt also proved:
Theorem 21: Suppose that α1, . . . , αn are real algebraic numbers with 1, α1, . . . , αn Q-linearly independent.
Let δ > 0. There are only finitely many positive integers q with

q1+δ∥α1q∥ · · · ∥αnq∥ < 1.

Corollary: Let 1, α1, . . . , αn be real algebraic numbers which are Q-linearly independent. Let δ > 0. Then
there are only finitely many n-tuples of rationals (p1

q , . . . , pn

q ) with q > 0 for which∣∣∣∣αi −
pi
q

∣∣∣∣ < 1

q1+1/n+δ
.

Theorems 20 and 21 are consequences of the following result.

Theorem 22: (Schmidt’s Subspace Theorem). Suppose L1(x), . . . , Ln(x) are linearly independent linear
forms in x = (x1, . . . , xn) with algebraic coefficients. Let δ > 0. There are finitely many proper subspaces
T1, . . . , Tw of Rn such that every integer point x = (x1, . . . , xn) with x ̸= 0 for which

|L1(x) · · ·Ln(x)| <
1

|x|δ

lies in (at least) one of the subspaces.
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Remarks:

1. The result is not effective in the sense that the proof does not yield a procedure for determining the
subspaces T1, . . . , Tw.

2. The integer points in a proper subspace of Rn lie in a rational subspace of Rn, in other words in a
subspace determined by a linear form with rational coefficients.

3. The proof generalizes Roth’s Theorem, uses ideas from the geometry of numbers and is difficult.

Let us now deduce Theorem 21 from the Subspace Theorem. Let q be a positive integer satisfying

q1+δ∥α1q∥ · · · ∥αnq∥ < 1.

Choose integers p1, . . . , pn such that ∥αiq∥ = |αiq − pi|, for i = 1, . . . , n. Then put x = (p1, . . . , pn, q). Let
K1, K2 denote positive numbers which depend on α1, . . . , αn and n only. Note that

|x| ≤ K1q.

We consider the linear forms

Li(X) = αiXn+1 −Xi for i = 1, . . . , n

Ln+1(X) = Xn+1

L1, . . . , Ln+1 are n+ 1-linearly independent linear forms with algebraic coefficients.
We have

|L1(x) · · ·Ln+1(x)| = ∥α1q∥ · · · ∥αnq∥ · q

so

|L1(x) · · ·Ln+1(x)| <
1

qδ
<

1

|x|δ/2
,

for q sufficiently large, as we may assume.

By the Subspace Theorem x lies in one of finitely many proper subspaces T1, . . . , Tw of Rn+1. Since x has
integer coordinates it lies in a proper rational subspace T . We can find c1, . . . , cn+1 in Q such that T is
determined by c1X1 + · · ·+ cn+1Xn+1. Then

c1x1 + · · ·+ cn+1xn+1 = 0. (9)

Since x ∈ T ,

|c1(α1q − p1) + · · ·+ cn(αnq − pn)| = |c1α1q + · · ·+ cnαnq − c1p1 − · · · − cnpn|
= |c1α1q + · · ·+ cnαnq + cn+1q|
= |c1α1 + · · ·+ cnαn + cn+1|q > K2q

since 1, α1, . . . , αn are linearly independent over Q. Thus

K2q < |c1(α1q − p) + · · ·+ cn(αnq − pn)|
≤ |c1|+ · · ·+ |cn|

which implies q is bounded as required.

We shall now deduce Theorem 20 from the Subspace Theorem.
Proof: By induction on n. For n = 1 the result holds by Theorem 21, say. Suppose n > 1. Assume that
q1, . . . , qn are non-zero integers with

|q1 · · · qn|1+δ∥α1q1 + · · ·+ αnqn∥ < 1.

We now choose p, an integer, so that

∥α1q1 + · · ·+ αnqn∥ = |α1q1 + · · ·+ αnqn − p|.
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Write x = (x1, . . . , xn+1) = (q1, . . . , qn, p).
Let K3, K4 be positive numbers which depend on α1, . . . , αn. Then

|x| = max(|q1|, . . . , |qn|, |p|) ≤ K3q

where q = maxi|qi|. Put
Li(X) = Xi for i = 1, . . . , n

and
Ln+1(X) = α1X1 + · · ·+ αnXn −Xn+1.

Then

|L1(x) · · ·Ln+1(x)| = |q1 · · · qn|∥α1q1 + · · ·+ αnqn∥ <
1

|q1 · · · qn|δ
<

1

|x|δ/2
,

for q sufficiently large. Then by the Subspace Theorem x lies in one of finitely many proper rational subspaces
of Rn+1.
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We deduce Theorem 20 from the Subspace Theorem by induction on n. n = 1 ✓. Assume we have integers
q1, . . . , qn, not all zero, for which

∥α1q1 + · · ·+ αnqn∥|q1 · · · qn|1+δ
< 1.

Choose p to be the closest integer to α1q1 + · · ·+ αnqn so that α1q1 + · · ·+ αnqn − p < 1. Write

x = (q1, . . . , qn, p) and put

Li(X) = Xi for i = 1, . . . , n

and

Ln+1(X) = α1X1 + · · ·+ αnXn −Xn+1.

We have n+ 1 linearly independent forms with algebraic coefficients.
Note that

|L1(x) · · ·Ln+1(x)| = |q1 · · · qn|∥α1q1 + · · ·+ αnqn∥.

We have |x| < K1q where q = maxi|qi| and K1, K2, . . . denote positive numbers which depend on α1, . . . , αn

and n. Observe that

|L1(x) · · ·Ln+1(x)| <
1

|q1 · · · qn|δ
<

1

|x|δ/2
,

for q sufficiently large, as we may assume. Then by the Subspace Theorem x lies in one of a finite collection of
proper rational subspaces of Rn+1. Let T be such a subspace. Then T can be expressed as the set of rational
points (y1, . . . , yn+1) ∈ Rn+1 for which c1y1 + · · ·+ cn+1yn+1 = 08) with c1, . . . , cn+1 ∈ Q and not all the cis
are zero.

Suppose first that ci ̸= 0 for some i with 1 ≤ i ≤ n. Without loss of generality we may suppose cn ̸= 0. Then

c1q1 + · · · cnqn + cn+1p = 0

so
cnαnqn = −c1αnq1 − · · · − cn−1αnqn−1 − cn+1αnp

Thus

|cn||α1q1 + · · ·+ αnqn − p| = |(cnα1 − c1αn)q1 + · · ·+ (cnαn−1 − cn−1αn)qn−1 − (cn + cn+1)p|

= |cn + cn+1αn|
∣∣∣∣(cnα1 − c1αn

cn + cn+1αn

)
q1 + · · ·+ (cnαn−1 + cn−1αn)

(cn + cn+1αn)
qn−1 − p

∣∣∣∣
8) ∗ defining equation of subspace
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Note that cn + cn+1αn ̸= 0 since 1, α1, . . . , αn are linearly independent over Q. Put

α′
i =

cnαi − ciαn

cn + cn+1αn
for i = 1, . . . , n− 1.

Then
|cn||α1q1 + · · ·+ αnqn − p| = |cn + cn+1αn||α′

1q1 + · · ·+ α′
n−1qn−1 − p|.

Therefore

∥α′
1q1 + · · ·+ α′

n−1qn−1∥ <
K2

|q1 · · · qn|1+δ
<

1

|q1 · · · qn−1|1+δ/2

for q sufficiently large.

We remark that 1, α′
1, . . . , α

′
n−1 are linearly independent over Q. To see this suppose that

λ1α
′
1 + · · ·+ λn−1α

′
n−1 + λn = 0

with λ1, . . . , λn in Q. Then

λ1(cnα1 − c1αn) + · · ·+ λn−1(cnαn−1 − cn−1αn) + λn(cn + cn+1αn) = 0

λ1cnα1 + · · ·+ λn−1cnαn−1 − (λ1c1 + · · ·+ λn−1cn−1 + λncn+1)αn + λncn = 0

But 1, α1, . . . , αn are linearly independent over Q and so, since cn ̸= 0, λ1 = · · · = λn = 0. Then by induction
|q1|, . . . , |qn| are bounded.

It remains to consider the case when c1 = · · · = cn = 0 and cn+1 ̸= 0. Then

cn+1p = 0 so p = 0.

In this case
|q1 · · · qn|1+δ|α1q1 + · · ·+ αnqn| < 1

so

|q1 · · · qn|1+δ|αn|
∣∣∣∣(α1

αn

)
q1 +

(
αn−1

αn

)
qn−1 + qn

∣∣∣∣ < 1.

Put α′
i =

αi

αn
for i = 1, . . . , n− 1.

Then 1, α′
1, . . . , α

′
n−1 are linearly independent over Q and so

|q1 · · · qn−1|1+δ/2∥q1α′
1 + · · ·+ qn−1α

′
n−1∥ < 1.

Therefore maxi|qi| is bounded by induction. The result follows.

In a similar way we can deduce the following consequences of the Subspace Theorem.
Theorem 23: Let αij (1 ≤ i ≤ n, 1 ≤ j ≤ m) be real algebraic numbers and suppose that 1, αi1, . . . , αim

are linearly independent over Q, for i = 1, . . . , n. Let δ > 0. Then there are only finitely many m-tuples of
non-zero integers (q1, . . . , qm) for which

|q1 · · · qm|1+δ
n∏

i=1

∥αi1q1 + · · ·+ αimqm∥ < 1.

Results of this sort have application to the study of Diophantine equations such as Norm form equations.

For each dimension n let us consider those lattices with d(Λ) = 1. In this collection let us look for lattices Λ
for which the minimal non-zero distance between lattice points µ(Λ) is large.

We define µn for n = 1, 2, . . . by

µn = sup
lattices Λ in Rn

with d(Λ) = 1

(
min
x,y∈Λ
x ̸=y

|x− y|

)

= sup
Λ in Rn

d(Λ)=1

(µ(Λ))
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It follows from Mahler’s Compactness Theorem that the supremum is actually a maximum. Lattices for
which the maximum is attained are known as extremal lattices. The values of µn have been determined for
n = 1, . . . , 8 and they are

µ1 = 1, µ2 = 4
√
4/3, µ3 =

6
√
2, µ4 =

8
√
4, µ5 =

10
√
8, µ6 = 12

√
64/3, µ7 =

14
√
64, µ8 =

√
2.

-

6

Not extremal

-

6

Extremal
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We’ll prove that µ2 = 4

√
4/3. We first note that this is a lattice Λ in R2 with d(Λ) = 1 and µ(Λ) = 4

√
4/3.

We take the basis vectors for Λ to be
(

4
√
4/3, 0

)
,
(
1
2

4
√
4/3, 4

√
3/4
)
. Observe that d(Λ) = 1 and that both

generating vectors have length 4
√

4/3 and that this is the minimal distance between two distinct vectors in Λ:

(
4
√
4/3, 0

)
(
1
2

4
√
4/3, 4

√
3/4
)

This is the maximum for suppose that Λ′ is a lattice in R2 with d(Λ′) = 1 for which µ(Λ′) > 4
√
4/3. Then,

without loss of generality, we may suppose that a basis for Λ′ is of the form (a, 0), (b, 1/a) with a > 0. Further,
by adding an appropriate multiple of (a, 0) to (b, 1/a) we may suppose that |b| ≤ a

2 .

Furthermore we may suppose that a = µ(Λ′). If a > 4
√
4/3 then 3a4 > 4 so 3

4a
2 > 1

a2 . But then (b, 1
a ) is

closer to the origin than (a, 0) since b2 + 1
a2 < a2

4 + 3
4a

2 = a2, and this is a contradiction.

The first few extremal lattices can be represented by graphs. The graphs are Dynkin diagrams which arise
in the study of Lie groups. A graph will consist of n points which correspond to generators of the lattice.
Each of the generators will be of the same length. If two generators are not connected by an edge they are
orthogonal. If they are connected by an edge then the angle between them is 60◦ or π

3 . Finally we normalize
the length of the generators so that the determinant of the lattice is 1.
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Here are the graphs associated with extremal lattices for n = 2, . . . , 8.

A2 A3 D4

(= )
D5

(= )

E6 E7 E8

These lattices give the values of µ which I indicated were the extremal values. The difficult task is to prove
they are extremal.

We’ll look more closely at the lattices associated with these diagrams. Let b1, . . . , bn be basis vectors in
such a lattice. We’ll assume initially that each vector is of length

√
2. Notice that the inner product bi ·

bj = |bi||bj | cos θij where θij is the angle between the vectors bi and bj . Thus if the angle is 60◦ then
bi · bj = 2 cos π

3 = 1.

Notice that if
B = (bi · bj)i=1,...,n

j=1,...,n
then the det(B) = d(Λ)2.

To see this let e1, . . . , en be the standard basis in Rn and put bi =
∑n

j=1 Bijej with Bij ∈ R. Then

B = ((Bij)
tr(Bij))

and so
det(B) = (det(Bij))

2 = d(Λ)2.

Next we observe that each non-zero vector in Λ has length at least
√
2. To see this suppose that b =

k1b1 + · · ·+ knbn is in Λ with k1, . . . , kn integers, not all zero. Then

b · b = (k1b1 + · · ·+ knbn) · (k1b1 + · · ·+ knbn)

=
n∑

i=1

n∑
j=1

kikj(bi · bj)

= 2(k21 + · · ·+ k2n) + 2
∑
i<j

i and j connected
by an edge

kikj .

This quantity is an even integer and so the length of b is at least
√
2.

Therefore to determine µ(Λ) in each example it suffices to compute detB and then normalize the length of
the vectors so that d(Λ) = 1.

A2

B =

(
2 1
1 2

)
and detB = 3.

Thus it suffices to divide our basis vectors by 4
√
3 and then µ(Λ2) =

√
2

4√3
= 4
√
4/3. ✓

A3

B(A3(
√
2)) =

2 1 0
1 2 1
0 1 2

 and so detB = 6− 2 = 4.

We must then divide b1, b2 and b3 by 6
√
4 and so the minimal length of a vector in Λ3 is

√
2

6√4
= 21/6.
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D4

B(D4(
√
2)) =


2 1 0 0
1 2 1 1
0 1 2 0
0 1 0 2

 and detB = 4.

Thus we must divide each vector bi by 41/8 = 21/4 and so µ(Λ4) =
√
2

21/4
= 21/4.

Let us look more closely at D4(
√
2). We claim that the lattice is the same as the lattice of vectors in R4 of the

form (u1, u2, u3, u4) with the uis integers and u1 + u2 + u3 + u4 ≡ 0 (mod 2). What are the shortest vectors
in the above lattice? They are

(±1,±1, 0, 0), (±1, 0,±1, 0), (±1, 0, 0,±1), (0,±1, 0,±1), (0,±1,±1, 0), (0, 0,±1,±1).

One can check that the lattice is generated by

(1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0,−1) and (0, 1, 1, 0).

Notice that 
1 0 0 1
1 0 1 0
1 0 0 −1
0 1 1 0



1 1 1 0
0 0 0 1
0 1 0 1
1 0 −1 0

 =


2 1 0 0
1 2 1 1
0 1 2 0
0 1 0 2

 .
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Consider the lattice D4(
√
2) in R4. It has diagram and each basis vector has length

√
2. In fact

D4(
√
2) can be represented as the lattice Λ1 in R4 which is the sublattice of Λ0 given by the congruence

condition: (u1, u2, u3, u4) is in the lattice ⇐⇒ u1+u2+u3+u4 ≡ 0 (mod 2). One can check that this lattice
is generated by

(2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1).

As a consequence d(Λ1) =

∣∣∣∣det( 2 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

)∣∣∣∣ = 2. Equivalently it is generated by (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0,−1)

and (0, 1, 1, 0). Notice that

B︷ ︸︸ ︷
1 0 0 1
1 0 1 0
1 0 0 −1
0 1 1 0

 ·

Btr︷ ︸︸ ︷
1 1 1 0
0 0 0 1
0 1 0 1
1 0 −1 0

 =


2 1 0 0
1 2 1 1
0 1 2 0
0 1 0 2


Thus Λ1 is a representation for D4(

√
2).

We now put a sphere of radius
√
2
2 = 1√

2
around each lattice point in Λ1(D4(

√
2)). Notice that any two lattice

points in Λ1 differ by a vector of length at least
√
2. Thus the spheres may touch but they do not overlap in

a set of positive volume. Consider the sphere around (0, 0, 0, 0).

It is surrounded by several spheres which touch it. They are (±1,±1, 0, 0), (±1, 0,±1, 0), (±1, 0, 0,±1),
(0,±1,±1, 0), (0,±1, 0,±1), (0, 0,±1,±1). Thus the central sphere is surrounded by

(
4
2

)
·4 = 24 spheres which

touch it. Recently (2003) Oleg Musin proved that there is no configuration of 25 spheres of equal radius which
touch a central sphere of the same radius without overlap in R4.

Definition: The kissing number τn for n = 1, 2, . . . is defined to be the maximum number of unit spheres in
Rn which can touch a central unit sphere so that their interiors do not overlap.
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Thus τ4 ≥ 24 by the example and τ4 ≤ 24 by the result of Musin. Plainly τ1 = 2 and the hexagonal packing

gives τ2 = 6. It is not so clear what τ3 is at first glance. The standard cannonball packing gives τ3 ≥ 12.
There was a dispute between Newton and Gregory as to whether τ3 was 12 or 13. The first correct proof that
τ3 = 12 is due to Schutte and van der Waerden in 1953.

Definition: A sphere packing of Rn is a collection of spheres in Rn of equal radius whose interiors do not
overlap. If the centres of the spheres occur at the points of a lattice we say that the packing is a lattice packing
(of spheres).

Given a sphere packing in Rn let ρ be the radius of the sphere and define ∆, the packing density, in the
following way. For any real number x let Sx be a sphere of radius x in Rn. We put

∆ = lim
R→∞

(
the number of spheres in the

collection of radius ρ inside S
(0)
R

)
· volume(Sρ)

volume(S
(0)
R )

9).

∆ measures the “proportion” of Rn covered by the spheres in the sphere packing.

We now define ∆n for n = 1, 2, . . . by
∆n = sup

sphere packing
in Rn

∆;

here the sup is taken over all sphere packings in Rn. Similarly

∆n(L) = sup
lattice packing

in Rn

∆;

here the sup is taken over all sphere packings in Rn which are lattice packings. Notice that if L is a lattice
then the largest radius ρ0 of spheres in a sphere packing associated with the lattice is 1

2 the minimal non-zero
distance between points in the lattice. If we consider the lattice packing of spheres of radius ρ0 around each
lattice point of Λ then

∆(Λ) =
volumeSρ0

volume fundamental region of Λ
=

volumeSρ0

d(Λ)
.

Certainly ∆n ≥ ∆n(L) for n = 1, 2, . . . . In fact ∆1 = ∆1(L), ∆2 = ∆2(L). For n = 2 the hexagonal lattice
yields ∆2. We have

∆2 = ∆2(L) =
π( 12

4
√
4/3)2

1
=

π√
12

= 0.9069 . . . .

Let us compute the packing density ∆ of D4. Since the minimal non-zero distance between two lattice points
in D4(

√
2) is

√
2 we may take ρ0 = 1

2

√
2 = 1√

2
and we have

∆(D4) =

π2

2

(
1√
2

)4
2

=
π2

16
= 0.6169 . . . .

This is the largest lattice packing density known in R4.

It was proved by Korkine and Zolotareff in 1872 that

∆4(L) = ∆4(D4).

9)Let S
(0)
R be the sphere of radius R centred at the origin.

30



PMATH 944 Lecture 16: November 5, 2009
Let us consider the lattice of integer points in Rn denoted by Λ0. The diagram is:

n times︷ ︸︸ ︷
• • • · · · •

We have d(Λ0) = 1. The vectors of minimal non-zero length in Λ0 are (±1, 0, . . . , 0), . . . , (0, . . . , 0,±1) and
they are of length 1. Thus the lattice packing associated with Λ0 consists of spheres of radius 1

2 around each
integer point. Thus the packing density is

πn/2

Γ (1 + n/2)

(
1

2

)n

.

In R2, it is π
4 = 0.785 . . . , in R3 it is π

6 = 0.529 . . . , in R4, π2

32 = 0.308 . . . . The kissing number associated with
Λ0 is 2n.

The lattice A3 associated with may also be associated with which we call D3. For n = 3, 4, . . .

we denote by Dn the lattice associated with

· · ·

We can represent Dn as the sublattice of Λ0 given by

{ (x1, . . . , xn) ∈ Zn : x1 + · · ·+ xn ≡ 0 (mod 2) }.

The lattice is generated by elements of length
√
2, which is the minimal non-zero distance between vectors in

the lattice. We take:

· · ·(0, 1, 1, 0, . . . , 0)

(1, 1, 0, . . . , 0)

(−1, 1, 0, . . . , 0)

(0, 0, 1, 1, 0, . . . , 0) (0, . . . , 0, 1, 1)

Thus

d(Dn(
√
2)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



−1 1 0 0 · · · 0
1 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 0
...

...
. . .

. . .

0 0 · · · 0 1 1



∣∣∣∣∣∣∣∣∣∣∣∣∣
= |−1 · 1− 1 · 1| = 2

The kissing number associated with the lattice Dn(
√
2) corresponds to the number of non-zero vectors of

minimal length, so it is 4 ·
(
n
2

)
= 2n(n − 1). We have a central sphere around (0, . . . , 0) of radius 1

2

√
2 =

1√
2
and it is touched by the 2n(n − 1) non-overlapping spheres of radius 1√

2
around (±1,±1, 0, . . . , 0), . . . ,
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(0, . . . , 0,±1,±1). Put spheres of radius 1√
2
around each lattice point to give a sphere packing. The sphere

packing density

∆(Dn(
√
2)) =

πn/2

2Γ (1 + n/2)2n/2
.

Note that
∆(D3) =

π√
18

= 0.7405 . . .

The sphere packing of D3 corresponds to the cannonball packing. In 1831 Gauss proved that ∆3(L) = ∆(D3),
that is to say that D3 gives the sphere packing associated with a lattice of maximal density.

Kepler conjectured that ∆3 = ∆3(L) = ∆(D3), or equivalently that the most efficient packing of spheres
in R3 is given by the cannonball packing. In 1958 Rogus proved ∆3 ≤ 0.7796 and in 1983 Lindsay proved
∆3 ≤ 0.7784. (In 1993 Hsiang claimed a proof that ∆3 = ∆(D3) and his “proof” appeared in a 92 page paper
in the International Journal of Mathematics.) Hales in 2005 in a 120 page paper in the Annals of Math gave a
proof of Kepler’s conjecture. It depended on a massive amount of computation and this part of the argument
is very hard to check.

Consider the kissing number problem in R3. Three spheres touching in R3:

π
3

The centres of the spheres form an equilateral triangle. Given a configuration of spheres of radius 1 touching
a central sphere of radius 1 we can associate to each sphere touching the central sphere a shadow or spherical
cap determined by a cone of radius π

3 from the origin.

√
3

2

1
2

(0, 0, . . . , 0)

π
3

The surface area of the shadow is 2πh where h is the height of the spherical cap. Here h = 1 −
√
3
2 so

the area is (2 −
√
3)π. The total surface area of the sphere is 4π and so the kissing number τ3 is at most

4π
(2−

√
3)π

= 8 + 4
√
3 < 15. Thus τ3 ≤ 14. The packing associated with D3 gives τ3 ≥ 12.

In fact τ3 = 12 as was first proved in 1953 by Schutte and van der Waerden. The following kissing numbers
are known: τ1 = 2, τ3 = 6, τ3 = 12, τ4 = 24, τ8 = 240 and τ24 = 196,560. How do we find such results?

The arguments depend on linear programming and the study of positive semidefinite functions on the sphere
Sn−1 in Rn.

Let {x1, . . . ,xm} be points on Sn−1 in Rn. Thus xi · xi = 1 for i = 1, . . . , m and xi ∈ Rn.

Sn−1 =
{
(x1, . . . , xn) ∈ Rn : x2

1 + · · ·+ x2
n = 1

}
.
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Let θij be the distance between xi and xj on the surface of Sn−1, so the length of the geodesic between xi

and xj .

θij

xjxi

It is just the angle in radians determined by the points.

Notice that for any real numbers t1, . . . , tm we have

∥t1x1 + · · ·+ tmxm∥2 = (t1x1 + · · ·+ tmxm, t1x1 + · · ·+ tmxm)

=

m∑
i=1

m∑
j=1

titj cos(θij) ≥ 0

Equivalently the matrix
(cos(θij))i=1,...,n

j=1,...,n

is positive semidefinite.
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Let x1, . . . , xm be on Sn−1 in Rn. Let θij be the (angular) distance between xi and xj on Sn−1.

θij

xjxi

Notice that for any real numbers t1, . . . , tm we have

∥t1x1 + · · ·+ tmxm∥ = (t1x1 + · · ·+ tmxm, t1x1 + · · ·+ tmxm)

=
m∑
i=1

m∑
j=1

titj cos θij ≥ 0.

Equivalently

(t1, . . . , tm)
(
cos θij

) t1
...
tm

 ≥ 0.

Thus the matrix (cos θij)i=1,...,m
j=1,...,m

is positive semi-definite.

In 1943 Schoenberg proved that the matrix (G
(n)
k (cos(θij)))i=1,...,m

j=1,...,m
is again positive semi-definite for any set

of points x1, . . . , xm on Sn−1 where the G
(n)
k s are Gegenbauer polynomials.

Schoenberg also proved that if (f(cos θij))i=1,...,m
j=1,...,m

is positive semi-definite for all choices of x1, . . . , xm in

Sn−1 then f can be expressed as a linear combination (perhaps infinite) with non-negative coefficients of
Gegenbauer polynomials.

We may define polynomials C
(n)
k (t) by the expansion

(1− 2rt+ r2)(2−n)/2 =
∞∑
k=0

rkC
(n)
k (t) for n = 3, 4, . . . .

We then put

G
(n)
k (t) =

C
(n)
k (t)

C
(n)
k (1)

, so G
(n)
k (1) = 1.
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We may also define G
(n)
k (t) for n = 1, 2, . . . recursively by the rules

G
(n)
0 (t) = 1, G

(n)
1 (t) = t and

G
(n)
k (t) =

(2k + n− 4)tG
(n)
k−1(t)− (k − 1)G

(n)
k−2(t)

k + n− 3

In the special case that n = 3 the polynomials are known as the Legendre polynomials.

Since (G
(n)
k (cos θij))i=1,...,m

j=1,...,m
is positive semi-definite, if a0, . . . , ad are non-negative real numbers then

(a0G
(n)
0 + · · ·+ adG

(n)
d (cos θij))

is also positive semi-definite. We put

f(n, a0, . . . , ad)(t) = f(t) = a0G
(n)
0 (t) + · · ·+ adG

(n)
d (t)

and we define Sf (x1, . . . ,xm) by

Sf (x1, . . . ,xm) =
m∑
i=1

m∑
j=1

f(cos θij)

=

d∑
k=0

ak

m∑
i=1

m∑
j=1

G
(n)
k (cos(θij)).

Thus, since a0, . . . , ad are non-negative and
∑m

i=1

∑m
j=1 G

(n)
k (cos θij) ≥ 0 for k = 0, . . . , d we see that

Sf (x1, . . . ,xm) ≥ a0

m∑
i=1

m∑
j=1

G
(n)
0 (cos(θij)) = a0m

2. (10)

Let us suppose now that x1, . . . , xm is a configuration of m points on Sn−1 which correspond to the m points
of contact by m spheres of radius 1 which surround Sn−1 in a kissing configuration. Then θij ≥ π

3 provided
that i ̸= j hence cos(θij) ≤ 1

2 for i ̸= j.

Suppose that a0, . . . , ad are non-negative real numbers for which f(t) ≤ 0 for t in the range [−1, 1
2 ]. Then

Sf (x1, . . . ,xm) ≤ mf(1) and so by (10), if a0 > 0,

m ≤ f(1)

a0

The strategy is now to choose a0, . . . , ad so that f(t) ≤ 0 for [−1, 1
2 ] and such that a0 is large and f(1) is small.

There are two amazing applications of this approach. They were found independently in 1979 by Odlyzko and
Sloan and by Levenshtein and they treat the cases n = 8 and n = 24. For n = 8 we consider

f(t) = G
(8)
0 + 16

7 G
(8)
1 + 200

63 G
(8)
2 + 832

231G
(8)
3 + 1216

429 G
(8)
4 + 5120

3003G
(8)
5 + 2560

4641G
(8)
6

then
f(t) = 320

3 (t+ 1)(t+ 1
2 )

2t2(t− 1
2 ).

One can check that f(t) ≤ 0 for [−1, 1
2 ]. Thus τ8 ≤ 320

3
· 2 · 32

22 · 1
2 = 240.

For n = 24 one can find a non-negative linear combination of the G
(24)
k s to give f(t) where

f(t) = 1490944
15 (t+ 1)(t+ 1

2 )
2(t+ 1

4 )
2t2(t− 1

4 )
2(t− 1

2 )

and f(t) ≤ 0 for t in [−1, 1
2 ]. Thus

τ24 ≤ 196,560.
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We’ll show that the E8 lattice has kissing number 240 and the Leech lattice has kissing number 196,560. Thus
τ8 and τ24 are determined. In general things don’t go quite so smoothly. This approach gives τ3 ≤ 13 and
τ4 ≤ 25, yet we know τ3 = 12 and τ4 = 24. The choice of a0, . . . , ad is made after running linear programming
packages.

Let us now return to lattices. Recall E8 has diagram . With each vector normalized to

have length
√
2 we have that the matrix B of inner products is

B = B(E8(
√
2)) =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 1 0 0 0
0 0 1 2 0 0 0 0
0 0 1 0 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


One can check that detB = 1. Notice that we may realize E8(

√
2) in the following way:

(1,−1, 0, 0, 0, 0, 0, 0)

(0,−1, 1, 0, 0, 0, 0, 0)

(0, 0, 1,−1, 0, 0, 0, 0)

(0, 0, 0,−1, 1, 0, 0, 0)

(0, 0, 0, 0, 1,−1, 0, 0)

(0, 0, 0, 0, 0,−1, 1, 0)

(0, 0, 0, 0, 0, 0, 1,−1)

( 1
2
, 1
2
, 1
2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
)

PMATH 944 Lecture 18: November 12, 2009
E8(

√
2):

det(B(E8(
√
2))) = 1

All of the generating vectors have length
√
2. Further

√
2 is the minimal distance between distinct points in

E8(
√
2). Thus we may put a sphere of radius

√
2
2 = 1√

2
around each vector in the lattice. This will give us a

sphere packing of R8 which is a lattice packing. Also the number of vectors in E8(
√
2) of length

√
2 will be

the kissing number of the lattice.

Notice that 2 · ( 12 ,
1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ) = (1, 1, 1,−1,−1,−1,−1,−1) is in the lattice. To fix ideas, how

would we realize (1, 1, 0, 0, 0, 0, 0, 0) in the lattice? Note that it suffices to realize (1, 1, 1,−1,−1,−1,−1,−1)−
(1, 1, 0, 0, 0, 0, 0, 0) − (0, 0, 1,−1, 0, 0, 0, 0) = (0, 0, 0, 0,−1,−1,−1,−1) or equivalently (0, 0, 0, 0, 1, 1, 1, 1). But
note10)

(0, 0, 0, 0, 1, 1, 1, 1) + (1, 1, 1,−1,−1,−1,−1,−1) = (1, 1, 1,−1, 0, 0, 0, 0)

(−1,−1,−1, 1, 1, 1, 1, 1) + 2(1,−1, 0, . . . , 0)− 4(0,−1, 1, 0, . . . , 0) = (1, 1,−5, 1, 1, 1, 1, 1)

= (1, 1, 0, 0, 0, 0, 0) + (0, 0,−1, 1, 0, . . . , 0) + (0, 0,−1, 0, 1, 0, 0, 0) + · · ·+ (0, 0,−1, 0, . . . , 0, 1)

Remark: Note that the integral span of the basis vectors on the bottom row consists of all integer vectors
whose sum of coordinates is zero. The sum of the coordinates of the vector (1, 1, 1,−1,−1,−1,−1,−1) is −2
hence we can realize all vectors whose sum is congruent to 0 (mod 2).

10)This bit caused some trouble; see the following remark instead.

35



Next note that (±1,±1, 0, . . . , 0) is in the lattice and in fact so is any vector which has two coordinates from
{1,−1} and the others 0. This gives us 4 ·

(
8
2

)
= 112 vectors of length

√
2. These vectors together with

( 12 ,
1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ) allow us to show that the vectors (ϵ1

1
2 , ϵ2

1
2 , . . . , ϵ8

1
2 ) are in the lattice where ϵi

is in {1,−1} and
∏8

i=1 ϵi = −1. There are 27 = 128 of these vectors of length
√
2. Thus we have found

112 + 128 = 240 such vectors.

Notice that there are no other vectors of length
√
2 in the lattice, since if one coordinate is 3

2 or larger in

absolute value, the vector is of length greater than
√
2, and if there are more than 2 coordinates of absolute

value at least one, then again the length exceeds
√
2.

Therefore τ8(E8(
√
2)) = 240 and since τ8 ≤ 240 we conclude that τ8 = 240.

The packing density associated to E8(
√
2) is

π4

Γ (5)

(
1√
2

)8
1

=
π4

24 · 16
=

π4

384
= 0.2537 . . . .

This is the largest lattice packing density in R8 and it is the largest packing density in R8 known.

There are 240 vectors x in E8(
√
2) for which x · x = 2. The next smallest norm in the lattice is 4 and there

are 2,160 vectors x in E8(
√
2) for which x · x = 4.

These are of the form
(±2, 0, 0, . . . , 0), (0,±2, 0, . . . , 0), . . . , (0, . . . , 0,±2).

Also (±1,±1,±1,±1, 0, 0, 0, 0) where ±1, ±1, ±1, ±1 is put in any 4 coordinates and

(ϵ1
3
2 , ϵ2

1
2 , . . . , ϵ8

1
2 ) where ϵi is in {1,−1} and

8∏
i=1

ϵi = 1

and all permutations of the coordinates are allowed. There are 6,720 elements of norm 6, 17,520 of norm 8, and
30,240 of norm 10. In fact for each positive integer m the number N(m) of x in E8(

√
2) for which x ·x = 2m

is given by

240σ3(m), and σ3(m) =
∑
d|m
d>0

d3.

How do we get such a result?

Let Λ be a lattice in Rn with x · y ∈ Z for any x, y in Λ. Suppose b1, . . . , bn is a basis for Λ and, as before,
put B = ((bi, bj))i=1,...,n

j=1,...,n
. Then for any x ∈ Λ there exist integers k1, . . . , kn such that

x = k1b1 + · · ·+ knbn.

Then

x · x = k21(b1, b1) + · · ·+ k2n(bn, bn)

= 2
∑
i,j
i<j

kikj(bi, bj)

and so this is a quadratic form in (k1, . . . , kn). We have

(k1, . . . , kn)B

k1
...
kn

 .

Let q = e2πiz for z ∈ C. We now define the theta function of the lattice Λ, denoted θΛ(z) by

θΛ(z) =
∑
x∈Λ

q(x·x)/2 =
∑
x∈Λ

e(x·x)πiz.

36



If B has integer entries and determinant 1 and x · x ≡ 0 (mod 2) for all x ∈ Λ then it can be proved that
θΛ(z) is a modular form of weight n

2 . What is the significance of this claim?

PMATH 944 Lecture 19: November 17, 2009
TALKS Tue–Fri Dec 1–4.

Recall q = e2πiz. We define the theta function of a lattice Λ in Rn by

θΛ(z) =
∑
x∈Λ

q(x·x)/2.

If B has integer entries, determinant 1 and x · x ≡ 0 (mod 2) for all x ∈ Λ then θΛ is a modular form of
weight n/2.

Let
(
a b
c d

)
∈ SL(2,Z) so that a, b, c and d are integers with ad− bc = 1. SL(2,Z) is a group which acts on the

upper half plane H = { z ∈ C : Im(z) > 0 } by, for each g =
(
a b
c d

)
∈ SL(2,Z) we put gz = az+b

cz+d . Let k be an
integer. We say that a meromorphic function f : H → C is said to be weakly modular of weight 2k if

f(z) = (cz + d)−2kf

(
az + b

cz + d

)
, for all

(
a b
c d

)
∈ SL(2,Z).

Note that if g =
(
a b
c d

)
= ( 1 1

0 1 ) then gz = z + 1 and so if f is weakly modular of weight 2k, f(z + 1) = f(z)

and so f can be expressed in terms of q = e2πiz. In particular f determines a function f̃(q) where

f̃ : { q ∈ C : 0 < |q| < 1 } → C.

f̃ is meromorphic on the punctured dish { q ∈ C : 0 < |q| < 1 } and if it extends to a meromorphic function
on all of the disc then we say that f is a modular function. If f̃ is holomorphic on { q ∈ C : 0 < |q| < 1 } and
extends to a holomorphic function on { q ∈ C : |q| < 1 } then we say that f is a modular form.

The space of modular forms of weight 2k (k ≥ 0), forms a vector space M2k over C of dimension dk where

dk =

{[
k
6

]
, k ≡ 1 (mod 6), k ≥ 0[

k
6

]
+ 1, k ̸≡ 1 (mod 6), k ≥ 0

Here [x] denotes the greatest integer less than or equal to x.

The lattice Λ = E8(
√
2) determines θE8(

√
2)(z) which is a modular form of weight 4. Thus θE8(

√
2)(z) lies in

M4 a vector space of dimension 1 over C. Now E2(z) = 1 + 240
∑∞

n=1 σ3(n)q
n is in M4. We have

θE8(
√
2)(z) =

∞∑
m=0

rΛ(m)qm

where rΛ(m) counts the number of vectors x in Λ = E8(
√
2) for which x · x = 2m. Thus E2(z) = θE8(

√
2)(z).

Associated to each lattice Λ in Rn is Aut(Λ), the group of symmetries of the lattice which fix the origin or
equivalently the set of isometries (distance preserving maps) of Rn which fix the origin and take the lattice to
itself. For each lattice Λ in Rn, Aut(Λ) is a finite group. Each element of the group can be represented by an
orthogonal matrix.

The automorphism group of the hexagonal lattice A2
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is generated by a rotation of π
3 and a reflection around the line determined by any non-zero vector. Thus it

is isomorphic to the Dihedral group D6.

The automorphism group of E8 (E8(
√
2)) is a group of order 214 · 32 · 52 · 7 and it permutes the 240 vectors

of minimal length transitively.

We’ll now construct an astonishing combinatorial object called the Leech lattice. It was found by Leech in
1965 and it was described by him in a paper in the Canadian Journal of Math in 1967. It is a lattice L in R24

with determinant 1, the associated inner product matrix B has integer entries. The polar lattice L∗ of L is L,
in other words L is self-dual. Further if x ∈ L and x ̸= 0 then

x · x ≥ 4.

We’ll now construct the Leech lattice L following Leech and Milnar.

Let F24
2 be the 24 dimensional vector space over the field F2 = {0, 1} of two elements.

Proposition 28: There exists a 12 dimensional subspace S of F24
2 with the following property. For every

non-zero vector s = (s1, . . . , s24) in S the number of coordinates which are 1 is at least 8 and is congruent to
0 mod 4. Further (1, 1, . . . , 1) is in S.

To prove this we’ll realize S as the span of the rows of a 12× 24 matrix over F2 which we shall construct. Let
A denote a symmetric 11× 11 matrix whose first row is

1 1 1 0 1 1 0 1 0 0 0

and whose remaining rows are obtained by permuting the rows cyclically to the left so

A =



1 1 1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 0 0 0 1
1 0 1 1 0 1 0 0 0 1 1
0 1 1 0 1 0 0 0 1 1 1
1 1 0 1 0 0 0 1 1 1 0
1 0 1 0 0 0 1 1 1 0 1
0 1 0 0 0 1 1 1 0 1 1
1 0 0 0 1 1 1 0 1 1 0
0 0 0 1 1 1 0 1 1 0 1
0 0 1 1 1 0 1 1 0 1 0
0 1 1 1 0 1 1 0 1 0 0


One may check that each pair of rows have exactly three columns consisting of two 1s.

Next let B be the symmetric 12× 12 matrix obtained by adjoining a first row of the form (011 · · · 1) to A and
completing the first column to be (011 · · · 1)tr also. Thus

B =


0 1 1 · · · 1
1
... A

1


Since any two rows of A have exactly three columns of the form

(
1
1

)
we see that

B2 = BBtr = I.11)

We now put
C =

(
I12 B

)
a 12× 24 matrix

We claim that S is the subspace of F24
2 generated by the rows of C.

11)over F2
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Recall: C =
(
I B

)
, B =

( 0 1 1 ··· 1
1
1...

A
1

)

A =


1 1 1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 0 0 0 1

...
0 1 1 1 0 1 1 0 1 0 0


We claim that the subspace S of F24

2 in Proposition 28 is generated by the rows of C. Let us consider the
subspace S1 generated by the rows of C.

First note that (1, 1, 1, . . . , 1) is in S1 since we can obtain it by adding the rows of C over F2. Next we remark
that the number of 1s in any row of C is either 8 or 12 and any two rows of C are orthogonal since any two
rows of A have precisely 3 1s in common columns.

For any 24-tuple s = (s1, . . . , s24) in F24
2 we put ∥s∥ equal to the number of coordinates of s which are 1. We

prove first that if s is a linear combination of rows of C then ∥s∥ ≡ 0 (mod 4).

To see this we remark that any two rows of C are orthogonal so that if we add one row of C to another to get
a matrix C ′ then the rows of C ′ will be orthogonal. If a row s1 is obtained by adding a row s of C to a row
r of C then

∥s1∥ = ∥r∥+ ∥s∥ − 2n (11)

where n denotes the number of columns for which both entries are 1. Since r and s are orthogonal n is even
and since r and s are in C, ∥r∥ and ∥s∥ are in {8, 12}. Thus ∥r∥ ≡ 0 (mod 4), ∥s∥ ≡ 0 (mod 4) and so
by (11), ∥s1∥ ≡ 0 (mod 4). The result now follows by induction.

We are now in a position to prove that if s is a non-zero linear combination of the rows of C then ∥s∥ ≥ 8.
Since ∥s∥ ≡ 0 (mod 4) it suffices to prove that ∥s∥ ≥ 5.

Suppose that s is a linear combination of k elements of C. If k = 1 then the result follows since ∥s∥ is 8 or 12.

If k = 2 then since the rows of A have exactly three columns with two 1s and each row of A has 6 1s we find
that ∥s∥ is again 8 or 12.

If k = 3 then and s is the sum of the first row and two other rows then since the rows of A have exactly three
columns with two 1s we see that ∥s∥ = 8. On the other hand if the three rows do not include the first row
then the first 13 coordinates of s contain 4 1s. If there are no other 1s in s the sum of three rows of A give
the zero vector (0, . . . , 0) in F11

2 which does not happen. Thus ∥s∥ ≥ 5 hence ∥s∥ ≥ 8.

If k = 4 then we see that the first 12 coordinates of s have 4 1s. If the remaining coordinates are 0 then the
sum of 4 rows of B are (0, 0, . . . , 0) which contradicts the fact that B is non-singular; recall B2 = BBtr = I.
Thus ∥s∥ ≥ 5 hence ∥s∥ ≥ 8.

Finally if k ≥ 5 then we get at least 5 1s in the first 12 coordinates and the result follows. Thus completes
the proof of Proposition 28. Take s = s1.

The construction of the Leech lattice
Let e1 = (1, 0, . . . , 0), . . . , e24 = (0, . . . , 0, 1) in R24 and we put bi =

1√
8
ei for i = 1, . . . , 24.

Let L0 be the lattice generated by b1, . . . , b24 in R24. Let L be the sublattice of L0 whose elements are of
the form

t1b1 + · · ·+ t24b24

where t1, . . . , t24 are integers satisfying either

(i) t1, . . . , t24 are even, t1 + · · ·+ t24 ≡ 0 (mod 8) and 1
2 (t1, . . . , t24) reduced mod 2 lies in the subspace S

of Proposition 28.
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or

(ii) t1, . . . , t24 are odd, t1 + · · · + t24 ≡ 4 (mod 8) and 1
2 (1 + t1, . . . , 1 + t24) reduced mod 2 lies in the

subspace S of Proposition 28.

Notice that L is a lattice and hence a sublattice of L0. To see this note that L contains 24 linearly independent
vectors since it contains 8b1, . . . , 8b24. Further it is discrete since it is contained in L0. Next observe that if
x ∈ L then −x ∈ L and if x, y are in L then x+ y ∈ L since S is a subspace of F24

2 . L is the Leech lattice.

We now show that if x is a vector in L then x · x ≡ 0 (mod 2). If x = t1b1 + · · · + t24b24 then x · x =
1
8 (t

2
1 + · · ·+ t224). Thus we want to prove that t21 + · · ·+ t224 ≡ 0 (mod 16).

Consider first the case when t1, . . . , t24 are all even. Then if ti ≡ 0 (mod 4) then t2i ≡ 0 (mod 16) and if
ti ≡ 2 (mod 4) then t2i ≡ 4 (mod 16). Recall that if s ∈ S then ∥s∥ ≡ 0 (mod 4) and so the number of indices
i for which ti ≡ 2 (mod 4) is a multiple of 4 and thus

t21 + · · ·+ t224 ≡ 0 (mod 16).

On the other hand if t1, . . . , t24 are all odd then if ti ≡ ±1 (mod 8) we have t2i ≡ 1 (mod 16) while if ti ≡ ±3
(mod 8) we have t2i ≡ 9 (mod 16). Let αj be the number of tis with ti ≡ j (mod 8). Then

t21 + · · ·+ t224 ≡ α1 + 9α3 + 9α5 + α7 (mod 16). (12)

We also have
24 = α1 + α3 + α5 + α7 ≡ 0 (mod 8) (13)

and, by the definition of L,
α1 + 3α3 + 5α5 + 7α7 ≡ 4 (mod 8). (14)

Further, by Proposition 28,
α1 + α5 ≡ 0 (mod 4)

so
2(α1 + α5) ≡ 0 (mod 8). (15)

Adding (13) and (14) and subtracting (15) we find that

4(α3 + α5) ≡ 4 (mod 8).

Thus α3 + α5 is odd. Therefore, by (12),

t21 + · · ·+ t224 ≡ 24 + 8(α3 + α5) ≡ 0 (mod 16)

as required.

PMATH 944 Lecture 21: November 24, 2009
Handout:

1√
8



8
4 4
4 0 4
4 0 0 4
4 0 0 0 4
4 0 0 0 0 4
4 0 0 0 0 0 4
2 2 2 2 2 2 2 2
4 0 0 0 0 0 0 0 4
4 0 0 0 0 0 0 0 0 4
4 0 0 0 0 0 0 0 0 0 4
2 2 2 2 0 0 0 0 2 2 2 2
4 0 0 0 0 0 0 0 0 0 0 0 4
2 2 0 0 2 2 0 0 2 2 0 0 2 2
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
2 0 2 0 2 0 0 2 2 2 0 0 0 0 0 0 2 2
2 0 0 2 2 2 0 0 2 0 2 0 0 0 0 0 2 0 2
2 2 0 0 2 0 2 0 2 0 0 2 0 0 0 0 2 0 0 2
0 2 2 2 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2
0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

−3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


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A generator matrix for the Leech lattice L, in terms of the standard basis. Notice the index of L as a sublattice
of
{

1√
8
e1, . . . ,

1√
8
e24
}
is 236.

Suppose that there is an element x ∈ L with x · x = 2. Write

x · x = t1b1 + · · ·+ t24b24
12), ti ∈ Z,

and then
x · x = 1

8 (t
2
1 + · · ·+ t224) = 2

hence
t21 + · · ·+ t224 = 16.

Notice that if the ti are all odd then t21 + · · ·+ t224 > 16. Thus t1, . . . , t24 are even. We have two possibilities,
one of the tis is 4 and the others are 0 or four of the tis are 2 and the others are 0. But t1 + · · · + t24 ≡ 0
(mod 8) which excludes the first possibility. The second possibility is excluded by Proposition 28 since the
number of terms which are ≡ 2 (mod 4) is either 0 or at least 8. Therefore there is no x ∈ L for which
x · x = 2.

Thus x · x ≥ 4 for x ̸= 0 in L.

Next observe that for any x, y ∈ L

x · y = 1
2

(
(x+ y) · (x+ y)− x · x− y · y

)
and since z · z ≡ 0 (mod 2), for all z ∈ L we see that x · y ∈ Z for all x, y ∈ L.

L is a sublattice of L0.

We can calculate the index of L in L0. It is 8 · 411 · 211 · 1 = 23 · 222 · 211 · 1 = 236. But d(L0) =
(

1√
8

)24
=

1
2(3/2)·24

= 1
236 and so d(L) = 1.

Recall the notion of the polar lattice or dual lattice of a lattice Λ. Suppose b1, . . . , bn is a basis for Λ. Define
b∗1, . . . , b

∗
n so that

b∗i · bj =

{
1 if i = j

0 otherwise
.

Then b∗1, . . . , b
∗
n is a basis for the polar lattice Λ∗ of Λ.

Recall:
Theorem 2: The polar lattice Λ∗ of a lattice Λ in Rn consists of all vectors v∗ in Rn for which v∗ · v is an
integer for all v in Λ. In addition d(Λ) · d(Λ∗) = 1.

What is the polar lattice of the Leech lattice L? Note that since d(L) = 1 we have d(L∗) = 1. Further x · y is
an integer for all x, y in L. Thus L∗ contains L and, since d(L) = d(L∗) we see that L∗ = L. Thus the Leech
lattice is self-dual.

The theta series θL(z) associated with the Leech lattice is a modular form of weight 24
2 = 12. The vector

space of modular forms of weight 12 has dimension 2 over C. With q = e2πiz we have

θL(z) =
∞∑

n=0

N(m)qm = 1 + 196,560q4 + 16773120q6 + · · ·

In fact, for even positive integers m,

N(m) =
65,520

691

(
σ11

(m
2

)
− τ
(m
2

))
, (16)

12)bi =
1√
8
ei
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where σ11(n) =
∑

d|n
d>0

d11 and τ(n) is Ramanujan’s tau function defined by

∆24(z) = q
∞∏

m=1

(1− qm)24 =
∞∑

m=0

τ(m)qm

= q − 24q2 + 252q3 − 1472q4 + · · · .

Thus N(4) = 65,520
691 (211 + 1 + 24) = 196,560.

Since N(2k) is an integer for k = 1, 2, . . . we see that σ11(k) ≡ τ(k) (mod 691) for k = 1, 2, . . . .

Another representation for θL(z) is

θL(z) =
(
θE8(

√
2)(z)

)3 − 720∆24(z).

Examining coefficients in the above representation yields (16).

Since N(4) = 196,560 we see that this is the kissing number of L. But by our earlier analysis we see that it
is the kissing number of R24 so τ24 = 196,560.

What are the vectors of minimal length in L? There are 27 · 759 = 97,152 of the form

1√
8
(±2, . . . ,±2︸ ︷︷ ︸

8

, 0, . . . , 0)

where any choice of sign and position is permitted provided that t1 + · · ·+ t24 ≡ 0 (mod 8) and 1
2 (t1, . . . , t24)

reduced mod 2 is in S. There are 212 · 24 = 98,304 of the form 1√
8
(±3,±1, . . . ,±1) where t1 + · · · + t24 ≡

4 (mod 8) and 1
2 (1 + t1, . . . , 1 + t24) reduced mod 2 is in S. Also there are 4 ·

(
24
2

)
= 1104 of the form

(±4,±4, 0, . . . , 0) where any choice of sign and position is permitted.

Notice that the sphere packing density in R24 associated with L is

π12

12!
= 0.001930 . . . .

The automorphism group of L is Co0 or .0 the 0th Conway group and it is of order 222 · 39 · 54 · 72 · 11 · 13 · 23.

The automorphism group permutes the 196,560 non-zero vectors of minimal length transitively. Further the
automorphism modulo its centre is a sporadic simple group of order 221 · 39 · 54 · 72 · 11 · 13 · 23. There are 26
sporadic simple groups.

PMATH 944 Lecture 22: November 26, 2009
Sporadic simple groups
A group is said to be simple if it has no proper normal subgroup. Why are simple groups important?

Every finite group has a composition series

G◁G1 ◁G2 ◁ · · ·◁Gn = {1}

where Gi+1 is a normal subgroup of Gi for i = 1, . . . , n − 1 and Gi/Gi+1 is simple. Jordan and Holder
proved that the set of groups Gi/Gi+1 for i = 1, . . . , n−1 is uniquely determined or equivalently the sequence
(Gi/Gi+1)

n−1
i=1 is determined up to permutation. Thus the simple groups are the building blocks or “primes”

of the set of finite groups.

If G is an abelian finite simple group then G is isomorphic to Z/pZ for some prime p.

The alternating groups An are simple for n ̸= 4. In fact there are several infinite families of simple groups
which have been found. In addition there are 26 finite simple groups which do not fit in these families and
they are known as the sporadic simple groups. The Classification Theorem tells us this is the complete list.
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12 of the 26 sporadic simple groups arise as subquotients of .0. Further the largest of the sporadic simple
groups M is known as the Monster or the Fischer–Griess group or the Friendly Giant. M can be constructed
from the Leech lattice, it was first discovered by Fischer and Griess in 1973 and formally constructed in 1980
by Griess. The order of M is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

Monstrous Moonshine: Conway and Norton. (Borcherds)

A rich source of lattices is algebraic number theory. Let K = Q(θ) with [K : Q] = n. Let α ∈ K then the
conjugates of α over Q are α = α1, α2, . . . , αn where

σi(α) = αi for i = 1, . . . , n

and σi is one of the n isomorphisms of K into C which fix Q. We have the notion of the norm and trace of α
given by

NK/Q(α) = α1 · · ·αn

and
TrK/Q(α) = α1 + · · ·+ αn.

The embeddings (isomorphic injection) of K into C which fix Q can be split into r embeddings into R and 2s
embeddings into C which are not embeddings in R. We may denote them by σ1, . . . , σr and σr+1, . . . , σr+2s

where σr+i = σr+s+i for i = 1, . . . , s. We introduce the map ν : K → Rn by

ν(α) =
(
σ1(α), . . . , σr(α),Re(σr+1(α)), Im(σr+1(α)), . . . ,Re(σr+s(α)), Im(σr+s(α))

)
.

Let OK be the ring of algebraic integers of K. We can show that { ν(α) : α ∈ OK } forms a lattice in Rn and
if A is a non-zero ideal of OK then { ν(α) : α ∈ A } is a sublattice of this lattice.

Let us consider the totally real case where r = n. Then

ν(α) · ν(α) = α2
1 + · · ·+ α2

n = TrK/Q(α
2).

Further
α2
1 + · · ·+ α2

n

n
≥ (α2

1 · · ·α2
n)

1/n

by the arithmetic–geometric mean inequality. If α is a non-zero algebraic integer then so is α2 hence α2
1 · · ·α2

n,
which is NK/Q(α

2) = (NK/Q(α))
2, is a positive integer. Therefore if α is a non-zero algebraic integer

ν(α) · ν(α) ≥ n

and this gives us a way to show that the minimal length of a non-zero vector in the lattice is large.

It is possible to realize many lattices in this way. For example the Leech lattice can be realized by considering
K = Q(ζ39).
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