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LECTURES GIVEN BY DR. C. STEWART AT THE UNIVERSITY OF WATERLOO, WINTER 2012

LECTURE 1: LATTICES AND ELLIPTIC FUNCTIONS
Definition 1. Let wi,wp € C\{0} with 2t ¢ R. A lattice in C is a set L := {nwi +mws : n,m € Z}.

It is easy to see that this is an additive subgroup of C. Also, the representation of each element L is
unique. Indeed, if w € L with w = nqiw1 + miws = now1 + mows with nq,ng, mq, me € Z with at least one
of ny # ng or my # my. Without loss of generality, suppose ny # ny. Then (n; —ne)wi = (M1 —me)ws, so
that ﬁ—; = % € R, a contradiction, hence n1 = ny and m1 = ms. Thus, each element of L is uniquely
represented.

Definition 2. An elliptic or doubly-periodic function f is a meromorphic function on C which is L-periodic
for some lattice L, i.e. there exists some lattice L such that for every z € C and w € L, f(z +w) = f(2).

Suppose L is generated by complex numbers w; and wy. We shall denote L by L = [wy,ws]. Further,
for every a € C, {a + tjwy + taws : 0 < t1,ty < 1} is known as the fundamental parallelogram at « for the
lattice, as in Figure 1. A doubly-periodic function is thus completely determined by its behaviour on the
fundamental parallelogram at 0.

If f were entire, since the fundamental parallelogram is compact, f would be bounded on it. By L-
periodicity, f is thus bounded on all of C. By Liouville’s theorem in complex analysis, this implies that f
is constant. Therefore, the interesting cases are those functions that have poles.

Notice that if w],w) also generate L = [wi,ws], we can find a,b,¢,d € Z such that w] = aw; + bws

. . ' a b .
and wh = cwy + dwa, so we have the matrix equation (Zg) = < e d ) (ﬁ;% and since w; and wy are also

a
d

are integers, det A~ = de};A € 7Z, so ad — bc = det A = £1. The set of 2 x 2 matrices with integer entries

with this property is known as the modular group.

For any lattice L, we define the Weierstrass p-function of L, written p(z) or pr(2), as

305 (3

welL’

expressible in terms of w] and W, it follows that the matrix A := < ) is invertible. Since the entries

where L' = L\{0}.
We claim that p is meromorphic and L-periodic. To do this, we will show that p converges uniformly on

compact subsets. Let K C C be compact, thus bounded, so there exists R > 0 such that K C D(0; R), the
1
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« o+ wi
FIGURE 1. Fundamental Parallelogram for the Lattice [wi,ws] at «

open disk of radius R centered at 0. Thus, for w € L, if |w| > 2R, |w| > 2|z| for every z € K.
For z € K, [z —w| > |w| — |2] > |w| — 3|w| = }|w| and

1 5
2 = 20] < J2] + 2] < 5ol + 2] = Sl

so it follows that

2 2

— 22+ 220 —w
(w(z —w))?

Therefore, to show that the series converges uniformly on compact subsets, we need only show that
ZMGL, ﬁ is absolutely convergent. Since L ¢ R, there exists a C' > 0 such that |njw; + nows| >

1
(z —w)?

1

—|=
w 1

w2
C(|n1] + |n2|). Since there are 4n + 2 pairs (n1,n9) with |ni| + |na| = n (for each k£ amongst the 2n + 1
numbers {0,+1,...,£n}, there are two solutions m = £(n — |k|) with |k| 4+ |m| = n), we see that

1 1 . dn+2
— < —_ < — < .
S5 Y ot S o <

welL! w=njwi+ngwy
(n1,n2)#(0,0)

Thus, p is converges uniformly on K so since K was arbitrary, it follows that p is meromorphic. Note that
p has a double pole at every point of L and no others.

Further, observe that snce L is invariant under the transformation w — —w, the term

(emop =)+ (=)

is invariant with respect to z — —z as well, and therefore p, the sum of all such terms, is an even function,
i.e. p(z) = p(—2) for every z € C.

Is p L-periodic? Notice that p'(2) = =2 ., ﬁ since the series of derivatives of the terms converge
uniformly on compact subsets, by comparison with p. This is clearly L-periodic. Thus, there exists a
constant cg such that p(z + wi) = p(2) + ¢ for every z € C. Take z = —Lw;. Then by the evenness of p,

1 1 1
p—gwi ] =p(gwr | =pz+w)=p@)+co=p|-gw|+c
so that cg = 0. The analogous result holds for we and thus p is L-periodic.

Given a lattice L, the set of elliptic functions for the lattice forms a field. In fact, one can prove the
field is generated over C by p and p'.
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Let us now consider the power series expansions of p and p’ around the origin.

W=+ 3 (erop i) =5+ % (e zp )

wel’!

Z%JFZ (;2 <1+z+(j)2+...)—;)=j2+2 <i<m+1>(f,>m)iz

wel’ \m=1

where ¢, = (m+1) > o1/ ﬁ
Note that ¢, = 0 when m is odd, since p is an even function.

Notation. For any lattice L and positive integer m we define

Sm(L) = Z wim

welL!

whenever the sum converges (when the context is clear, we will write sy, ).

Thus, in a neighbourhood of 0, we have

SR 1
p(z) = 22 Z (2m + 1)S2m+222m ] + 35,22 4+ Bsezt + ...
m=1
2 2
p'(z) = 3 + Z:l 2m(2m + 1)sopm 022" = 3 + 6542 4+ 20862° + . ..
m=

Put g9 := g2(L) = 60s4 and g3 := g3(L) = 140s¢.

Theorem 1. p/(2)* = 4p(2)* — g2p(2) — g3

Proof. Consider the function ¢(z) given by ¢(z) := p'(2)? — 4p(2)® — gap(2) — g3. Clearly, ¢ is elliptic since
p’ and p both are. Now consider ¢ in a neighbourhood of 0. Expanding each term in the definition of ¢(z)
in powers of z gives

4 2484

/ 2 _
p(Z) —; 7—8036_'_
4 3654
—4p(2)} = —— — === — 60
p(z) ; 2 56 +

60s
g2p(2) = 74—1—0—1—...
g3 = 140sg.

Thus, adding these terms gives ¢(z) = 0+ higher order powers of z, in a neighbourhood of 0. But ¢ is
elliptic, so the poles of ¢ are in L if they exist, so there are no poles in any neighbourhood of 0, so ¢ is
entire. Thus, by a remark we made above, ¢ is constant and thus identically 0. U
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Therefore, the points (p(z),p'(z)) € C? lies on the curve y? = 423 — gox — g3.

LECTURE 2: RELATIONSHIP BETWEEN LATTICES AND ELLIPTIC CURVES

The quotient group C/L is abelian under addition. Define E := {(z,y) € C? : y? = 423 — gz — g3} U{00}.
This is an elliptic curve. The map C/L — E given by z — (p(z),p'(2)) is a group homomorphism. Thus, we
can impose a group structure on the elliptic curve E in this way. In fact there is a geometric interpretation
of the group structure on E adding points may be defined independently of the p-function. It turns out
that if E has go, g3 € Q then adding points on E with rational coordinates results in a point with rational
coordinates. Here, we suppose the point at infinity has rational coordinates (this is the identity element of
the group of rational points on F).

Suppose g2,93 € Q and let E(Q) denote the group of points on E with rational coordinates. Poincaré
asked: is F(Q) finitely generated?
In 1922, Mordell proved that it is. In 1930, Weil generalized the result in the following way:

Mordell-Weil Theorem. Let K/Q be a field extension. If go, g3 € K with g3 — 2792 # 0 then E(K) is
finitely-generated.

The proof is not constructive so there is no algorithm for computing generators.

One can find go,g3 € Q such that g3 — 27¢g3 # 0 for which the rank is positive and thus E(Q) is infi-
nite. However, by a result of Siegel, if go, g3 € Q with g3 — 27g§ = 0 then there are finitely many pairs
(x,y) € E with integer coefficients. The analogous result on the field extension K /Q also holds, i.e. there
are only finitely many pairs (z,y) € E where z,y are elements of the ring of integers of K.

It is possible to associate an L-function to an elliptic curve E. The L-function is an Euler product of
local L-functions determined by examining E modulo p for each prime p. It follows from the work of
Taylor and Wiles that the L-function can be analytically continued to all of C. By a conjecture of Birch
and Swinnwerton-Dyer, the order of the zero of L at s = 1 is the rank of F(Q). This result is of interest
because it allows one to characterize the global behaviour of an elliptic curve using local information.

Recall that p(z) is an even function (and thus all of the terms in its Laurent series have positive power)
so p/(z) is an odd function. For any elliptic function f with respect to a lattice L = [w1, ws] we can find a
fundamental paralleologram P, with o € C for which P, = {a + tjw1 + tows : 0 < t1,t2 < 1} has no zeros
or poles of f on its boundary, as in Figure 2. Note that fa P, fdz = 0 (where given a set A, the notation
0A refers to the boundary of the set A), since f is periodic so on parallel sides of the parallelogram we get
the same points but different orientation. Since the set of elliptic functions is a field as remarked above,
fT/ is also elliptic and therefore by the argument principle, since P, is a simple closed curve, it follows that

/

Y N@E) - > P(r)= 7dz:o

z:f(2)=0 z:%(z):O OPa
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a + w1 + w9
o+ w ¢

« o+ wi

FIGURE 2. Path of Integration P,

where N(z) is the order of the zero z and P(z) is the order of the pole z. Thus, the number of zeros of f
counted with multiplicity is equal to the number of zeros counted with multiplicity.

By its series definition, p’(z) has a pole of order 3 at every lattice point and no others. Therefore, there
are 3 zeros (counted with multiplicity) of p/(z) in Py counted with multiplicity.

Observe that 4L = —<L (mod L) so p/ (“’7) =p' (%) by periodicity. But p’ is odd, sop’ (%) = —p' (=)
so p/ ( ) =y ( ) = 0. Similarly, p ( 1) =0 and p (%) = 0. Therefore, %', <% and “’1+‘“2 are zeros
of p/ of multlph(:lty one and there are no others.

Next, let ¢ € C and let f(z) = p(z) — c¢. Then f has a pole of order 2 (since p does) at every lattice
point and no others. Thus, in any fundamental parallelogram, there will either be two distinct zeros of
multiplicity 1 or one zero of multiplicity 2.

Suppose we have a zero of multiplicity 2 in Py. Then that zero is a simple zero of p’ hence it is one of
5k, 5 or “1+°"2 . Thus, ¢ is either p ( ) P (%) or p (M) Note that if ¢ = ( ) then - is the unique

zero of f in Pg, and similarly for %> or w1+“’2 . The values of p(z) at these three points are dlstlnct. Indeed,
suppose for example that p (7) = p( ) Then f (“’1) =f (%) = 0, implying that f has more than one

zero, a contradiction to our initial hypothe&s

Corollary 3. 4p(2) — gop(2) — g3 = 4(p(2) —e1)(p(2) — €2)(p(z) — €3), where e; = p (%); es=p (%) and
es = p (2L32), and ey, ez and e are distinct.

Proof. The polynomial q(x) = 423 — gox — g3 has 3 distinct zeros, namely ej, ey and e3 as given in the
statement, by theorem 1 which says that ¢ = p’. The result follows. O

Consider f(x) = 423 — gow — g3. The discriminant D of f is D = 4%((e1 —e2)(e2 —e3)(e1 —e3))?. Further,
Res(f, f') = —4D so D = 42(g5 — 27g3). Thus, if go and g3 came from a lattice L then g3 — 27g3 # 0 (for
if g5 — 27 g% = 0, then the resultant is zero, implying that f has a repeated root, but as we just saw this is
impossible).

We shall prove later that if a,b € C and a® — 27b% # 0, there is a lattice L with go(L) = a and g3(L) = b.



6 LECTURES GIVEN BY DR. C. STEWART AT THE UNIVERSITY OF WATERLOO, WINTER 2012

LECTURE 3: THE MODULAR GROUP AND ITS ACTION ON THE UPPER HALF PLANE

Recall that
1 1 60 1
D SE T I S
W (mw1 + nwa) Wi
welL (m,n)#(0,0) (m,n)#(0,0) { M5 +n
for L = [wy,ws]. Similarly,
1 140 1
SIRSTI) SRS D DL
wel’ Y Y2 () #(0,0) (mﬂ + n)
b b w2

Let H denote the upper half plane H := {z € C : Im(z) > 0}. Define G(z) for k = 2,3,... by Gi(z) =
Z(mm) £(0,0) m which is analytic in H. Further, the series converges uniformly on compact subsets

of H to an analytic function on H. We now define g2(z) on H by ga2(2z) = 60G2(z) and g3(z) = 140G3(2)
and A(z) = g3(2) — 27¢3(2). Then A(z) is analytic and non-zero on H.

Definition 3. The Special Linear Group SLa(R) is the set of 2 x 2 matrices with coefficients in R with
determinant 1. We denote by £1 = + (1) (1)
quotient group PSLs(R) := SLy(R)/{I,—1I}.

Definition 4. The group PSLy(Z) := SLy(Z)/{I,—1I} is known as the modular group.

The Projective Special Linear Group PSLy(R) is the

Let G be the modular group and let g € G with g = ( CCL Z ) (by this we mean the equivalence class

az+b
cz+d’

modulo £7, but we shall abuse notation in this manner). Then g acts on H by gz =

Remark. Let L be the set of lattice on C. For any lattice L = [w1,w2] and an A € C\{0} we can define
the lattice AL := [Awq, Awa).
Let k be a non-negative even integer. There is a bijection between the set of functions F' : L — C which

satisfy F(AL) = A"FF(L) for all A\ € C\{0} and the set of functions f : H — C such that f(gz) =

(cz+d)kf(2) for all g = aZ €q.

To see this, let ¢(F) = f, where f(z) = F([z,1]) = F(L) for L = [z,1]. Then
az +b
g = Pz = £ ([0 ) = (
= (cz+ d)*F([z,1]) = (cz + )F f(2)
where [az + b, cz + d| is equal to the lattice |z, 1] via the matriz g. Thus, ¢ is well-defined. It is easy to see

that f is a bijection by definition.
For the sake of edification, let us see the other direction, i.e. suppose f : H — C satisfies f(gz) =

(cz+d)*f(2) for all g = < Z Z > € G. For any L = [wy,ws]. We define F(L) :=wy*f (%) Then

_ k
Cz+d[az+b,cz+d]> = (cz+ d)"F([az + b,cz + d])

F()\L) — F([)\wl,)\wg]) = O\WQ)ikf (:\\WQ

> = \"*F(L).
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FiGure 3. Covering C with Transformations of D

Note that F is invariant under the action of PSLy(Z) on L since the generators change.
Recall that A(2) = go(2)® — 27g3(2)2. We can check that A(gz) = (cz + d)2A(z).

LECTURE 4: THE ACTION OF THE MODULAR GROUP G ON H

. 0 -1 _ 1 . 1 1
LetS-(l 0 )sothatSz- ZandT—(O 1
10

( Y > (mod {I,~I}) and (ST)* = < 0 ) (mod {I,~I}).

Let D denote the set D := {z € H : —% < Re(z) < %,|2| > 1}. We'll prove that D is the funda-
mental domain of the modular group, i.e. the orbit of each element of G under the action of G contains
an element of D. Further, if it contains 2 elements of D then these elements are on the boundary of D.

Theorem 2. Let G = SLy(Z)/{I,—1I}.

> so Tz = z+ 1. Notice that S2? = ( Bl _01 ) =

(1) For all z € H there exists g € G such that gz € D.
(2) Let z1,29 € D with gz1 = 2o and z1 # z9 and g € G. Then either Re(z1) = :l:% and zo = z1 £ 1 or
|z1] =1 and zo = —i
(3) Let z € D and put Stabg(z) :={g € G : gz = z}. Then Stabg(z) = {I} if z € {i, €T, %}
have Stabg (i) = {I,S} and Stabg (e%) ={I,S8T,(ST)?} and Stabg (e 5 ) ={I,TS,(TS)?}.

(4) G is generated by S and T.

Proof. (1) Let G’ be the subgroup of G generated by S and T'. We will show that for all 2 € H there exists

g € G’ such that gz € D. First, note that if g = ( CCL Z > € G then
az+b (az +b)(cz + d) 1 9 _
m(gz) = Im (cz+d> m( oz 1 d? ot P m (ac|z|® + bd + adz + bcz)
_ (ad — bc)Im(z) Im(z)
= — = (adl bel = =
lcz +dJ? (adlm(z) + belm(z)) lcz + d|? lez + dJ?

Next, observe that ¢ and d are integers and |cz 4+ d| — oo as max(|c|, |d|) — oco. Thus Im(gz) achieves a
maximum for some g € G.
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Suppose g € G’ is such that Im(gz) is maximal. We can then translate so that gz has real part in [—5, %]
1

In particular there exists an integer n with —5 < Re(T™gz) < 5 with unchanged imaginary part. We
need to show that |T™gz| > 1. Suppose that [T"gz| < 1. Then applying S gives [ST"gz| > 1 and

Im(ST"gz) > Im(T"gz) = Im(gz), with ST"g € G'. Indeed, if w = T"gz so |w| < 1, then

m(Sw) = Im <_;> — m Q;T;) _ |w121m(w) > Tm(w)

But then gz does not have maximal imaginary part, and this is a contradiction. It follows that |[T"gz| > 1
so that ¢’z € D for ¢ =T"g € G'.

(2) Let g = ( CCL Z > € G with gz; = 29, 21,20 € D. Without loss of generality, assume Im(z1) < Im(z2)

-1

(otherwise we can pick zo = gz1 so 21 = g~ 22 to make this the case). Since Im(gz1) = m(zy), we

1
|cz+cl|2
see that |cz; + d| < 1. Observe that if # € D then Im(6) > @ (since Re(0) € [—3, 3], then § < 2 < 2“)
Thus,

1> |ecz1 +d? > Im(cz; + d)? = 2Im(z)?
and hence |c| < 2, so that ¢ = 0,1 or —1. If ¢ = 0 then we have a = d = %1 since |cz; +d| < 1 and d # 0 for
the determinant to be non-zero. Then gz; = 21 b hence is a translation by :l:b. Therefore the translation

is either by 0,1 or -1 since z1,29 € D. If b =0, 21 = 29, otherwise Re(z1) = :l: and 29 = 27 £+ 1.
If c=1thend=0,£1. If d =1, |cz1 +d| = |z1 + 1] < 1. This is only p0551ble if z; + 1 is on the arc

of the unit disc (since 29 € D so [22| > 1 as well), and since z1 € D, 21 = e 5 . Further, if d = —1, then
lcz1 +d| =|z1—1] < 1so smnlarly z1 =€ . Finally, if d =0, |z1] < 1s0 |z =1 = l=qg-1L ( be=1
so b = —1). But then [-| = 1. Thus, either a = 0 and gz; = —% or a =1 and by the reasoning above,

1 ezgl ie z1 = ™+ — % andifa = -1,z = e Finally, if ¢ = —1, the same analysis works by
takm (a,b,c,d) — (—a,—b, —c, —d).

(3) By the analysis in (2), if z; € D and gz; = 21, then |cz; +d| = 1. If ¢ = 1 then d = 0,1,—-1. If

c=1,d=0then |z;| =1 and b = —1. Since gz = 21, “2;1 =q-— % = z1 hence since |z1| = 1, we have

a = 0 hence z =14, or a = 1 so that zl—zl—l—l—Osozl—ed ora——l S0 z1 =€ =a . Similarly, 1fc—1
and d = 1 then since |cz1 +d| = |21 — 1] < 1 we find that z; = e =, Further, ifc=1and d= —1, 21 = e3.
To conclude, Stabg (i) = {1, S}, Stabg (e%> = {1, 8T, (ST)?}, Stabg (e%> ={1,TS,(TS)?}.

(4) Let g € G and let 29 € Int(D). Then gzg € H. By our proof of (1), there exists ¢ € G’ gener-
ated by S and T such that ¢’gzg € D. Since 29 € Int(D), it cannot be any of the options in (2) so
g'gz0 = 2o, but since the stabilizer is trivial in this case, ¢'g = I. Thus, g = (¢')~' € G’, s0 G C G'. O

In fact <S, T;8%=1,(ST)3 = I> is a presentation for GG. In other words, G is a free product of a cyclic
group of order 2 and one of order 3.
) e

QU

Definition 5. A meromorphic function on H satisfying f(z) = (cz+d) =2k f (%) forall g = ( CCL

SLy(Z) is said to be weakly modular of weight 2k.
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Remark. Observe that d(dg;) = (chlrd)Q’ hence if f is weakly modular of weight 2k then f(z)(dz)F =
f(g2)(d(g2))F. Since S and T generate G, to check whether f is weakly modular, we need only check:

(1) f(z) = f(Tz) = f(z+1)
(2) f(z) =277 ()

Let U :={z € C: |z| <1} and U* = U\{0}. Let ¢ : H — U*, q(z) = e*™*. Given a weakly modular
function f: H — C we can define f*: U* — C by f*(q(z)) = f* (e*™*) = f(z), since f is periodic (and
thus f(z) = f(z +1)). Note that f*oq = f and ¢~ '(2) = % for some branch of the logarithm.

Since f is meromorphic on H, f* is meromorphic on U*. If f* extends to a meromorphic function on
U then we say that f is meromorphic at infinity. Similarly, if f is analytic on H and f* extends to an

analytic function on U, we say that f is analytic at infinity.

Suppose that f is not identically zero, that it is weakly modular of weight 2k and meromorphic at in-
finity. Then it has only finitely many zeros and finitely many poles in D. For suppose that there were
infinitely many zeros in D. Then the origin would be an accumulation point of zeros for f*, hence f* would
be identically zero. Similarly, if there are infinitely many poles in D, the origin would be an accumulation
point of poles for f* would not be meromorphic.

Definition 6. A weakly modular function is said to be modular if it is meromorphic at infinity.
Definition 7. A modular form is a modular function that is analytic on H and analytic at infinity.

Definition 8. A modular form is called a cusp form if it is 0 at infinity.

LECTURES 5 AND 6: RELATING THE WEIGHT OF A MODULAR FUNCTION TO THE ORDERS OF ZEROS
AND POLES

For any zp € H and f modular, define ord,,(f) to be the integer n such that 1z g analytic and

(z—z0)™

a

non-zero in a neighbourhood of zy5. Suppose f is of weight 2k. Let g = < c b ) be in the modular

d
group. Since f(2) = (cz +d) % f(gz) = (cz + d)~2Ff (%), we see that ord,, (f) = ordg.,(f). We define
ordeo(f) := ordo(f*).

Lt D' = D\(A; U Ap) where A1 := {2 € D : Re(z) = 3} and Ay := {z € D : [z] = 1,Re(z) > 0}, as in
Figure 4.

Theorem 3. Let f be a modular function of weight 2k which is not identically zero. Then

1 1 k
ordoo(f)+§0rdi(f)+§0rde%(f)+ ;}/ ordy, (f) = G
EN) )
zo¢i@2§l

Proof. We'll first prove this under the assumption that f has no zeros or poles on the boundary of D.

27mi s
In this case, we consider a path I' given by ABCDFE in Figure 5 where B=¢3 ,C =4, D=e3 and D
and E have real part % Further, A and F have the same imaginary part chosen large enough that the
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FIGURE 4. The Region D' = D\(A4;,UA,)
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FIGURE 5. Path of Integration I'

region enclosed by I' contains all of the zeros and poles of f (since f is meromorphic and thus can only
have finitely many of each). By the argument principle, we have

= f/(z)dz: Z ord,, (f)

27T’L. T f(Z) soeD!

Notice that £ 4(T2) = J},((j)) dz, so

FT2)
L B f/(z) B _L E f’(z)
omi J4 F(2) ===, f(z)dz

Next, observe that S transforms the arc BC' to the arc DC. Also, note that f(Sz) = 22# f(2) since f is
modular of weight 2k. Therefore,

FUS2) o) WP ) (2 FE)Y)
F(5z) 457 = B TE < 2 f<z>>d

Thus,

SR = U M= R L
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Make a chance of variables under z = e then

C T . P s .
d A

/ zz/”e.@dez/%de:—“

R = 6

C fl(z D f'(z 9k —mi
Thus, 55 (fB f((z))dz +Jo f((z))dz) = n =6

Finally, we consider ﬁ EA ];((j))
segment EA = {\+iM : —% <A< %} for some M > 0. As we traverse from E to A we move along a
circle in the g-plane of radius e=>™ in the negative (clockwise) direction.
We have f*(q) = f(z) and f* is analytic and non-zero in the disc of radius e
origin. Thus

2miz

Suppose that the

dz. To evaluate it we change variables by ¢ = e

—27M oxcept perhaps at the

2mi Jp  f(2) T T omi CW

where C is the path in the counterclockwise direction given by the circle of radius e 2™ . By the argument
principle,

1N, L[y,

I UAL0)) PR
w7 ey e = ordo(r) = ordec()

Therefore, in the case that f has a no zeroes or poles on the boundary,

ordae(f) + 3 ord () = ¢

zo€D’

We now consider the possibility that we have zeroes or poles on the boundary of D. Note that we have

only finitely many zeroes or poles so they are all isolated.

Suppose first that we have a zero or pole with Re(z) = —% amd z # e’ . We modify the contour I' by

introducing a small semi-circle around z and a corresponding semicircle around Tz. We make the semicircle
sufficiently small that the circle it determines encloses no other zeros or poles of f and that its endpoints
are strictly within the segment AB.

The integerals along AB and DE cancel as before. In fact for each zero or pole of f and AB apart from
e%, we introduce such a semicircle and the result holds. '

Next, suppose z2 is a zero or pole of f on the segment BC' and different from e and i. We modify the
contour I' by introducing semicircles around z» for which the circle determined strictly inside BC'. We also
modify the contour by the image of the semicircle under S. Letting the radius of the semicircle tend to 0
we again find the contribution of the integral from B to D to be %. We can do this in general for any zero
or pole on the interior of BC' by making a similar modification. v

It remains to consider the possibility of a pole or zero for f at w = e and i. We modify I' by introducing
a small arc around w and a corresponding arc around ¢’3. Thus, the arc C is part of a circle around w
chosen so that that disc determined by the circle contains no other zeros or poles of f. We will let the
radius r of the disc tend to 0. Let C; be the set of points w + re?® where # varies from 5 to a where «
depends on r. Assume now that f(z) = (2 — w)'g(z) where g is analytic and non-zero in a neighbourhood

of w. So t is the order of f at w (of either a pole or a zero). On Cy, z —w = re?, so

f)  t )
fo) w902
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Thus,

/ f,Z i t +g’(z) dz = — 1 ‘ot ,L-reing_i_l/a 299(w+re )dtg
27i (2) 2mi z—w  g(2) 2mi Jo et 2mi Jx g(w + rei?)

/‘m9+/ ”+T%)w
g(w + ret?)

Letting » — 0, the second term vanishes and the first terms tends to

ot e t m t ¢
hm/ df = — lim <a(r)——) =33~ 7§

r—0 27 27 r—0 2

Similarly, fC r (Z dz = %, hence the contribution over C; and Cs is —%, where (5 is the reflection of the

set of points in 01 on the other side of the imaginary axis.

Finally, we consider the case when f has a zero or pole at i. Say f(z) = (2 —i)'g(2) with g(2) analytic
and non-zero in a neighbourhood of i. We introduce a small semicircle of radius r around i to the contour
I'. Choose r sufficiently small that no other zeros of poles of f are inside the disc of radius r around 1.
Arguing as before we find a contribution of —% to the integral. O

Consider the series EnGZ )2 and let f(z) be the function of z on C determined by the series. Any
compact subset K C C lies 1n81de a disc of radius T" around 0. If we remove from the series the terms ﬁ

with n at most 7" in absolute value, the remaining series converges uniformly on K since Z > converges.
Therefore, ) = 1 Goonpz converges uniformly on compact subsets to a meromorphic funct1on f (z) on C.

The integers are double poles of residue 0 since in a neighbourhood of n, f is of the form m plus an
analytic function. There are no other poles of f.
Let g(z) = ( = )2. Notice that g has a double pole at each integer and no other poles. Further, in a

sSm 7wz

neighbourhood of 0,

2
( T )2_ T _1(1 7rz+ )-2 1+ 2+
sinmz/  \7mz— %(772)3 ... 22 6 223

0 () B =F 4

STz
Note that f( 3 g(z) is analytlc in a neighbourhood of 0 and by periodicity in a neighbourhood of each
integer. Thus, f(z) — g(z) is analytic on C.

Notice that if z = x + iy with =,y € R then
1 1

= —)0

[z =n* (@ —n)+iyl?

as y — oo. Further,

T —TY

Tz e—mz‘ i ‘e e . e—mzeﬁyl 00

. 1
|sinmz| = = ’e
2
as |y| — oo.
Thus, f(z) — g(2) — 0 uniformly as |y| — oco. Therefore, f(z)— g(z) is a bounded analytic function and so
is a constant by Liouville’s theorem.
Further, the constant is 0 hence f(z) = g(z) on C.
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Now observe that ( ) — 2—2 = Znez [E=nER which in a neighbourhood of 0 is an analytic function

n;éO
3 Letting z — 0, we see that 2 7 = 7;)—2

Now consider
1 1 1

sinmz

z—m n
neL
n#0

Using the fact that Y > | =5 converges, we see that the series defining F' converges uniformly on compact

subsets to a meromorphlc functlon on C. Thus, the series of derivatives converges uniformly on compact
subsets to the derivative of the function. Thus,

T 2 d
_Z (z—n)? :_<sin7rz> dz(WCOtﬂz)

Thus, F(z) — mcotwz is a constant.
Notice that by definition, F'(—z) = —F(z). Further, 7w cot 7z is an odd function. Thus, F(z) — 7w cot 7z is
an odd function. Since it is constant, it must be 0. Thus, F'(z) = 7 cot mz. Therefore,

1 1 1
t = — —_
mecot mz Z+E (Z_n—l-n)

n#0

1 —_

1 _
- Z+n .= nz,wehawe

1 2z
7TCOt7TZ:*+ %
R D s
n>1

LECTURE 7: SERIES EXPANSIONS FOR ¢2(z) AND g3(z) ON H

We’ll now extablish the g-expansions for go and gs.

Lemma 1. Ifz € H and n € N then

)
Z (m+nz 231 3 27rrnz

meZ

1 ™
Z(m+nz Z; 52rnz

meZ

Proof. We start with the expansion

1
7rcot7rz-+z< n >
z+m m

meZ
m#0

Let ¢ = e?™*. If z € H, Im(z) > 0 and thus |¢| < 1. Hence,

CcOS Tz T | g TiR qg+1 ) R r . - r
FCOtWZ:WSinwz e ra— :mﬁ:—m(q%—l)z_:q = —Ti 1+2;q
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Thus, if z € H then

Differentiating repeatedly with respect to z to give terms with denominators in powers of 4 and powers of
6 using the identity % = 2miq results in the series

NcUDY E +1m —(2mi) Zr?’ 2miz

mez
1
—(5! 2 5 2miz
(5> Grm)pb i) Zr
meZ

Substituting nz in the place of z proves the result. O

Define the Riemann Zeta function ((z) by the series ((z) = Y02 | -L for Re(z) > 1. The zeta function
may be analytically continued to all of C with the exception of a simple pole at z = 1. It is conjectured
that all zeros of ((z) in Re(z) > 0 have Re(z) = 3. This is the Riemann Hypothesis.

Put, for z in a neighbourhood of 0,

z bk‘k;

z _ l
e 1 kok:

Notice that by = 1 and b; = —% by differentiating the left side and setting z = 0. Further, observe that

2 _1_f—z(ez_1)+ 2 _E_ %, _*

= = -1
e % —1 2 er —1 2 er —1 e? —1 2 2 er—-1

so that z*5 — 1 + £ is an even function. Thus, byry1 = 0 for k € N. We now put by, = (—1)’““Bk for
k € N. We can write
2k
e —1 =173 + Z 2k!)

The numbers {B}}72, are called Bernoulli numbers. We have By = l, By =

Bs = 42 and so forth.

6 307
Theorem 4 (Euler). Let k € N. Then
22k; 1B 2k
((2k) = — 5=
(2k)!
Proof. We have
- +f—1+i( ey
er—1 2 (2k)!
k=1
Write z = 2iu to get
2iu > 2k k
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Recall for z € H,

o0
mzcotmz =1+ 2 g 227
z

n
Thus,
00 2 o 2
U u 1
weotu=1-23 oy =1=23 G
n=1 n=1 m
s o u2 k 00 u2 k oo 1
—1-2 —3 ) =1- ) n2k
>3 () =12 () T
n=1k=1 k=1 =l

& u2k
=1-2) —5C(2h)
k=1

Also, (1) has the form

2iu e 41 o~ u?
T +tu =1u <ew 1) :ucotu:1—2z7r2k§ (2k)
k=1

Thus we need only compare this to (1) to establish the result. O

Thus, ((2) = %, C(4)= 90, ¢(6) = 945 and so forth.
Theorem 5. If z € H then

go(2) = drt <1+24OZU 27”"“)
g3(2) = 8 (1—504205 2’””“)

where op(k) =>4, d" for v € N.

Proof. For z € H,

1 1
g2(2) =60 Y m:(} Z+Zz<m+nz (m—nz)4>

(m.n)#(0,0) mez n=1mez
4 4 00 00
T 1671' 3 9
= 60 2 2 - TIrnz
2y D > D e ]
n=1meZ n=1r=1

by Lemma 1. By counting all of the indices r and n such that the products rn = k are constant, we can
simply index by k and count all of the divisors r of k. Counting in this manner produces

47t > . ° .
g2(2) = % 14240 ez "y 14240 ) :Ug(k)e%lk‘z]
k=1 r|k k=1
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Similarly, for g3(z) we have

1 1
BE) =10 > g = 0 Z+ZZ(m+m +<m—m>6>

(m,n)#(0,0) mee n=1meZ
278 167° = —
— 140 2 ) “r 5 2mirnz
¢(6) + ZZ (m + nz)b o5~ 15 2" C
n=1meZ n=1r=1

again by Lemma 1. By a similar argument as above, evaluating the double infinite series as a sum over
divisor sums gives the desired result. O

Notice that g9 and g3 are analytic on H and analytic and non-zero at infinity. In particular, ordecge =
0 = ordg3 so g2 and g3 are modular forms.
g2 has weight 4 and g3 has weight 6. By Theorem 3,

1 1
ordecgs + gOI‘degm/ggg + gordigg + Z OrdZOQZ = Z

zg€D’
ZO#'L,CQT"Z./:;

since here £k = 2. However, since go is analytic, it has no poles so all of these orders are non-negative
27
integers. This equality can only be satisfied if go has a simple zero at e 3 and no others in D’. Similarly,

1 1 1
Ordocgs + gordeerisags + Sordigs + Y ordygs = 3
zg€D’
o 7i,e2Ti/3

since here k = 3. By the same argument as above, g3 has a simple zero at ¢ and no others in D’.

LECTURE 8: THE A FUNCTION AND RELATED FOURIER EXPANSIONS

Recall that A(z) = go(2)% — 27g3(2)2.
Theorem 6. For z €¢ H

[e.o]

A(z) = (2m)"? Z 7(n)e?™n:

n=1

where T(1) =1, 7(2) = —24 etc. The function 7 : N — Z is called the Ramanujan T-function.

Proof. Put
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Then by theorem 5,

64712
A2) = 92(=)® — 27g3(=)” = o (1 + 2404)° — (1 - 504B)%)
64712 9 3 9 5 3
- (12°(5A + 7B) + 12°(100A% — 147B* 4 8000A4°)) (2)

But 5A + 7B = Y"°°  (503(n) + 7o5(n))e*™"* and
5d% 4+ 7d° = d3(5 + 7d*) = d3(2 + d?) (mod 3) = 0 (mod 3)

0, then 3|d so d® = 0 (mod 3), and
0 (mod 4) since the only quadratic

since 0 and 1 are the only quadratic residues modulo 3, and if d?
if > = 1 (mod 3) then 2 + d?> = 0 (mod 3). Similarly, 5d° + 7d°
residues modulo 4 are 0 and 1.

Thus, 12|(5A+7B) so that 123 divides both coefficients in the brackets in (2) and thus all of the coefficients
of the Fourier expansion in z (or the power series expansion in ¢ = e*™%*) are integers. Thus

647T12 ; > ;
A( ) — ( 23 Z 27rznz> — (271')12 ZT(n)e27rznz
n=1

where 7(n) was defined to be the coefficient of the resulting Fourier series. It follows that 7(n) € Z for all
n € N. g

By Theorem 6, A(z) is a modular function that has a zero at infinity and is thus a cusp form.
In particular, note that ordscA = 1, since 7(1) = 1 and by transforming A into its ¢ expansion, the lowest
order term in ¢ has exponent 1, and thus the g-expansion has order 1 at ¢ = 0.
By Theorem 3,

1 1
1 + gOI‘d62w¢/3A + QOI'dZ'A + Z OI‘dzOA =1

zg€D’
zo7éi,627ri/3

Since A is analytic, all of these orders are non-negative integers, and therefore they must all be equal to 0
as we saw at the end of Lecture 7. Thus, A does not vanish at all on H.

Ramanujan’s 7-function satisfies a number of congruence relations. For example,
7(n) = noz(n) (mod 7), 7(n) = no7(n) (mod 27), 7(n) = o11(n) (mod 691)

all proved by Ramanujan. The first few values of 7(n) are 7(1) = 1, 7(2) = —24, 7(3) = 252, 7(4) = —1472,
7(5) = 4830, 7(6) = —6048 and so forth. Lehmer conjectured that 7(n) is non-zero for all positive integers
n. He checked this to be true for n < 101,

It is not so difficult to show that 7(n) = O(n®) since A is modular of weight 12 (another way to see this is
consider the growth rate of the functions }-, ., >- g, d" for r = 3 and r = 5). In fact, it follows from work

of Deligne that for each € > 0, 7(n) = O (n%+e).
We also have the product expansion due to Jacobi, which is the content of Theorem 14:

o0

0o
Z T(n)e%rinz _ e27riz H (1 o eQwinz)24
n=1

n=1
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LECTURE 9: THE j(z) FUNCTION

Can we have a modular form of weight 07 Suppose f were a modular form of weight 0 which is not
identically zero. Then by Theorem 3,

1 1
orde f + gordegm/gf + iordif + Z ord,, f = 0.
zoED/
20#1,6271/3

Thus, f has no zeros or poles in H. Suppose that f is non-zero for some zg € D’ say f(29) = ¢. Then
g9(z) = f(2) — c is a modular form of weight zero and has a zero at zy. Thus, g(z) must be identically zero,
so f(z) is constant.

Can we have a modular function of weight zero which is not identically zero? Yes.

3
Indeed, put J(z) = gi(é)) and j(z) = 123J(2). Since A(z) is analytic and non-zero in H and gs(2) is a
modular form then J(z) is analytic in H and has a simple pole at co. Further, A(z) is modular of weight
12, as is g2(2)3 so J(z) is a modular function of weight 0.
What is the Fourier expansion of J(z)?

Theorem 7. -
§(z) =123J(2) = e72™ 4 744 + Z c(n)e*minz

n=1

where c(n) € Z for all n € N.

Proof. Put = €™ and let P;, P, and P3 denote power series expansions in x with integer coefficients.

We have from Theorem 5

64!
ga(z) = 27; (1+ 720z + 22P))

From Theorem 6, A(z) = (27)*2(z — 2422 + 23 P,). Thus,

() 12364712 (1 (1 + 7202 + 22 P 1
)= ——— —_ —
J 27 - 212712 1— 24z + 22P;

where L(z) = 24x — 2?P,. Here if the series diverges, one can analytically continue it at the point of
divergence.
Thus, j(z) = 2(1 + 7442 + 22 P3) where Pj has integer coefficients as required. O

~ x(1+720x+x2P1)(1+L+L2+...)

The first values of ¢(n) are: ¢(0) = 744, c(1) = 22 - 33 . 1823, ¢(2) = 2! - 5-2099. We have the following

congruences for example:

n =0 (mod 2%) implies that ¢(n) = 0 (mod 23%72)

n =0 (mod 3%) implies that ¢(n) = 0 (mod 32%+3)

n =0 (mod 11%) implies that ¢(n) =0 (mod 11%)
(n+1)c(n) =0 (mod 24)

for n,a € N.
In 1932, Peterson proved that
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0 1728 R

FIGURE 6. The contour of I' that j maps to the real line.
Theorem 8. j(z) defines a bijection from D' to C (or equivalently H/G to C).
Proof. Let A € C. Put fy\(z) = 123¢3(2) — AA(2). Note that f is a modular form of weight 12. Note that

by Theorems 5 and 6, ords, f) = 0.
By theorem 3 with £ =6

1 1
ordeo f + gorde%ri/Sf/\ + iordij}\ + Z ord,, fr = 1.
ZOGD’
20#4e2Ti/3

Notice that if n1,ny and ng are non-negative integers with n; + %ng + %’TL:), =1, then (n1,ng,n3) is either
(1,0,0), (0,2,0) or (0,0,3). Thus, there is exactly one zero in D’ say z; such that

o 3g3(z) A=)
j(z1) =12 Az~ A +A=2A

so j is surjective. Since D' C C, it follows that j is injective as well and thus a bijection. O

Let us look more closely at the mapping j : D’ — C. First, note that j (e%> = 0 since go = 0 there,
and j(i) = 123 = 1728 since g3 = 0 there and thus A(i) = g3 (4).
Next, observe that j(z) = j(—%). Indeed, if z = u + v for u,v € R then
e27riz

—27v | eQﬂ'zu _ a2miz e—(27rz(u—w))

e — —2mv | e—27riu — ezﬂ—iz‘

=€ =€

Thus, since j(z) is representable by a Fourier expansion with real coefficients, it follows that every expo-

nential term has this form so the claim follows.
Since j(z + 1) = j(2) for z € H, we have j (—% +iv) =7 (% —|—iv). Further, — (% —i—iv) = —% + v so

(1, (T /1 e
— (A% = — (A% = — — U = —_ = A9
T\ 73 T\ 3 T\ 3 AN
1 1

since 5 — v = —(5 — 2'1)). Thus, j (—% + iv) € R for all v > 0. Further, j(z) =j (—%) since it is modular
of weight 0, so for 3 € T, —% = —f and thus j(8) = j(—/3) and so by our identity, j(3) = j(—f3) so again

j(B) € R. Further, if z = iv, j(iv) = j(iv) so j(iv) € R.
Thus, j maps the contour I', pictured in Figure 6 to the real line. Since j has a pole at infinity the contour
is mapped to all of the real line.
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Recall that for any lattice L,

g2(L) = g2([w1,we]) = 60 Z % =60 Z

welL’ (m,n)#(0,0)

1
(mwi + nws)*

— 1 _ 1 w
Now for z € H, g2(z) = 60 Z(m,n);ﬁ(o,o) =i Thus, g2(Jw1,ws]) = o192 (;;)
Theorem 9. Let a,b € C with a® — 27b> # 0. There exist complex numbers wi and wo with % ¢ R for
which ga([w1,ws]) = a and gs(w1,ws]) =b.
Proof. Since J : D' — C is a bijection there exists a 7 € D’ for which J(7) = %.
Let us first assume a,b # 0. Since a # 0, J(7) # 0 so

-1 27
J(1) _ 7 3)
J(1) a3
Recall that g3(jw1,ws]) = ﬁgg (%) and ga([wi,ws]) = ﬁgg (%) Since
2 2
J(r)—1 27g3(7)? ()
J(7 g2(7)?
Now let wo € C such that
o ags(r)
wsy = — 5
2 ng(T) ( )
and put wy = Tws so that
Z593(7)
g3([wi,wa]) _ § _ lgs(r) b
- = o) _ ©)

go(lwr,wa])  Lga(r)  wlga(r) @

) -
=wy | —

92(7) a

and similarly for a cube. Comparing (3) and (4) we find that

o wl%m = ga([wr,wa))

From (5) we find that

By (6), b = g3([w1,w2]). This proves the result when ab # 0.

Suppose ab = 0. Since a® — 27b% # 0, it follows that either a = 0 and b # 0 or a # 0 and b = 0. Let us first
assume that a = 0. Choose wo to be a complex number for which g3 (e%i/ 3) = bw§. Observe that wy # 0
since g3 (e27ri/3) # 0.

2mi/3

We then put w; =e ws. We have
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Finally, assume that b = 0. Choose wy € C such that g2(i) = awj and w; = iws. Then

1 w1 1 .
= — —_— = — = = b
93([w1, w2)) ngS <w2> wggz’,(l) 0
92([wr,w2]) = — 92 (i) = a
Wy
as required. O

Therefore, given any elliptic curve y? = 422 — ax — b with a,b € C and a® — 27b% # 0 there is a lattice L
and a p-function associated with this lattice L such that (p(z),p’(z)) gives a parametrization of the curve
(see Lecture 2).

LECTURE 10: VECTOR SPACES OF MODULAR FORMS OF FIXED WEIGHT

For any non-negative integer k let My denote the set of modular forms of weight 2k. One can check
that My, is a vector space over C.
Let M7 denote the subspace of M, given by the cusp forms. Define the map h : M; — C such that
h(f) = f(cc0). Then h is a linear functional and the kernel of h is MY. Thus, the dimension of M, over
¢ is at most 1 (by the First isomorphism theorem, the domain vector space quotiented by the kernel of
the functional is isomorphic to the range, C, which has vector space dimension one over itself). Further,

for k > 2,
1
Gr(z2) = Z ok
(maz 0 T )

is a modular form of weight 2k. By the same proof as theorem 5, Gi(0) = 2((2k) # 0. Thus M) =
z@CGk for k 2 2.

Theorem 10. (1) My ={0} for k<0 and k =1.
(2) A(2) is an element of Mg and multiplication by A gives an isomorphism of My,_¢ into M3, fork € Z.
(3) Fork=0,2,3,4,5, My, is a dimension one vector space generated by 1,Ga, G, G4, G5 respectively.
Proof. (1) If f is a modular function of weight 2k

1 1 k
orde f + §ordif + gOrde2m/3f + E:D ord,, f = G
zZp0€ /

zo;ﬁi,e2"i/3

If f € My we would have a sum of the form ny + % + % = % with n1,ns2,n3 € Ny and this is impossible.
The case k < 0 is incoherent for a non-zero modular form which is everywhere analytic.

(2) A € Mg since A is a cusp form of weight 12. Notice that the map ¢ given by ¢ : Mj;_g — MY, with
Y(f) = Af is a linear map. It suffices to show that 1) is invertible. Given g € M, put f = £. Notice that
f is weakly modular of weight 2k — 12. Since A is analytic and non-zero in H and it has a simple zero at

oo and g € My, f is analytic and one-to-one and at infinity

ordeo f = ordeeg — ordec A = ordeog — 1 >0
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since g is a cusp form. Thus, f € My_g. Thus, ¥ is invertible so the result follows.
(3) By (1), M, = {0} for k < 0 and £ = 1. Then by (2), M7 = {0} for £ = 0,1,2,3,4,5 since it is
the isomorphic image of My for k — 6 < 0. Thus, dimM; = 1 for £ = 0,1,2,3,4,5, since by the first

isomorphism theorem, the quotient space My /M7 has dimension 1, and the kernel of v, MY, is trivial.
Note that 1,G1,Ga,Gs, G4, G5 are non-zero elements of My, Mgy, M3, My, M5 respectively. Thus, (3)
follows. O

Notice that for & > 0,

| (12 if k=1 (mod 6)
dimMy, = {ng J +1 otherwise

since the result holds for £ = 0,1,2,3,4,5 and then using part b), the dimension increases by one. The
congruence 1 modulo 6 is special since M; = {0} as in a).

Corollary 4. A basis for My, is given by {g$g5 : a,b € Z,a,b > 0,2a + 3b = k}.

Proof. We will first show that g$¢8 with 2a+3b = k, a,b > 0 generate M. This is certainly true for j < 3
since G2 is a scalar multiple of go and G3 of gs.

We now argue by induction. Let (a1,b1) be a pair of non-negative integers with 2a; 4+ 3b; = k. Observe
that gglggl is a modular form of weight 2k.

By theorem 5, g5* ggl is not a cusp form so g5* ggl is a non-zero element of My, /M?¢, and this is of dimension
1. Thus, if f € My, then there exists a A € C such that f — )\gglggl € Mj. By part b) of Theorem
10, f — Ag5! ggl = Ah for h € Mj_g. By the inductive hypothesis, we can express h as an expansion of
products gggg, 2c+3d =k — 6 with A = g3 — 27g§, each term of which give resulting products of weight
2k. To show this is a basis, suppose there exist scalars A, not all zero in C such that

F2) = " apgsgs =0.
2a+3b=k
a,b>0
Since go(1) is non-zero, letting z — i, we see that f has a zero of finite order at ¢ which gives a contradiction.
(This follows since by complex analysis we can write f(z) = (z —i)™g(z), g(z) # 0 in a neighbourhood of
i for some m). 0

Theorem 11. f is a modular function of weight 0 if and only if f is a rational function of j.

Proof. (<) Immediate.
(=) Let f be a modular function of weight zero. Let pi,...,pr be the poles of f in D’ repeated with
multiplicity. Then

k
=16 i)
i=1

is analytic.
Next note that for some non-negative integer n, fo = A™f; is analytic at oco. Therefore f5 is a modular
form of weight 12n and can be written as a C-linear combination of gggg where a,b > 0 and 2a 4 3b = 6n.

a b
Thus, it suffices to show that 93?13 is a rational function of j.
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We have%+g:n. Thus, a = 3] and b = 2m for I, m € Ny.

Consider now
a l m . m . m
9395 _ (BY (B\" _( 3 N (B\"_( J \($-A
AT A A 1728 A 1728 1728 A

_ ] l ] - i m
1728 271728 27

so the result follows. O

Let d € N and § € Q (v/—d) with Im(¢) > 0. Then j(6) is an algebraic number. On the other hand, if §
is an algebraic number and 6 is not in such a field, j(6) is transcendental.

LECTURE 11: BRIEF REVIEW OF ALGEBRAIC NUMBER THEORY

Let K be a finite extension of Q and let R be the ring of algebraic integers in K. Recall that o € R if
its minimal polynomial over Z is monic.
In general we do not have unique factorization into irreducibles in R up to reordering in units. For example,
in Q(v/-5),9=3-3=(2+vV-5)(2 - V-5), 3, 24 /=5 being irreducibles in R for Q(v/-5).
However, we do have unique factorization of ideals of R (it takes some work to prove this).
In particular, given o € R the principal ideal generated by « can be factored into prime ideals uniquely up
to order.
Recall that a fractional ideal is a set of the form %I with 8 € R and I C R an ideal. We can define an
equivalence relation ~ on the fractional ideals of R by I; ~ I if and only if there exists nonzero o, 3 € R
such that aly = Bls.
We can define multiplication of equivalence classes by multiplication of representatives. This turns the set
of equivalence classes into a finite Abelian group. The order of the group, denoted by h or h(K) is known
as the class number of K. If the class number is one, we recover unique factorization of elements of R up to
multiplication by units, as every ideal is then principal, and by an elementary result of algebra, principal
ideal domains are unique factorization domains.
It is not known but widely believed that there are infinitely many real quadratic extensions of (Q with class
number one. For imaginary quadratic extensions, the situation is different. It was known for many years
that if d € N, Q(v/—d) has class number one then Q(v/—d) = Q(v/—D) where D = 1,2,3,7,11,19,43,67
or 163.
Gauss asked for a complete determination of all such imaginary extensions. Heilbronn proved in 1934 that
there could be at most one more such field. In 1966-67 Baker and, independently, Stark proved the list
above is complete. (In 1952, Heegner gave an essentially correct proof that was disregarded).

Recall, for k > 2

1
Gor(L) = Gop(fwr,wa) = Y ——————p
(maZ ) (ML T 1)

and that gg(L) = 60G4(L) and gg(L) = 140G6(L).
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Theorem 12. Gy, = Goi(L) is expressible as a polynomial in go and gs with rational coefficients. Put
by = (2n 4+ 1)Ganya then by = 55 and by = 53 and

n—2
(2n+3)(n — 2)by =3 bibn_1_k

k=1
forn > 3.
Proof. Recall from the equation prcedding Theorem 1

()= 2 43 @0+ Dlanae = & 43 byt
piz) = 22 n 2n422 = 22 n <
n=1 n=1

and p”(z) = 6p(z)? — £. Comparing coefficients on both sides gives the result. O

LECTURE 12: COMPLEX MULTIPLICATION

Let L = [wy,ws] be a lattice. If f is an L-periodic meromorphic function which is even then it can be
shown that f is a rational function in terms of p(z). Let 5 € C and suppose that p((8z) is L-periodic. In

this case p(3z) = zzg 8 where g, h are polynomials over C.

When does this happen? Certainly this holds if n € N. We can show that p(nz) = ZZ’; ((2 where ¢ has

degree n? and h has degree n? — 1.
If 5 € C\Z and p(Bz) is L-periodic then we say that Ep, the elliptic curve associated with L, has
complex multiplication or CM. If this happens we have

Bwi = rwi + swa

Bwy = tw1 + uwo

(P2 (2) =)

so the determinant of the matrix is zero. Thus, 3 is a root of the quadratic polynomial (z —r)(z — u) — st.
Thus, (3 is a root of a quadratic monic polynomial. Since 5 ¢ Z we see that it is of degree 2 over Q.

with r,s,t,u € Z. Thus

Further, since 8 =r + s (%), s # 0, and since z—f ¢ R we see that § determines an imaginary quadratic

extension. Notice that if £ admits addition and multiplication by 1 and 2 then it does so by 31 + G2 and
by (102 respectively.

In fact, the set of all elements 3 for which E admits complex multiplication is a subring of Q(y/—d) for
some d € N.

E admits CM by the ring of algebraic integers of Q(v/—d) if and only if it admits complex multiplication
by 8 where

5= V—d if d=1 (mod 4)
M it d# 1 (mod 4)

Suppose L = [wy,ws] and E = E, is the elliptic curve associated with L, we define j(F) = j(L) = j (5—?)
Notice that if L and Lo are lattices with L; = ALy then j(L1) = j(La).
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Using this, one can show that

h(—d) = |{j(E) : E is an elliptic curve with CM by the ring of algebraic integers of Q(v—d)}|

We shall now show that j(F) = j(L) = j (“’2> is algebraic when E admits CM by (3, where {1, 5} is an

w1
integral basis for Q(v/—d).
Notice that by scaling L we may suppose that g = g2 = g3. This does not change j(F) as we showed above.

By theorem 12,
4

1 g2> gz 6 8
=—=+=—+=—+F P
p(2) e + 20 + 98 + Ps(g)z” + Ps(9)2° +
where Ps(g) and Pg(g) are polynomials in g with rational coefficients.

Further,

1 g3%2?
We have

fi(p(z))

p(Bz) =
P9 = hw)

with fi, fo coprime polynomials in Q [z]. In fact, we may suppose that f; € Q(f) [z] for i = 1,2 and that
f1, fo are coprime. Thus, by examining the power series expansion of the latter equation we see that the
coefficient of z% for a an odd integer is 0. But the coefficient of z* is a polynomial P,(z,y) € Q[z,y]
evaluated at + = g and y = . Note that the polynomials P,(z,y) are not all identically zero since if we
vary (3 then there must exist a 3 € C\Q(v/—d) such that the equality does not hold for if it did it would
contradict the statement above that 3 € Q(v/—d) for some d € N is a necessary condition.

For fixed g there is a polynomial P,(x,y) which is not identically zero such that P,(x, 3) is not identically
zero. This follows since as we vary g we vary the underlying lattice and so otherwise we would have CM
by [ for each lattice associated with g which is not possible.

Let us put f,(z) = P,(x,3). Then g is a root of f, € Q(f) [x] hence g is an algebraic number. Let F be a
finite Galois extension of Q containing (3 and g. Let o be an automorphism which fixes Q. Note that o(0)
is either 3 or 3 since 3 is imaginary quadratic. Applying o to all the terms of P,(g, 3) we get Py(cg,003)
we find that the curve E° : y? = 423 — 0(g)z — 0(g) admits CM by o(f3) hence by 3 or # and thus by 3.
In fact if it admits CM by [ it admits by the ring of algebraic integers of Q(/3).

Notice that j(E) = 1122212 and thus j(E7) = 1i72£. Therefore as we run through the automorphisms o

the number of differentgvalues assumed by j (E"ﬁg)corresponds to the number of different values of o(g).
However since E° admits CM by the ring of algebraic integers of Q(3) if Q(3) = Q(v/—d) with d € N then
the number of different values assumed is at most h(—d).

(Indeed, any two ideals in the ideal class are related by a prime ideal a = ~b for a,b € Q(v/—d) and
v € Q(v/—d) so if j(E') = j(E2) then a1(g) = doa(g) so that oy 0 01(g) = 05 1(§)g and thus o, ' 0 oy is
at most a scaling of g which does not change J so o1 and o9 are in the same ideal class and there are not
necessarily representations for every ideal class.)

Therefore g and also j(E) are algebraic numbers of degree at most h(—d) since the Galois group has size

bounded by h(—d) from what we have just said. In particular if A(—d) = 1 then j(E) = j(L) = j (5—3) €Q.
Suppose that {1, 3} is an integral basis for the ring of algebraic integers of Q(+v/—d) for some d € N. Con-

sider the lattice L = [1, 8] then j(L) = j(/3) and j(() algebraic of degree at most h(—d) over Q.
Since h(—163) = 1 and —163 = 1 (mod 4) then we see that j (1 (1 + +/—163)) € Q. In fact j (3(1 + v/—163))



26 LECTURES GIVEN BY DR. C. STEWART AT THE UNIVERSITY OF WATERLOO, WINTER 2012

is an integers which is a perfect cube. Recall that if ¢ = e2™*

1
§(2) = = + 744 4+ 196884¢ + . ..
q

and when z = 3(1 + /—163) then

g ' = —e™163 = _962537412640768000 4 743.9999999999992 . . .

In fact j (3(1++/=163)) = —262--- 768000 = (—640320)>.

We will not prove this but the following facts hold: if 7 € Q(v/—d) and Im(z) > 0 then j(7) is an al-
gebraic number. Further, if {wi,w2} is an integral basis for an ideal of the ring of algebraic integers of
Q(v—d) and 7 = o2 then j(7) has degree h(—d) over both Q and Q(v/—d). Further, Q(v/—d)(j(7)) is the
maximal unramified Abelian extension of Q(v/—d). By an Abelian extension we mean a Galois extension
of Q with Abelian Galois group. Given T a finite extension of K where [K : Q] < oo, T is said to be an
unramified extension of K if every prime ideal decomposed into distinct prime ideals in the ring of algebraic
integers of T'.

One other interesting open problem is the following: can every finite group G be realized as a Galois
group over the rationals? Shafarevitch showed that if G is solvable the answer is yes.

It is easy to realize S, and A, for n € N. The next class of non-solvable groups to be realized was
PGL(2,Z,). Take GL(2,Z,) the set of 2 x 2 matrices over Z,, with determinent a unit in Z,. Then

PGL(2,Z,) = GL(2,Z,)/{ul2 : v a unit in Z,}

It can be shown that there exists, for each n € N a polynomial ®,,(x,y) € Q [z, y] such that ®,(j(z2),j(nz)) =
0. By Hilbert’s irreducibility theorem there exists an r € Q such that ®,(z,r) has a Galois group
PGL(2,Z,) over Q.

LECTURE 13: INFINITE PRODUCTS AND THE DEDEKIND ETA FUNCTION

An infinite product [[;2, a; of complex numbers is defined to be A provided that

n
Jim [T i = g An =4

i=1
and that A # 0. If there exists an integer N such that a,, # 0 for n > N and such that lim, o [[}_y_1 ak
is equal to a non-zero complex number then we say that the infinite product converges.
Plainly, if Hflozl an converges then lim,, .. a, = 1. We can write a, = 1 + b,, and ask for the convergence
of [T;2, (14 by,) so that b, — 0. If no factor a, is 0 then we compare the infinite product with the series
>0 log(1 + by,) where here we take the principal branch of the logarithm.
Let the partial sums of the log series above be denoted by S,,. Then A,, = eSn and if S,, — S then 4,, — e°.
If no factor a, is zero and the infinite product converges then A, — ¢ # 0 so it suffices to have the log
series converge to conclude that the infinite product does.
In fact this condition is necessary. To see this, suppose log (%) — 0 and

An
log <A> =log A, — log A + 27ih,
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for some integer h,. Then

(hnt1 — hp)2mi = log <AT4+1> —lo (i > log(1 + by41)

Therefore taking the imaginary part of each side of the equation gives

27 (hny1 — hn) = Im <10g <A"A+1>> —1Im <log <‘2”)> — Im(log(1 + bn1))

But Im (log ( "H)) ,Im (log (%)) — 0 and |[Im (log (1 + bp41)) | < 7 for n large enough. Thus, h, = h

for n large enough.
Therefore for n sufficiently large,

An
log<A> Sy —log A + 2wih
s0 S, — log A—27ih. In conclusion, [[>2 | (1+by,) converges if and only if Y7 ; log(1+b,) converges, where
we take the principal branch of the logarithm. If Re(b,) > —1 for n € N then we say that [[,2 (1 + by)
converges absolutely if >">° | log(1 + by,) converges absolutely.

log(1+2)

Since 22—+ — 1 as z — 0 we obtain: if Re(b,) > —1 then [[)°, (1 + by) converges absolutely if and only
if Y0, |bn| converges.

Proposition 1. Let U be an open subset of C and let f, be analytic in U and not identically zero. If
Yool 1 (fu(2) — 1) converges absolutely and uniformly on compact subsets of U then [[77 fn(2) converges
to an analytic function on U.

We define the Dedekind Eta function in the upper half plane H by

oo oo
Tz . L
5 | | eanz — 434 | | 1— q

where ¢ = e“™*, where we choose the principal branch of the 24th root.
For z € H, |¢q| < 1 and the infinite product converges absolutely (as a geometric series), we see from the
proposition that 7(z) is analytlc We shall prove that n(z)* ( ) 2A(2).

Notice that 1(z + 1) = eiz(z) and by induction 7(z + b) = e12 77( ) for b € N so n(z + b)* = n(2)?%

2miz

N

Theorem 13. If z € H then n(—1) = (—iz)
function.

n(z) where we take the principal branch of the square root

Proof (Siegel): We prove the result for z = iy with y € R, y > 0 and then the result holds for general
z € H by analytic continuation. Thus, it suffices to prove that n <§> = y%n(zy) Equivalently,

i 1
1 Z) -1 ) = =1
ogn (y) og n(iy) 5 logy
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F1GURE 7. The Path of Integration I' in Siegel’s Proof

We have by the product definition

i 00
log n(iy) = —% + log H (1 _ e*?ﬂny) — _% + Z log (1 _ ef2wny)
n=1

e—2mmny > 1 —2mmy
S S ()
m=

n=1m=1

Thus, it suffices to prove

o

1 s 1 1
- —Z)=—Z1
Z m1l— e27rmy Z 12 <y y> 2 0gyY (7)

m=

To prove (7) we use a residue calculation. For fixed y and n € N put

1 N
Fo.(z) = e cot(miN z) cot (Wy Z)

for N =n+ %
Let T' be the contour in Figure 7. Inside T', F,(z) has simple poles at z = % and at z = %y for

k=41,42, ..., 4+n and it has a triple pole at 0 by the expansion of cotangent derived above.
Recall that

0 22kBk ok
zeotz =1~ ; (2h)! z
and from Euler’s Theorem (Theorem 4) this converges for |z| < m. We have B; = & and so zcotz =
1-2 .
The re51due at z = 0 of F,(z) is the coefficient of 22 in the power series expansion of z3F},(z) around 0.
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Therefore

SE () = _% [m,lN (miNz cot(ﬂ'iNz))] : [y <7TNZ cot (WN'Z))]
2

N
. 2.2 2
S A G AP R D O (.ol R
8m2i N2 3 Y 3

The coefficient of 22 is thus
2 72 .
Y 9 9 TN 1 1
7 (xN2— = (y—=
2472 N2 (” 2 ) 24 (y y)

Thus the residue of F,(z) at z =0 is & (y - 5)
What is the residue at z = %? Notice that since tan 7k = 0,

ik 1 N
lim (z - Z) cot(miNz) (— cot (F Z))
Z*)% n 82 y
ik -1 .
- 1 N d N k
= lim - - — <—cot (W Z>> = ((taﬂﬂ'iNZ)’Z_ik> <—_ cot <m>>
z—ik \ tan(miNz) — tan miN 8z ] dz =N 8ik

Y
— ;| . _ﬁ cot le — i cot ﬂk
" | 7miNsec2 miNz =% Sik Y - 8rk Y

Notice that this is an even function of k. Therefore,

k=—n y
k#0

. =~ 1 ik
Z ResZ:%Fn(z) =2 Z " cot —
k=1
Finally, let us compute the residue of F,,(z) at z = % for k # 0.

. ky TNz 1 . N N )
lim (z— == ) cot ——cotmiNz | = 7]\[] _ky | ——— cot wiky
2 ky N Y 8z Ty sec? e 8ky

N

1
=% cot wiky
Thus,

1 .
Z ReSZ:%yFn(z) =2 Z —— cot miky

8k
k=—n k=1
k#0
Now recall that
. cosiff e ¥ +ef 1+e2
cot 10 = = =
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Thus,
n [ n n
1 1 1 1
25" cotmiky=—— |y - —2
gk (VT 4mi k k(11— eQ’Tky)]
k=1 Lk=1 k=1
n n n
1 1 1 1
23" ot T S =
=1 " y ™ k= k=1 k (1 —ev >
Therefore,
™ 1 1 1 1
F,(2)dz = —— <y—>+ - x
/F " 12 y ;k 1—erky 2k

Now

1 N 1 2 1 2
#Fn(2) = — g cot(miNz) cot = <1 T 2N: e%NZ) i (1 - M)
— e

and if z =t +du, t,u € R then

1 2 2
an(Z):8<1—1_e%N(t+w)> (1_1_62ﬂv<—n+m>

Yy

Thus, since N =n + %,

ifz=t+idu,t,Lu>0o0rt,u<0
ifz=t+iu,t>0,u<0ort<0,u>0

| ool=

n—oo

lim zF,(z) = { 1
8

Therefore, lim,, .~ 2F,(2) tends to % on the line segments (excluding endpoints) joining y to ¢ and —y to

—i and it tends to —% on the line segments (excluding endpoints) joining ¢ to —y and —i to y.

Now since y > 0 and N =n + %, 2F,(z) is uniformly bounded on the contour I" and so

% —y —1 Y
lim [ F,(z)dz :/ lim an(z)% _1 {/ dz —/ dz +/ dz _/ dz]
n—oo Jr rn—oo z 8 y z i z —y z i %

1
-8
Here, we are using the branch of the logarithm with 0 < § < 2. We must pass through the cut line by

passing along the contour I'" and therefore we must account for the winding number by including a term
27mi. Thus,

(logi — logy — log(—y) + logi + log(—1) — log(—y) — logy + log(—1))

lim [ F,(z)dz = ! (

n—oo |1 8

3mi 1
21’% —2logy—2logy—2m'+2§ —2m’> = —ilogy

as required. O



PMATH 944: MODULAR FORMS 31

Theorem 14 (Jacobi). Let ¢ = €™ for z € H. Then for all z € H,

o

A(z) = (2m) 0™ (2) H 1—q")
Proof. Put f(z) = (Z)). Observe that f is invariant under the action of the modular group (since
f(Sz) = ;i(AS(Z)) = 1)2A = f(z) and f(Tz) = f(z)). Further, n(z) is analytic and non-zero on H
(since all the poles have norm < 1 or have imaginary part equal to 0).
We have

,)724(2,) — 2miz H (1 - eZﬂznz) (1 + P1< ))
n=1

where Pj, P>, P3 denote power series in ¢ with integer coefficients and zero constant term.
Further, since A is a cusp form,
A(z) = (2m)2qPa(q)
Thus, f(z) = (27)'2(1+ Ps(q)) and so f is analytic at infinity. Therefore, f is a modular form of weight 0
and hence is a constant and that constant is (27)'2. The result now follows. |

LECTURE 14: THE PARTITION COUNTING FUNCTION AND HECKE OPERATORS

For any positive integer n, let p(n) denote the number of partitions of n into positive integers. Thus,
p(b)="T7,since 5=4+1=34+14+1=24+14+141=34+2=242+1=1+14+1+1+1.
Observe that for z € H,

[Ta-am 1=H qu = > p(m)g"
n=1 n=1 \ 7=0 m=0

by grouping those terms in the sum with nj =m

2n

Theorem 15. For all positive integers n, p(n) < ¢"V 3 .

Proof. For 0 < z < 1, define f(x) = [[22,(1 — 2™)~! Thus,

0 0o 0o £
log f(z) == log(l—a") =3 > —
n=1 n=1m=1
00 1 0o o 2
_ mn __
D SED JECE pp
m=1 n=1 m=1

where the change of order of summation is justified by the absolute convergence of the power series expan-
sion of log(1 — a™) for every n € N for = € (0,1).
Note that ¥ > ™1 for 0 < k < m — 1 so that

mzm P <14z+... +2m!

from which it follows that
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Therefore
Ing(m):Z l—xm Z l—x 1—x€
m= 1

2

since ((2) = %. Certainly for 0 <z < 1 we have p(n) < f(n) since

ma < 3 pmy = [ (1 ™) = f(x)
m=1

2o
logp(n) < ( ) —nlogx

Now for % <z < 1 we have

1 1 1 1—
—logx—log<>—log<1+<—1>><—1— <
T x T T
since 0 < % — 1 < 1. Therefore,
1 (n) < 12 T n 1—=z
ORI = 6 \1—=z " T
On taking, for n > 1, 5 < T = \/\éﬁﬂ < 1, we find that logp(n) < 74/ 23 , and the result follows. O
In fact as n — oo, -
o3
p(n) ~

4/3n

proved by Hardy and Ramanujan in 1918 and Uspensky proved this independently in 1920.

We will show later that the 7-function is multiplicative, ie 7(mn) = 7(m)7(n) whenever ged(m,n) = 1.
Further, if p is prime and n € N, 7(p)7(p") = 7(p" ) + ptlr(pn1h).

General Question: When are the coefficients in the g-expansion of a modular form multiplicative in the
sense above? Hecke answered this question by introducing Hecke Operators 11,75, .... These map M to
M, and even M7 to M§.

Definition 9. Let k be an integer and n a positive integer. The operator T, : My — My is defined by

Tof(2) = n?*~ 1Zd—2sz<”z+bd>

T, is known as a Hecke operator.

Remarks. (1) When n is a prime p,

T,f() = 0?4 f (s Zf(”b)

(2) We have work to do to show that T,, maps My, to My, and MJ, to M3.
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Theorem 16. Let f € My, and put g = €*™*. Suppose, for z € H, f(z) = > oo_, c(m)q™. Then for all
neN, T,f(z) = _gra(m)q™ where

rn(m) = Z d*1e (%)

d| ged(m,n)
Proof.
d—1
T = D 3 e
b=0 m=0
%) d—1
n 2k—1 271—2 "Z 27rz'mb
=X 2(G) cmEE S
m=0 d|n b=0
since this converges absolutely on H.
But notice that
13~ 2y {0 if dtm
il e - ‘
d P 1 ifdm
Thus
- B (o) n\ 2k—1 27m( d’gz)
=303 () elme

We now write m = td so that
. oo n\ 2k—1 d QWi(th)
= = t 4
WS =300 (5) ettde
t=0 d|n
Now replace d in the inner sum by % (by the symmetry of the sum over divisors of n) to get
> tn
_ Z Zd%—lc <d> 4
t=0 d|n
Now collect terms such that td = m so that d|m. Thus

Tof(z) = i S e () | am = > ()™

m=0 d|n m=0
dlm
and we are done. g
Let A= < CCL d for a,b,c,d € Z. We define the action A -z = ‘C’Z'Zig We can define T, f in terms of

matrices of the form ( a b > for a,b,d € Ny and ad = m.

0 d
We have
Tuf(z) = n21 % d—zkf((g Z>Z>

a>1,ad=n
0<b<d—1
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and so

Tnf(z):% > a%f((g Z)z)

a>1,ad=n
0<b<d-1

We wish to see how T), f behaves under the action of the modular group. In particular, we must show that
T, f is in My, for f € My. To see this, we introduce I'(n) where

r(n):{<‘cl Z):a,b,c,dEZ,ad—bc:n}/N

d —c —d
Note that I'(1) is the modular group. We put an equivalence relation ~ on I'(n) by putting A; ~ As
whenever there exists U € I'(1) such that Ay = U As.

where < (Z b ) = ( —a b ) here, as in the modular group.

Proposition 2. There is a representative of each equivalence class in I'(n) under ~ of the form ( g b ) .

a b

Proof. Let A = < e d ) € I'(n). If ¢ = 0 we are done. If ¢ # 0, let 7 = —% with ged(r,s) = 1. Then

there exist integers p and ¢ such that ps —qr =1. Put U = ( Z; g > so that U € T'(1). Then

= (00 (0 a)= (i )00 1)
r S c d ra—cs * 0 =%
Further, det(UA) = det(U) det(A) = det(A) = n so UA € I'(n), and we are done. O
Proposition 3.
a b n
F(n)—{<0 d).d\n,a—d,b—o,l,...,d_l}

The above list gives a complete set of representatives.

Proof. By proposition 2, we can find a representative of each equivalence class of the form < g b >

Plainly, ad = n and we may suppose a and d are positive. Thus, d|n and a = 4.
It remains to show that we can restrict b to the range 0,1,...,d—1. Let b = qd+r where 0 < r < d. Then

U= < 1 _1q ) € I'(1). Further,

0
vl @ b\ (1 —gq a b\ (a b—qgd\ (a r
0d/) \0 1 0 d) \O d “\0 d
Thus, the first assertion follows since ad = n and 0 < r < d—1. It remains to show that the list is complete.

Suppose that < 8 2 > and < %1 ZI > are representatives for the same equivalence class with ad = n
1

and ajd; =n, a; >0and 0 < b < d and 0 < by < dj. Thus,ifUGF(l)andU(a b)_(‘” bl)

0 d 0 d
e R S N i
0 dy 0 é 0 %

we have
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Since U € I'(1), 441 = 1 and & d—lGZSO@:dﬁzlandthusal:aanddlzd. Butthen%EZis

ad a’ d a

the resulting top right entry, and b1,b < d so that by = b.
Proposition 4. Let A; € I'(n) and Uy € I'(1). There exists Az € I'(n) and Uy € I'(1) such that A Uy =

UsAsy. Further, if A; = < C(L)i Z’ > and U; = ( ?; ? ) fori=1,2 then ai(y2A42z + 02) = az(y12 + 01).

Proof. Since det(A1U;) = det(A;) = n, from proposition 2 we see that A1U; is equivalent under ~ to As
a2 by > Then there exists Uz € I'(1) such that A U; = UsAs.

0 dsy
ap by a1 By * *
AU = =
1 (0 d1><71 51) <d1’71 d151>
Thus,

Next, observe that
(6] ,@2 -1 1 * * dg —b2 1 * *
= AU AT = = -
( Y2 02 > e ( diy1 didy > ( 0 a n \ diday1 diazdy — dibam

Therefore,

where Ay =

_ didym _ dom 5 — diagdy — dibyy1 _ azdy — bom

72 " 71 ) 2 " a
Thus, aivys = dg’)/l and (1162 = CL2(51 — ’ylbg.
Hence,

asz+b
ai(v2A2z + 82) = a1y2 A2z + a102 = dayy <2de> + az01 — 1b2
= asm12 + bay1 + a201 — bay1 = az(y12 + d1)

and we are done. O

Theorem 17. Let k € Z, m € N, f € My and U; = < ,O; g > € I'(1). Then T, f(Urz) = (vz +
8T, f(2).

Proof. Recall that
1
Tof(z) ==Y aiFf(A
e = a2
1

. . . b .
where the sum runs over a complete set of inequivalent matrices of the form A; = ( ah ) in I'(n)

0 di
under ~.
Now by proposition 4, for each A; we can find an As € I'(n), Uz € I'(1) such that A1U; = UyAy. Thus,

by proposition 2, we may suppose that Ao is of the form < %2 22 ) and let Uy = ( :2 ?2 ) Again by
2 2 02

proposition 3, aj(y242z + d2) = az(yz + J). Thus, since f is modular of weight 2k,
it f(A1U12) = af¥ f(UzAgz) = (a1(1242z + 62))%" f(Az) = (az(yz + 6))*F f(As2)

Hence, since A; runs over all equivalence classes, so does A, thus

T,f(U2) = - S @ f(AU2) = -3 (0m + a3 f(Ar2) = (92 + 8T f(2)
A Az
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The result is shown. O

Theorem 18. Let k € Z, n € N. If f € My, then T,,f € My, and if f € M§, then T, f € MJ.

Proof. If f € M;, then from the definition of T}, f we see that T}, f is analytic in H. By theorem 16, T}, f is
analytic at co. Further, by theorem 17, T, f is modular of weight 2k.
If f € M7 then ¢(0) = 0 and by theorem 16,

= d*e(0) =

din
and so T, f € M. a
Theorem 19. If m,n € Z are coprime then T, o T,, = Tyyn.

Proof. Let f € Mj. Then
TG =1 Y afAs)

a<l,ad=n
0<b<d—-1

QU o

>. Further, for B = < a > for «, 8,4 in the range of the sum below,

a
forAz(O 0 s

1 1
Tn(Tuf)(z)=— > o*Tf(B2)=— %} (0a)*f(ABz)
a<l,ad=m a<l,ad=m a<l,ad=n

0<p<s—1 Ogﬁgé—l OSbSd—l

= Z Z (aa)?* f(Cz)

a<l,aé=m a<l,ad=n
0§B§571 Ogbﬁdfl

([ a b a B\ _ [ ax af+bd
whereC<0d><O 5><0 s )
Now as d and § run through divisors of n and m respectively, d§ runs through the divisors of mn by

coprimality. It follows that d and ¢ are also coprime so a3 + bd runs through distinct integers modulo dé
as we range over pairs (b, ) with 0 <b<d—1land0<g3<4d—1.

Thus,
1 A B
TuT)e) = — 3 A%y (( 4B ) ) — Tp(2)
mn A<1,AD=mn
0<B<D-1
for arbitrary z € H, and the result follows. O

Theorem 20. Let m,n € N. Then T,, and T, commute on My and

Tnolpn= > dQ’HT% (8)
d| ged(m,n)

Proof. If ged(m,n) = 1 then it follows from theorem 19 if we know it for prime pairs.
Suppose that p|m and p|n and p™||m and p"!||n (that is, m; and n; are the maximal exponents of p
dividing m and n, respectively). Then by theorem 19,

TmO n:Tme’lOTp’mIOTp%lOTpnl :TmelOTanlOTpmloTpnl
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since 1% and p™ are coprime and commute by theorem 19.
We will first show this for m = p and n = p” which we will get by showing

Tprr = Tpr+l —l—p2k71Tpr—1
Note that for f € My we have by definition

r—t
TpT‘ — p—T Z pQ(T’—t)kf <p Zt+ b>

0<t<r p
0<b<pt—1

and if g € My, then

Ll +0b
Tpg(z) =™ 'gp2) +p D g < 5 >
b=0

Therefore,

rt+1 p—1
B 6 = 5 (P et s 522 (5 (5) )
b=0

o<t<r 0<t<r
(9)

0<b<pt—1 0<b<pt—1
Taking the ¢t = r term of the rightmost term in (9) and adding it to the leftmost term gives the first term
of (9) as

. , _ 7’+17tz+c
! S pArebig <p> = Ty f(2)

pt
0<t<r+1
0<e<pt—1

The remaining terms of the second term of (9) are

p—1 r—t—1 r—t—1p/
1 Z .- Z P z+b+p b
P 1 p2( t)k f( ; >
b'=0

0<t<r—1 p
0<b<pt—1

tzlb/ € Z so by the periodicity of f there is no dependence on b’ and the contributions

A=k Z f(r— z+b) (10)

0<b<pt—1

Ift < % then 2
for such a fixed ¢ is

since the sum over b above gives p copies of the same contribution. Further, for any ¢, b+ p" '~ modulo

p! runs over the set of residues modulo p' exactly p times so the contribution for any t is given by (10),
summing over t powers and yields the claimed formula we made above. We will use this formula, that is,
TpTyr = Tyr +p2k‘71Tp7‘71

as our base case.

Now suppose that

2k—1
TpTy = > d Tyeir (11)
d| ged(p®,p") ¢
is true up to some fixed s. Then, using our base case, we have that
T (T Tyr) = Y p' O I
0<t<p
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where ;1 = min(s,r). Note that the associativity of Hecke operators follows by the linearity of these
operators, and linear maps act associatively in multiplication.
Using the base case again, we have

Tps+1T r o= Z pt(Qkil)Tprs+r72t —ka 1 s+1T = Z (p H(2k— 1 —2t +p(t+1)(2k71)Tps+r7172t)—p2k71Tp371Tpr
0<t<p 0<t<p
Expanding out the s — lcase of (11) gives (where here, ;' = min(s — 1,7))
Tps_lTpT = Z pt(2k_1)Tps+r—2t
0<t<y/

If s > r, then p =y’ since s —1>r so y/ =r = p. The case s < r is the only possible problem.
Suppose s < r. Then = s and / = s — 1. Then

s+1T = E p H2k=1) pstr+i—2t + E (1)@= ps+7‘7172t — E p(t+1)(2k71)Tps+r7172t
0<t<s 0<t<s 0<t<s—1

_ Z pt(2k—1)TpS+T+l_2t+p(s+1)(2k—1)TpS+T_1_25

0<t<s
= Z pt(%_l)Tpstﬂt +p(8+1)(Qk_l)Tps-s-rH—z(s-s-l) = Z pt(Qk_l)p8+r+1_2t
0<t<s 0<t<s+1
which proves the induction for s < r. O

Recall from Theorem 16 that if f(2) = "7 c(m)q™, Tnf(2) = 320 o r(m)q™ withr(m) = 3=y mn) d*~te ().
For each k € Z and n € N, T}, is a linear operator mapping My tp My. Let n € N. If f € My is not
identically zero and there exists a non-zero complex number A(n) such that T),f(z) = A(n)f(2) then f is
said to be an eigenfunction or eigenform of 7,, and A(n) is said to be an eigenvalue of T,,.
Observe that if f is an eigenform of T;, then so is ¢f for all ¢ € C\{0}.
Next, notice that if My, is of dimension 1 vector space then every non-zero element of My, is an eigenform
for T,, for n € N.
(Observe that if f is non-zero then theorem 16, for example, tells us that T, f is non-zero). Similarly, if
% is of dimension 1, the same conclusion follows.
Recall that dimMj, = 1 for k = 0,2,3,4,5,7 and dim M7 = 1 for k = 6,8,9,10,11,13. Further, since
A(z) € Mg we see that A is an eigenform for T}, for all n € N.

Definition 10. An eigenform for T, for alln € N is said to be a simultaneous eigenform.

Definition 11. An eigenform f(z) =Y o ,c(m)q™ is said to be normalized if ¢(1) = 1.

Theorem 21. Letk € N, k > 2. If My, contains a simultaneous eigenform f(z) with f(z) = > " 5 c(m)g™
then ¢(1) # 0.

Proof. By Theorem 16, if T}, f(2) = 3__q ra(m)q™ with r(m) = 3= . d*~te (B2 then r,(1) = c(n).
Since f is a simultaneous eigenform, c¢(n ) A(n)e(1) for some A(n) € C, A(n) # 0. Thus, if f is non-zero,
there exists some k € N such that c¢(k) = A(k)c(1) # 0 so ¢(1) # 0. O
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Theorem 22. Assume that f(z) = °_,c(m)g™ is a cusp form of weight 2k. Then f is a simultaneous

normalized eigenform if and only if
Z g2k—1 ( )
d|(m,n)

for all positive integers m and n and c(n) is an eigenvalue for T, for every n € N.

Proof. (=) Suppose f is a simultaneous normalized eigenform. Then T, f = A(n)f, A(n) € C\{0} for all

n € N.

By Theorem 16, r,(1) =
rn(m) = A(n)e(m) = ¢(n)c(m) as required.

(<) Suppose c¢(m)e(n) = Zdl(m,n) d*=1tc (m—ﬁ) for all m,n € N. Then for every n € N,

Tnf(z) = Z_:OTn Z:OC (n)f(z)

so f is a simultaneous eigenform. Further, ¢(n) = r,(1) = ¢(n)e(1) so ¢(1) = 1.

Recall that for z € H,

A(z) = (2m)2 Y 7(n)g" = (2m)2q [T (1 - ¢")*
n=1 n=1
and A(z2) = g3(2) — 27g3(2).
Theorem 23. For positive integers m and n, T(m)T(n) =34 4T (23)

Proof. Since A € Mg, it is a simultaneous eigenform that is also a cusp form. Furthermore,

o0

(2m)"?A(z) = Y r(m)g™"

m=1

c(n) and ¢(n) = A(n)c(1) = A(n) by normalization. Thus, for all m € N,

has 7(1) = 1. Thus, (27) *2A(2) is a simultaneous normalized eigenform. Our result now follows from

Theorem 22 with k£ = 6.

Theorem 24. For each integer k > 2, there is precisely one simultaneous normalized eigenform in My

that is not a cusp form. Furthermore, it is
2k — 1)!
foy= 2

ECER

Recall that .
G = —_—
k(2) Z (mz + n)2k
(m,n)#(0,0)
Recall also as in the proof of Lemma 1 that

o0

1 1 B = hel p
> e (k—l)!(_2ﬂ-l)k;rk 1,

n=—oo
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Replacing z by mz, we find that

1 1
D T Ir SCURT) DI D e
(g2 (0.0) (mz +n) — = (mz +n)2k
_ 27” = 2k—1 nr _ (27T2)2k = l
= 2((2k) + Qk_l 1T lef = 2(2k) + <2k_1)_l§:;agk_1<l>q

where the last equality follows by summing over the common products nr = [ for [ € N. Thus, dividing
through by the coefficient of the series above gives

(2k — 1)! (2k —1)!
- S s Som o
and by Euler’s theorem, ((2k) = 22*=1(2k!) 1 B,7* so that
(2k —1)! (-D)FB .
2k K = T nzl o2n-1(n)a

Observing that ogx_1(1) = 1, it follows that 2((25 Z)lgk Gr(z) is normalized.

Proof of Theorem 24. Suppose that f is a simultaneous normalized eigenform of weight 2k which is not
a cusp form. Let f(z) = Y °_jc(m)g™, ¢(0) # 0 and ¢(1) = 1. The relation T, f = A(n)f implies that

m=

rn(m) = A(n)e(m) for m € N. An argument we have used a few times shows that ¢(n) = A(n) for all n € N.

Now by Theorem 16,
0)= Y d®*'¢(0) = c(0)o2—1(n)
d|(n,0)

We also have r,,(0) = A(n)c(0) = ¢(n)e(0). Since ¢(0) # 0 we see that ¢(n) = o9;—1(n) for n € N.

Thus,
o
0) + Z O'Qk_l(m
m=1

f is modular of weight 2k > 4 so ¢(0) is uniquely determined since if fi(z) = ¢1(0) + > ov_; o2k—1(m)q
also a simultaneous eigenform then the difference is ¢y — ¢; and this is a contradiction.

Since
- _1\k

n=1

™ is

o0

is a modular form of weight 2k it is the only possible normalized simultaneous eigenform of weight 2k. But
for all m,n € N,

02k71(m)02k71(n) _ Zkofl Z€2k71 _ Z(de)Zkfl

dlm eln dl‘m
2k—1
=Y (X = X e ()
d|(m,n) ld2 d|(m,n)

Thus, by Theorem 22, f is a simltaneous normalized eigenform. O
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What about simultaneous cuspforms? We can determine then for & small easily. When dim M9 =1, we
have exactly one such form. This happens when k£ =6,7,8,9,10,11, 13.
We know that (27) '2A(z) is a cusp form which is a simultaneous normalized eigenform of weight 12.
Further, A(2)Gr—g(z) is a cusp form of weight 2k for k = 8,9, .. ..
If we define, for k > 2,

—1)k ©
Ei(z) = 2((121<:)Gk(z) =1+ (1B)k4k Zagk_l(n)q

then we see that (2m) '2A(z)Ey_¢(2) is a simultaneously normalized eigenform of weight 2k which is a
cusp form for £ =8,9,10,11,13 (as A(z) has lowest order term z, as it is a cusp form). We have

By(2) =1+240)  o3(n)q"

n=1
E3(z) =1-504)  o5(n)q"

and so forth. We can use these functions to prove seemingly surprising relations between the og;_1(n)

values.
Since dim My, = 1 for k = 2,3,4,5,7, we see that E2 = E,, EsFE3 = E5, By = EsE5 = E3Ey. For the first
case, notice

2 [o.¢]
(By(2))? = (1—1—20203 ) =1+480) o7(n)q"
n=1

and therefore for every n > 1,

( ) +12020’3 0'3 n — )
Similarly, for FoFE3 = Fs,
n—1
11og(n) = 2105(n) — 1003(n) + 5040 Z o3(k)os(n — k)
k=1

Finally, Fg — E§ is a modular form of weight 12. Further, it has constant coefficient 766290f18 Thus,

691 S
Ee— E3) = (2m) " ?A(2) = "
7005 (%~ B8) = (0m)PAG) = 37
By examining the coefficients r(n) of ¢", we find
691 65520
= 1 4)? _
r(n) 762048( o1 o11(n) + 100805(n) — (50 E o5(k)os(n ))

which is 7(n).
Thus, 7620487(n) = 65520011 (n) (mod 691) and so 7(n) = o11(n) (mod 691), called Ramanujan’s congru-
ence.
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OTHER DIRECTIONS IN MODULAR FORMS

Let f(z) = >.77 ,¢(n)g™ be a cusp form of weight 2k. Hecke associated to f the Dirichlet series

n=1C

Li(s)=>107, 7(13) This is not arbitrary. Indeed, let us define the Mellin transform of f, M(f)(s) as
/ fit) st

Notice that if f(z) = e then M(f)(s) = I'(s), for Re(s) >
If f is a cusp form then

= > —27ntys—1 1 > C(n) & —u u \s—1
s):Zc(n)/O e t dt:%Zn/g e <%) du
n=1

n=1
=(2m)~° </ e_“us_ldu) Z C(z) = (2m)"°T'(s)Ly(s)
0 n=1 "
Suppose that f is a simultaneous normalized eigenform, say f(z) = > "7 ¢(n)g¢". Then L¢(s) =Y 7, %

It is not difficult to show that c(n) = O(n¥). Thus, Ls(s) is defined by the series as an analytic function
for Re(s) > k + 1.
Since f is a simultaneous normalized eigenform, L¢(s) has an Euler product representation

Lis) =1 (1 —e(p)p~° + p2k71728>

for Re(s) > k+1. Hecke used this to extend L (s) analytically to all of C. He put Ay(s) = (2m)7*T'(s)Ls(s)
and he showed that A(s) = (=1)FA;(2k — s).

Petersson conjectured that if f is a simultaneous normalized eigenform in MY then |c(p)| < 2pk_% for p

-1

prime. This generalized Ramanujan’s conjecture that |7(p)| < 2}71*21 for p prime. More generally, Ramanujan
conjectured that |7(n)| < d(n)n%1 These two conjectures were proved by Deligne in 1973 as a consequence
of his proofs of the Weil conjectures.

Let a,b € Z with 4a® + 270> # 0 and put E : y> = 2% 4+ ax + b. For any prime p we can consider the
reduction of F mod p. Usually we get an elliptic curve mod p in particular when 4a® + 27b% = 0 (mod p)
and in this case we say that we have good reduction. We count the number of points #E(F,) on the
reduced curve.

Hasse proved that if we put a, = p +1 — #E(F,) then |a,| < 2,/p. Define L,(E, s) by

if £ has good reduction mod p

if F has split multiple reduction mod p
if F is non-split

otherwise

Birch and Swinnerton-Dyer conjectured that the rank of rational points of E is equivalent to the order of
the pole of L(E,s) at s = 1.

In this curse, we have concentrated on modular forms, i.e. forms connected with the full modular group.
There is an associated theory for subgroups of the modular group. There is an associated theory for sub-
groups of the modular group. In particular, let N be a positive integer. Then I'g(/N) consists of those
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elements < (; Z ) € SLy(Z) for which ¢ = 0 (mod N). An elliptic curve E is said to be modular if the
cusp form f of weight 2 for I'o(N) for some N, such that L¢(s) = L(E, s).

Taniyama and Shimura conjectured that every elliptic curve over QQ is modular. This has now been proved
by Wiles, Taylor, Diamond, Breuil and Conrad. This was a key ingredient in the proof by Wiles of Fermat’s
last theorem.

Frey showed that if p is a prime with p > s and u, v, w are positive integers with u? 4+ v? = w? then we
can consider the elliptic curve E given by E : y?> = z(z — uP)(z — vP). Further, if E is modular then
L(E,s) = Ly(s) for a cusp form of weight 2 on I'g(IN) where N =[] gjuvw ¢.

q prime

By a result of Rlbet there is an associated fi; with level 2 and inspection shows no such f; exists, a
contradiction that proves FLT.



