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Lecture 1: Lattices and Elliptic Functions

Definition 1. Let ω1, ω2 ∈ C\{0} with ω1
ω2

/∈ R. A lattice in C is a set L := {nω1 +mω2 : n,m ∈ Z}.

It is easy to see that this is an additive subgroup of C. Also, the representation of each element L is
unique. Indeed, if w ∈ L with w = n1ω1 +m1ω2 = n2ω1 +m2ω2 with n1, n2,m1,m2 ∈ Z with at least one
of n1 6= n2 or m1 6= m2. Without loss of generality, suppose n1 6= n2. Then (n1−n2)ω1 = (m1−m2)ω2, so
that ω1

ω2
= m1−m2

n1−n2
∈ R, a contradiction, hence n1 = n2 and m1 = m2. Thus, each element of L is uniquely

represented.

Definition 2. An elliptic or doubly-periodic function f is a meromorphic function on C which is L-periodic
for some lattice L, i.e. there exists some lattice L such that for every z ∈ C and ω ∈ L, f(z + ω) = f(z).

Suppose L is generated by complex numbers ω1 and ω2. We shall denote L by L = [ω1, ω2]. Further,
for every α ∈ C, {α+ t1ω1 + t2ω2 : 0 ≤ t1, t2 < 1} is known as the fundamental parallelogram at α for the
lattice, as in Figure 1. A doubly-periodic function is thus completely determined by its behaviour on the
fundamental parallelogram at 0.
If f were entire, since the fundamental parallelogram is compact, f would be bounded on it. By L-
periodicity, f is thus bounded on all of C. By Liouville’s theorem in complex analysis, this implies that f
is constant. Therefore, the interesting cases are those functions that have poles.

Notice that if ω′1, ω
′
2 also generate L = [ω1, ω2], we can find a, b, c, d ∈ Z such that ω′1 = aω1 + bω2

and ω′2 = cω1 + dω2, so we have the matrix equation
(ω′1
ω′2

)
=
(
a b
c d

)(
ω1

ω2

)
, and since ω1 and ω2 are also

expressible in terms of ω′1 and ω′2, it follows that the matrix A :=
(
a b
c d

)
is invertible. Since the entries

are integers, detA−1 = 1
detA ∈ Z, so ad− bc = detA = ±1. The set of 2× 2 matrices with integer entries

with this property is known as the modular group.
For any lattice L, we define the Weierstrass p-function of L, written p(z) or pL(z), as

p(z) =
1
z2

+
∑
ω∈L′

(
1

(z − ω)2
− 1
ω2

)
,

where L′ = L\{0}.
We claim that p is meromorphic and L-periodic. To do this, we will show that p converges uniformly on
compact subsets. Let K ⊆ C be compact, thus bounded, so there exists R > 0 such that K ⊆ D(0;R), the
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Figure 1. Fundamental Parallelogram for the Lattice [ω1, ω2] at α

open disk of radius R centered at 0. Thus, for ω ∈ L, if |ω| ≥ 2R, |ω| ≥ 2|z| for every z ∈ K.
For z ∈ K, |z − ω| ≥ |ω| − |z| ≥ |ω| − 1

2 |ω| =
1
2 |ω| and

|z − 2ω| ≤ |z|+ 2|ω| ≤ 1
2
|ω|+ 2|ω| = 5

2
|ω|

so it follows that∣∣∣∣ 1
(z − ω)2

− 1
ω2

∣∣∣∣ =
∣∣∣∣ω2 − z2 + 2zω − ω2

(ω(z − ω))2

∣∣∣∣ =
|z||z − 2ω|
|ω|2|z − ω|2

≤
|z|52 |ω|
1
4 |ω|4

=
10|z|
|ω|3

.

Therefore, to show that the series converges uniformly on compact subsets, we need only show that∑
ω∈L′

1
|ω|2 is absolutely convergent. Since ω1

ω2
/∈ R, there exists a C > 0 such that |n1ω1 + n2ω2| ≥

C(|n1| + |n2|). Since there are 4n + 2 pairs (n1, n2) with |n1| + |n2| = n (for each k amongst the 2n + 1
numbers {0,±1, . . . ,±n}, there are two solutions m = ±(n− |k|) with |k|+ |m| = n), we see that∑

ω∈L′

1
|ω|3

≤
∑

ω=n1ω1+n2ω2
(n1,n2)6=(0,0)

1
|n1ω1 + n2ω2|3

≤
∞∑
n=1

4n+ 2
C3n3

<∞.

Thus, p is converges uniformly on K so since K was arbitrary, it follows that p is meromorphic. Note that
p has a double pole at every point of L and no others.

Further, observe that snce L is invariant under the transformation ω 7→ −ω, the term(
1

(z − ω)2
− 1
ω2

)
+
(

1
(z + ω)2

− 1
ω2

)
is invariant with respect to z 7→ −z as well, and therefore p, the sum of all such terms, is an even function,
i.e. p(z) = p(−z) for every z ∈ C.
Is p L-periodic? Notice that p′(z) = −2

∑
ω∈L

1
(z−ω)3

since the series of derivatives of the terms converge
uniformly on compact subsets, by comparison with p. This is clearly L-periodic. Thus, there exists a
constant c0 such that p(z + ω1) = p(z) + c0 for every z ∈ C. Take z = −1

2ω1. Then by the evenness of p,

p

(
−1

2
ω1

)
= p

(
1
2
ω1

)
= p(z + ω1) = p(z) + c0 = p

(
−1

2
ω1

)
+ c0

so that c0 = 0. The analogous result holds for ω2 and thus p is L-periodic.

Given a lattice L, the set of elliptic functions for the lattice forms a field. In fact, one can prove the
field is generated over C by p and p′.
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Let us now consider the power series expansions of p and p′ around the origin.

p(z) =
1
z2

+
∑
ω∈L′

(
1

(z − ω)2
− 1
ω2

)
=

1
z2

+
∑
ω∈L′

(
1
ω2

1
(1− z

ω )2
− 1
ω2

)

=
1
z2

+
∑
ω∈L′

(
1
ω2

(
1 +

z

ω
+
( z
ω

)2
+ . . .

)
− 1
ω2

)
=

1
z2

+
∑
ω∈L′

( ∞∑
m=1

(m+ 1)
( z
ω

)m) 1
ω2

=
1
z2

+
∞∑
m=1

cmz
m

where cm = (m+ 1)
∑

ω∈L′
1

ω2+m .
Note that cm = 0 when m is odd, since p is an even function.

Notation. For any lattice L and positive integer m we define

sm(L) :=
∑
ω∈L′

1
ωm

whenever the sum converges (when the context is clear, we will write sm).

Thus, in a neighbourhood of 0, we have

p(z) =
1
z2

+
∞∑
m=1

(2m+ 1)s2m+2z
2m =

1
z2

+ 3snz2 + 5s6z
4 + . . .

p′(z) = − 2
z3

+
∞∑
m=1

2m(2m+ 1)s2m+2z
2m−1 = − 2

z3
+ 6s4z + 20s6z

3 + . . .

Put g2 := g2(L) = 60s4 and g3 := g3(L) = 140s6.

Theorem 1. p′(z)2 = 4p(z)3 − g2p(z)− g3

Proof. Consider the function φ(z) given by φ(z) := p′(z)2− 4p(z)3− g2p(z)− g3. Clearly, φ is elliptic since
p′ and p both are. Now consider φ in a neighbourhood of 0. Expanding each term in the definition of φ(z)
in powers of z gives

p′(z)2 =
4
z6
− 24s4

z2
− 80s6 + . . .

−4p(z)3 = − 4
z6
− 36s4

z2
− 60s6 + . . .

g2p(z) =
60s4

z2
+ 0 + . . .

g3 = 140s6.

Thus, adding these terms gives φ(z) = 0+ higher order powers of z, in a neighbourhood of 0. But φ is
elliptic, so the poles of φ are in L if they exist, so there are no poles in any neighbourhood of 0, so φ is
entire. Thus, by a remark we made above, φ is constant and thus identically 0. �
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Therefore, the points (p(z), p′(z)) ∈ C2 lies on the curve y2 = 4x3 − g2x− g3.

Lecture 2: Relationship between Lattices and Elliptic Curves

The quotient group C/L is abelian under addition. Define E := {(x, y) ∈ C2 : y2 = 4x3−g2x−g3}∪{∞}.
This is an elliptic curve. The map C/L→ E given by z 7→ (p(z), p′(z)) is a group homomorphism. Thus, we
can impose a group structure on the elliptic curve E in this way. In fact there is a geometric interpretation
of the group structure on E adding points may be defined independently of the p-function. It turns out
that if E has g2, g3 ∈ Q then adding points on E with rational coordinates results in a point with rational
coordinates. Here, we suppose the point at infinity has rational coordinates (this is the identity element of
the group of rational points on E).

Suppose g2, g3 ∈ Q and let E(Q) denote the group of points on E with rational coordinates. Poincaré
asked: is E(Q) finitely generated?
In 1922, Mordell proved that it is. In 1930, Weil generalized the result in the following way:

Mordell-Weil Theorem. Let K/Q be a field extension. If g2, g3 ∈ K with g3
2 − 27g2

3 6= 0 then E(K) is
finitely-generated.

The proof is not constructive so there is no algorithm for computing generators.

One can find g2, g3 ∈ Q such that g3
2 − 27g2

3 6= 0 for which the rank is positive and thus E(Q) is infi-
nite. However, by a result of Siegel, if g2, g3 ∈ Q with g3

2 − 27g2
3 6= 0 then there are finitely many pairs

(x, y) ∈ E with integer coefficients. The analogous result on the field extension K/Q also holds, i.e. there
are only finitely many pairs (x, y) ∈ E where x, y are elements of the ring of integers of K.

It is possible to associate an L-function to an elliptic curve E. The L-function is an Euler product of
local L-functions determined by examining E modulo p for each prime p. It follows from the work of
Taylor and Wiles that the L-function can be analytically continued to all of C. By a conjecture of Birch
and Swinnwerton-Dyer, the order of the zero of L at s = 1 is the rank of E(Q). This result is of interest
because it allows one to characterize the global behaviour of an elliptic curve using local information.

Recall that p(z) is an even function (and thus all of the terms in its Laurent series have positive power)
so p′(z) is an odd function. For any elliptic function f with respect to a lattice L = [ω1, ω2] we can find a
fundamental paralleologram Pα with α ∈ C for which Pα = {α+ t1ω1 + t2ω2 : 0 ≤ t1, t2 ≤ 1} has no zeros
or poles of f on its boundary, as in Figure 2. Note that

∮
∂Pα

fdz = 0 (where given a set A, the notation
∂A refers to the boundary of the set A), since f is periodic so on parallel sides of the parallelogram we get
the same points but different orientation. Since the set of elliptic functions is a field as remarked above,
f ′

f is also elliptic and therefore by the argument principle, since Pα is a simple closed curve, it follows that

∑
z:f(z)=0

N(z)−
∑

z: 1
f

(z)=0

P (z) =
∮
∂Pα

f ′

f
dz = 0
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α

α+ ω2

α+ ω1

α+ ω1 + ω2

Figure 2. Path of Integration Pα

where N(z) is the order of the zero z and P (z) is the order of the pole z. Thus, the number of zeros of f
counted with multiplicity is equal to the number of zeros counted with multiplicity.

By its series definition, p′(z) has a pole of order 3 at every lattice point and no others. Therefore, there
are 3 zeros (counted with multiplicity) of p′(z) in P0 counted with multiplicity.

Observe that ω1
2 ≡ −

ω1
2 (mod L) so p′

(
ω1
2

)
= p′

(
−ω1

2

)
by periodicity. But p′ is odd, so p′

(
ω1
2

)
= −p′

(
−ω1

2

)
so p′

(
ω1
2

)
= p′

(
−ω1

2

)
= 0. Similarly, p′

(
ω1
2

)
= 0 and p′

(
ω1+ω2

2

)
= 0. Therefore, ω1

2 ,
ω2
2 and ω1+ω2

2 are zeros
of p′ of multiplicity one and there are no others.

Next, let c ∈ C and let f(z) = p(z) − c. Then f has a pole of order 2 (since p does) at every lattice
point and no others. Thus, in any fundamental parallelogram, there will either be two distinct zeros of
multiplicity 1 or one zero of multiplicity 2.
Suppose we have a zero of multiplicity 2 in P0. Then that zero is a simple zero of p′ hence it is one of
ω1
2 ,

ω2
2 or ω1+ω2

2 . Thus, c is either p
(
ω1
2

)
, p
(
ω2
2

)
or p

(
ω1+ω2

2

)
. Note that if c = p

(
ω1
2

)
then ω1

2 is the unique
zero of f in P0, and similarly for ω2

2 or ω1+ω2
2 . The values of p(z) at these three points are distinct. Indeed,

suppose for example that p
(
ω1
2

)
= p

(
ω2
2

)
. Then f

(
ω1
2

)
= f

(
ω2
2

)
= 0, implying that f has more than one

zero, a contradiction to our initial hypothesis.

Corollary 3. 4p(z)3− g2p(z)− g3 = 4(p(z)− e1)(p(z)− e2)(p(z)− e3), where e1 = p
(
ω1
2

)
, e2 = p

(
ω2
2

)
and

e3 = p
(
ω1+ω2

2

)
, and e1, e2 and e3 are distinct.

Proof. The polynomial q(x) = 4x3 − g2x − g3 has 3 distinct zeros, namely e1, e2 and e3 as given in the
statement, by theorem 1 which says that q = p′. The result follows. �

Consider f(x) = 4x3−g2x−g3. The discriminant D of f is D = 44((e1−e2)(e2−e3)(e1−e3))2. Further,
Res(f, f ′) = −4D so D = 42(g3

2 − 27g2
3). Thus, if g2 and g3 came from a lattice L then g3

2 − 27g2
3 6= 0 (for

if g3
2 − 27g2

3 = 0, then the resultant is zero, implying that f has a repeated root, but as we just saw this is
impossible).
We shall prove later that if a, b ∈ C and a3 − 27b2 6= 0, there is a lattice L with g2(L) = a and g3(L) = b.
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Lecture 3: The Modular Group and its Action on the Upper Half Plane

Recall that

g2(L) = 60
∑
ω∈L′

1
ω4

= 60
∑

(m,n)6=(0,0)

1
(mω1 + nω2)4

=
60
ω4

2

∑
(m,n)6=(0,0)

1(
mω1
ω2

+ n
)4 ,

for L = [ω1, ω2]. Similarly,

g3(L) = 140
∑
ω∈L′

1
ω6

=
140
ω6

2

∑
(m,n) 6=(0,0)

1(
mω1
ω2

+ n
)6 .

Let H denote the upper half plane H := {z ∈ C : Im(z) > 0}. Define Gk(z) for k = 2, 3, . . . by Gk(z) =∑
(m,n) 6=(0,0)

1
(mz+n)2k

which is analytic in H. Further, the series converges uniformly on compact subsets
of H to an analytic function on H. We now define g2(z) on H by g2(z) = 60G2(z) and g3(z) = 140G3(z)
and ∆(z) = g3

2(z)− 27g2
3(z). Then ∆(z) is analytic and non-zero on H.

Definition 3. The Special Linear Group SL2(R) is the set of 2 × 2 matrices with coefficients in R with

determinant 1. We denote by ±I = ±
(

1 0
0 1

)
. The Projective Special Linear Group PSL2(R) is the

quotient group PSL2(R) := SL2(R)/{I,−I}.

Definition 4. The group PSL2(Z) := SL2(Z)/{I,−I} is known as the modular group.

Let G be the modular group and let g ∈ G with g =
(
a b
c d

)
(by this we mean the equivalence class

modulo ±I, but we shall abuse notation in this manner). Then g acts on H by gz = az+b
cz+d .

Remark. Let L be the set of lattice on C. For any lattice L = [ω1, ω2] and an λ ∈ C\{0} we can define
the lattice λL := [λω1, λω2].
Let k be a non-negative even integer. There is a bijection between the set of functions F : L → C which
satisfy F (λL) = λ−kF (L) for all λ ∈ C\{0} and the set of functions f : H → C such that f(gz) =

(cz + d)kf(z) for all g =
(
a b
c d

)
∈ G.

To see this, let φ(F ) = f , where f(z) = F ([z, 1]) = F (L) for L = [z, 1]. Then

f(gz) = F ([gz, 1]) = F

([
az + b

cz + d
, 1
])

= F

(
1

cz + d
[az + b, cz + d]

)
= (cz + d)kF ([az + b, cz + d])

= (cz + d)kF ([z, 1]) = (cz + d)kf(z)

where [az + b, cz + d] is equal to the lattice [z, 1] via the matrix g. Thus, φ is well-defined. It is easy to see
that f is a bijection by definition.
For the sake of edification, let us see the other direction, i.e. suppose f : H → C satisfies f(gz) =

(cz + d)kf(z) for all g =
(
a b
c d

)
∈ G. For any L = [ω1, ω2]. We define F (L) := ω−k2 f

(
ω1
ω2

)
. Then

F (λL) = F ([λω1, λω2]) = (λω2)−kf
(
λω1

λω2

)
= λ−kF (L).
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Figure 3. Covering C with Transformations of D

Note that F is invariant under the action of PSL2(Z) on L since the generators change.
Recall that ∆(z) = g2(z)3 − 27g3(z)2. We can check that ∆(gz) = (cz + d)12∆(z).

Lecture 4: The Action of the Modular Group G on H

Let S =
(

0 −1
1 0

)
so that Sz = −1

z and T =
(

1 1
0 1

)
so Tz = z+1. Notice that S2 =

(
−1 0
0 −1

)
≡(

1 0
0 1

)
(mod {I,−I}) and (ST )3 ≡

(
1 0
0 1

)
(mod {I,−I}).

Let D denote the set D := {z ∈ H : −1
2 ≤ Re(z) ≤ 1

2 , |z| ≥ 1}. We’ll prove that D is the funda-
mental domain of the modular group, i.e. the orbit of each element of G under the action of G contains
an element of D. Further, if it contains 2 elements of D then these elements are on the boundary of D.

Theorem 2. Let G = SL2(Z)/{I,−I}.

(1) For all z ∈ H there exists g ∈ G such that gz ∈ D.
(2) Let z1, z2 ∈ D with gz1 = z2 and z1 6= z2 and g ∈ G. Then either Re(z1) = ±1

2 and z2 = z1 ± 1 or
|z1| = 1 and z2 = − 1

z1
.

(3) Let z ∈ D and put StabG(z) := {g ∈ G : gz = z}. Then StabG(z) = {I} if z ∈ {i, e
πi
3 , e

2πi
3 }. We

have StabG(i) = {I, S} and StabG
(

e
2πi
3

)
= {I, ST, (ST )2} and StabG

(
e
πi
3

)
= {I, TS, (TS)2}.

(4) G is generated by S and T .

Proof. (1) Let G′ be the subgroup of G generated by S and T . We will show that for all z ∈ H there exists

g ∈ G′ such that gz ∈ D. First, note that if g =
(
a b
c d

)
∈ G then

Im(gz) = Im
(
az + b

cz + d

)
= Im

(
(az + b)(cz + d)
|cz + d|2

)
=

1
|cz + d|2

Im
(
ac|z|2 + bd+ adz + bcz

)
=

1
|cz + d|2

(adIm(z) + bcIm(z)) =
(ad− bc)Im(z)
|cz + d|2

=
Im(z)
|cz + d|2

Next, observe that c and d are integers and |cz + d| → ∞ as max(|c|, |d|) → ∞. Thus Im(gz) achieves a
maximum for some g ∈ G.
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Suppose g ∈ G′ is such that Im(gz) is maximal. We can then translate so that gz has real part in
[
−1

2 ,
1
2

]
.

In particular there exists an integer n with −1
2 ≤ Re(Tngz) ≤ 1

2 with unchanged imaginary part. We
need to show that |Tngz| ≥ 1. Suppose that |Tngz| < 1. Then applying S gives |STngz| > 1 and
Im(STngz) > Im(Tngz) = Im(gz), with STng ∈ G′. Indeed, if w = Tngz so |w| < 1, then

Im(Sw) = Im
(
− 1
w

)
= Im

(
−w
|w|2

)
=

1
|w|2

Im(w) > Im(w)

But then gz does not have maximal imaginary part, and this is a contradiction. It follows that |Tngz| ≥ 1
so that g′z ∈ D for g′ = Tng ∈ G′.

(2) Let g =
(
a b
c d

)
∈ G with gz1 = z2, z1, z2 ∈ D. Without loss of generality, assume Im(z1) ≤ Im(z2)

(otherwise we can pick z2 = gz1 so z1 = g−1z2 to make this the case). Since Im(gz1) = 1
|cz+d|2 Im(z1), we

see that |cz1 + d| ≤ 1. Observe that if θ ∈ D then Im(θ) ≥
√

3
2 (since Re(θ) ∈

[
−1

2 ,
1
2

]
, then π

3 ≤ z1 ≤ 2π
3 ).

Thus,

1 ≥ |cz1 + d|2 ≥ Im(cz1 + d)2 = c2Im(z1)2

and hence |c| < 2, so that c = 0, 1 or −1. If c = 0 then we have a = d = ±1 since |cz1 +d| ≤ 1 and d 6= 0 for
the determinant to be non-zero. Then gz1 = z1± b hence is a translation by ±b. Therefore the translation
is either by 0,1 or -1 since z1, z2 ∈ D. If b = 0, z1 = z2, otherwise Re(z1) = ±1

2 and z2 = z1 ± 1.
If c = 1 then d = 0,±1. If d = 1, |cz1 + d| = |z1 + 1| ≤ 1. This is only possible if z1 + 1 is on the arc
of the unit disc (since z2 ∈ D so |z2| ≥ 1 as well), and since z1 ∈ D, z1 = e

2πi
3 . Further, if d = −1, then

|cz1 + d| = |z1 − 1| ≤ 1 so similarly z1 = e
πi
3 . Finally, if d = 0, |z1| ≤ 1 so |z1| = 1 az1−1

z1
= a− 1

z1
(−bc = 1

so b = −1). But then
∣∣∣ 1
z1

∣∣∣ = 1. Thus, either a = 0 and gz1 = − 1
z1

or a = 1 and by the reasoning above,

− 1
z1

= e
2πi
3 i.e. z1 = eπi+

4πi
3 = e

πi
3 and if a = −1, z1 = e

2πi
3 . Finally, if c = −1, the same analysis works by

taking (a, b, c, d) 7→ (−a,−b,−c,−d).

(3) By the analysis in (2), if z1 ∈ D and gz1 = z1, then |cz1 + d| = 1. If c = 1 then d = 0, 1,−1. If
c = 1, d = 0 then |z1| = 1 and b = −1. Since gz1 = z1, az1−1

z1
= a− 1

z1
= z1 hence since |z1| = 1, we have

a = 0 hence z = i, or a = 1 so that z2
1 − z1 + 1 = 0 so z1 = e

πi
3 or a = −1 so z1 = e

2πi
3 . Similarly, if c = 1

and d = 1 then since |cz1 +d| = |z1− 1| ≤ 1 we find that z1 = e
2πi
3 . Further, if c = 1 and d = −1, z1 = e

πi
3 .

To conclude, StabG(i) = {1, S}, StabG
(

e
2πi
3

)
= {1, ST, (ST )2}, StabG

(
e
πi
3

)
= {1, TS, (TS)2}.

(4) Let g ∈ G and let z0 ∈ Int(D). Then gz0 ∈ H. By our proof of (1), there exists g′ ∈ G′ gener-
ated by S and T such that g′gz0 ∈ D. Since z0 ∈ Int(D), it cannot be any of the options in (2) so
g′gz0 = z0, but since the stabilizer is trivial in this case, g′g = I. Thus, g = (g′)−1 ∈ G′, so G ⊆ G′. �

In fact
〈
S, T ;S2 = I, (ST )3 = I

〉
is a presentation for G. In other words, G is a free product of a cyclic

group of order 2 and one of order 3.

Definition 5. A meromorphic function on H satisfying f(z) = (cz+d)−2kf
(
az+b
cz+d

)
for all g =

(
a b
c d

)
∈

SL2(Z) is said to be weakly modular of weight 2k.
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Remark. Observe that d(gz)
dz = 1

(cz+d)2
, hence if f is weakly modular of weight 2k then f(z)(dz)k =

f(gz)(d(gz))k. Since S and T generate G, to check whether f is weakly modular, we need only check:

(1) f(z) = f(Tz) = f(z + 1)
(2) f(z) = z−2kf

(−1
z

)
Let U := {z ∈ C : |z| < 1} and U∗ = U\{0}. Let q : H → U∗, q(z) = e2πiz. Given a weakly modular

function f : H → C we can define f∗ : U∗ → C by f∗(q(z)) = f∗
(
e2πiz

)
= f(z), since f is periodic (and

thus f(z) = f(z + 1)). Note that f∗ ◦ q = f and q−1(z) = log(z)
2πi for some branch of the logarithm.

Since f is meromorphic on H, f∗ is meromorphic on U∗. If f∗ extends to a meromorphic function on
U then we say that f is meromorphic at infinity. Similarly, if f is analytic on H and f∗ extends to an
analytic function on U , we say that f is analytic at infinity.

Suppose that f is not identically zero, that it is weakly modular of weight 2k and meromorphic at in-
finity. Then it has only finitely many zeros and finitely many poles in D. For suppose that there were
infinitely many zeros in D. Then the origin would be an accumulation point of zeros for f∗, hence f∗ would
be identically zero. Similarly, if there are infinitely many poles in D, the origin would be an accumulation
point of poles for f∗ would not be meromorphic.

Definition 6. A weakly modular function is said to be modular if it is meromorphic at infinity.

Definition 7. A modular form is a modular function that is analytic on H and analytic at infinity.

Definition 8. A modular form is called a cusp form if it is 0 at infinity.

Lectures 5 and 6: Relating the Weight of a Modular Function to the Orders of Zeros
and Poles

For any z0 ∈ H and f modular, define ordz0(f) to be the integer n such that f(z)
(z−z0)n is analytic and

non-zero in a neighbourhood of z0. Suppose f is of weight 2k. Let g =
(
a b
c d

)
be in the modular

group. Since f(z) = (cz + d)−2kf(gz) = (cz + d)−2kf
(
az+b
cz+d

)
, we see that ordz0(f) = ordgz0(f). We define

ord∞(f) := ord0(f∗).
Lt D′ = D\(A1 ∪ A2) where A1 := {z ∈ D : Re(z) = 1

2} and A2 := {z ∈ D : |z| = 1,Re(z) > 0}, as in
Figure 4.

Theorem 3. Let f be a modular function of weight 2k which is not identically zero. Then

ord∞(f) +
1
2

ordi(f) +
1
3

ord
e

2πi
3

(f) +
∑
z0∈D′

z0 6=i,e
2πi
3

ordz0(f) =
k

6

Proof. We’ll first prove this under the assumption that f has no zeros or poles on the boundary of D.
In this case, we consider a path Γ given by ABCDE in Figure 5 where B = e

2πi
3 , C = i, D = e

πi
3 and D

and E have real part 1
2 . Further, A and E have the same imaginary part chosen large enough that the
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e2πi/3

i

eπi/3

D

−1
2

1
2

A2

A1

Figure 4. The Region D′ = D\(A1,∪A2)

B

C

D

A E

Figure 5. Path of Integration Γ

region enclosed by Γ contains all of the zeros and poles of f (since f is meromorphic and thus can only
have finitely many of each). By the argument principle, we have

1
2πi

∫
Γ

f ′(z)
f(z)

dz =
∑
z0∈D′

ordz0(f)

Notice that f ′(Tz)
f(Tz) d(Tz) = f ′(z)

f(z) dz, so

1
2πi

∫ B

A

f ′(z)
f(z)

dz = − 1
2πi

∫ E

D

f ′(z)
f(z)

dz

Next, observe that S transforms the arc BC to the arc DC. Also, note that f(Sz) = z2kf(z) since f is
modular of weight 2k. Therefore,

f ′(Sz)
f(Sz)

d(Sz) =
2kz2k−1f(z) + z2kf ′(z)

z2kf(z)
dz =

(
2k
z

+
f ′(z)
f(z)

)
dz

Thus, ∫ C

B

f ′(z)
f(z)

dz +
∫ D

C

f ′(z)
f(z)

dz =
∫ C

B

(
f ′(z)
f(z)

− 2k
z
− f ′(z)
f(z)

)
dz = −2k

∫ C

B

dz

z
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Make a chance of variables under z = eiθ then∫ C

B

dz

z
=
∫ π

2

2π
3

ieiθ

eiθ
dθ =

∫ π
2

2π
3

idθ = −πi
6

Thus, 1
2πi

(∫ C
B

f ′(z)
f(z) dz +

∫ D
C

f ′(z)
f(z) dz

)
= −2k

2πi
−πi

6 = k
6 .

Finally, we consider 1
2πi

∫ A
E

f ′(z)
f(z) dz. To evaluate it we change variables by q = e2πiz. Suppose that the

segment EA = {λ + iM : −1
2 ≤ λ ≤ 1

2} for some M > 0. As we traverse from E to A we move along a
circle in the q-plane of radius e−2πM in the negative (clockwise) direction.
We have f∗(q) = f(z) and f∗ is analytic and non-zero in the disc of radius e−2πM except perhaps at the
origin. Thus

1
2πi

∫ A

E

f ′(z)
f(z)

dz = − 1
2πi

∫
C

(f∗(q))′

f∗(q)
dq

where C is the path in the counterclockwise direction given by the circle of radius e−2πM . By the argument
principle,

1
2πi

∫
C

(f∗(q))′

f∗(q)
dq = ord0(f∗) = ord∞(f).

Therefore, in the case that f has a no zeroes or poles on the boundary,

ord∞(f) +
∑
z0∈D′

ordz0(f) =
k

6

We now consider the possibility that we have zeroes or poles on the boundary of D. Note that we have
only finitely many zeroes or poles so they are all isolated.
Suppose first that we have a zero or pole with Re(z) = −1

2 amd z 6= e
2πi
3 . We modify the contour Γ by

introducing a small semi-circle around z and a corresponding semicircle around Tz. We make the semicircle
sufficiently small that the circle it determines encloses no other zeros or poles of f and that its endpoints
are strictly within the segment AB.
The integerals along AB and DE cancel as before. In fact for each zero or pole of f and AB apart from
e

2πi
3 , we introduce such a semicircle and the result holds.

Next, suppose z2 is a zero or pole of f on the segment BC and different from e
2πi
3 and i. We modify the

contour Γ by introducing semicircles around z2 for which the circle determined strictly inside BC. We also
modify the contour by the image of the semicircle under S. Letting the radius of the semicircle tend to 0
we again find the contribution of the integral from B to D to be k

6 . We can do this in general for any zero
or pole on the interior of BC by making a similar modification.
It remains to consider the possibility of a pole or zero for f at ω = e

2πi
3 and i. We modify Γ by introducing

a small arc around ω and a corresponding arc around e
πi
3 . Thus, the arc C is part of a circle around ω

chosen so that that disc determined by the circle contains no other zeros or poles of f . We will let the
radius r of the disc tend to 0. Let C1 be the set of points ω + reiθ where θ varies from π

2 to α where α
depends on r. Assume now that f(z) = (z − ω)tg(z) where g is analytic and non-zero in a neighbourhood
of ω. So t is the order of f at ω (of either a pole or a zero). On C1, z − ω = reiθ, so

f ′(z)
f(z)

=
t

z − ω
+
g′(z)
g(z)
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Thus,

1
2πi

∫
C1

f ′(z)
f(z)

dz =
1

2πi

∫
C1

(
t

z − ω
+
g′(z)
g(z)

)
dz =

1
2πi

∫ α

π
2

t

reiθ
ireiθdθ +

1
2πi

∫ α

π
2

ireiθ
g′(ω + reiθ)
g(ω + reiθ)

dθ

=
1

2π

∫ α

π
2

tdθ +
1

2π

∫ α

π
2

reiθ
g′(ω + reiθ)
g(ω + reiθ)

dθ

Letting r → 0, the second term vanishes and the first terms tends to

lim
r→0

t

2π

∫ α(r)

π
2

dθ =
t

2π
lim
r→0

(
α(r)− π

2

)
= − t

2π
π

3
= − t

6

Similarly,
∫
C2

f ′(z)
f(z) dz = − t

6 , hence the contribution over C1 and C2 is − t
3 , where C2 is the reflection of the

set of points in C1 on the other side of the imaginary axis.
Finally, we consider the case when f has a zero or pole at i. Say f(z) = (z − i)lg(z) with g(z) analytic
and non-zero in a neighbourhood of i. We introduce a small semicircle of radius r around i to the contour
Γ. Choose r sufficiently small that no other zeros of poles of f are inside the disc of radius r around i.
Arguing as before we find a contribution of − t

2 to the integral. �

Consider the series
∑

n∈Z
1

(z−n)2
and let f(z) be the function of z on C determined by the series. Any

compact subset K ⊆ C lies inside a disc of radius T around 0. If we remove from the series the terms 1
(z−n)2

with n at most T in absolute value, the remaining series converges uniformly on K since
∑

n
1
n2 converges.

Therefore,
∑

n∈Z
1

(z−n)2
converges uniformly on compact subsets to a meromorphic function f(z) on C.

The integers are double poles of residue 0 since in a neighbourhood of n, f is of the form 1
(z−n)2

plus an
analytic function. There are no other poles of f .
Let g(z) =

(
π

sinπz

)2. Notice that g has a double pole at each integer and no other poles. Further, in a
neighbourhood of 0,( π

sinπz

)2
=

(
π

πz − 1
6(πz)3 + . . .

)2

=
1
z2

(
1− πz

6
+ . . .

)−2
=

1
z2

+
π2

3
+ . . .

so
(

π
sinπz

)2 − 1
z2

= π2

3 + . . ..
Note that f(z) − g(z) is analytic in a neighbourhood of 0 and by periodicity in a neighbourhood of each
integer. Thus, f(z)− g(z) is analytic on C.
Notice that if z = x+ iy with x, y ∈ R then

1
|z − n|2

=
1

|(x− n) + iy|2
→ 0

as y →∞. Further,

| sinπz| = 1
2

∣∣eiπz − e−iπz
∣∣ =

1
2

∣∣eiπxe−πy − e−iπzeπy
∣∣→∞

as |y| → ∞.
Thus, f(z)− g(z)→ 0 uniformly as |y| → ∞. Therefore, f(z)− g(z) is a bounded analytic function and so
is a constant by Liouville’s theorem.
Further, the constant is 0 hence f(z) = g(z) on C.
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Now observe that
(

π
sinπz

)2 − 1
z2

=
∑

n∈Z
n 6=0

1
(z−n)2

, which in a neighbourhood of 0 is an analytic function
π2

3 . Letting z → 0, we see that 2
∑∞

n=1
1
n2 = π2

3 .
Now consider

F (z) =
1
z

+
∑
n∈Z
n 6=0

(
1

z − n
+

1
n

)

Using the fact that
∑∞

n=1
1
n2 converges, we see that the series defining F converges uniformly on compact

subsets to a meromorphic function on C. Thus, the series of derivatives converges uniformly on compact
subsets to the derivative of the function. Thus,

−
∑
n∈Z

1
(z − n)2

= −
( π

sinπz

)2
=

d

dz
(π cotπz)

Thus, F (z)− π cotπz is a constant.
Notice that by definition, F (−z) = −F (z). Further, π cotπz is an odd function. Thus, F (z)− π cotπz is
an odd function. Since it is constant, it must be 0. Thus, F (z) = π cotπz. Therefore,

π cotπz =
1
z

+
∑
n 6=0

(
1

z − n
+

1
n

)
Now since 1

z−n + 1
n + 1

z+n −
1
n = 2z

z2−n2 , we have

π cotπz =
1
z

+
∑
n≥1

2z
z2 − n2

Lecture 7: Series Expansions for g2(z) and g3(z) on H

We’ll now extablish the q-expansions for g2 and g3.

Lemma 1. If z ∈ H and n ∈ N then∑
m∈Z

1
(m+ nz)4

=
8π4

3

∞∑
r=1

r3e2πrnz

∑
m∈Z

1
(m+ nz)6

= −8π6

15

∞∑
r=1

r5e2πrnz

Proof. We start with the expansion

π cotπz =
1
z

+
∑
m∈Z
m 6=0

(
1

z +m
− 1
m

)

Let q = e2πiz. If z ∈ H, Im(z) > 0 and thus |q| < 1. Hence,

π cotπz = π
cosπz
sinπz

= πi
eπiz + e−πiz

eπiz − e−πiz
= πi

q + 1
q − 1

= −πi(q + 1)
∞∑
r=0

qr = −πi

(
1 + 2

∞∑
r=1

qr

)
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Thus, if z ∈ H then

1
z

+
∑
m∈Z
m 6=0

(
1

z +m
− 1
m

)
= −πi

(
1 + 2

∞∑
r=1

qr

)

Differentiating repeatedly with respect to z to give terms with denominators in powers of 4 and powers of
6 using the identity dq

dz = 2πiq results in the series

−(3!)
∑
m∈Z

1
(z +m)4

= −(2πi)4
∞∑
r=1

r3e2πiz

−(5!)
∑
m∈Z

1
(z +m)6

= −(2πi)6
∞∑
r=1

r5e2πiz

Substituting nz in the place of z proves the result. �

Define the Riemann Zeta function ζ(z) by the series ζ(z) =
∑∞

n=1
1
nz for Re(z) > 1. The zeta function

may be analytically continued to all of C with the exception of a simple pole at z = 1. It is conjectured
that all zeros of ζ(z) in Re(z) > 0 have Re(z) = 1

2 . This is the Riemann Hypothesis.

Put, for z in a neighbourhood of 0,
z

ez − 1
=
∞∑
k=0

bk
k!
zk

Notice that b0 = 1 and b1 = −1
2 by differentiating the left side and setting z = 0. Further, observe that

−z
e−z − 1

− 1 +
−z
2

=
zez

ez − 1
− 1− z

2
=
z(ez − 1)

ez − 1
+

z

ez − 1
− 1− z

2
=
z

2
+

z

ez − 1
− 1

so that z
ez−1 − 1 + z

2 is an even function. Thus, b2k+1 = 0 for k ∈ N. We now put b2k = (−1)k+1Bk for
k ∈ N. We can write

z

ez − 1
= 1− z

2
+
∞∑
k=1

(−1)k+1Bk
z2k

(2k!)

The numbers {Bk}∞k=1 are called Bernoulli numbers. We have B1 = 1
6 , B2 = 1

30 , B3 = 1
42 and so forth.

Theorem 4 (Euler). Let k ∈ N. Then

ζ(2k) =
22k−1Bkπ

2k

(2k)!

Proof. We have
z

ez − 1
+
z

2
= 1 +

∞∑
k=1

(−1)k+1Bk
z2k

(2k)!

Write z = 2iu to get
2iu

e2iu − 1
+ iu = 1−

∞∑
k=1

Bk
2kuk

(2k)!
(1)
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Recall for z ∈ H,

πz cotπz = 1 + 2
∞∑
n=1

z2

z2 − n2

Thus,

u cotu = 1− 2
∞∑
n=1

u2

π2n2 − u2
= 1− 2

∞∑
n=1

u2

π2n2

1

1−
(
u
πn

)2
= 1− 2

∞∑
n=1

∞∑
k=1

(
u2

π2n2

)k
= 1− 2

∞∑
k=1

(
u2

π2

)k ∞∑
n=1

1
n2k

= 1− 2
∞∑
k=1

u2k

π2k
ζ(2k)

Also, (1) has the form

2iu
eiu − 1

+ iu = iu

(
eiu + 1
eiu − 1

)
= u cotu = 1− 2

∞∑
k=1

u2k

π2k
ζ(2k)

Thus we need only compare this to (1) to establish the result. �

Thus, ζ(2) = π2

6 , ζ(4) = π4

90 , ζ(6) = π6

945 and so forth.

Theorem 5. If z ∈ H then

g2(z) =
4π4

3

(
1 + 240

∞∑
k=1

σ3(k)e2πikz

)

g3(z) =
8π6

27

(
1− 504

∞∑
k=1

σ5(k)e2πikz

)
where σr(k) =

∑
d|k d

r for r ∈ N.

Proof. For z ∈ H,

g2(z) = 60
∑

(m,n)6=(0,0)

1
(m+ nz)4

= 60

∑
m∈Z
m 6=0

1
m4

+
∞∑
n=1

∑
m∈Z

(
1

(m+ nz)4
+

1
(m− nz)4

)
= 60

[
2ζ(4) + 2

∞∑
n=1

∑
m∈Z

1
(m+ nz)4

]
= 60

[
π4

45
+

16π4

3

∞∑
n=1

∞∑
r=1

r3e2πirnz

]
by Lemma 1. By counting all of the indices r and n such that the products rn = k are constant, we can
simply index by k and count all of the divisors r of k. Counting in this manner produces

g2(z) =
4π4

3

1 + 240
∞∑
k=1

e2πikz
∑
r|k

r3

 =
4π4

3

[
1 + 240

∞∑
k=1

σ3(k)e2πikz

]
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Similarly, for g3(z) we have

g3(z) = 140
∑

(m,n)6=(0,0)

1
(m+ nz)6

= 140

∑
m∈Z
m 6=0

1
m6

+
∞∑
n=1

∑
m∈Z

(
1

(m+ nz)6
+

1
(m− nz)6

)
= 140

[
2ζ(6) + 2

∞∑
n=1

∑
m∈Z

1
(m+ nz)6

]
= 140

[
2π6

945
− 16π6

15

∞∑
n=1

∞∑
r=1

r5e2πirnz

]
again by Lemma 1. By a similar argument as above, evaluating the double infinite series as a sum over
divisor sums gives the desired result. �

Notice that g2 and g3 are analytic on H and analytic and non-zero at infinity. In particular, ord∞g2 =
0 = ord∞g3 so g2 and g3 are modular forms.
g2 has weight 4 and g3 has weight 6. By Theorem 3,

ord∞g2 +
1
3

orde2πi/3g2 +
1
2

ordig2 +
∑
z0∈D′

z0 6=i,e2πi/3

ordz0g2 =
1
3

since here k = 2. However, since g2 is analytic, it has no poles so all of these orders are non-negative
integers. This equality can only be satisfied if g2 has a simple zero at e

2πi
3 and no others in D′. Similarly,

ord∞g3 +
1
3

orde2πi/3g3 +
1
2

ordig3 +
∑
z0∈D′

z0 6=i,e2πi/3

ordz0g3 =
1
2

since here k = 3. By the same argument as above, g3 has a simple zero at i and no others in D′.

Lecture 8: The ∆ function and Related Fourier Expansions

Recall that ∆(z) = g2(z)3 − 27g3(z)2.

Theorem 6. For z ∈ H

∆(z) = (2π)12
∞∑
n=1

τ(n)e2πinz

where τ(1) = 1, τ(2) = −24 etc. The function τ : N→ Z is called the Ramanujan τ -function.

Proof. Put

A := A(z) =
∞∑
n=1

σ3(n)e2πinz

B := B(z) =
∞∑
n=1

σ5(n)e2πinz
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Then by theorem 5,

∆(z) = g2(z)3 − 27g3(z)2 =
64π12

27
(
(1 + 240A)3 − (1− 504B)2

)
=

64π12

27
(
122(5A+ 7B) + 123(100A2 − 147B2 + 8000A3)

)
(2)

But 5A+ 7B =
∑∞

n=1(5σ3(n) + 7σ5(n))e2πinz and

5d3 + 7d5 = d3(5 + 7d2) ≡ d3(2 + d2) (mod 3) ≡ 0 (mod 3)

since 0 and 1 are the only quadratic residues modulo 3, and if d2 ≡ 0, then 3|d so d3 ≡ 0 (mod 3), and
if d2 ≡ 1 (mod 3) then 2 + d2 ≡ 0 (mod 3). Similarly, 5d3 + 7d5 ≡ 0 (mod 4) since the only quadratic
residues modulo 4 are 0 and 1.
Thus, 12|(5A+7B) so that 123 divides both coefficients in the brackets in (2) and thus all of the coefficients
of the Fourier expansion in z (or the power series expansion in q = e2πiz) are integers. Thus

∆(z) =
64π12

27

(
123

∞∑
n=1

τ(n)e2πinz

)
= (2π)12

∞∑
n=1

τ(n)e2πinz

where τ(n) was defined to be the coefficient of the resulting Fourier series. It follows that τ(n) ∈ Z for all
n ∈ N. �

By Theorem 6, ∆(z) is a modular function that has a zero at infinity and is thus a cusp form.
In particular, note that ord∞∆ = 1, since τ(1) = 1 and by transforming ∆ into its q expansion, the lowest
order term in q has exponent 1, and thus the q-expansion has order 1 at q = 0.
By Theorem 3,

1 +
1
3

orde2πi/3∆ +
1
2

ordi∆ +
∑
z0∈D′

z0 6=i,e2πi/3

ordz0∆ = 1

Since ∆ is analytic, all of these orders are non-negative integers, and therefore they must all be equal to 0
as we saw at the end of Lecture 7. Thus, ∆ does not vanish at all on H.

Ramanujan’s τ -function satisfies a number of congruence relations. For example,

τ(n) ≡ nσ3(n) (mod 7), τ(n) ≡ n2σ7(n) (mod 27), τ(n) ≡ σ11(n) (mod 691)

all proved by Ramanujan. The first few values of τ(n) are τ(1) = 1, τ(2) = −24, τ(3) = 252, τ(4) = −1472,
τ(5) = 4830, τ(6) = −6048 and so forth. Lehmer conjectured that τ(n) is non-zero for all positive integers
n. He checked this to be true for n < 1011.
It is not so difficult to show that τ(n) = O(n6) since ∆ is modular of weight 12 (another way to see this is
consider the growth rate of the functions

∑
n≤x

∑
d|n d

r for r = 3 and r = 5). In fact, it follows from work

of Deligne that for each ε > 0, τ(n) = O
(
n

11
2

+ε
)

.
We also have the product expansion due to Jacobi, which is the content of Theorem 14:

∞∑
n=1

τ(n)e2πinz = e2πiz
∞∏
n=1

(
1− e2πinz

)24
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Lecture 9: The j(z) Function

Can we have a modular form of weight 0? Suppose f were a modular form of weight 0 which is not
identically zero. Then by Theorem 3,

ord∞f +
1
3

orde2πi/3f +
1
2

ordif +
∑
z0∈D′

z0 6=i,e2πi/3

ordz0f = 0.

Thus, f has no zeros or poles in H. Suppose that f is non-zero for some z0 ∈ D′ say f(z0) = c. Then
g(z) = f(z)− c is a modular form of weight zero and has a zero at z0. Thus, g(z) must be identically zero,
so f(z) is constant.
Can we have a modular function of weight zero which is not identically zero? Yes.
Indeed, put J(z) = g2(z)3

∆(z) and j(z) = 123J(z). Since ∆(z) is analytic and non-zero in H and g2(z) is a
modular form then J(z) is analytic in H and has a simple pole at ∞. Further, ∆(z) is modular of weight
12, as is g2(z)3 so J(z) is a modular function of weight 0.
What is the Fourier expansion of J(z)?

Theorem 7.

j(z) = 123J(z) = e−2πiz + 744 +
∞∑
n=1

c(n)e2πinz

where c(n) ∈ Z for all n ∈ N.

Proof. Put x = e2πiz and let P1, P2 and P3 denote power series expansions in x with integer coefficients.
We have from Theorem 5

g2(z) =
64π12

27
(1 + 720x+ x2P1)

From Theorem 6, ∆(z) = (2π)12(x− 24x2 + x3P2). Thus,

j(z) =
123 · 64π12

27 · 212π12

(
1
x

(
1 + 720x+ x2P1

1− 24x+ x2P2

))
=

1
x

(1 + 720x+ x2P1)(1 + L+ L2 + . . .)

where L(z) = 24x − x2P2. Here if the series diverges, one can analytically continue it at the point of
divergence.
Thus, j(z) = 1

x(1 + 744x+ x2P3) where P3 has integer coefficients as required. �

The first values of c(n) are: c(0) = 744, c(1) = 22 · 33 · 1823, c(2) = 211 · 5 · 2099. We have the following
congruences for example:

n ≡ 0 (mod 2a) implies that c(n) ≡ 0 (mod 23a+2)

n ≡ 0 (mod 3a) implies that c(n) ≡ 0 (mod 32a+3)

n ≡ 0 (mod 11a) implies that c(n) ≡ 0 (mod 11a)

(n+ 1)c(n) ≡ 0 (mod 24)

for n, a ∈ N.
In 1932, Peterson proved that

c(n) ∼ e4π
√
n

√
2n

3
4

.
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0 1728 R

Figure 6. The contour of Γ that j maps to the real line.

Theorem 8. j(z) defines a bijection from D′ to C (or equivalently H/G to C).

Proof. Let λ ∈ C. Put fλ(z) = 123g3
2(z)− λ∆(z). Note that fλ is a modular form of weight 12. Note that

by Theorems 5 and 6, ord∞fλ = 0.
By theorem 3 with k = 6

ord∞fλ +
1
3

orde2πi/3fλ +
1
2

ordifλ +
∑
z0∈D′

z0 6=e2πi/3,i

ordz0fλ = 1.

Notice that if n1, n2 and n3 are non-negative integers with n1 + 1
2n2 + 1

3n3 = 1, then (n1, n2, n3) is either
(1, 0, 0), (0, 2, 0) or (0, 0, 3). Thus, there is exactly one zero in D′, say z1 such that

j(z1) = 123 g
3
2(z1)

∆(z1)
=
fλ(z1)
∆(z1)

+ λ = λ

so j is surjective. Since D′ ⊆ C, it follows that j is injective as well and thus a bijection. �

Let us look more closely at the mapping j : D′ → C. First, note that j
(

e
2πi
3

)
= 0 since g2 = 0 there,

and j(i) = 123 = 1728 since g3 = 0 there and thus ∆(i) = g3
2(i).

Next, observe that j(z) = j(−z). Indeed, if z = u+ iv for u, v ∈ R then

e2πiz = e−2πv · e2πiu = e−2πiz = e−(2πi(u−iv)) = e−2πv · e−2πiu = e2πiz.

Thus, since j(z) is representable by a Fourier expansion with real coefficients, it follows that every expo-
nential term has this form so the claim follows.
Since j(z + 1) = j(z) for z ∈ H, we have j

(
−1

2 + iv
)

= j
(

1
2 + iv

)
. Further, −

(
1
2 + iv

)
= −1

2 + iv so

j

(
−1

2
+ iv

)
= j

(
1
2

+ iv

)
= j

(
1
2
− iv

)
= j

(
−1

2
+ iv

)
since 1

2 − iv = −
(

1
2 − iv

)
. Thus, j

(
−1

2 + iv
)
∈ R for all v > 0. Further, j(z) = j

(
−1
z

)
since it is modular

of weight 0, so for β ∈ T, − 1
β = −β and thus j(β) = j(−β) and so by our identity, j(β) = j(−β) so again

j(β) ∈ R. Further, if z = iv, j(iv) = j(iv) so j(iv) ∈ R.
Thus, j maps the contour Γ, pictured in Figure 6 to the real line. Since j has a pole at infinity the contour
is mapped to all of the real line.
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Recall that for any lattice L,

g2(L) = g2([ω1, ω2]) = 60
∑
ω∈L′

1
ω4

= 60
∑

(m,n) 6=(0,0)

1
(mω1 + nω2)4

Now for z ∈ H, g2(z) = 60
∑

(m,n) 6=(0,0)
1

(mz+n)4
. Thus, g2([ω1, ω2]) = 1

ω4
2
g2

(
ω1
ω2

)
.

Theorem 9. Let a, b ∈ C with a3 − 27b2 6= 0. There exist complex numbers ω1 and ω2 with ω1
ω2

/∈ R for
which g2([ω1, ω2]) = a and g3([ω1, ω2]) = b.

Proof. Since J : D′ → C is a bijection there exists a τ ∈ D′ for which J(τ) = a3

a3−27b2
.

Let us first assume a, b 6= 0. Since a 6= 0, J(τ) 6= 0 so

J(τ)− 1
J(τ)

=
27b2

a3
(3)

Recall that g3([ω1, ω2]) = 1
ω6

2
g3

(
ω1
ω2

)
and g2([ω1, ω2]) = 1

ω4
2
g2

(
ω1
ω2

)
. Since

J(τ)− 1
J(τ)

=
27g3(τ)2

g2(τ)3
(4)

Now let ω2 ∈ C such that

ω2
2 =

a

b

g3(τ)
g2(τ)

(5)

and put ω1 = τω2 so that

g3([ω1, ω2])
g2([ω1, ω2])

=
1
ω6

2
g3(τ)

1
ω4

2
g2(τ)

=
1
ω2

2

g3(τ)
g2(τ)

=
b

a
(6)

From (5) we find that (
g3(τ)
g2(τ)

)2

= ω4
2

(
b

a

)2

and similarly for a cube. Comparing (3) and (4) we find that

a =
1
ω4

2

g2(τ) = g2([ω1, ω2])

By (6), b = g3([ω1, ω2]). This proves the result when ab 6= 0.
Suppose ab = 0. Since a3− 27b2 6= 0, it follows that either a = 0 and b 6= 0 or a 6= 0 and b = 0. Let us first
assume that a = 0. Choose ω2 to be a complex number for which g3

(
e2πi/3

)
= bω6

2. Observe that ω2 6= 0
since g3

(
e2πi/3

)
6= 0.

We then put ω1 = e2πi/3ω2. We have

g3([ω1, ω2]) =
1
ω6

2

g3

(
ω1

ω2

)
= b

g2([ω1, ω2]) =
1
ω4

2

g2

(
e2πi/3

)
= 0 = a
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Finally, assume that b = 0. Choose ω2 ∈ C such that g2(i) = aω4
2 and ω1 = iω2. Then

g3([ω1, ω2]) =
1
ω6

2

g3

(
ω1

ω2

)
=

1
ω6

2

g3(i) = 0 = b

g2([ω1, ω2]) =
1
ω4

2

g2 (i) = a

as required. �

Therefore, given any elliptic curve y2 = 4x2− ax− b with a, b ∈ C and a3− 27b2 6= 0 there is a lattice L
and a p-function associated with this lattice L such that (p(z), p′(z)) gives a parametrization of the curve
(see Lecture 2).

Lecture 10: Vector Spaces of Modular Forms of Fixed Weight

For any non-negative integer k let Mk denote the set of modular forms of weight 2k. One can check
that Mk is a vector space over C.
Let Mo

k denote the subspace of Mk given by the cusp forms. Define the map h : Mk → C such that
h(f) = f(∞). Then h is a linear functional and the kernel of h is Mo

k. Thus, the dimension of Mk over
Mo

k is at most 1 (by the First isomorphism theorem, the domain vector space quotiented by the kernel of
the functional is isomorphic to the range, C, which has vector space dimension one over itself). Further,
for k ≥ 2,

Gk(z) =
∑

(m,n)6=(0,0)

1
(m+ nz)2k

is a modular form of weight 2k. By the same proof as theorem 5, Gk(0) = 2ζ(2k) 6= 0. Thus Mk
∼=

Mo
k ⊕ CGk for k ≥ 2.

Theorem 10. (1) Mk = {0} for k < 0 and k = 1.

(2) ∆(z) is an element of Mo
6 and multiplication by ∆ gives an isomorphism ofMk−6 intoMo

k for k ∈ Z.

(3) For k = 0, 2, 3, 4, 5, Mk is a dimension one vector space generated by 1, G2, G3, G4, G5 respectively.

Proof. (1) If f is a modular function of weight 2k

ord∞f +
1
2

ordif +
1
3

orde2πi/3f +
∑
z0∈D′

z0 6=i,e2πi/3

ordz0f =
k

6

If f ∈M1 we would have a sum of the form n1 + n2
2 + n3

3 = 1
6 with n1, n2, n3 ∈ N0 and this is impossible.

The case k < 0 is incoherent for a non-zero modular form which is everywhere analytic.
(2) ∆ ∈ Mo

6 since ∆ is a cusp form of weight 12. Notice that the map ψ given by ψ :Mk−6 →Mo
k with

ψ(f) = ∆f is a linear map. It suffices to show that ψ is invertible. Given g ∈Mo
k put f = g

∆ . Notice that
f is weakly modular of weight 2k − 12. Since ∆ is analytic and non-zero in H and it has a simple zero at
∞ and g ∈Mk, f is analytic and one-to-one and at infinity

ord∞f = ord∞g − ord∞∆ = ord∞g − 1 ≥ 0
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since g is a cusp form. Thus, f ∈Mk−6. Thus, ψ is invertible so the result follows.
(3) By (1), Mk = {0} for k < 0 and k = 1. Then by (2), Mo

k = {0} for k = 0, 1, 2, 3, 4, 5 since it is
the isomorphic image of Mk for k − 6 < 0. Thus, dimMk = 1 for k = 0, 1, 2, 3, 4, 5, since by the first
isomorphism theorem, the quotient space Mk/Mo

k has dimension 1, and the kernel of ψ, Mo
k is trivial.

Note that 1, G1, G2, G3, G4, G5 are non-zero elements of M0,M2,M3,M4,M5 respectively. Thus, (3)
follows. �

Notice that for k > 0,

dimMk =

{⌊
k
6

⌋
if k ≡ 1 (mod 6)⌊

k
6

⌋
+ 1 otherwise

since the result holds for k = 0, 1, 2, 3, 4, 5 and then using part b), the dimension increases by one. The
congruence 1 modulo 6 is special since M1 = {0} as in a).

Corollary 4. A basis for Mk is given by {ga2gb3 : a, b ∈ Z, a, b ≥ 0, 2a+ 3b = k}.

Proof. We will first show that ga2g
b
3 with 2a+ 3b = k, a, b ≥ 0 generateMk. This is certainly true for j ≤ 3

since G2 is a scalar multiple of g2 and G3 of g3.
We now argue by induction. Let (a1, b1) be a pair of non-negative integers with 2a1 + 3b1 = k. Observe
that ga1

2 gb13 is a modular form of weight 2k.
By theorem 5, ga1

2 gb13 is not a cusp form so ga1
2 gb13 is a non-zero element ofMk/Mo

k and this is of dimension
1. Thus, if f ∈ Mk, then there exists a λ ∈ C such that f − λga1

2 gb13 ∈ Mo
k. By part b) of Theorem

10, f − λga1
2 gb13 = ∆h for h ∈ Mk−6. By the inductive hypothesis, we can express h as an expansion of

products gc2g
d
3 , 2c + 3d = k − 6 with ∆ = g3

2 − 27g2
3, each term of which give resulting products of weight

2k. To show this is a basis, suppose there exist scalars λa,b not all zero in C such that

f(z) =
∑

2a+3b=k
a,b≥0

λa,bg
a
2g
b
3 = 0.

Since g2(i) is non-zero, letting z → i, we see that f has a zero of finite order at i which gives a contradiction.
(This follows since by complex analysis we can write f(z) = (z − i)mg(z), g(z) 6= 0 in a neighbourhood of
i for some m). �

Theorem 11. f is a modular function of weight 0 if and only if f is a rational function of j.

Proof. (⇐) Immediate.
(⇒) Let f be a modular function of weight zero. Let p1, . . . , pk be the poles of f in D′ repeated with
multiplicity. Then

f1 = f
k∏
i=1

(j(z)− j(pi))

is analytic.
Next note that for some non-negative integer n, f2 = ∆nf1 is analytic at ∞. Therefore f2 is a modular
form of weight 12n and can be written as a C-linear combination of ga2g

b
3 where a, b ≥ 0 and 2a+ 3b = 6n.

Thus, it suffices to show that ga2g
b
3

∆n is a rational function of j.



PMATH 944: MODULAR FORMS 23

We have a
3 + b

2 = n. Thus, a = 3l and b = 2m for l,m ∈ N0.
Consider now

ga2g
b
3

∆n
=
(
g3

2

∆

)l (
g2

3

∆

)m
=
(

j

1728

)l (g2
3

∆

)m
=
(

j

1728

)l (g3
2 −∆

1728∆

)m
=
(

j

1728

)l ( j

27 · 1728
− 1

27

)m
so the result follows. �

Let d ∈ N and θ ∈ Q
(√
−d
)

with Im(θ) > 0. Then j(θ) is an algebraic number. On the other hand, if θ
is an algebraic number and θ is not in such a field, j(θ) is transcendental.

Lecture 11: Brief Review of Algebraic Number Theory

Let K be a finite extension of Q and let R be the ring of algebraic integers in K. Recall that α ∈ R if
its minimal polynomial over Z is monic.
In general we do not have unique factorization into irreducibles in R up to reordering in units. For example,
in Q(

√
−5), 9 = 3 · 3 = (2 +

√
−5)(2−

√
−5), 3, 2±

√
−5 being irreducibles in R for Q(

√
−5).

However, we do have unique factorization of ideals of R (it takes some work to prove this).
In particular, given α ∈ R the principal ideal generated by α can be factored into prime ideals uniquely up
to order.
Recall that a fractional ideal is a set of the form 1

β I with β ∈ R and I ⊆ R an ideal. We can define an
equivalence relation ∼ on the fractional ideals of R by I1 ∼ I2 if and only if there exists nonzero α, β ∈ R
such that αI1 = βI2.
We can define multiplication of equivalence classes by multiplication of representatives. This turns the set
of equivalence classes into a finite Abelian group. The order of the group, denoted by h or h(K) is known
as the class number of K. If the class number is one, we recover unique factorization of elements of R up to
multiplication by units, as every ideal is then principal, and by an elementary result of algebra, principal
ideal domains are unique factorization domains.
It is not known but widely believed that there are infinitely many real quadratic extensions of Q with class
number one. For imaginary quadratic extensions, the situation is different. It was known for many years
that if d ∈ N, Q(

√
−d) has class number one then Q(

√
−d) = Q(

√
−D) where D = 1, 2, 3, 7, 11, 19, 43, 67

or 163.
Gauss asked for a complete determination of all such imaginary extensions. Heilbronn proved in 1934 that
there could be at most one more such field. In 1966-67 Baker and, independently, Stark proved the list
above is complete. (In 1952, Heegner gave an essentially correct proof that was disregarded).

Recall, for k ≥ 2

G2k(L) = G2k([ω1, ω2]) =
∑

(m,n) 6=(0,0)

1
(mω1 + nω2)2k

and that g2(L) = 60G4(L) and g3(L) = 140G6(L).
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Theorem 12. G2k = G2k(L) is expressible as a polynomial in g2 and g3 with rational coefficients. Put
bn = (2n+ 1)G2n+2 then b1 = g2

20 and b3 = g3
28 and

(2n+ 3)(n− 2)bn = 3
n−2∑
k=1

bkbn−1−k

for n ≥ 3.

Proof. Recall from the equation prcedding Theorem 1

p(z) =
1
z2

+
∞∑
n=1

(2n+ 1)G2n+2z
2n =

1
z2

+
∞∑
n=1

bnz
2n

and p′′(z) = 6p(z)2 − g3
2 . Comparing coefficients on both sides gives the result. �

Lecture 12: Complex Multiplication

Let L = [ω1, ω2] be a lattice. If f is an L-periodic meromorphic function which is even then it can be
shown that f is a rational function in terms of p(z). Let β ∈ C and suppose that p(βz) is L-periodic. In
this case p(βz) = g◦p(z)

h◦p(z) where g, h are polynomials over C.

When does this happen? Certainly this holds if n ∈ N. We can show that p(nz) = g◦p(z)
h◦p(z) where g has

degree n2 and h has degree n2 − 1.
If β ∈ C\Z and p(βz) is L-periodic then we say that EL, the elliptic curve associated with L, has
complex multiplication or CM. If this happens we have

βω1 = rω1 + sω2

βω2 = tω1 + uω2

with r, s, t, u ∈ Z. Thus (
β − r −s
−t β − u

)(
ω1

ω2

)
=
(

0
0

)
so the determinant of the matrix is zero. Thus, β is a root of the quadratic polynomial (x− r)(x−u)− st.
Thus, β is a root of a quadratic monic polynomial. Since β /∈ Z we see that it is of degree 2 over Q.
Further, since β = r + s

(
ω2
ω1

)
, s 6= 0, and since ω2

ω1
/∈ R we see that β determines an imaginary quadratic

extension. Notice that if E admits addition and multiplication by β1 and β2 then it does so by β1±β2 and
by β1β2 respectively.
In fact, the set of all elements β for which E admits complex multiplication is a subring of Q(

√
−d) for

some d ∈ N.
E admits CM by the ring of algebraic integers of Q(

√
−d) if and only if it admits complex multiplication

by β where

β =

{√
−d if d ≡ 1 (mod 4)

1+
√
−d

2 if d 6≡ 1 (mod 4)

Suppose L = [ω1, ω2] and E = EL is the elliptic curve associated with L, we define j(E) = j(L) = j
(
ω2
ω1

)
.

Notice that if L1 and L2 are lattices with L1 = λL2 then j(L1) = j(L2).
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Using this, one can show that

h(−d) = |{j(E) : E is an elliptic curve with CM by the ring of algebraic integers of Q(
√
−d)}|

We shall now show that j(E) = j(L) = j
(
ω2
ω1

)
is algebraic when E admits CM by β, where {1, β} is an

integral basis for Q(
√
−d).

Notice that by scaling L we may suppose that g = g2 = g3. This does not change j(E) as we showed above.
By theorem 12,

p(z) =
1
z2

+
gz2

20
+
gz4

28
+ P6(g)z6 + P8(g)z8 + . . .

where P6(g) and P8(g) are polynomials in g with rational coefficients.
Further,

p(βz) =
1

β2z2
+
gβ2z2

20
+ . . .

We have

p(βz) =
f1(p(z))
f2(p(z))

with f1, f2 coprime polynomials in Q [x]. In fact, we may suppose that fi ∈ Q(β) [x] for i = 1, 2 and that
f1, f2 are coprime. Thus, by examining the power series expansion of the latter equation we see that the
coefficient of za for a an odd integer is 0. But the coefficient of za is a polynomial Pa(x, y) ∈ Q [x, y]
evaluated at x = g and y = β. Note that the polynomials Pa(x, y) are not all identically zero since if we
vary β then there must exist a β ∈ C\Q(

√
−d) such that the equality does not hold for if it did it would

contradict the statement above that β ∈ Q(
√
−d) for some d ∈ N is a necessary condition.

For fixed β there is a polynomial Pa(x, y) which is not identically zero such that Pa(x, β) is not identically
zero. This follows since as we vary g we vary the underlying lattice and so otherwise we would have CM
by β for each lattice associated with g which is not possible.
Let us put fa(x) = Pa(x, β). Then g is a root of fa ∈ Q(β) [x] hence g is an algebraic number. Let F be a
finite Galois extension of Q containing β and g. Let σ be an automorphism which fixes Q. Note that σ(β)
is either β or β since β is imaginary quadratic. Applying σ to all the terms of Pa(g, β) we get Pa(σg, σβ)
we find that the curve Eσ : y2 = 4x3 − σ(g)x− σ(g) admits CM by σ(β) hence by β or β and thus by β.
In fact if it admits CM by β it admits by the ring of algebraic integers of Q(β).
Notice that j(E) = 1728

1− 27
g

and thus j(Eσ) = 1728
1− 27

σ(g)

. Therefore as we run through the automorphisms σ

the number of different values assumed by j(Eσ) corresponds to the number of different values of σ(g).
However since Eσ admits CM by the ring of algebraic integers of Q(β) if Q(β) = Q(

√
−d) with d ∈ N then

the number of different values assumed is at most h(−d).
(Indeed, any two ideals in the ideal class are related by a prime ideal a = γb for a, b ⊆ Q(

√
−d) and

γ ∈ Q(
√
−d) so if j(Eσ1) = j(Eσ2) then σ1(g) = δσ2(g) so that σ−1

2 ◦ σ1(g) = σ−1
2 (δ)g and thus σ−1

2 ◦ σ1 is
at most a scaling of g which does not change J so σ1 and σ2 are in the same ideal class and there are not
necessarily representations for every ideal class.)
Therefore g and also j(E) are algebraic numbers of degree at most h(−d) since the Galois group has size
bounded by h(−d) from what we have just said. In particular if h(−d) = 1 then j(E) = j(L) = j

(
ω2
ω1

)
∈ Q.

Suppose that {1, β} is an integral basis for the ring of algebraic integers of Q(
√
−d) for some d ∈ N. Con-

sider the lattice L = [1, β] then j(L) = j(β) and j(β) algebraic of degree at most h(−d) over Q.
Since h(−163) = 1 and−163 ≡ 1 (mod 4) then we see that j

(
1
2(1 +

√
−163)

)
∈ Q. In fact j

(
1
2(1 +

√
−163)

)
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is an integers which is a perfect cube. Recall that if q = e2πiz

j(z) =
1
q

+ 744 + 196884q + . . .

and when z = 1
2(1 +

√
−163) then

q−1 = −eπ
√

163 = −262537412640768000 + 743.9999999999992 . . .

In fact j
(

1
2(1 +

√
−163)

)
= −262 · · · 768000 = (−640320)3.

We will not prove this but the following facts hold: if τ ∈ Q(
√
−d) and Im(z) > 0 then j(τ) is an al-

gebraic number. Further, if {ω1, ω2} is an integral basis for an ideal of the ring of algebraic integers of
Q(
√
−d) and τ = ω2

ω1
then j(τ) has degree h(−d) over both Q and Q(

√
−d). Further, Q(

√
−d)(j(τ)) is the

maximal unramified Abelian extension of Q(
√
−d). By an Abelian extension we mean a Galois extension

of Q with Abelian Galois group. Given T a finite extension of K where [K : Q] < ∞, T is said to be an
unramified extension of K if every prime ideal decomposed into distinct prime ideals in the ring of algebraic
integers of T .

One other interesting open problem is the following: can every finite group G be realized as a Galois
group over the rationals? Shafarevitch showed that if G is solvable the answer is yes.
It is easy to realize Sn and An for n ∈ N. The next class of non-solvable groups to be realized was
PGL(2,Zn). Take GL(2,Zn) the set of 2× 2 matrices over Zn with determinent a unit in Zn. Then

PGL(2,Zn) = GL(2,Zn)/{uI2 : u a unit in Zn}

It can be shown that there exists, for each n ∈ N a polynomial Φn(x, y) ∈ Q [x, y] such that Φn(j(z), j(nz)) =
0. By Hilbert’s irreducibility theorem there exists an r ∈ Q such that Φn(x, r) has a Galois group
PGL(2,Zn) over Q.

Lecture 13: Infinite Products and the Dedekind Eta Function

An infinite product
∏∞
i=1 ai of complex numbers is defined to be A provided that

lim
n→∞

n∏
i=1

ai = lim
n→∞

An = A

and that A 6= 0. If there exists an integer N such that an 6= 0 for n > N and such that limn→∞
∏n
k=N−1 ak

is equal to a non-zero complex number then we say that the infinite product converges.
Plainly, if

∏∞
n=1 an converges then limn→∞ an = 1. We can write an = 1 + bn and ask for the convergence

of
∏∞
n=1(1 + bn) so that bn → 0. If no factor an is 0 then we compare the infinite product with the series∑∞

n=1 log(1 + bn) where here we take the principal branch of the logarithm.
Let the partial sums of the log series above be denoted by Sn. Then An = eSn and if Sn → S then An → eS .
If no factor an is zero and the infinite product converges then An → eS 6= 0 so it suffices to have the log
series converge to conclude that the infinite product does.
In fact this condition is necessary. To see this, suppose log

(
An
A

)
→ 0 and

log
(
An
A

)
= logAn − logA+ 2πihn
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for some integer hn. Then

(hn+1 − hn)2πi = log
(
An+1

A

)
− log

(
An
A

)
− log(1 + bn+1)

Therefore taking the imaginary part of each side of the equation gives

2π(hn+1 − hn) = Im
(

log
(
An+1

A

))
− Im

(
log
(
An
A

))
− Im(log(1 + bn+1))

But Im
(

log
(
An+1

A

))
, Im

(
log
(
An
A

))
→ 0 and |Im (log (1 + bn+1)) | ≤ π for n large enough. Thus, hn = h

for n large enough.
Therefore for n sufficiently large,

log
(
An
A

)
= Sn − logA+ 2πih

so Sn → logA−2πih. In conclusion,
∏∞
n=1(1+bn) converges if and only if

∑∞
n=1 log(1+bn) converges, where

we take the principal branch of the logarithm. If Re(bn) > −1 for n ∈ N then we say that
∏∞
n=1(1 + bn)

converges absolutely if
∑∞

n=1 log(1 + bn) converges absolutely.

Since log(1+z)
z → 1 as z → 0 we obtain: if Re(bn) > −1 then

∏∞
n=1(1 + bn) converges absolutely if and only

if
∑∞

n=1 |bn| converges.

Proposition 1. Let U be an open subset of C and let fn be analytic in U and not identically zero. If∑∞
n=1(fn(z) − 1) converges absolutely and uniformly on compact subsets of U then

∏∞
n=1 fn(z) converges

to an analytic function on U .

We define the Dedekind Eta function in the upper half plane H by

η(z) = e
πiz
12

∞∏
n=1

(
1− e2πinz

)
= q

1
24

∞∏
n=1

(1− qn)

where q = e2πiz, where we choose the principal branch of the 24th root.
For z ∈ H, |q| < 1 and the infinite product converges absolutely (as a geometric series), we see from the
proposition that η(z) is analytic. We shall prove that η(z)24 = (2π)−12∆(z).
Notice that η(z + 1) = e

πi
12 η(z) and by induction η(z + b) = e

πib
12 η(z) for b ∈ N so η(z + b)24 = η(z)24.

Theorem 13. If z ∈ H then η
(
−1
z

)
= (−iz)

1
2 η(z) where we take the principal branch of the square root

function.

Proof (Siegel): We prove the result for z = iy with y ∈ R, y > 0 and then the result holds for general
z ∈ H by analytic continuation. Thus, it suffices to prove that η

(
i
y

)
= y

1
2 η(iy). Equivalently,

log η
(
i

y

)
− log η(iy) =

1
2

log y
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i

−i

y−y

Figure 7. The Path of Integration Γ in Siegel’s Proof

We have by the product definition

log η(iy) = −πy
12

+ log
∞∏
n=1

(
1− e−2πny

)
= −πy

12
+
∞∑
n=1

log
(
1− e−2πny

)
= −πy

12
−
∞∑
n=1

∞∑
m=1

e−2πmny

m
= −πy

12
−
∞∑
m=1

1
m

(
e−2πmy

1− e−2πmy

)

= −πy
12

+
∞∑
m=1

1
m(1− e2πmy)

Thus, it suffices to prove
∞∑
m=1

1
m

1
1− e2πmy

−
∞∑
m=1

1
m

1

1− e
2πm
y

− π

12

(
y − 1

y

)
= −1

2
log y (7)

To prove (7) we use a residue calculation. For fixed y and n ∈ N put

Fn(z) = − 1
8z

cot(πiNz) cot
(
πNz

y

)
for N = n+ 1

2 .
Let Γ be the contour in Figure 7. Inside Γ, Fn(z) has simple poles at z = ik

N and at z = ky
N for

k = ±1,±2, . . . ,±n and it has a triple pole at 0 by the expansion of cotangent derived above.
Recall that

z cot z = 1−
∞∑
k=1

22kBk
(2k)!

z2k

and from Euler’s Theorem (Theorem 4) this converges for |z| < π. We have B1 = 1
6 and so z cot z =

1− z2

3 + . . ..
The residue at z = 0 of Fn(z) is the coefficient of z2 in the power series expansion of z3Fn(z) around 0.
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Therefore

z3Fn(z) = −1
8

[
1

πiN
(πiNz cot(πiNz))

]
·
[
y

πN

(
πNz

y
cot
(
πNz

y

))]
= − y

8π2iN2

(
1− (πiN)2z2

3
+ . . .

)
·

(
1−

(
πN

y

)2 z2

3
+ . . .

)

The coefficient of z2 is thus

− y

24π2iN2

(
π2N2 − π2N2

y2

)
=

i

24

(
y − 1

y

)
Thus the residue of Fn(z) at z = 0 is i

24

(
y − 1

y

)
.

What is the residue at z = ik
n ? Notice that since tanπk = 0,

lim
z→ ik

n

(
z − ik

n

)
cot(πiNz)

(
− 1

8z
cot
(
πNz

y

))

= lim
z→ ik

n

(
z − ik

n

tan(πiNz)− tanπiN ik
N

)(
− 1

8z
cot
(
πNz

y

))
=
(
d

dz
(tanπiNz)|z= ik

N

)−1(
− N

8ik
cot
(
πik

y

))
=
[

1
πiN sec2 πiNz

|z= ik
N

](
− N

8ik
cot
(
πik

y

))
=

1
8πk

cot
(
πik

y

)
Notice that this is an even function of k. Therefore,

n∑
k=−n
k 6=0

Resz= ik
N
Fn(z) = 2

n∑
k=1

1
8πk

cot
πik

y

Finally, let us compute the residue of Fn(z) at z = ky
N for k 6= 0.

lim
z→ ky

N

(
z − ky

N

)
cot
(
πNz

y

)(
− 1

8z
cotπiNz

)
=

N

πy sec2 πNz
y

|
z= ky

N

(
− N

8ky
cotπiky

)
= − 1

8πk
cotπiky

Thus,
n∑

k=−n
k 6=0

Res
z= ky

N
Fn(z) = 2

n∑
k=1

1
8πk

cotπiky

Now recall that

cot iθ =
cos iθ
sin iθ

= i
e−θ + eθ

e−θ − eθ
= −i1 + e2θ

e2θ − 1

=
1
i

(
1 +

2
e2θ − 1

)
=

1
i

(
1− 2

1− e2θ

)
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Thus,

−2
n∑
k=1

1
8πk

cotπiky = − 1
4πi

[
n∑
k=1

1
k
− 2

n∑
k=1

1
k (1− e2πky)

]

2
n∑
k=1

1
8πk

cot
πik

y
= − 1

4πi

 n∑
k=1

1
k
− 2

n∑
k=1

1

k
(

1− e
2πk
y

)


Therefore, ∫
Γ
Fn(z)dz = − π

12

(
y − 1

y

)
+

n∑
k=1

1
k

[
1

1− e2πky
− 1

1− e
2πk
y

]
Consequently, it suffices to prove that

lim
n→∞

∫
Γ
Fn(z)dz = −1

2
log y

Now

zFn(z) = −1
8

cot(πiNz) cot
πNz

y
= − 1

8i

(
1− 2

1− e2πNz

)
1
i

(
1− 2

1− e−
2πiNz
y

)
and if z = t+ iu, t, u ∈ R then

zFn(z) =
1
8

(
1− 2

1− e2πN(t+iu)

)(
1− 2

1− e
2πN(−ti+u)

y

)
Thus, since N = n+ 1

2 ,

lim
n→∞

zFn(z) =

{
1
8 if z = t+ iu, t, u > 0 or t, u < 0
−1

8 if z = t+ iu, t > 0, u < 0 or t < 0, u > 0

Therefore, limn→∞ zFn(z) tends to 1
8 on the line segments (excluding endpoints) joining y to i and −y to

−i and it tends to −1
8 on the line segments (excluding endpoints) joining i to −y and −i to y.

Now since y > 0 and N = n+ 1
2 , zFn(z) is uniformly bounded on the contour Γ and so

lim
n→∞

∫
Γ
Fn(z)dz =

∫
Γ

lim
n→∞

zFn(z)
dz

z
=

1
8

[∫ i

y

dz

z
−
∫ −y
i

dz

z
+
∫ −i
−y

dz

z
−
∫ y

−i

dz

z

]
=

1
8

(log i− log y − log(−y) + log i+ log(−i)− log(−y)− log y + log(−i))

Here, we are using the branch of the logarithm with 0 ≤ θ < 2π. We must pass through the cut line by
passing along the contour Γ and therefore we must account for the winding number by including a term
2πi. Thus,

lim
n→∞

∫
Γ
Fn(z)dz =

1
8

(
2i
π

2
− 2 log y − 2 log y − 2πi+ 2

3πi
2
− 2πi

)
= −1

2
log y

as required. �
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Theorem 14 (Jacobi). Let q = e2πiz for z ∈ H. Then for all z ∈ H,

∆(z) = (2π)12η24(z) = (2π)12q

∞∏
n=1

(1− qn)24

Proof. Put f(z) = ∆(z)
η24(z)

. Observe that f is invariant under the action of the modular group (since

f(Sz) = z12∆(z)
η24(Sz)

= z12∆(z)
(−iz)12η24(z)

= f(z) and f(Tz) = f(z)). Further, η(z) is analytic and non-zero on H

(since all the poles have norm < 1 or have imaginary part equal to 0).
We have

η24(z) = e2πiz
∞∏
n=1

(
1− e2πinz

)24 = q(1 + P1(q))

where P1, P2, P3 denote power series in q with integer coefficients and zero constant term.
Further, since ∆ is a cusp form,

∆(z) = (2π)12qP2(q)
Thus, f(z) = (2π)12(1 + P3(q)) and so f is analytic at infinity. Therefore, f is a modular form of weight 0
and hence is a constant and that constant is (2π)12. The result now follows. �

Lecture 14: The Partition Counting Function and Hecke Operators

For any positive integer n, let p(n) denote the number of partitions of n into positive integers. Thus,
p(5) = 7, since 5 = 4 + 1 = 3 + 1 + 1 = 2 + 1 + 1 + 1 = 3 + 2 = 2 + 2 + 1 = 1 + 1 + 1 + 1 + 1.
Observe that for z ∈ H,

∞∏
n=1

(1− qn)−1 =
∞∏
n=1

 ∞∑
j=0

qnj

 =
∞∑
m=0

p(m)qm

by grouping those terms in the sum with nj = m.

Theorem 15. For all positive integers n, p(n) < eπ
√

2n
3 .

Proof. For 0 < x < 1, define f(x) =
∏∞
n=1(1− xn)−1 Thus,

log f(x) = −
∞∑
n=1

log(1− xn) =
∞∑
n=1

∞∑
m=1

xmn

m

=
∞∑
m=1

1
m

∞∑
n=1

xmn =
∞∑
m=1

xm

m(1− xm)

where the change of order of summation is justified by the absolute convergence of the power series expan-
sion of log(1− xn) for every n ∈ N for x ∈ (0, 1).
Note that xk ≥ xm−1 for 0 ≤ k ≤ m− 1 so that

mxm−1 ≤ 1 + x+ . . .+ xm−1 ≤ 1− xm

1− x
from which it follows that

xm

1− xm
≤ x

m(1− x)
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Therefore

log f(x) =
∞∑
m=1

xm

m(1− xm)
≤
∞∑
m=1

x

m2(1− x)
=

x

1− x
π2

6

since ζ(2) = π2

6 . Certainly for 0 < x < 1 we have p(n) ≤ f(x)
xn since

p(n)xn ≤
∞∑
m=1

p(m)xm =
∞∏
m=1

(1− xm)−1 = f(x)

where p(n) ∈ N ∪ {0} for all n. Thus, we can write

log p(n) ≤ π2

6

(
x

1− x

)
− n log x

Now for 1
2 < x < 1 we have

− log x = log
(

1
x

)
= log

(
1 +

(
1
x
− 1
))

<
1
x
− 1 =

1− x
x

since 0 ≤ 1
x − 1 < 1. Therefore,

log p(n) ≤ π2

6

(
x

1− x

)
+ n

(
1− x
x

)
On taking, for n > 1, 1

2 < x =
√

6n√
6n+π

< 1, we find that log p(n) < π
√

2n
3 , and the result follows. �

In fact as n→∞,

p(n) ∼ eπ
√

2n
3

4
√

3n
proved by Hardy and Ramanujan in 1918 and Uspensky proved this independently in 1920.
We will show later that the τ -function is multiplicative, i.e. τ(mn) = τ(m)τ(n) whenever gcd(m,n) = 1.
Further, if p is prime and n ∈ N, τ(p)τ(pn) = τ(pn+1) + p11τ(pn−1).

General Question: When are the coefficients in the q-expansion of a modular form multiplicative in the
sense above? Hecke answered this question by introducing Hecke Operators T1, T2, . . .. These map Mk to
Mk and even Mo

k to Mo
k.

Definition 9. Let k be an integer and n a positive integer. The operator Tn :Mk →Mk is defined by

Tnf(z) = n2k−1
∑
d|n

d−2k
d−1∑
b=0

f

(
nz + bd

d2

)
Tn is known as a Hecke operator.

Remarks. (1) When n is a prime p,

Tpf(z) = p2k−1f(pz) +
1
p

p−1∑
b=0

f

(
z + b

p

)
(2) We have work to do to show that Tn maps Mk to Mk and Mo

k to Mo
k.
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Theorem 16. Let f ∈ Mk and put q = e2πiz. Suppose, for z ∈ H, f(z) =
∑∞

m=1 c(m)qm. Then for all
n ∈ N, Tnf(z) =

∑∞
m=0 rn(m)qm where

rn(m) =
∑

d| gcd(m,n)

d2k−1c
(mn
d2

)

Proof.

Tnf(z) = n2k−1
∑
d|n

d−2k
d−1∑
b=0

∞∑
m=0

c(m)e2πim
(
nz+bd

d2

)

=
∞∑
m=0

∑
d|n

(n
d

)2k−1
c(m)e2πinz

d2
1
d

d−1∑
b=0

e
2πim
d

b

since this converges absolutely on H.
But notice that

1
d

d−1∑
b=0

e
2πim
d

b =

{
0 if d - m
1 if d|m

Thus

Tnf(z) =
∞∑
m=0

∑
d|m
d|n

(n
d

)2k−1
c(m)e2πi

(
mnz
d2

)

We now write m = td so that

Tnf(z) =
∞∑
t=0

∑
d|n

(n
d

)2k−1
c(td)e2πi( tnzd )

Now replace d in the inner sum by n
d (by the symmetry of the sum over divisors of n) to get

Tnf(z) =
∞∑
t=0

∑
d|n

d2k−1c

(
tn

d

)
qtd

Now collect terms such that td = m so that d|m. Thus

Tnf(z) =
∞∑
m=0

∑
d|n
d|m

d2k−1c
(mn
d2

) qm =
∞∑
m=0

rn(m)qm

and we are done. �

Let A =
(
a b
c d

)
for a, b, c, d ∈ Z. We define the action A · z = az+b

cz+d . We can define Tnf in terms of

matrices of the form
(
a b
0 d

)
for a, b, d ∈ N0 and ad = m.

We have

Tnf(z) = n2k−1
∑

a≥1,ad=n
0≤b≤d−1

d−2kf

((
a b
0 d

)
z

)



34 LECTURES GIVEN BY DR. C. STEWART AT THE UNIVERSITY OF WATERLOO, WINTER 2012

and so

Tnf(z) =
1
n

∑
a≥1,ad=n
0≤b≤d−1

a2kf

((
a b
0 d

)
z

)
We wish to see how Tnf behaves under the action of the modular group. In particular, we must show that
Tnf is in Mk for f ∈Mk. To see this, we introduce Γ(n) where

Γ(n) =
{( a b

c d

)
: a, b, c, d ∈ Z, ad− bc = n

}
/ ∼

where
(
a b
c d

)
=
(
−a −b
−c −d

)
here, as in the modular group.

Note that Γ(1) is the modular group. We put an equivalence relation ∼ on Γ(n) by putting A1 ∼ A2

whenever there exists U ∈ Γ(1) such that A1 = UA2.

Proposition 2. There is a representative of each equivalence class in Γ(n) under ∼ of the form
(
a b
0 d

)
.

Proof. Let A =
(
a b
c d

)
∈ Γ(n). If c = 0 we are done. If c 6= 0, let s

r = −a
c with gcd(r, s) = 1. Then

there exist integers p and q such that ps− qr = 1. Put U =
(
p q
r s

)
so that U ∈ Γ(1). Then

UA =
(
p q
r s

)(
a b
c d

)
=
(

? ?
ra− cs ?

)
=
(
? ?
0 ?

)
Further, det(UA) = det(U) det(A) = det(A) = n so UA ∈ Γ(n), and we are done. �

Proposition 3.

Γ(n) =
{( a b

0 d

)
: d|n, a =

n

d
, b = 0, 1, . . . , d− 1

}
The above list gives a complete set of representatives.

Proof. By proposition 2, we can find a representative of each equivalence class of the form
(
a b
0 d

)
.

Plainly, ad = n and we may suppose a and d are positive. Thus, d|n and a = n
d .

It remains to show that we can restrict b to the range 0, 1, . . . , d−1. Let b = qd+ r where 0 ≤ r < d. Then

U =
(

1 −q
0 1

)
∈ Γ(1). Further,

U

(
a b
0 d

)
=
(

1 −q
0 1

)(
a b
0 d

)
=
(
a b− qd
0 d

)
=
(
a r
0 d

)
Thus, the first assertion follows since ad = n and 0 ≤ r ≤ d−1. It remains to show that the list is complete.

Suppose that
(
a b
0 d

)
and

(
a1 b1
0 d1

)
are representatives for the same equivalence class with ad = n

and a1d1 = n, a1 > 0 and 0 ≤ b < d and 0 ≤ b1 < d1. Thus, if U ∈ Γ(1) and U

(
a b
0 d

)
=
(
a1 b1
0 d1

)
we have

U =
(
a1 b1
0 d1

)(
1
a − b

ad
0 1

d

)
=
(

a1
a

b1
d −

a1b
ad

0 d1
d

)
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Since U ∈ Γ(1), a1d1
ad = 1 and a1

a ,
d1
d ∈ Z so a1

a = d1
d = 1 and thus a1 = a and d1 = d. But then b1−b

d ∈ Z is
the resulting top right entry, and b1, b < d so that b1 = b. �

Proposition 4. Let A1 ∈ Γ(n) and U1 ∈ Γ(1). There exists A2 ∈ Γ(n) and U2 ∈ Γ(1) such that A1U1 =

U2A2. Further, if Ai =
(
ai bi
0 di

)
and Ui =

(
α β
γ δ

)
for i = 1, 2 then a1(γ2A2z + δ2) = a2(γ1z + δ1).

Proof. Since det(A1U1) = det(A1) = n, from proposition 2 we see that A1U1 is equivalent under ∼ to A2

where A2 =
(
a2 b2
0 d2

)
. Then there exists U2 ∈ Γ(1) such that A1U1 = U2A2.

Next, observe that

A1U1 =
(
a1 b1
0 d1

)(
α1 β1

γ1 δ1

)
=
(

? ?
d1γ1 d1δ1

)
Thus,(

α2 β2

γ2 δ2

)
= A1U1A

−1
2 =

1
n

(
? ?

d1γ1 d1δ1

)(
d2 −b2
0 a2

)
=

1
n

(
? ?

d1d2γ1 d1a2δ1 − d1b2γ1

)
Therefore,

γ2 =
d1d2γ1

n
=
d2γ1

a1
, δ2 =

d1a2δ1 − d1b2γ1

n
=
a2δ1 − b2γ1

a1

Thus, a1γ2 = d2γ1 and a1δ2 = a2δ1 − γ1b2.
Hence,

a1(γ2A2z + δ2) = a1γ2A2z + a1δ2 = d2γ1

(
a2z + b2
d2

)
+ a2δ1 − γ1b2

= a2γ1z + b2γ1 + a2δ1 − b2γ1 = a2(γ1z + δ1)

and we are done. �

Theorem 17. Let k ∈ Z, m ∈ N, f ∈ Mk and U1 =
(
α β
γ δ

)
∈ Γ(1). Then Tnf(U1z) = (γz +

δ)2kTnf(z).

Proof. Recall that

Tnf(z) =
1
n

∑
A1

a2k
1 f(A1z)

where the sum runs over a complete set of inequivalent matrices of the form A1 =
(
a1 b1
0 d1

)
in Γ(n)

under ∼.
Now by proposition 4, for each A1 we can find an A2 ∈ Γ(n), U2 ∈ Γ(1) such that A1U1 = U2A2. Thus,

by proposition 2, we may suppose that A2 is of the form
(
a2 b2
0 d2

)
and let U2 =

(
α2 β2

γ2 δ2

)
. Again by

proposition 3, a1(γ2A2z + δ2) = a2(γz + δ). Thus, since f is modular of weight 2k,

a2k
1 f(A1U1z) = a2k

1 f(U2A2z) = (a1(γ2A2z + δ2))2k f(A2z) = (a2(γz + δ))2k f(A2z)

Hence, since A1 runs over all equivalence classes, so does A2 thus

Tnf(Uz) =
1
n

∑
A1

a2k
1 f(A1Uz) =

1
n

∑
A2

(γz + δ)2ka2k
2 f(A2z) = (γz + δ)2kTnf(z)
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The result is shown. �

Theorem 18. Let k ∈ Z, n ∈ N. If f ∈Mk then Tnf ∈Mk and if f ∈Mo
k then Tnf ∈Mo

k.

Proof. If f ∈Mk then from the definition of Tnf we see that Tnf is analytic in H. By theorem 16, Tnf is
analytic at ∞. Further, by theorem 17, Tnf is modular of weight 2k.
If f ∈Mo

k then c(0) = 0 and by theorem 16,

rn(0) =
∑
d|n

d2k−1c(0) = 0

and so Tnf ∈Mo
k. �

Theorem 19. If m,n ∈ Z are coprime then Tm ◦ Tn = Tmn.

Proof. Let f ∈Mk. Then

Tnf(z) =
1
n

∑
a≤1,ad=n
0≤b≤d−1

a2kf(Az)

for A =
(
a b
0 d

)
. Further, for B =

(
α β
0 δ

)
for α, β, δ in the range of the sum below,

Tm(Tnf)(z) =
1
m

∑
α≤1,αδ=m
0≤β≤δ−1

α2kTnf(Bz) =
1
mn

∑
α≤1,αδ=m
0≤β≤δ−1

∑
a≤1,ad=n
0≤b≤d−1

(αa)2kf(ABz)

=
1
mn

∑
α≤1,αδ=m
0≤β≤δ−1

∑
a≤1,ad=n
0≤b≤d−1

(αa)2kf(Cz)

where C =
(
a b
0 d

)(
α β
0 δ

)
=
(
aα aβ + bδ
0 dδ

)
.

Now as d and δ run through divisors of n and m respectively, dδ runs through the divisors of mn by
coprimality. It follows that d and δ are also coprime so aβ + bδ runs through distinct integers modulo dδ
as we range over pairs (b, β) with 0 ≤ b ≤ d− 1 and 0 ≤ β ≤ δ − 1.
Thus,

Tm(Tnf)(z) =
1
mn

∑
A≤1,AD=mn
0≤B≤D−1

A2kf

((
A B
0 D

)
z

)
= Tmn(z)

for arbitrary z ∈ H, and the result follows. �

Theorem 20. Let m,n ∈ N. Then Tm and Tn commute on Mk and

Tm ◦ Tn =
∑

d| gcd(m,n)

d2k−1Tmn
d2

(8)

Proof. If gcd(m,n) = 1 then it follows from theorem 19 if we know it for prime pairs.
Suppose that p|m and p|n and pm1 ||m and pn1 ||n (that is, m1 and n1 are the maximal exponents of p
dividing m and n, respectively). Then by theorem 19,

Tm ◦ Tn = T m
pm1
◦ Tpm1 ◦ T n

pn1
◦ Tpn1 = T m

pm1
◦ T n

pn1
◦ Tpm1 ◦ Tpn1
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since n
pn1 and pm1 are coprime and commute by theorem 19.

We will first show this for m = p and n = pr which we will get by showing

TpTpr = Tpr+1 + p2k−1Tpr−1

Note that for f ∈Mk we have by definition

Tpr = p−r
∑

0≤t≤r
0≤b≤pt−1

p2(r−t)kf

(
pr−tz + b

pt

)

and if g ∈Mk then

Tpg(z) = p2k−1g(pz) + p−1
p−1∑
b=0

g

(
z + b

p

)
Therefore,

Tp(Tprf)(z) = p2k−1−r
∑

0≤t≤r
0≤b≤pt−1

p2(r−t)kf

(
pr−t+1z + b

pt

)
+p−1

p−1∑
b=0

p−r
∑

0≤t≤r
0≤b≤pt−1

p2(r−t)kf

(
1
pt

(
pr−t

(
z + b

p

)
+ b

))
(9)

Taking the t = r term of the rightmost term in (9) and adding it to the leftmost term gives the first term
of (9) as

p−1−r
∑

0≤t≤r+1

0≤c≤pt−1

p2(r+t−1)kf

(
pr+1−tz + c

pt

)
= Tpr+1f(z)

The remaining terms of the second term of (9) are

p−1−r
∑

0≤t≤r−1

0≤b≤pt−1

p2(r−t)k
p−1∑
b′=0

f

(
pr−t−1z + b+ pr−t−1b′

pt

)

If t ≤ r−1
2 then pr−t−1b′

pt ∈ Z so by the periodicity of f there is no dependence on b′ and the contributions
for such a fixed t is

p−r+2(r−t)k
∑

0≤b≤pt−1

f

(
pr−t−1z + b

pt

)
(10)

since the sum over b above gives p copies of the same contribution. Further, for any t, b+ pr−t−1b′ modulo
pt runs over the set of residues modulo pt exactly p times so the contribution for any t is given by (10),
summing over t powers and yields the claimed formula we made above. We will use this formula, that is,

TpTpr = Tpr+1 + p2k−1Tpr−1

as our base case.
Now suppose that

TpsTpr =
∑

d| gcd(ps,pr)

d2k−1T ps+r
d2

(11)

is true up to some fixed s. Then, using our base case, we have that

Tp(TpsTpr) =
∑

0≤t≤µ
pt(2k−1)TpTps+r−2t
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where µ = min(s, r). Note that the associativity of Hecke operators follows by the linearity of these
operators, and linear maps act associatively in multiplication.
Using the base case again, we have

Tps+1Tpr =
∑

0≤t≤µ
pt(2k−1)TpTps+r−2t−p2k−1Tps+1Tpr =

∑
0≤t≤µ

(
pt(2k−1)Tps+r−2t + p(t+1)(2k−1)Tps+r−1−2t

)
−p2k−1Tps−1Tpr

Expanding out the s− 1case of (11) gives (where here, µ′ = min(s− 1, r))

Tps−1Tpr =
∑

0≤t≤µ′
pt(2k−1)Tps+r−2t

If s > r, then µ = µ′ since s− 1 ≥ r so µ′ = r = µ. The case s ≤ r is the only possible problem.
Suppose s < r. Then µ = s and µ′ = s− 1. Then

Tps+1Tpr =
∑

0≤t≤s
pt(2k−1)Tps+r+1−2t +

∑
0≤t≤s

p(t+1)(2k−1)Tps+r−1−2t −
∑

0≤t≤s−1

p(t+1)(2k−1)Tps+r−1−2t

=
∑

0≤t≤s
pt(2k−1)Tps+r+1−2t + p(s+1)(2k−1)Tps+r−1−2s

=
∑

0≤t≤s
pt(2k−1)Tps+r+1−2t + p(s+1)(2k−1)Tps+r+1−2(s+1) =

∑
0≤t≤s+1

pt(2k−1)ps+r+1−2t

which proves the induction for s < r. �

Recall from Theorem 16 that if f(z) =
∑∞

m=0 c(m)qm, Tnf(z) =
∑∞

m=0 r(m)qm with r(m) =
∑

d|(m,n) d
2k−1c

(
mn
d2

)
.

For each k ∈ Z and n ∈ N, Tn is a linear operator mapping Mk tp Mk. Let n ∈ N. If f ∈ Mk is not
identically zero and there exists a non-zero complex number λ(n) such that Tnf(z) = λ(n)f(z) then f is
said to be an eigenfunction or eigenform of Tn and λ(n) is said to be an eigenvalue of Tn.
Observe that if f is an eigenform of Tn then so is cf for all c ∈ C\{0}.
Next, notice that ifMk is of dimension 1 vector space then every non-zero element ofMk is an eigenform
for Tn for n ∈ N.
(Observe that if f is non-zero then theorem 16, for example, tells us that Tnf is non-zero). Similarly, if
Mo

k is of dimension 1, the same conclusion follows.
Recall that dimMk = 1 for k = 0, 2, 3, 4, 5, 7 and dimMo

k = 1 for k = 6, 8, 9, 10, 11, 13. Further, since
∆(z) ∈Mo

6 we see that ∆ is an eigenform for Tn for all n ∈ N.

Definition 10. An eigenform for Tn for all n ∈ N is said to be a simultaneous eigenform.

Definition 11. An eigenform f(z) =
∑∞

m=0 c(m)qm is said to be normalized if c(1) = 1.

Theorem 21. Let k ∈ N, k ≥ 2. IfMk contains a simultaneous eigenform f(z) with f(z) =
∑∞

m=0 c(m)qm

then c(1) 6= 0.

Proof. By Theorem 16, if Tnf(z) =
∑∞

m=0 rn(m)qm with rn(m) =
∑

d|(m,n) d
2k−1c

(
mn
d2

)
then rn(1) = c(n).

Since f is a simultaneous eigenform, c(n) = λ(n)c(1) for some λ(n) ∈ C, λ(n) 6= 0. Thus, if f is non-zero,
there exists some k ∈ N such that c(k) = λ(k)c(1) 6= 0 so c(1) 6= 0. �
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Theorem 22. Assume that f(z) =
∑∞

m=0 c(m)qm is a cusp form of weight 2k. Then f is a simultaneous
normalized eigenform if and only if

c(m)c(n) =
∑

d|(m,n)

d2k−1c
(mn
d2

)
for all positive integers m and n and c(n) is an eigenvalue for Tn for every n ∈ N.

Proof. (⇒) Suppose f is a simultaneous normalized eigenform. Then Tnf = λ(n)f , λ(n) ∈ C\{0} for all
n ∈ N.
By Theorem 16, rn(1) = c(n) and c(n) = λ(n)c(1) = λ(n) by normalization. Thus, for all m ∈ N,
rn(m) = λ(n)c(m) = c(n)c(m) as required.
(⇐) Suppose c(m)c(n) =

∑
d|(m,n) d

2k−1c
(
mn
d2

)
for all m,n ∈ N. Then for every n ∈ N,

Tnf(z) =
∞∑
m=0

rn(m)qm = c(n)
∞∑
m=0

c(m)qm = c(n)f(z)

so f is a simultaneous eigenform. Further, c(n) = rn(1) = c(n)c(1) so c(1) = 1. �

Recall that for z ∈ H,

∆(z) = (2π)12
∞∑
n=1

τ(n)qn = (2π)12q
∞∏
n=1

(1− qn)24

and ∆(z) = g3
2(z)− 27g2

3(z).

Theorem 23. For positive integers m and n, τ(m)τ(n) =
∑

d|(m,n) d
11τ
(
nm
d2

)
.

Proof. Since ∆ ∈Mo
6, it is a simultaneous eigenform that is also a cusp form. Furthermore,

(2π)−12∆(z) =
∞∑
m=1

τ(m)qm

has τ(1) = 1. Thus, (2π)−12∆(z) is a simultaneous normalized eigenform. Our result now follows from
Theorem 22 with k = 6. �

Theorem 24. For each integer k ≥ 2, there is precisely one simultaneous normalized eigenform in Mk

that is not a cusp form. Furthermore, it is

f(z) =
(2k − 1)!
2(2πi)2k

Gk(z)

Recall that

Gk(z) =
∑

(m,n)6=(0,0)

1
(mz + n)2k

Recall also as in the proof of Lemma 1 that
∞∑

n=−∞

1
(z + n)k

=
1

(k − 1)!
(−2πi)k

∞∑
r=1

rk−1qr
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Replacing z by mz, we find that

Gk(z) =
∑

(m,n) 6=(0,0)

1
(mz + n)2k

= 2ζ(2k) + 2
∞∑
n=1

∞∑
m=−∞

1
(mz + n)2k

= 2ζ(2k) +
2(−2πi)2k

(2k − 1)!

∞∑
n=1

∞∑
r=1

r2k−1qnr = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
l=1

σ2k−1(l)ql

where the last equality follows by summing over the common products nr = l for l ∈ N. Thus, dividing
through by the coefficient of the series above gives

(2k − 1)!
2(2πi)2k

Gk(z) =
(2k − 1)!
(2πi)2k

ζ(2k) +
∞∑
n=1

σ2k−1(n)qn

and by Euler’s theorem, ζ(2k) = 22k−1(2k!)−1Bkπ
2k so that

(2k − 1)!
2(2πi)2k

Gk(z) =
(−1)kBk

4k
+
∞∑
n=1

σ2k−1(n)qn

Observing that σ2k−1(1) = 1, it follows that (2k−1)!
2(2πi)2k

Gk(z) is normalized.

Proof of Theorem 24. Suppose that f is a simultaneous normalized eigenform of weight 2k which is not
a cusp form. Let f(z) =

∑∞
m=0 c(m)qm, c(0) 6= 0 and c(1) = 1. The relation Tnf = λ(n)f implies that

rn(m) = λ(n)c(m) for m ∈ N. An argument we have used a few times shows that c(n) = λ(n) for all n ∈ N.
Now by Theorem 16,

rn(0) =
∑
d|(n,0)

d2k−1c(0) = c(0)σ2k−1(n)

We also have rn(0) = λ(n)c(0) = c(n)c(0). Since c(0) 6= 0 we see that c(n) = σ2k−1(n) for n ∈ N.
Thus,

f(z) = c(0) +
∞∑
m=1

σ2k−1(m)qm

f is modular of weight 2k ≥ 4 so c(0) is uniquely determined since if f1(z) = c1(0) +
∑∞

m=1 σ2k−1(m)qm is
also a simultaneous eigenform then the difference is c0 − c1 and this is a contradiction.
Since

f(z) =
(2k − 1)!
2(2πi)2k

Gk(z) =
(−1)kBk

4k
+
∞∑
n=1

σ2k−1(n)qn

is a modular form of weight 2k it is the only possible normalized simultaneous eigenform of weight 2k. But
for all m,n ∈ N,

σ2k−1(m)σ2k−1(n) =

∑
d|m

d2k−1

∑
e|n

e2k−1

 =
∑
d|m
e|n

(de)2k−1

=
∑

d|(m,n)

∑
l|mn
d2

l2k−1

 =
∑

d|(m,n)

σ2k−1

(mn
d2

)
Thus, by Theorem 22, f is a simltaneous normalized eigenform. �
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What about simultaneous cuspforms? We can determine then for k small easily. When dimMo
k = 1, we

have exactly one such form. This happens when k = 6, 7, 8, 9, 10, 11, 13.
We know that (2π)−12∆(z) is a cusp form which is a simultaneous normalized eigenform of weight 12.
Further, ∆(z)Gk−6(z) is a cusp form of weight 2k for k = 8, 9, . . ..
If we define, for k ≥ 2,

Ek(z) =
1

2ζ(2k)
Gk(z) = 1 +

(−1)k4k
Bk

∞∑
k=1

σ2k−1(n)qn

then we see that (2π)−12∆(z)Ek−6(z) is a simultaneously normalized eigenform of weight 2k which is a
cusp form for k = 8, 9, 10, 11, 13 (as ∆(z) has lowest order term z, as it is a cusp form). We have

E2(z) = 1 + 240
∞∑
n=1

σ3(n)qn

E3(z) = 1− 504
∞∑
n=1

σ5(n)qn

and so forth. We can use these functions to prove seemingly surprising relations between the σ2k−1(n)
values.
Since dimMk = 1 for k = 2, 3, 4, 5, 7, we see that E2

2 = E4, E2E3 = E5, E7 = E2E5 = E3E4. For the first
case, notice

(E2(z))2 =

(
1 + 20

∞∑
n=1

σ3(n)qn
)2

= 1 + 480
∞∑
n=1

σ7(n)qn

and therefore for every n ≥ 1,

σ7(n) = σ3(n) + 120
n−1∑
k=1

σ3(k)σ3(n− k)

Similarly, for E2E3 = E5,

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040
n−1∑
k=1

σ3(k)σ5(n− k)

Finally, E6 − E2
3 is a modular form of weight 12. Further, it has constant coefficient 762048

691 . Thus,

691
762048

(
E6 − E2

3

)
= (2π)−12∆(z) =

∞∑
n=1

τ(n)qn

By examining the coefficients r(n) of qn, we find

r(n) =
691

762048

(
65520
691

σ11(n) + 1008σ5(n)− (504)2
n−1∑
k=1

σ5(k)σ5(n− k)

)
which is τ(n).
Thus, 762048τ(n) ≡ 65520σ11(n) (mod 691) and so τ(n) ≡ σ11(n) (mod 691), called Ramanujan’s congru-
ence.
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Other Directions in Modular Forms

Let f(z) =
∑∞

n=1 c(n)qn be a cusp form of weight 2k. Hecke associated to f the Dirichlet series
Lf (s) =

∑∞
n=1

c(n)
ns . This is not arbitrary. Indeed, let us define the Mellin transform of f , M(f)(s) as

M(f)(s) =
∫ ∞

0
f(it)ts−1dt

Notice that if f(z) = eiz then M(f)(s) = Γ(s), for Re(s) > 0.
If f is a cusp form then

M(f)(s) =
∞∑
n=1

c(n)
∫ ∞

0
e−2πntts−1dt =

1
2π

∞∑
n=1

c(n)
n

∫ ∞
0

e−u
( u

2πn

)s−1
du

= (2π)−s
(∫ ∞

0
e−uus−1du

) ∞∑
n=1

c(n)
ns

= (2π)−sΓ(s)Lf (s)

Suppose that f is a simultaneous normalized eigenform, say f(z) =
∑∞

n=1 c(n)qn. Then Lf (s) =
∑∞

n=1
c(n)
ns .

It is not difficult to show that c(n) = O(nk). Thus, Lf (s) is defined by the series as an analytic function
for Re(s) > k + 1.
Since f is a simultaneous normalized eigenform, Lf (s) has an Euler product representation

Lf (s) =
∏
p

(
1− c(p)p−s + p2k−1−2s

)−1

for Re(s) ≥ k+1. Hecke used this to extend Lf (s) analytically to all of C. He put Λf (s) = (2π)−sΓ(s)Lf (s)
and he showed that Λf (s) = (−1)kΛf (2k − s).
Petersson conjectured that if f is a simultaneous normalized eigenform in Mo

k then |c(p)| ≤ 2pk−
1
2 for p

prime. This generalized Ramanujan’s conjecture that |τ(p)| ≤ 2p
11
2 for p prime. More generally, Ramanujan

conjectured that |τ(n)| ≤ d(n)n
11
2 . These two conjectures were proved by Deligne in 1973 as a consequence

of his proofs of the Weil conjectures.
Let a, b ∈ Z with 4a3 + 27b2 6= 0 and put E : y2 = x3 + ax + b. For any prime p we can consider the
reduction of E mod p. Usually we get an elliptic curve mod p in particular when 4a3 + 27b2 ≡ 0 (mod p)
and in this case we say that we have good reduction. We count the number of points #E(Fp) on the
reduced curve.
Hasse proved that if we put ap = p+ 1−#E(Fp) then |ap| ≤ 2

√
p. Define Lp(E, s) by

Lp(E, s) =


(1− app−s + p1−2s)−1 if E has good reduction mod p

(1− p−s)−1 if E has split multiple reduction mod p

(1 + p−s)−1 if E is non-split
1 otherwise

Birch and Swinnerton-Dyer conjectured that the rank of rational points of E is equivalent to the order of
the pole of L(E, s) at s = 1.

In this curse, we have concentrated on modular forms, i.e. forms connected with the full modular group.
There is an associated theory for subgroups of the modular group. There is an associated theory for sub-
groups of the modular group. In particular, let N be a positive integer. Then Γ0(N) consists of those
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elements
(
a b
c d

)
∈ SL2(Z) for which c ≡ 0 (mod N). An elliptic curve E is said to be modular if the

cusp form f of weight 2 for Γ0(N) for some N , such that Lf (s) = L(E, s).
Taniyama and Shimura conjectured that every elliptic curve over Q is modular. This has now been proved
by Wiles, Taylor, Diamond, Breuil and Conrad. This was a key ingredient in the proof by Wiles of Fermat’s
last theorem.
Frey showed that if p is a prime with p ≥ s and u, v, w are positive integers with up + vp = wp then we
can consider the elliptic curve E given by E : y2 = x(x − up)(x − vp). Further, if E is modular then
L(E, s) = Lf (s) for a cusp form of weight 2 on Γ0(N) where N =

∏
q|uvw
q prime

q.

By a result of RIbet there is an associated f1 with level 2 and inspection shows no such f1 exists, a
contradiction that proves FLT.


