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1 Introduction

Let k be a positive integer, r1, . . . ,rk and u0, . . . ,uk−1 be integers and put

un = r1un−1 + · · ·+ rkun−k,

for n = k, k+1, . . . . Suppose that rk is non-zero and that u0, . . . ,uk−1 are not all zero.
The sequence (un)

∞
n=0 is a recurrence sequence of order k. It has a characteristic

polynomial G(z) given by

G(z) = zk − r1zk−1 −·· ·− rk.

Let

G(z) =
t

∏
i=1

(z−αi)
�i ,

with α1, . . . ,αt distinct. Then, see Theorem C.1 of [34], there exist polynomials
f1, . . . , ft of degrees less than �1, . . . , �t , respectively, and with coefficients from
Q(α1, . . . ,αt) such that

un = f1(n)αn
1 + · · ·+ ft(n)αn

t , (1)
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for n= 0,1,2, . . . . The recurrence sequence (un)
∞
n=0 is said to be degenerate if αi/α j

is a root of unity for a pair (i, j) with 1 ≤ i < j ≤ t and is said to be non-degenerate
otherwise. In 1935 Mahler [20] proved that

|un| → ∞ as n → ∞

whenever (un)
∞
n=0 is a non-degenerate linear recurrence sequence. Mahler’s proof

is not effective in the following sense. Given a positive integer m the proof does
not yield a number C(m) which is effectively computable in terms of m, such that
|un| > m whenever n > C(m). However, Schmidt [31, 32], Allen [1] and Amoroso
and Viada [2] have given estimates in terms of t only for the number of times |un|
assumes a given value when the recurrence sequence is non-degenerate.

For any integer n let P(n) denote the greatest prime factor of n with the
convention that P(0) = P(±1) = 1. Suppose that in (1) t > 1, f1, . . . , ft are
polynomials which are not the zero polynomial and that α1, . . . ,αt are non-zero. van
der Poorten and Schlickewei [25] in 1982 and independently Evertse [12] proved,
under the above assumption, that if the sequence (un)

∞
n=0 is non-degenerate then

P(un)→ ∞ as n → ∞. (2)

A key feature of the work of van der Poorten and Schlickewei and of Evertse is an
appeal to a p-adic version of Schmidt’s Subspace Theorem due to Schlickewei [30]
and so (2) is also an ineffective result.

We may suppose, without loss of generality, that

|α1| ≥ |α2| ≥ · · · ≥ |αt |> 0.

If |α1| > |α2| then plainly |un| tends to infinity with n. In this case Shparlinski
[35] and Stewart [40] independently obtained effective lower bounds for P(un)
which tend to infinity with n. The sharpest result obtained to date [41] when un

is the nth term of a non-degenerate linear recurrence as in (1) with |α1| > |α2| and
un �= f1(n)αn

1 is that there are positive numbers c1 and c2, which are effectively
computable in terms of r1, . . . ,rk and u0, . . . ,uk−1, such that

P(un)> c1 logn
log logn

logloglogn
, (3)

provided that n exceeds c2. A key tool in the proof of (3) is a lower bound, due to
Matveev [23], for linear forms in the logarithms of algebraic numbers.
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2 Binary Recurrence Sequences

When the minimal order k of the recurrence is 2 the sequence is known as a binary
recurrence sequence. In this case, for n ≥ 0,

un = aαn + bβ n, (4)

where α and β are the roots of the characteristic polynomial x2 − r1x− r2 and

a =
u1 − u0β

α −β
, b =

u0α − u1

α −β
(5)

when α �= β . Since the recurrence sequence has order 2, r2 is non-zero and so
αβ is non-zero. When (un)

∞
n=0 is non-degenerate α �= β and we see that ab �= 0

since the recurrence sequence has minimal order 2. We may assume, without loss of
generality that

|α| ≥ |β |> 0.

In 1934 Mahler [19] employed a p-adic version of the Thue-Siegel theorem
in order to prove that if un is the nth term of a non-degenerate binary recurrence
sequence then

P(un)→ ∞ as n → ∞.

Mahler’s result is not effective. This defect was remedied by Schinzel [28] in 1967.
He refined work of Gelfond on estimates for linear forms in the logarithms of two
algebraic numbers in order to prove that if (un)

∞
n=0 is a non-degenerate binary

recurrence sequence then there exists a positive number C0 which is effectively
computable in terms of a, b, α and β and positive numbers c1 and c2 such that

P(un)>C0nc1(logn)c2 ,

where

(c1,c2) =

{
(1/84,7/12) if α and β are integers

(1/133,7/19) otherwise.

In 1982 Stewart [40] used estimates for linear forms in the logarithms of algebraic
numbers due to Waldschmidt [44] in the Archimedean setting and due to van der
Poorten [24] in the non-Archimedean setting to prove that there is a positive number
C3, which is effectively computable in terms of u0, u1, r1 and r2, such that for n > 1,

P(un)>C3(n/ logn)1/(d+1) (6)

where d is the degree of α over the rationals. In 1995 Yu and Hung [46] were able
to refine (6) by replacing the term n/ logn by n. We are now able to make a further
improvement on (6).
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Theorem 1. Let un, as in (4), be the nth term of a non-degenerate binary recurrence
sequence with abαβ �= 0. There exists a positive number C which is effectively
computable in terms of u0, u1, r1 and r2 such that for n >C

P(un)> n1/2 exp(logn/104loglogn). (7)

The proof of Theorem 1 makes use of ideas from [42] which we will discuss in the
next section. They were essential in resolving a conjecture made by Erdős in 1965
[11].

It is possible to sharpen (7) for most integers n. In [40] Stewart proved that
if (un)

∞
n=0 is a non-degenerate binary recurrence sequence then for all integers n,

except perhaps a set of asymptotic density zero,

P(un)> ε(n)n logn,

where ε(n) is any real-valued function for which limn→∞ ε(n) = 0. Furthermore it
is possible to strengthen (7) whenever un is non-zero and is divisible by a prime p
which does not divide um for any non-zero um with 0 ≤ m < n. In this case Stewart
[40] proved that there is a positive number C4, which is effectively computable in
terms of a and b only such that

P(un)> n−C4.

Luca [17] strengthened (7) when (un)
∞
n=0 is a binary recurrence sequence as in

(4) with a/b and α/β multiplicatively dependent. He proved that then there exists a
positive number C5, which is effectively computable in terms of a, b, α and β , such
that

P(un)> n−C5 (8)

for all positive integers n. Schinzel [28] had earlier obtained such a result in the case
that α and β are real numbers.

3 Lucas Sequences

Let a and b be integers with a > b > 0 and consider the binary recurrence sequence
(an − bn)∞

n=0. In 1892 Zsigmondy [47], and independently in 1904 Birkhoff and
Vandiver [8], proved that for n > 2

P(an − bn)≥ n+ 1. (9)

This result had been established by Bang [6] in 1886 for the case when b = 1.
Schinzel [26] proved in 1962 that if a and b are coprime and ab is a square or twice
a square then

P(an − bn)≥ 2n+ 1

provided that (a,b,n) is not (2,1,4), (2,1,6) or (2,1,12).
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In 1965 Erdős [11] conjectured that

P(2n − 1)
n

→ ∞ as n → ∞.

In 2000 Murty and Wong [22] proved that if ε is a positive real number and a and b
are integers with a > b > 0 then

P(an − bn)> n2−ε ,

for n sufficiently large in terms of a, b and ε subject to the abc conjecture [43]. A
few years later Murata and Pomerance [21] assumed the truth of the generalized
Riemann hypothesis and deduced that

P(2n − 1)> n4/3 loglogn

for a set of positive integers n of asymptotic density 1.
In 1975 Stewart [36] proved that the Erdős conjecture holds when we restrict n

to run over those integers with at most κ loglogn distinct prime factors where κ is
any real number less than 1/ log2. In 2009 Ford, Luca and Shparlinski [13] proved
that the series

∞

∑
n=1

1/P(2n − 1)

is convergent. Recently Stewart [42] established the conjecture of Erdős by proving
that if a and b are positive integers then

P(an − bn)> nexp(logn/104loglogn) (10)

provided that n is sufficiently large in terms of the number of distinct prime factors
of ab.

Suppose that (un)
∞
n=0 is a non-degenerate binary recurrence sequence with u0 = 0

and u1 = 1. Then, recall (4) and (5),

un =
αn −β n

α −β
(11)

for n = 0,1,2, . . . . Lucas [18] undertook an extensive study of the divisibility
properties of such numbers in 1878 and we now refer to sequences (un)

∞
n=0 with

un given by (11) as Lucas sequences. In 1912 Carmichael [9] proved that if α and
β are real, n > 12 and un is the nth term of a Lucas sequence then

P(un)≥ n− 1. (12)
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Schinzel [27] established the same estimate in the case when α and β are not real
for n sufficiently large in terms of α and β . Both results were proved by showing
that un possesses a primitive divisor for n sufficiently large. A prime p which divides
un but does not divide (α −β )2u2 · · ·un−1 is known as a primitive divisor of un. Let
us assume that α + β and αβ are coprime. Then Schinzel [29], in 1974, proved
that there is a positive number C6, which does not depend on α and β , such that
un has a primitive divisor for n greater than C6. In [39] Stewart proved that one can
take C6 to be e452267. Further he showed that one can take C6 to be 6 with finitely
many exceptions and that these exceptions may be found by solving a large but finite
collection of Thue equations. Bilu, Hanrot and Voutier [7] were able to determine
all exceptions and as a consequence deduce that

P(un)≥ n− 1,

for n > 30.
Stewart [38], when α and β are real, and Shorey and Stewart [33], otherwise,

extended the work of Stewart [36] to Lucas sequences. Let un be the nth term of
a non-degenerate Lucas sequence with r1 and r2 coprime. Let ϕ(n) denote Euler’s
function, let q(n) denote the number of square-free divisors of n and let κ denote
a positive real number with κ < 1/ log2. They proved that if n (> 3) has at most
κ loglogn distinct prime factors then

P(un)>C7(ϕ(n) logn)/q(n),

where C7 is a positive number which is effectively computable in terms of α , β
and κ only. The proofs depend on estimates for linear forms in the logarithms of
algebraic numbers, in the complex case due to Baker [4] and in the p-adic case due
to van der Poorten [24].

In [42] Stewart proved that estimate (10) holds with an−bn replaced by un where
un is the nth term of a non-degenerate Lucas sequence. In fact, see [42], the same
estimate also applies with an −bn replaced by ũn where ũn denotes the nth term of a
non-degenerate Lehmer sequence. (The Lehmer sequences, see [15,38], are closely
related to the Lucas sequences and they possess similar divisibility properties.) For
the proofs of these results estimates for linear forms in the logarithms of algebraic
numbers again play a central role. In the Archimedean case we apply an estimate of
Baker [3] while in the non-Archimedean case we appeal to an estimate of Yu [45].

4 Preliminaries for the Proof of Theorem 1

Let K be a finite extension of Q and let ℘ be a prime ideal in the ring of algebraic
integersOK of K. Let O℘ consist of 0 and the non-zero elements α of K for which℘
has a non-negative exponent in the canonical decomposition of the fractional ideal
generated by α into prime ideals. Then let P be the unique prime ideal of O℘ and
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put K℘ = O℘/P. Further for any α in O℘ we let α be the image of α under the
residue class map that sends α to α +P in K℘.

Let p be an odd prime and let d be an integer coprime with p. The Legendre

symbol
(

d
p

)
is 1 if d is a quadratic residue modulo p and is −1 if d is a quadratic

non-residue modulo p.

Lemma 1. Let d be a square-free integer different from 1. Let θ be an algebraic
number of degree 2 over Q in Q(

√
d), let θ ′ denote the algebraic conjugate of θ

over Q and let a0 be the leading coefficient in the minimal polynomial of θ in Z[x].
Suppose that p is a prime which does not divide 2a2

0θθ ′. Let ℘ be a prime ideal
of the ring of algebraic integers of Q(

√
d) lying above p. The order of θ/θ ′ in

(Q(
√

d)℘)× is a divisor of 2 if p divides a4
0(θ

2 − θ ′2)2 and a divisor of p−
(

d
p

)
otherwise.

Proof. Note that γ = a0θ is an algebraic integer with algebraic conjugate γ ′ = a0θ ′.
Thus γ/γ ′ = θ/θ ′ and our result follows from Lemma 2.2 of [42]. �	

For any algebraic number γ let h(γ) denote the absolute logarithmic height of γ .
Thus if a0(x− γ1) · · · (x− γd) in Z[x] is the minimal polynomial of γ over Z then

h(γ) =
1
d

(
loga0 +

d

∑
j=1

logmax(1, |γ j|)
)
.

Let α1, . . . ,αn be non-zero algebraic numbers and put K = Q(α1, . . . ,αn) and
d = [K : Q]. Let ℘ be a prime ideal of the ring OK of algebraic integers in K lying
above the prime number p. Denote by e℘ the ramification index of ℘ and by f℘ the
residue class degree of℘. For α in K with α �= 0 let ord℘α be the exponent to which
℘divides the principal fractional ideal generated by α in K and put ord℘0 = ∞. For
any positive integer m let ζm = e2π i/m and put α0 = ζ2u where ζ2u is in K and ζ2u+1

is not in K.
Suppose that α1, . . . ,αn are multiplicatively independent ℘-adic units in K. Let

α0,α1, . . . ,αn be the images of α0,α1, . . . ,αn respectively, under the residue class
map at ℘ from the ring of ℘-adic integers in K onto the residue class field K℘ at ℘.
For any set X let |X | denote its cardinality. Let 〈α0,α1, . . . ,αn〉 be the subgroup of
(K℘)× generated by α0, . . . ,αn. We define δ by

δ = 1 if
[
K
(

α1/2
0 ,α1/2

1 , . . . ,α1/2
n

)
: K

]
< 2n+1

and
δ = (p f℘ − 1)/|〈α0,α1, . . . ,αn〉|

if [
K
(

α1/2
0 ,α1/2

1 , . . . ,α1/2
n

)
: K

]
= 2n+1.

Denote logmax(x,e) by log∗ x.
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Lemma 2. Let p be a prime with p ≥ 5 and let ℘ be an unramified prime ideal of
OK lying above p. Let α1, . . . ,αn be multiplicatively independent ℘-adic units. Let
b1, . . . ,bn be integers, not all zero, and put

B = max(2, |b1|, . . . , |bn|).

Then

ord℘(αb1
1 · · ·αbn

n − 1)<Ch(α1) · · ·h(αn)max(logB,(n+ 1)(5.4n+ logd))

where

C = 376(n+ 1)1/2
(

7e
p− 1
p− 2

)n

dn+2 log∗ d log(e4(n+ 1)d)·

max

(
p fp

δ

(
n

fp log p

)n

,en fp log p

)
.

Proof. This is Lemma 3.1 of [42] and it follows from the work of Yu [45]. �	
The next result we require is proved using class field theory and the Chebotarev

Density Theorem.

Lemma 3. Let d be a square-free integer different from 1 and let pk denote the kth
smallest prime of the form N(πk) = pk where N denotes the norm from Q(

√
d) to Q

and πk is an algebraic integer in Q(
√

d). Let ε be a positive real number. There is a
positive number C, which is effectively computable in terms of ε and d, such that if
k exceeds C then

log pk < (1+ ε) logk.

Proof. This is Lemma 2.4 of [42]. �	
We shall also require an estimate for the rate of growth of a non-degenerate binary

recurrence sequence.

Lemma 4. Let un, as in (4), be the nth term of a non-degenerate binary recurrence
sequence. Suppose that |α| ≥ |β |. Then there exist positive numbers C1 and C2,
which are effectively computable in terms of a and b, such that if n exceeds C1 then

|un|> |α|n−C2 logn.

Proof. This is Lemma 3.2 of [37]; see also Lemma 5 of [40]. �	
Lemma 5. Let K be a finite extension of Q and let p be a prime number. Let

α1, . . . ,αn be non-zero elements of K and let α1/p
1 , . . . ,α1/p

n denote fixed pth roots

of α1, . . . ,αn, respectively. Put K′ = K(α1/p
1 , . . . ,α1/p

n−1). Then either K′(α1/p
n ) is an

extension of K′ of degree p or we have



On Prime Factors of Terms of Linear Recurrence Sequences 349

αn = α j1
1 · · ·α jn−1

n−1 γ p

for some γ in K and some integers j1, . . . , jn−1 with 0 ≤ ji < p for i = 1, . . . ,n− 1.

Proof. This is Lemma 3 of Baker and Stark [5]. �	
Lemma 6. Let n be a positive integer and let α0,α1, . . . ,αn be multiplicatively
dependent non-zero elements of a number field K of degree d ≥ 2 over Q. Suppose
that any n from α0, . . . ,αn are multiplicatively independent. Then there are non-zero
rational integers b0, . . . ,bn with

αb0
0 · · ·αbn

n = 1

and
|bi| ≤ 58(n!en/nn)dn+1(logd)h(α0) · · ·h(αn)/h(αi)

for i = 0, . . . ,n.

Proof. This is Corollary 3.2 of Loher and Masser [16]. They attribute the result
to Yu. �	
Lemma 7. Let (un)

∞
n=0 be a non-degenerate binary recurrence sequence as in (4)

with abαβ �= 0 and a/b and α/β multiplicatively independent. There exists a
positive number C which is effectively computable in terms of a, b, α and β such
that if p exceeds C then

ordp un < pexp(− log p/51.9loglog p) logn.

Proof. Our proof will be modelled on the proof of Lemma 4.3 in [42]. Let c1,c2, . . .
denote positive numbers which are effectively computable in terms of a, b, α and
β . Let p be a prime which does not divide 2(α −β )4abαβ .

Put K =Q(α/β ) and

α0 =

{
i if i ∈ K

−1 otherwise.

Let d be a non-zero square-free integer for which K = Q(
√

d). Let v be the largest
integer for which

α/β = α j
0θ 2v

(13)

with 0 ≤ j ≤ 3 and θ in K.
Note that v exists since α/β is not a root of unity and thus θ is not a root of unity.

Further, by Dobrowolski’s theorem h(α/β )> c1 > 0 and

h(α/β ) = 2vh(θ ).
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Thus v cannot be arbitrarily large. Observe also that by Lemma 5

[
K
(

α1/2
0 ,θ 1/2

)
: K

]
= 4.

Next we choose w maximal so that there exists γ in K with

a
b
= α j0

0 θ j1γ2w
(14)

and 0 ≤ j0 ≤ 3, 0 ≤ j1 ≤ 2w. Such a choice is possible as we shall now show. First
observe that

2wh(γ)≤ h
(a

b

)
+ j1h(θ1)

so
h(γ)≤ c2. (15)

Further we have from (14) that

(a
b

)−4
θ 4 j1γ2w+2

= 1. (16)

Next notice that if two of the three numbers a/b, θ and γ are multiplicatively
dependent then a/b and θ are multiplicatively dependent; hence, by (13), a/b and
α/β are multiplicatively dependent. Therefore we may suppose that any two of the
three numbers a/b, θ and γ are multiplicatively independent. Thus, by Lemma 6,
there are non-zero integers b1, b2, b3, with

(a
b

)b1
θ b2γb3 = 1 (17)

and with
|bi| ≤ c3 (18)

for i = 1,2,3. It follows from (16) and (17) that

(a
b

)b12w+2

θ b22w+2
=
(a

b

)−4b3
θ 4 j1b3 .

Since a/b and θ are multiplicatively independent and b1 is non-zero it follows from
(18) that w is at most c4.

Next we observe that since w is maximal we have[
K
(

α1/2
0 ,θ 1/2,γ1/2

)
: K

]
= 8 (19)

for otherwise by Lemma 5 there is γ1 in K and integers j0 and j1 with 0 ≤ ji < 2 for
i = 0,1 such that
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γ = α j0
0 θ j1 γ2

1 (20)

and substituting for γ in (14) using (20) we would contradict the maximality of w.
Let ℘ be a prime ideal of OK lying above the rational prime p. Then since p �

αβ ab(α −β )4

ordp un ≤ ord℘((a/b)(α/β )n − 1)

≤ ord℘
(
(a/b)4(α/β )4n − 1

)
.

Thus, by (13) and (14),

ordp un ≤ ord℘

(
γ2w+2

θ 4 j1+2v+2n − 1
)
. (21)

For any real number x let [x] denote the greatest integer less than or equal to x.
Put

k =

[
log p

51.8loglog p

]
. (22)

Then, for p > c5, k > 2 and

max

(
p

(
k

log p

)k

,ek log p

)
= p

(
k

log p

)k

. (23)

Our proof now splits depending on whether Q(α/β ) = Q or not. Let us first
suppose that Q(α/β ) = Q so that α and β are integers. For any positive integer j
let p j denote the j − 2th smallest prime which does not divide 2p(α − β )4abαβ .
We put

m = 4 j1 + 2v+2n (24)

and
α1 = θ/p3 · · · pk.

Then

γ2w+2
θ m = αm

1 γ2w+2
pm

3 · · · pm
k

so by (21)

ordp un ≤ ordp(αm
1 γ2w+2

pm
3 · · · pm

k − 1). (25)

Note that α1,γ, p3, . . . , pk are multiplicatively independent since θ and γ are
multiplicatively independent and p3, . . . , pk are primes which do not divide 2p(α −
β )4abαβ . Further since p3, . . . , pk are different from p and p does not divide
2(α −β )4abαβ we see that α1,γ, p3, . . . , pk are p-adic units.

We now apply Lemma 2 with δ = 1, d = 1, f℘ = 1 and n = k to conclude that
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ordp(αm
1 γ2w+2

pm
3 · · · pm

k − 1)≤ c6(k+ 1)3
(

7e
p− 1
p− 2

)k

max

(
p

(
k

log p

)k

, ek log p

)
log(2w+2m)h(α1)h(γ) log p3 · · · log pk.

(26)

For any non-zero integer n let ω(n) denote the number of distinct prime factors
of n. Put

t = ω(2p(α −β )4abαβ ) (27)

and let qi denote the ith prime number. Note that

pk ≤ qk+t

and thus
log p3 + · · ·+ log pk ≤ (k− 2) logqk+t .

By the prime number theorem with error term, for k > c7,

log p3 + · · ·+ log pk ≤ 1.001(k− 2) logk. (28)

By the arithmetic-geometric mean inequality

log p3 · · · log pk ≤
(

log p3 + · · ·+ log pk

k− 2

)k−2

and so, by (28),

log p3 · · · log pk ≤ (1.001logk)k−2. (29)

Since h(α1)≤ h(θ )+ log p3 · · · pk it follows from (28) that

h(α1)≤ c8k logk.

Further
2w+2m = 2w+2(4 j1 + 2v+2n)< c9n

and so

log(2w+2m)< c10 logn. (30)

Thus, by (23), (25), (26) and (28)–(30),

ordp un < c11k4 p

(
7e

p− 1
p− 2

1.001k logk
log p

)k

logn.

Therefore, by (22), for p > c12
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ordp un < pe−
log p

51.9 loglog p logn. (31)

We now suppose that [Q(α/β ) : Q] = 2. Let π3, . . . ,πk be elements of OK with
the property that N(πi) = pi where N denotes the norm from K to Q and where pi

is the (i− 2)th smallest rational prime number of this form which does not divide
2pαβ ab(α −β )4. We now put θi = πi/π ′

i where π ′
i denotes the algebraic conjugate

of πi in Q(α/β ). Notice that p does not divide πiπ ′
i = pi and if p does not divide

(πi −π ′
i )

2 then (
(πi −π ′

i)
2

p

)
=

(
d
p

)

since Q(α/β ) = Q(
√

d) = Q(πi). Thus, by Lemma 1, the order of θi in

(Q(α/β )℘)× is a divisor of 2 if p divides (π2
i − π ′2

i )2 and a divisor of p−
(

d
p

)
otherwise. Since p is odd and p is different from pi we observe that the order of θi

in (Q(α/β )℘)× is a divisor of p−
(

d
p

)
.

Recall (22) and put

α1 = θ/θ3 · · ·θk.

Then αm
1 θ m

3 · · ·θ m
k = θ m and by (21) and (24) we see that

ordp un ≤ ord℘(αm
1 γ2w+2

θ m
3 · · ·θ m

k − 1). (32)

Observe that α1, γ , θ3, . . . ,θk are multiplicatively independent since θ and γ are
multiplicatively independent and p3, . . . , pk are primes which do not divide 2(α −
β )4abαβ and the principal prime ideals [πi] for i = 3, . . . ,k do not ramify since
pi � 2d. Since p3, . . . , pk are different from p and p does not divide 2(α −β )4abαβ
we see that α1, γ , θ3, . . . ,θk are p-adic units.

Notice that

K
(

α1/2
0 ,θ 1/2,γ1/2,θ 1/2

3 , . . . ,θ 1/2
k

)
= K

(
α1/2

0 ,α1/2
1 ,γ1/2,θ 1/2

3 , . . . ,θ 1/2
k

)
.

Further, by (19),

[
K
(

α1/2
0 ,θ 1/2,γ1/2,θ 1/2

3 , . . .θ 1/2
k

)
: K

]
= 2k+1, (33)

since otherwise by Lemma 5 there is an integer i with 3 ≤ i ≤ k and integers
j0, . . . , ji−1 with 0 ≤ jb ≤ 1 for b = 0, . . . , i− 1 and an element ψ of K for which

θi = α j0
0 θ j1 γ j2θ j3

3 · · ·θ ji−1
i−1 ψ2. (34)

But then the order of the prime ideal [πi] on the left-hand side of (34) is even which
is a contradiction. Thus (33) holds.
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Since p does not divide the discriminant of K and [K : Q] = 2 either p splits, in

which case f℘ = 1 and
(

d
p

)
= 1, or p is inert, in which case f℘ = 2 and

(
d
p

)
=−1,

see [14]. Put

δ = (p f℘ − 1)/|〈α0,α1,γ,θ3, . . . ,θk〉|.
Observe that if

(
d
p

)
= 1 then

p f℘/δ ≤ p. (35)

Let us now determine |〈α0,α1,γ,θ3, . . . ,θk〉| in the case
(

d
p

)
= −1. We have

shown that the order of θi is a divisor of p+ 1 for i = 3, . . . ,k. Since α and β are
conjugates N(α/β ), the norm from K to Q of α/β is 1. Therefore by (13), N(θ ) =
±1. Similarly a and b are conjugates over Q so N(a/b) = 1 and thus N(γ) = ±1.
By Hilbert’s Theorem 90, see Theorem 14.35 of [10], θ 2 = ρ/ρ ′ where ρ and ρ ′
are conjugate algebraic integers in K. Similarly, by (13) and (14), γ2 = λ/λ ′ where
λ and λ ′ are conjugate algebraic integers in K.

Note that we may suppose that the principal ideals [ρ ] and [ρ ′] have no non-trivial
principal ideal divisors in common. Further since p does not divide 2(α −β )2abαβ
and since

(
d
p

)
= −1, [p] is a principal ideal of OK and p does not divide ρρ ′. The

order of θ 2 in (K℘)× is a divisor of p+1 by Lemma 1 and thus θ has order a divisor
of 2(p+ 1). By the same reasoning as above we find that the order of γ2 in (K℘)×
is a divisor of p+ 1 and so, by Lemma 1, γ has order a divisor of 2(p+ 1). Since
α4

0 = 1 and, as we have already established, the order of θi is a divisor of p+ 1 for
i = 3, . . . ,k we see that

|〈α0,θ ,γ,θ3, . . . ,θk〉| ≤ 2(p+ 1)

hence

|〈α0,α1,γ ,θ3, . . . ,θk〉| ≤ 2(p+ 1).

Therefore
δ = (p2 − 1)/|〈α0,α1,γ,θ3, . . . ,θk〉| ≥ (p− 1)/2. (36)

We now apply Lemma 2, noting, by (35) and (36), that

p f℘/δ ≤ 2p2/(p− 1).

Thus, by (23),

ord℘(αm
1 γ2w+2

θ m
3 · · ·θ m

k − 1)≤ c12k3 log p

(
7e

p− 1
p− 2

)k

2k p

(
k

log p

)k

(logm)h(α1)h(γ)h(θ3) · · ·h(θk).

(37)
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Observe that θi = πi/π ′
i and that pi(x−πi/π ′

i )(x−π ′
i/πi) = pix2 − (π2

i +π ′2
i )x+

pi is the minimal polynomial of θi over the integers since [πi] is unramified. Now
either the discriminant of K is negative in which case |πi| = |π ′

i | or it is positive in
which case there is a fundamental unit ε > 1 in OK . As in [42] we may replace πi

by πiεu for any integer u. Without loss of generality we may suppose that p1/2
i ≤

|πi| ≤ p1/2
i ε and hence that p1/2

i ε−1 ≤ |π ′
i | ≤ p1/2

i . Therefore

h(θi)≤ 1
2

log piε2 =
1
2

log pi + logε for d > 0

and

h(θi)≤ 1
2

log pi for d < 0.

Put

R =

{
logε for d > 0

0 for d < 0.

Then

h(θi)≤ 1
2

log pi +R

for i = 3, . . . ,k. We also can ensure that

h(θ3 · · ·θk)≤ 1
2

log p3 · · · pk +R

and so

h(α1)≤ h(θ )+
1
2

log p3 · · · pk +R. (38)

Let t be given by (27) and let qi denote the ith prime number which is
representable as the norm of an element of OK . Note that

pk ≤ qk+t

and so

log p3 + · · ·+ log pk ≤ (k− 2) logqk+t .

Therefore by Lemma 3 for k > c13

(log p3+2R)+ · · ·+(log pk +2R)< (k−2)(1.0005logk+2R)< 1.001(k−2) logk
(39)

and so, by the arithmetic-geometric mean inequality,

(log p3 + 2R) · · ·(log pk + 2R)< (1.001logk)k−2.
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Thus, since pk is at least k, for k > c14,

2k−2h(θ3) · · ·h(θk)≤ (log p3 + 2R) · · ·(log pk + 2R)< (1.001logk)k−2. (40)

By (38) and (39)
h(α1)< c15k logk

and by (13), (14) and (24)
m ≤ c16n. (41)

Thus, by (32), (38), (40) and (41),

ordp un ≤ c17k4 p log p

(
7e

p− 1
p− 2

1.001
k logk
log p

)k

logn.

Therefore, by (22), for p > c18, we obtain (31) in this case also and our result
follows. �	

5 Proof of Theorem 1

Let K = Q(α) and let OK denote the ring of algebraic integers of K. For any θ in
OK let [θ ] denote the ideal in OK generated by θ . We have

un = r1un−1 + r2un−2 for n = 2,3, . . . .

Let l denote the greatest common divisor of r2
1 and r2. Then α2/l and β 2/l

are algebraic integers in K. Further
r2
1+2r2

l and (r2/l)2 are coprime hence, as in

Lemma A.10 of [34],
([

α2

l

]
,
[

β 2

l

])
= ([1]). We may put

vn = l−nu2n = a

(
α2

l

)n

+ b

(
β 2

l

)n

and

wn = l−nu2n+1 = aα
(

α2

l

)n

+ bβ
(

β 2

l

)n

,

for n = 0,1,2, . . . . Recall r2 = αβ . For any prime p which does not divide r2 we
have

ordp(u2n) = ordp(vn) and ordp(u2n+1) = ordp(wn).

Further a/b and α/β are multiplicatively independent if and only if a/b and (α/β )2

are multiplicatively independent. Similarly a/b and α/β are multiplicatively
independent if and only if aα/bβ and (α/β )2 are multiplicatively independent.
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Therefore, by considering the non-degenerate binary recurrence sequences (vn)
∞
n=0

and (wn)
∞
n=0 in place of (un)

∞
n=0, we may assume, without loss of generality, that

([α], [β ]) = [1].
Let c1,c2, . . . denote positive numbers which are effectively computable in terms

of a, b, α and β . By the result of Luca given in (8) the theorem follows if a/b and
α/β are multiplicatively dependent. We may assume therefore that a/b and α/β
are multiplicatively independent. For any integer h and prime p define |h|p by

|h|p = p−ordp h.

It follows from the proof of Theorem 1 of [40] that for any prime p and integer n≥ 2

log
(|un|−1

p

)
< c1 p2(logn)2. (42)

By Lemma 7 for p > c2,

log
(|un|−1

p

)
< p log pexp(− log p/51.9loglog p) logn. (43)

By Lemma 4
log |un|> c3n. (44)

Write
|un|= p�1

1 · · · p�r
r (45)

where p1, . . . , pr are distinct primes and �1, . . . , �r are positive integers. It follows
from (42)–(45) that

n
logn

< c4

r

∑
i=1

pi log pi exp(− log pi/51.9loglog pi). (46)

Put pr = P(un). The right-hand side of inequality (46) is at most

rpr log pr exp(− log pr/51.9loglog pr)

and so by the prime number theorem

c5
n

logn
< p2

r exp(− log pr/51.9loglog pr).

Therefore
P(un) = pr > c6n1/2 exp(logn/103.99loglogn),

and our result now follows.
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