On prime factors of integers which are sums or shifted products

by C.L. Stewart (Waterloo)

Abstract

Let N be a positive integer and let A and B be subsets of $\{1, \ldots, N\}$. In this article we discuss estimates for the prime factors of integers of the form $a+b$ and $a b+1$ where a is from A and b is from B.

1 Introduction

Let A and B be subsets of the first N integers. What information can be gleaned about integers of the form $a b+1$ or $a+b$, with a in A and b in B, from knowledge of the cardinalities of A and B ? If A and B are dense subsets of $\{1, \ldots, N\}$ then one might expect the integers $a+b$ with a in A and b in B, to have similar arithmetical characteristics to those of the first $2 N$ integers and the integers $a b+1$, with a in A and b in B, to have similar arithmetical characteristics to those of the first $N^{2}+1$ integers. This phenomenon has been demonstrated in several papers. Even if A and B are not dense subsets of $\{1, \ldots, N\}$ it is still possible to deduce some non-trivial estimates for the prime divisors of integers of the form $a+b$ and $a b+1$. In this article we shall survey the estimates which have been obtained for the greatest prime factors of integers $a+b$ and $a b+1$ and for the number of distinct prime factors of the products

$$
\prod_{a \in A, b \in B}(a+b) \quad \text { and } \quad \prod_{a \in A, b \in B}(a b+1)
$$

2 Results for general sets of integers

For any set X let $|X|$ denote its cardinality and for any integer n with $n \geq 2$ let $P(n)$ denote the greatest prime factor of n and $\omega(n)$ denote the number of distinct prime factors of n. In 1934 in their first joint paper Erdős and Turán [10] proved that if A is a non-empty set of positive integers then

$$
\omega\left(\prod_{a, a^{\prime} \in A}\left(a+a^{\prime}\right)\right) \geq \frac{\log |A|}{\log 2}
$$

and they asked if a result of this type holds when the summands are taken from different sets.

[^0]In 1986 Győry, Stewart and Tijdeman [15] extended the result of Erdős and Turán to the case where the summands are taken from different sets. They proved, by means of a result on S-unit equations due to Evertse [11] that there is a positive number c_{1} such that for any finite sets A and B of positive integers with $|A| \geq|B| \geq 2$,

$$
\begin{equation*}
\omega\left(\prod_{a \in A, b \in B}(a+b)\right)>c_{1} \log |A| \tag{1}
\end{equation*}
$$

Also in 1986 Stewart and Tijdeman [29] gave an elementary argument to establish a slightly weaker result. They proved that there is a positive number c_{2} such that if $|A|=|B| \geq 3$ then

$$
\omega\left(\prod_{a \in A, b \in B}(a+b)\right) \geq c_{2} \frac{\log |A|}{\log \log |A|}
$$

In 1988 Erdős, Stewart and Tijdeman [9] showed that (1) could not be improved by much when they showed that the right hand side of (1) cannot be replaced by $(1 / 8+\varepsilon)(\log |A|)^{2} \log \log |A|$ for any $\varepsilon>0$. In fact more generally let ε be a real number with $0<\varepsilon<1$. They proved that there is a positive number $C(\varepsilon)$, which depends on ε, such that if k and ℓ are integers with k larger than $C(\varepsilon)$ and $2 \leq \ell \leq \log k / \log \log k$ then there exist distinct positive integers a_{1}, \ldots, a_{k} and distinct non-negative integers b_{1}, \ldots, b_{ℓ} such that

$$
\begin{equation*}
P\left(\prod_{i=1}^{k} \prod_{j=1}^{\ell}\left(a_{i}+b_{j}\right)\right)<\left((1+\varepsilon) \frac{\log k}{\ell} \log \left(\frac{\log k}{\ell}\right)\right)^{\ell} \tag{2}
\end{equation*}
$$

We note that by the Prime Number Theorem it is an immediate consequence of (1) that there is a positive number c_{3} such that for any finite sets A and B of positive integers with $|A| \geq|B| \geq 2$, there exist a in A and b in B for which

$$
P(a+b)>c_{3} \log |A| \log \log |A| .
$$

In 1992 Sárközy [22] initiated the study of the multiplicative analogues of results of the above type where one replaces the sums $a+b$ by $a b+1$. In 1996 Győry, Sárközy and Stewart [16] proved the analogue of (1). In particular they proved that if A and B are finite sets of positive integers with $|A| \geq|B| \geq 2$ then

$$
\begin{equation*}
\omega\left(\prod_{a \in A, b \in B}(a b+1)\right)>c_{4} \log |A| \tag{3}
\end{equation*}
$$

where c_{4} is an effectively computable positive number. In fact both (1) and (3) are consequences of the following result established in [16]. Let $n \geq 2$ be an integer and let A and B be finite subsets of \mathbb{N}^{n} with $|A| \geq|B| \geq 2(n-1)$.

Suppose that the n-th coordinate of each vector in A is equal to 1 and any n vectors in $B \cup(0, \ldots, 0,1)$ are linearly independent. There is an effectively computable positive number c_{5} such that

$$
\begin{equation*}
\omega\left(\prod_{\substack{\left(a_{1}, \ldots, a_{n}\right) \in A \\\left(b_{1}, \ldots, b_{n}\right) \in B}}\left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right)\right)>c_{5} \log |A| \tag{4}
\end{equation*}
$$

We obtain (1) by taking $n=2$ and $b_{1}=1$ for all $\left(b_{1}, b_{2}\right) \in B$ and we obtain (3) by taking $n=2$ and $b_{2}=1$ for all $\left(b_{1}, b_{2}\right) \in B$. The proof of (4) depends on work of Evertse and Győry [14] and of Evertse [13] on decomposable form equations and in turn this depends on quantitative versions of Schmidt's Subspace Theorem due to Schmidt [27] and Schlickewei [26].

Győry, Sarközy and Stewart [16] also established a multiplicative analogue of (2). Let ε be a positive real number and let k and ℓ be positive integers with $k \geq 16$ and

$$
\begin{equation*}
2 \leq \ell \leq\left(\frac{\log \log k}{\log \log \log k}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

They proved that there is a positive number $C_{1}(\varepsilon)$, which is effectively computable in terms of ε, such that if k exceeds $C_{1}(\varepsilon)$ then there are sets of positive integers A and B with $|A|=k$ and $|B|=\ell$ for which

$$
\begin{equation*}
P\left(\prod_{a \in A} \prod_{b \in B}(a b+1)\right)<(\log k)^{\ell+1+\varepsilon} . \tag{6}
\end{equation*}
$$

They also showed that if (6) is weakened by replacing the exponent $\ell+1+\varepsilon$ by 5ℓ then the range (5) for ℓ may be extended to

$$
2 \leq \ell \leq c_{6} \frac{\log k}{\log \log k}
$$

for a positive number c_{6}.

3 Results for large terms

It follows from (3) and the Prime Number Theorem that if A is a finite set of positive integers with $|A| \geq 2$ then there exist distinct elements a and a^{\prime} in A for which

$$
P\left(a a^{\prime}+1\right)>c_{7} \log |A| \log \log |A|
$$

where c_{7} is an effectively computable positive number. But what if the size of the integers increases as opposed to the size of the cardinality of A ? Győry, Sárközy and Stewart [16] conjectured that if a, b and c denote distinct positive integers then

$$
\begin{equation*}
P((a b+1)(a c+1)(b c+1)) \rightarrow \infty \tag{7}
\end{equation*}
$$

as $\max (a, b, c) \rightarrow \infty$.
Stewart and Tijdeman [30] established the conjecture under the assumption that $\log a / \log (c+1) \rightarrow \infty$. Let a, b and c be positive integers with $a \geq b>c$. They proved that there is an effectively computable positive number c_{8} for which

$$
\begin{equation*}
P((a b+1)(a c+1)(b c+1))>c_{8} \log \left(\frac{\log a}{\log (c+1)}\right) \tag{8}
\end{equation*}
$$

Further, Stewart and Tijdeman [30] also proved that if a, b, c and d are positive integers with $a \geq b>c$ and $a>d$ there exists an effectively computable positive number c_{9} such that

$$
\begin{equation*}
P((a b+1)(a c+1)(b d+1)(c d+1))>c_{9} \log \log a . \tag{9}
\end{equation*}
$$

The proofs of both (8) and (9) depend on estimates for linear forms in the logarithms of algebraic numbers, see [32].

Győry and Sárközy [17] proved that the conjecture holds in the special case that at least one of the numbers $a, b, c, a / b, b / c, a / c$ has bounded prime factors. This work, later refined by Bugeaud and Luca [3], depends on a result of Evertse [12] on the number of solutions of the S-unit equation and as a consequence does not lead to an effective lower bound in terms of a. Bugeaud [2] was able to give such a bound by applying an estimate of Loxton [19] for simultaneous linear forms in the logarithms of algebraic numbers. Let a, b and c be positive integers with $a \geq b>c$ and let α denote any element of the set $\{a, b, c, a / b, b / c, a / c\}$. Bugeaud proved that there is an effectively computable positive number c_{10} such that

$$
P(\alpha(a b+1)(a c+1)(b c+1))>c_{10} \log \log a
$$

The conjecture was finally established independently by Hernández and Luca [18] and Corvaja and Zannier [4] by means of Schmidt's Subspace Theorem. In fact Corvaja and Zannier [4] proved a strengthened version of the conjecture. They proved that if a, b and c are positive integers with $a>b>c$ then

$$
P((a b+1)(a c+1)) \rightarrow \infty \quad \text { as } a \rightarrow \infty
$$

The results of Hernández and Luca and of Corvaja and Zannier are ineffective. Nevertheless Luca [20] was able to make them more explicit. For any prime number p and any integer x let $|x|_{p}$ denote the p-adic absolute value of x normalized so that $|p|_{p}=p^{-1}$. For any integer x and set of prime numbers S we put

$$
|x|_{\bar{S}}=|x| \prod_{p \in S}|x|_{p}
$$

so that $|x|_{\bar{S}}$ is the largest divisor of x with no prime factors from S. Luca proved that if S is a finite set of prime numbers there exist positive numbers $C_{1}(S)$ and $C_{2}(S)$, which are not effectively computable, such that if a, b and c are positive integers with $a>b>c$ and $a>C_{1}(S)$ then

$$
|(a b+1)(a c+1)|_{\bar{S}}>\exp \left(C_{2}(S) \frac{\log a}{\log \log a}\right)
$$

An additive version of these results was established by Győry, Stewart and Tijdeman [15] in 1986. They proved, by means of a result of Evertse [12], that if a, b and c are distinct positive integers with g.c.d. $(a, b, c)=1$ then

$$
P(a b(a+c)(b+c)) \rightarrow \infty
$$

as $\max (a, b, c) \rightarrow \infty$.

4 Results for dense sets of integers

Let $\phi(x)$ denote the distribution function of the normal distribution so that

$$
\phi(x)=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Erdős, Maier and Sárközy [7] proved that an Erdős-Kac theorem applies to the sums $a+b$, counted with multiplicity, when a is from A, b is from B and A and B are dense subsets of $\{1, \ldots, N\}$. In particular they proved that there are positive numbers N_{0} and C such that if N exceeds N_{0} and ℓ is a positive integer then

$$
\left|\frac{1}{|A||B|}\right|\{(a, b): a \in A, b \in B, \omega(a+b) \leq \ell\}\left|-\phi\left(\frac{\ell-\log \log N}{(\log \log N)^{1 / 2}}\right)\right|
$$

is at most $C N(|A||B|)^{-1 / 2}(\log \log N)^{-1 / 4}$. Tenenbaum [31] subsequently refined this result by replacing the factor $(\log \log N)^{-1 / 4}$ by $(\log \log N)^{-1 / 2}$. Elliott and Sárközy [5] obtained another refinement and later [6] they proved a result of similar character for integers of the form $a b+1$.

While the above results show that if A and B are dense subsets of $\{1, \ldots, N\}$ then the typical behaviour of $\omega(a+b)$ and $\omega(a b+1)$ is well understood one may still wonder about extreme values of these functions. For any positive integer N let $m=m(N)=\max \{\omega(k): 1 \leq k \leq N\}$. One may check that

$$
m=(1+o(1)) \frac{\log N}{\log \log N} \quad \text { as } N \rightarrow \infty
$$

Erdős, Pomerance, Sárközy and Stewart [8] proved in 1993, by means of a combinatorial lemma due to Katona, that for each positive real number ε there are positive numbers $c(\varepsilon)$ and $N_{1}(\varepsilon)$ such that if N exceeds $N_{1}(\varepsilon)$ and A and B are subsets of the first N positive integers with $(|A \| B|)^{1 / 2}>\varepsilon N$ then there exist integers a from A and b from B with

$$
\begin{equation*}
\omega(a+b)>m-c(\varepsilon) \sqrt{m} \tag{10}
\end{equation*}
$$

Sárközy [22] extended this result to the case where $A=B$ and $a+b$ in (10) is replaced by $a a^{\prime}+1$ with $a, a^{\prime} \in A$. In 1994, Sárközy and Stewart [24] showed that there are sums $a+b$ for which $\omega(a+b)$ is large provided that the weaker requirement

$$
\begin{equation*}
(|A||B|)^{1 / 2} \geq N^{\theta} \tag{11}
\end{equation*}
$$

with $1 / 2<\theta \leq 1$, applied. The corresponding result for $a b+1$ was obtained by Győry, Sárközy and Stewart in [16]. Let θ be a real number with $1 / 2<$ $\theta \leq 1$. They proved that there is a positive number $C(\theta)$, which is effectively computable in terms of θ such that if N is a positive integer larger than $C(\theta)$ and A and B are subsets of $\{1, \ldots, N\}$ satisfying (11) then there exists an integer a from A and an integer b from B for which

$$
\begin{equation*}
\omega(a b+1)>\frac{1}{6}\left(\theta-\frac{1}{2}\right)^{2} \frac{\log N}{\log \log N} \tag{12}
\end{equation*}
$$

The proof of (12) depends upon multiple applications of the large sieve inequality.

Balog and Sárközy [1] were the first to study the greatest prime factor of $a+b$ when A and B are dense subsets of $\{1, \ldots, N\}$. They proved, by means of the large sieve inequality, that there is a positive number N_{1} such that if N exceeds N_{1} and

$$
(|A||B|)^{1 / 2}>10 N^{1 / 2} \log N
$$

then there exist a in A and b in B such that

$$
P(a+b)>{\frac{(|A||B|)^{1 / 2}}{16 \log N}}
$$

In 1986 Sárközy and Stewart [23] refined this result for dense sets A and B by employing the Hardy-Littlewood method. In particular, it follows from their work that if $|A| \gg N$ and $|B| \gg N$ then there exist $\gg N^{2} / \log N$ pairs (a, b) with a in A and b in B such that

$$
\begin{equation*}
P(a+b) \gg N \tag{13}
\end{equation*}
$$

Put

$$
Z=\min \{|A|,|B|\}
$$

In 1992 Ruzsa [21] proved that there exist a in A and b in B for which

$$
P(a+b)>c_{11} Z \frac{\log Z}{\log N} \log \left(\frac{\log N}{\log Z}\right)
$$

where c_{11} is a positive number. Furthermore he proved that for each positive real number ε there exists a positive number $C(\varepsilon)$ such that if Z exceeds $C(\varepsilon) N^{1 / 2}$ then there exist a in A and b in B with

$$
\begin{equation*}
P(a+b)>\left(\frac{2}{e}-\varepsilon\right) Z \tag{14}
\end{equation*}
$$

While estimates (13) and (14) are best possible, up to the determination of constants, a different situation applies for the multiplicative case. In this case we have the following conjecture of Sárközy and Stewart [25].

Conjecture 1. For each positive real number ε there are positive real numbers $N_{0}(\varepsilon)$ and $C(\varepsilon)$ such that if N exceeds $N_{0}(\varepsilon)$ and $Z>\varepsilon N$ then there are a in A and b in B such that

$$
P(a b+1)>C(\varepsilon) N^{2} .
$$

Sárközy and Stewart [25] were able to give lower bounds for $P(a b+1)$ which are stronger than those for $P(a+b)$, such as (14), for dense sets A and B. In particular they showed that for each positive real number ε there are positive numbers $N_{1}(\varepsilon)$ and $K(\varepsilon)$, which are effectively computable in terms of ε, such that if N exceeds $N_{1}(\varepsilon)$ and Z exceeds $K(\varepsilon) N / \log N$ then there are a in A and b in B such that

$$
\begin{equation*}
P(a b+1)>(1-\varepsilon) Z \log N \tag{15}
\end{equation*}
$$

In fact the argument may be modified to give an estimate for $P(a b+1)$ of comparable strength to (15) for Z much smaller as our next result shows.

Theorem 1. Let θ be a real number with $1 / 2<\theta \leq 1$. There are numbers $N_{0}=N_{0}(\theta)$ and $C=C(\theta)$, which are effectively computable in terms of θ, such that if $N>N_{0}, A, B$ are subsets of $\{1, \ldots, N\}, Z=\min \{|A|,|B|\}$ and

$$
Z \geq N^{\theta}
$$

then there are a in A and b in B such that

$$
\begin{equation*}
P(a b+1)>C Z \log Z \tag{16}
\end{equation*}
$$

Note that, for comparison with (15) as opposed to (14), we may replace $C Z \log Z$ in (16) by $C Z \log N$.

Improvements on (15) and (16) have been obtained for sets which are more dense. For instance Stewart [28] proved that there are effectively computable positive numbers c_{1}, c_{2} and c_{3} such that if N exceeds c_{1} and

$$
\begin{equation*}
Z>c_{2} \frac{N}{((\log N) / \log \log N)^{1 / 2}} \tag{17}
\end{equation*}
$$

then there are a in A and b in B such that

$$
P(a b+1)>N^{1+c_{3}(Z / N)^{2}}
$$

The proof employs Weil's estimates for Kloosterman sums. We shall prove the following more explicit version of the above result.

Theorem 2. Let N be a positive integer, let A and B be subsets of $\{1, \ldots, N\}$ and put $Z=\min \{|A|,|B|\}$. Let ε be a real number with $0<\varepsilon<1$. There are positive numbers c_{1}, c_{2} and c_{3}, which are effectively computable in terms of ε, such that if N exceeds c_{1} and (17) holds with the new value of c_{2} then there are a in A and b in B for which

$$
P(a b+1)>\min \left(N^{1+(1-\varepsilon)(Z / N)^{2}},\left(c_{3}(N / \log N)^{4 / 3}\right)\right.
$$

What happens in the extremal situation where A and B are both equal to $\{1, \ldots, N\}$? Shengli Wu [33] has recently shown, by means of the BombieriVinogradov theorem, that if β is a real number larger than 10 and N is sufficiently large in terms of β then there exist integers a and b from $\{1, \ldots, N\}$ such that

$$
P(a b+1)>\frac{N^{2}}{(\log N)^{\beta}}
$$

In this special case one has an estimate which approaches that of Conjecture 1.

5 Preliminary lemmas

For positive integers N and t we put

$$
V_{t}(N)=\{(m, n) \in \mathbb{Z} \times \mathbb{Z}|1 \leq m \leq N, 1 \leq n \leq N, t| m n+1\}
$$

and denote by $d(t)$ the number of positive integers which divide t. In [28] Stewart deduced from Weil's estimates for Kloosterman sums the following result.

Lemma 1.

$$
\left|V_{t}(N)\right|=\frac{\varphi(t)}{t^{2}} N^{2}+O\left(t^{1 / 2} d(t)^{3 / 2}(\log t)^{2}+\frac{N d(t) \log t}{t}\right)
$$

For the proofs of Theorems 1 and 2 we shall also require a minor variation on Lemma 4 of [25]. Let U be a subset of $\{1, \ldots, N\}, m$ be a positive integer and h be an integer. We put

$$
\begin{equation*}
r(U, h, m)=|\{n: n \in U, n \equiv h(\bmod m)\}| \tag{18}
\end{equation*}
$$

Lemma 2. Let N and M be integers with $1 \leq M \leq N$ and let U be a subset of $\{1, \ldots, N\}$. Then

$$
\sum_{p \leq M} \log p \sum_{k \leq \frac{\log N}{\log p}} \sum_{h=1}^{p^{k}}\left(r\left(U, h, p^{k}\right)\right)^{2} \leq|U| \log N(|U|-1+\pi(M))
$$

Proof. We shall follow the proof of Lemma 4 of [25] which treats the case $M=$ N. Put

$$
D(U)=\prod_{\substack{n, n^{\prime} \in U \\ n^{\prime}<n}}\left(n-n^{\prime}\right)
$$

We have

$$
\begin{equation*}
\sum_{p \leq N} \log p \operatorname{ord}_{p} D(U)=\log D(U) \leq \log \left(\prod_{\substack{n, n^{\prime} \in U \\ n^{\prime}<n}} N\right)=\binom{|U|}{2} \log N \tag{19}
\end{equation*}
$$

where ord_{p} denotes the p-adic order. Furthermore

$$
\begin{align*}
\operatorname{ord}_{p} D(U) & =\sum_{\substack{n, n^{\prime} \in U \\
n^{\prime}<n}} \operatorname{ord}_{p}\left(n-n^{\prime}\right) \\
& =\sum_{\substack{n, n^{\prime} \in U \\
n^{\prime}<n}}\left|\left\{k: k \leq \frac{\log N}{\log p}, p^{k} \mid n-n^{\prime}\right\}\right| \\
& =\sum_{k \leq \frac{\log N}{\log p}}\left|\left\{\left(n, n^{\prime}\right): n, n^{\prime} \in U, n^{\prime}<n, p^{k} \mid n-n^{\prime}\right\}\right| \\
& =\sum_{k \leq \frac{\log N}{\log p}} \sum_{h=1}^{p^{k}}\left|\left\{\left(n, n^{\prime}\right): n, n^{\prime} \in U, n^{\prime}<n, n \equiv n^{\prime} \equiv h\left(\bmod p^{k}\right)\right\}\right| \\
& =\sum_{k \leq \frac{\log N}{\log p}} \sum_{h=1}^{p^{k}}\left(r\left(U, h, p^{k}\right)\right) \\
& =\sum_{k \leq \frac{\log N}{\log p}}\left(\frac{1}{2} \sum_{h=1}^{p^{k}}\left(r\left(U, h, p^{k}\right)\right)^{2}-\frac{1}{2} \sum_{h=1}^{p^{k}} r\left(U, h, p^{k}\right)\right) \\
& =\frac{1}{2} \sum_{k \leq \frac{\log N}{\log p}}\left(\sum_{h=1}^{p^{k}}\left(r\left(U, h, p^{k}\right)\right)^{2}-|U|\right) . \tag{20}
\end{align*}
$$

Therefore, by (19) and (20),

$$
\left.\frac{1}{2} \sum_{p \leq N} \log p \sum_{k \leq \frac{\log N}{\log p}}\left(\sum_{h=1}^{p^{k}} r\left(U, h, p^{k}\right)^{2}-|U|\right)\right) \leq\binom{|U|}{2} \log N
$$

Since $\sum_{h=1}^{p^{k}} r\left(U, h, p^{k}\right)^{2}-|U| \geq 0$ we see that

$$
\frac{1}{2} \sum_{p \leq M} \log p \sum_{k \leq \frac{\log N}{\log p}}\left(\sum_{h=1}^{p^{k}} r\left(U, h, p^{k}\right)^{2}-|U|\right) \leq\binom{|U|}{2} \log N
$$

Therefore

$$
\sum_{p \leq M} \log p \sum_{k \leq \frac{\log N}{\log p}} \sum_{h=1}^{p^{k}} r\left(U, h, p^{k}\right)^{2} \leq 2\binom{|U|}{2} \log N+|U| \pi(M) \log N
$$

as required.

6 An estimate from below

For the proofs of Theorems 1 and 2 we may assume, by removing terms from either A or B, if necessary, that

$$
\begin{equation*}
Z=\min (|A|,|B|)=|A|=|B| \tag{21}
\end{equation*}
$$

Define E by

$$
\begin{equation*}
E=\prod_{a \in A, b \in B}(a b+1) \tag{22}
\end{equation*}
$$

Let ε be a real number with $0<\varepsilon<1$. Then, by (21),

$$
\begin{aligned}
E & \geq \prod_{\substack{a \in A \\
a \geq \frac{\varepsilon Z}{10}}} \prod_{\substack{b \in B \\
b \geq \frac{\varepsilon Z}{10}}}\left(\left(\frac{\varepsilon Z}{10}\right)^{2}+1\right) \\
& \geq\left(\frac{\varepsilon Z}{10}\right)^{2\left(|A|-\frac{\varepsilon Z}{10}\right)\left(|B|-\frac{\varepsilon Z}{10}\right)}=\left(\frac{\varepsilon Z}{10}\right)^{2\left(1-\frac{\varepsilon}{10}\right)^{2} Z^{2}}
\end{aligned}
$$

Therefore provided that $Z \geq N^{1 / 2}$, as in the hypotheses for Theorems 1 and 2, and that N is sufficiently large in terms of ε,

$$
\frac{\varepsilon Z}{10} \geq Z^{1-\frac{\varepsilon}{10}}
$$

and so

$$
\begin{equation*}
\log E \geq 2\left(1-\frac{\varepsilon}{10}\right)^{3} Z^{2} \log Z \tag{23}
\end{equation*}
$$

For brevity we write

$$
P=P\left(\prod_{a \in A, b \in B}(a b+1)\right)
$$

and we put

$$
\begin{equation*}
E_{1}=\prod_{p \leq N} p^{\operatorname{ord}_{p} E} \tag{24}
\end{equation*}
$$

where the product is taken over primes p up to N. We shall require an upper bound for E_{1} for the proof of Theorem 2.

Lemma 3. Let $\varepsilon>0$ and suppose that Z exceeds $N /(\log N)^{1 / 2}$. There exists a positive number $N_{0}(\varepsilon)$, which is effectively computable in terms of ε, such that for $N>N_{0}(\varepsilon)$,

$$
\log E_{1}<(1+\varepsilon) Z^{2} \log N
$$

Proof. This follows from the proof of Theorem 2 of [25], see 4.14 of [25].

7 Proof of Theorem 1

Our proof proceeds by a comparison of estimates for E, recall (22). Put

$$
\delta=\theta-\frac{1}{2}
$$

By (23), for N sufficiently large in terms of δ,

$$
\begin{equation*}
\log E \geq(2-\delta) Z^{2} \log Z \tag{25}
\end{equation*}
$$

We now observe that we may suppose that $P \leq N$. For if $P>N$ and $Z \leq K(1 / 2) N / \log N$, recall the definition of $K(1 / 2)$ from (15), then for N sufficiently large,

$$
Z \log Z \leq K\left(\frac{1}{2}\right) \frac{N}{\log N} \log N=K\left(\frac{1}{2}\right) N<K\left(\frac{1}{2}\right) P
$$

Thus $P>(K(1 / 2))^{-1} Z \log Z$ as required. On the other hand if $Z>K(1 / 2) N / \log N$ then, by (15) with $\varepsilon=1 / 2$,

$$
P>\frac{1}{2} Z \log N \geq \frac{1}{2} Z \log Z
$$

for $N>N_{1}(1 / 2)$ as required. Therefore we may suppose that $P \leq N$.
We have

$$
\begin{align*}
\log E & =\sum_{p \leq P} \operatorname{ord}_{p}\left(\prod_{\substack{a \in A \\
b \in B}}(a b+1)\right) \log p \\
& =\sum_{p \leq P} \log p \sum_{k \leq \frac{\log _{\left(N^{2}+1\right)}^{(\log p}}{}\left|\left\{(a, b): a \in A, b \in B, a b \equiv-1\left(\bmod p^{k}\right)\right\}\right|} \\
& =\sum_{1}+\sum_{2} \tag{26}
\end{align*}
$$

where in \sum_{1} we sum over $p \leq P, k \leq \log N / \log p$ while in \sum_{2} we have $p \leq P$ and $\log (N+1) / \log p \leq k \leq \log \left(N^{2}+1\right) / \log p$.

We have
$\sum_{1}=\sum_{p \leq P} \log p\left(\sum_{\substack{\log N \\ \log p}} \sum_{\substack{1 \leq h \leq p^{k} \\\left(h, p^{k}\right)=1}}\left|\left\{a \in A, a \equiv h\left(\bmod p^{k}\right)\right\}\right|\left|\left\{b \in B, b \equiv \bar{h}\left(\bmod p^{k}\right)\right\}\right|\right)$,
where for each integer h coprime with p^{k} we let \bar{h} denote the unique integer with $1 \leq \bar{h} \leq p^{k}$ for which $h \bar{h} \equiv-1\left(\bmod p^{k}\right)$. Therefore, by (18),

$$
\sum_{1}=\sum_{p \leq P} \log p \sum_{k \leq \frac{\log N}{\log p}} \sum_{\substack{1 \leq h \leq p^{k} \\\left(h, p^{k}\right)=1}} r\left(A, h, p^{k}\right) r\left(B, \bar{h}, p^{k}\right) .
$$

Since $x y \leq(1 / 2)\left(x^{2}+y^{2}\right)$ for any non-negative real numbers x and y we see that

$$
\begin{aligned}
\sum_{1} & \leq \frac{1}{2} \sum_{p \leq P} \log p \sum_{k \leq \frac{\log N}{} \sum_{\substack{1 \leq h \leq p^{k} \\
\log p}}\left(r^{2}\left(A, h, p^{k}\right)+r^{2}\left(B, \bar{h}, p^{k}\right)\right)} \quad \leq \frac{1}{2} \sum_{p \leq P} \log p \sum_{k \leq p)=1} \sum_{k \leq \frac{\log N}{\log p} p}\left(r^{2}\left(A, h, p^{k}\right)+r^{2}\left(B, h, p^{k}\right)\right) .
\end{aligned}
$$

Therefore since $P \leq N$, by Lemma 2, and (21),

$$
\begin{equation*}
\sum_{1} \leq Z(Z-1+\pi(P)) \log N \tag{27}
\end{equation*}
$$

We shall now estimate \sum_{2}. Notice that if p^{k} exceeds N then for each a in A there is at most one b in B for which $a b \equiv-1\left(\bmod p^{k}\right)$. Therefore

$$
\begin{align*}
\sum_{2} & \leq \sum_{p \leq P} \log p \sum_{\frac{\log N}{\log p \leq k \leq \frac{\log \left(N^{2}+1\right)}{\log p}}}|A| \\
& \leq|A| \sum_{p \leq P} \log p \frac{\log \left(N^{2}+1\right)}{\log p} \\
& \leq 3 Z \pi(P) \log N . \tag{28}
\end{align*}
$$

Accordingly, by (26), (27), and (28),

$$
\log E \leq\left(Z^{2}+4 Z \pi(P)\right) \log N
$$

Thus, by (25),

$$
(2-\delta) Z^{2} \log Z \leq\left(Z^{2}+4 Z \pi(P)\right) \log N
$$

hence

$$
(2-\delta) Z\left(\frac{\log Z}{\log N}\right) \leq Z+4 \pi(P)
$$

so

$$
\frac{Z}{4}\left((2-\delta)\left(\frac{\log Z}{\log N}\right)-1\right) \leq \pi(P)
$$

By hypothesis $Z \geq N^{\theta}$ and so

$$
\frac{Z}{4}((2-\delta) \theta-1)<\pi(P)
$$

Since $\theta=1 / 2+\delta$ we see that $(2-\delta) \theta-1=(3 / 2) \delta-\delta^{2}$ and $(3 / 2) \delta-\delta^{2} \geq$ $(3 / 2) \delta-(1 / 2) \delta=\delta$. Therefore

$$
\frac{\delta Z}{4}<\pi(P)
$$

and our result now follows from the Prime Number Theorem.

8 Proof of Theorem 2

Let ε be a real number with $0<\varepsilon<1$ and let N_{0}, N_{1}, \ldots denote positive numbers which are effectively computable in terms of ε. We shall suppose that (21) holds and that E and E_{1} are defined as in (22) and (24) respectively. Then by (17) and (23) for $N>N_{1}$,

$$
\begin{equation*}
\log E>(2-\varepsilon) Z^{2} \log N \tag{29}
\end{equation*}
$$

Further, by Lemma 3, for $N>N_{2}$,

$$
\begin{equation*}
\log E_{1}<(1+\varepsilon) Z^{2} \log N \tag{30}
\end{equation*}
$$

Put $E_{2}=E / E_{1}$ and note that by (29) and (30)

$$
\begin{equation*}
\log E_{2}>(1-2 \varepsilon) Z^{2} \log N \tag{31}
\end{equation*}
$$

Certainly

$$
\begin{equation*}
E_{2} \leq \prod_{N \leq p \leq P} p^{\operatorname{ord}_{p} G} \tag{32}
\end{equation*}
$$

where

$$
G=\prod_{1 \leq m, n \leq N}(m n+1) .
$$

Put $P=N Y$ and note that if p exceeds N then p^{2} exceeds $N^{2}+1$ and so

$$
\begin{equation*}
\sum_{N<p \leq N Y} \log p \operatorname{ord}_{p} G=\sum_{N<p \leq N Y} \log p \sum_{\substack{1 \leq m, n \leq N \\ p \mid m n+1}} 1 . \tag{33}
\end{equation*}
$$

But, by Lemma 1,

$$
\begin{equation*}
\sum_{\substack{1 \leq m, n \leq N \\ p \mid m n+1}} 1=\frac{p-1}{p^{2}} N^{2}+O\left(p^{1 / 2}(\log p)^{2}+\frac{N \log p}{p}\right) \tag{34}
\end{equation*}
$$

Suppose that $P \leq(\varepsilon N / \log N)^{4 / 3}$ since otherwise our result holds. Thus by (34), for each prime p with $N<p \leq N Y$ we have, for $N>N_{3}$,

$$
\sum_{\substack{1 \leq m, n \leq N \\ p \mid m n+1}} 1<(1+\varepsilon) \frac{N^{2}}{p} .
$$

Therefore by (33), for $N>N_{3}$,

$$
\sum_{N<p \leq N Y} \log p \operatorname{ord}_{p} G<(1+\varepsilon) N^{2} \sum_{N<p \leq N Y} \frac{\log p}{p} .
$$

By (17) and Theorem 1 we see that

$$
\begin{equation*}
Y>(\log N)^{1 / 2} \tag{35}
\end{equation*}
$$

for $N>N_{4}$.
Since

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

we have, by (35), that for $N>N_{5}$,

$$
\begin{equation*}
\sum_{N<p \leq N Y} \log p \operatorname{ord}_{p} G<(1+2 \varepsilon) N^{2} \log Y \tag{36}
\end{equation*}
$$

It follows from (31), (32) and (36) that

$$
(1-2 \varepsilon) Z^{2} \log N<(1+2 \varepsilon) N^{2} \log Y
$$

hence

$$
N^{\left(\frac{1-2 \varepsilon}{1+2 \varepsilon}\right)\left(\frac{Z}{N}\right)^{2}}<Y
$$

as required.

References

[1] A. Balog and A. Sárközy, On sums of sequences of integers, II, Acta Math. Acad. Sci. Hungar. 44 (1984), 169-179.
[2] Y. Bugeaud, On the greatest prime factor of $(a b+1)(b c+1)(c a+1)$, Acta Arith. 86 (1998), 45-49.
[3] Y. Bugeaud and F. Luca, A quantitative lower bound for the greatest prime factor of $(a b+1)(b c+1)(c a+1)$, Acta Arith. 114 (2004), 275-294.
[4] P. Corvaja and U. Zannier, On the greatest prime factor of $(a b+1)(a c+1)$, Proc. Amer. Math. Soc. 131 (2003), 1705-1709.
[5] P.D.T.A. Elliott and A. Sárközy, The distribution of the number of prime divisors of sums $a+b$, J. Number Theory 29 (1988), 94-99.
[6] P.D.T.A. Elliott and A. Sárközy, The distribution of the number of prime divisors of form $a b+1$, New trends in probability and statistics, Vol. 4 (Palanga, 1996), 313-321.
[7] P. Erdős, H. Maier and A. Sárközy, On the distribution of the number of prime factors of sums $a+b$, Trans. Amer. Math. Soc. 302 (1987), 269-280.
[8] P. Erdős, C. Pomerance, A. Sárközy and C.L. Stewart, On elements of sumsets with many prime factors, J. Number Theory 44 (1993), 93-104.
[9] P. Erdős, C.L. Stewart and R. Tijdeman, Some diophantine equations with many solutions, Compositio Math. 66 (1988), 37-56.
[10] P. Erdős and P. Turán, On a problem in the elementary theory of numbers, Amer. Math. Monthly 41 (1934), 608-611.
[11] J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, $I n$ vent. Math. 75 (1984), 561-584.
[12] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984), 225-244.
[13] J-H. Evertse, The number of solutions of decomposable form equations, Invent. Math. 122 (1995), 559-601.
[14] J.-H. Evertse and K. Győry, Finiteness criteria for decomposable form equations, Acta Arith. 50 (1988), 357-379.
[15] K. Győry, C.L. Stewart and R. Tijdeman, On prime factors of sums of integers I, Compositio Math. 59 (1986), 81-88.
[16] K. Győry, A. Sárközy and C.L. Stewart, On the number of prime factors of integers of the form $a b+1$, Acta Arith. 74 (1996), 365-385.
[17] K. Győry and A. Sárközy, On prime factors of integers of the form $(a b+$ 1) $(b c+1)(c a+1)$, Acta Arith. 79 (1997), 163-171.
[18] S. Hernández and F. Luca, On the largest prime factor of $(a b+1)(a c+$ 1) $(b c+1)$, Bol. Soc. Mat. Mexicana 9 (2003), 235-244.
[19] J.H. Loxton, Some problems involving powers of integers, Acta Arith. 46 (1986), 113-123.
[20] F. Luca, On the greatest common divisor of $u-1$ and $v-1$ with u and v near S-units, Monatshefte Math. 146 (2005), 239-256.
[21] I.Z. Ruzsa, Large prime factors of sums, Studia Sci. Math. Hungar. 27 (1992), 463-470.
[22] A. Sárközy, On sums $a+b$ and numbers of the form $a b+1$ with many prime factors, Grazer Math. Ber. 318 (1992), 141-154.
[23] A. Sárközy and C.L. Stewart, On divisors of sums of integers II, J. Reine Angew. Math. 365 (1986), 171-191.
[24] A. Sárközy and C.L. Stewart, On divisors of sums of integers V, Pacific J. Math. 166 (1994), 373-384.
[25] A. Sárközy and C.L. Stewart, On prime factors of integers of the form $a b+1$, Publicationes Math. Debrecen 56 (2000), 559-573.
[26] H.P. Schlickewei, The quantitative Subspace Theorem for number fields, Compositio Math. 82 (1992), 245-273.
[27] W.M. Schmidt, The subspace theorem in diophantine approximations, Compositio Math. 69 (1989), 121-173.
[28] C.L. Stewart, On the greatest prime factor of integers of the form $a b+1$, Periodica Math. Hungarica 43 (2001), 81-91.
[29] C.L. Stewart and R. Tijdeman, On prime factors of sums of integers II, Diophantine Analysis, LMS Lecture Notes 109, Cambridge University Press (1986), 83-98.
[30] C.L. Stewart and R. Tijdeman, On the greatest prime factor of $(a b+1)(a c+$ 1) $(b c+1)$, Acta Arith. 79 (1997), 93-101.
[31] G. Tenenbaum, Facteurs premiers de sommes d'entiers, Proc. Amer. Math. Soc. 106 (1989), 287-296.
[32] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.
[33] S. Wu, Higher-dimensional Kloosterman sums and the greatest prime factor of integers of the form $a_{1} a_{2} \cdots a_{k+1}+1$, Ph.D. thesis, University of Waterloo, 2007.

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
email: cstewart@uwaterloo.ca

[^0]: 2000 Mathematics Subject Classification 11N36, 11B75.
 Key words and phrases: greatest prime factor, sieve.
 This research was supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

