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1. Introduction |

In {32] progress was made towards resolving the conjecture of Erdds (see
[12, p. 218]) that P(2% - 1)/n tends to infinity with n, where P(m) denotes
the greatest prime factor of m. The classical result that P(a*—b") > n+-1,
when % > 2 and ¢ > b > 0, follows from the work of several authors (see
[8, Chapter XVI]), notably among them Bang [4], Zsigmondy [37], and
Birkhoff and Vandiver [5]. In 1962 Schinzel [23] made the first advance on
this result in more than seventy years by showing that P(a®—b*) 2 2n 41
if ab is a square.or twice & square; provided that one excludes the cases
where n = 4,6,12 when @ =2 and b = 1. More recently, in [32], the

author proved that
P(a®—b")/n - o0 (1)

a8 7 runs through a certain set of integers of density 1, in fact, those
integers with less than «loglog n distinet prime factors for any constant «
satisfying 0 < x < 1/log 2. In the same paper it was proved that

P(a? - b7) > $p(log p), | (2)
P(a? +b2) > p(log p)?, (3)

for all sufficiently large primes p, where the lower bound ifor these is
effective. |

Crucial to the proofs of (1), (2), and (3) were inequalities from the
theory of linear forms in the logarithms of algebraic numbers. For the
proof of (1) the then most recent result of Baker [2] in this field was
required while for the proofs of (2) and (3) an older result of Baker {1] was
- used, which, while not as sharp as [2] in certain respects, was, unlike {2],
totally explicit with regard to all the parameters involved. Since that time
both Baker [3] and Shorey [80] have established results which possess the
explicit character of {1] and which in addition are sufficiently sharp for
our requirements. One of the purposes of this paper is to use the result of
Baker [8] to strengthen inequalities (2) and (3) and further to determine
a lower bound for how fast the expression in (1) tends to infinity with .
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and also that
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A secm:ld purpose of this paper is to extend the results of [32] 80 88 to
include integer sequences like the Lucas and Lehmer numbers. We first
indicate the resuits which have salready been established in this context.
Recall that Lucas numbérs u, and v, satisfy

= (ﬂ‘ﬂ"ﬁn)/(a‘""ﬁ)! Uy = a® 48" (n > 0),

where « and B are distinct roots of a quadratic equation ?—Pr—§¢) = 0
with relatively prime non-zero integer coefficients P and @. In 1876
Lucas {19] announced several results which he had obtained concerning
these numbers, earlier work having been done by Euler, Lagrange, (xauss,
and Dirichlet, among others (see [8, Chapter XVII]), and in a long paper
[20] published in 1878 he investigated their divisibility properties and
gave evidence of their utility in & number of arithmetical settings; for
example, in the rapid calculation of good rational approximations to
guadratio irrationals (see [20, p. 225]) and also in the testing of Mersenne
numbers for primality. For a clear rendering of Lucas’ work in the latter
instance the reader should consult papers of Lehmer [18] and Western [36].

Carmichael [7], in 1913, removed a number of erroxrs from, and signifi-
cantly clarified, the work of Lucas. It follows from Carmichael’s study of
the charaoteristic factors of u, and v, (see [7, ‘Theorems XXI«-XXVI])
that for «, 8 real and n > 12, |

P(u,) 2n-1, Plv,) > 2n-—

A characteristic factor of u,, similarly of v, is a prime divisor of «,, which
is not a factor of u,, for any m < n. All characteristic factors of »,, and v,,,
which do not divide (x—pB)%, are congruent to respectively = 1 (modn)
and + 1 (mod 2n).

In 1930 Lehmer [17] generalized the results of Lucas on the divisibility
properties of Lucas numbers to numbers », and v,,, with % > 0, satisfying

mﬂ_ ﬂr+
i = = ﬁﬂ, for » odd,
a—f a+f
ﬂ'ﬂ- n 1"'i’lr
Za :g:, = o®+ ", for n even,

where («+f)% and «f are relatively prime non-zero integers and «/§ is not
& oot of unity. Note that « = 3(J/r+4s) and B = 4(r —/s) where » and s
are non-zero integers with |7| s |s|. The numbers u, and v, defined as
above have come to be known as Lehmer numbers. It should be observed
that Lucas numbers are also Lehmer numbers up to possible multiplica-
tion by a factor «+ 8. |
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' In 1055 Ward [35] mvest:lga,tad the intrinsic or chamctenstw dlﬂsora of
Lehmer numbers as Carmichael had done for the Luocas numbers. These -
are defined as in the case of the Luocas numbers; furthermore, all intrinsic
factors of », and of v,,, relatively prime to (x— B)%(« + B)?, are congruent to
+ 1 (modn) and + 1 {mod 2n) respectively. Ward proved that when « and
B are real, u, and v, have intrinsic divisors for n > 18; and it may be
deduced from W&rd’s work that for n > 18, |

Plu,) > n—1, . ' @)
P(v,) = 2n-1. . | (8)

In fact, as Durst [9] pointed out, the restriction n > 18 in the preceding
sentence may be replaced by n > 12. |

In 1962 Schinzel [24] extended the work of Ward and Carmichael to
include the case of Lehmer numbers with negative discriminants. In this
case, where « and 8 are not real, he showed that both u, and v, have
intrinsic divisors for n sufficiently large. Schinzel (see [25, p. 213])
defined primitive divisors of Lehmer numbers as intrinsic (prime) factors
“which do not divide (a—B)*(«+8)?, and in a postseript to [24] he noted
that the Lehmer numbers %, and v, have primitive divisors, and as &
consequence (4) and (5) hold, for all sufficiently large integers =.
~ Next Rotkiewicz [22], following Schinzel [23], considered the case of
Lucas numbers with two primitive divisors (we remark that Rotkiewicz’s
definition of an intrinsic divisor can be shown to be equivalent to Schinzel’s
definition, which we shall adopt, of & primitive divisor), and then Schinzel,
in a series of papers [25, 26, 27, 28], established conditions under which
Lehmer numbers have two or more primitive factors. Schinzel deduced
(see [25, Theorem 2] and the corrigenda with [27]), for real or complex o
and B8, that the right-hand side of (4¢) may be replaced by n+1 for =
sufficiently large if +ofmax({e—pB)2, («+8)?) is a square or twice a
square, Similarly, under the same hypotheaes, (6) holds with 2% - 1
replaced by 2n+ 1.

We shall strengthen the above results on the greatest prime factors of
Lucas or Lehmer numbers in the case when « and B are real. We accom-
_ phsh this by an analysis of the propertles of the nth cyeclotomic polynomml

in o and f. -

For any integer # > 0 and any pair of complex numberﬂ o and B, we
denote the nth eyclotomic polynomial in o and B by @, (x, B), that is,

‘Hr : . |

Dol B) = IT (a—U), (6)
~ {fwﬁl-q |

where { is & primitive nth root of unity.
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We a,lsa observe that (IJﬂ(m, ﬁ) is an 1111:&3&1' ﬁ::r "> 2 1f (i::w.:+ﬁ)2 and
«f are integers; for we note that both of and S are either rational
integers or conjugate quadratic algebraic integers since both («f)* and
o+ B2 = (x+B)2— 2af are rational integers. But now, since Huler’s phi-
funotion ¢(n) is even fﬂr_ﬂ- > 2, we easily confirm that @, (x,B) = 0,8, «)
and thus further, that |

Ou(o,f) = byt B, byfo %),

where the b; are integers since «f is an integer; whence ¢,(«, 8) is & sym-
metric function of «? and % and thus an integer,

We shall agsume henceforth, unless we explicitly state otherwise, that
(x+B)2 and «f are non-zero relatively prime integers and further that o
and B are distinct and real. Furthermore, we shall write

| = P(® (e, B))
forn > 2.

Upon denoting the number of distinet prime factors of » by w(n) and,
further, the number of square-free divisors of » by q(n) = 2™ we may
stata -

THEOREM 1. For any « with 0 < x < 1/log2 and any integer n (:,-,. 3)
with at most xloglogn distinct prime factors, we have |

E, > O(p(n)logn)/q(n), - (7)

where C is a positive number which is effectively computable in terms of
«, B, and k only. |

Since p(n) = 7 [I,,(1 —1/p) we clearly have

aln}

p(n) > *’:‘%@1;[]L (1~ l/p;):.

where p; denotes the ith prime number. Therefore from. Mertexl_s" theorem
and the prime number theorem, we see that ¢(n} > cn/log(1l + w(n)) for a
positive absolute constant ¢. Thus, we may rewrite (7), in terms of » and

w(n) only, as

B, > Cynlogn)/{2#mlog(l+w(m))}, = (8)
or, on recalling that w(n) < «loglogn, wholly in terms of n as |
P, > Opn(logn)*/logloglogn, - (9)

where A = 1—«log 2 and where C, and C, are positive numbers which are
effectively computable in terms of «, 8, and « only. The latter estimates
are not as sharp as (7) insofar as, in determining a lower bound for ¢{(n),

e e ket T R ks e B T PR fl. .
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the m(n) dlstmct prime drmﬂrs of n were repla.ued by the ﬁrst w( )

~ primes.
In the case when o and § are integers Erdds and Shoray [13] have

independently pointed out that the method of the author’s paper [32]
combined with [80] suffices to give a lower bound of the form (9); in fact
the lower bound they obtain is slightly weaker than (9) as the logloglogn
term in the denominator on the r1ght-h&nd side of (9) is replaced by

log log » in their work,
To illustrate the connection of the estimates (7), (8), and (9) for P, mth
estimates for the greatest prime factor of Lucas or Lehmer numbers we

uge the equation
| o 1‘[ O 4(e, B) - (10)
| dln
which follows immediately from (8). Upon noting that ®,(o,8) = x—f
and also that Qy(x, B) = a+ B we see that, for n>2
Pluy,) >
for Luc&a or Lehmer numbers «,, and further that
Pla®—b") 2

for rational integers a,b. We also have, on nﬂtmg that v,, = uaﬂ/uﬂ for
Luoas or Lehmer numbers u,, and v, that, for n > 1,

P (’un) -""‘
Pla*+b™) > B,

and further tha’o

for integers a,b.

Thus, on replacing B, in (7), (8), or (9) by P(a,“ — b") we have an explicit
bound for how fast the expression in (1) tends to infinity with ». In
partioular we see that (2) and (3) may now be improved to |

P(a?—b?) > Oplogp
and | -
P(ap + 5%} > Uplog p,

for O = C(a,b) > 0. Setting @ =2 and b =1 in the former inequality
gives us a lower bound for the greatest prime factor of any Mersenne
number; the lower estimate in this apenml case has also been obtained
 independently in [13].

In addition, it clearly follows that (7), (8), and (9) hold with P, replaced
by P(u,) and Py, replaced by P(v,) for any rea] Lucas or Lehmer numbers
u, snd v,; as & consequence we have, for integers » composed of at most
k distinot primes, that P(u,) > Onlogn and P(v,) > Cnlogn where
0 =Cx,f,k) > 0.
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We mention two more coro]lanes of Theorﬁm 1 wh:mh are of some
independent interest. The first of these concerns the Ferma.t numbers

It follows from Theorem 1 tha.t
P22 + 1) > Cn2%  (n > 0)

for an effectively computable positive constant C.t The second concernﬂ
the Fibonacoi numbers which are defined recursively by w, = g = 1 a,ndl
Uy = Up_q+ U, g Now it is well known that the Fibonacei numbers are

of the form
Uy = {(F(1+B))* — ($(1- «/5 *Y/{8,

and hence that thay are rel Lucas numbers. Thus Theorem 1 holds with
P, replaced by P(u,) and, in particular, we have for primes p

Plu,) > Oplog »,

where (' ig an effectively computable positive constant.

1t is perhaps worthwhile to observe that the lower estimate for B gnren
by (7) is almost certainly considerably weaker than the true value of B,.
Tables of Luocas and Lehmer numbers suggest that the greatest prime
factor of @, (x, B) tends to infinity very rapidly with n. Furthermore, they
indicate that @, («, ) is only very rarely divisible by the square of a
prime. The latter observation is related to the problem of the Fermat
quotient when « and B areé integers; see [6] for numerical work in this
direction. From this observation one is led to conjecture that, for «, 8 real,

B, > Clp(n))? (11)

for all integers n (> 2) where C is a positive eﬁ'ectivély computable
" number. The conjecture certainly holds when ®@,(x, 8) is square free, for
then, from Lemma 6 of this paper, F,7 > @, where

| T = a(P,n,1)+n(P,n, —-1)+1,;
and from the Brun-Titchmarsh inequality (see Lemma 10) and the

estimate @, > 2**?‘“'1 (see [85, 4.1]), (11) follows. Quite llkely even (11) is

wealk. | |
While we certainly cannot prove a result as sharp as (11} we can improve
the lower estimate obtained in Theorem 1 for almost all integers n. We

prove

TrrorEM 2. For almost all integers n | |
P, > n(logn)¥/f(n)loglogn - | (12)
where f(n) i3 any real-valued function for which lim, o, f(n) = co.

+ D. Kruyswijk has observed that the above estimate for the Fermat numbers
may also be obtained by a more elementary argument.
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As befm:e (12) ho]da wzth P replaeed by the gre&test prime f&etor of
the Luocas or Lehmer numbers %, or v, and also with B, repl&cad by
P(on - b*) or P(a™-+b") for integers «, b. The_ proof of Theorem 2 follows
clogely that of Theorem 1. A novel feature of the proof, however, is the
use made of & lemma on consecutive divisors of integers, whlch follows from
an old result of Erdos [10]. | -

We note hers that Erdos and Shorey [18] proved that

| P(22—1) > pllog p)/(f(p)loglog plogloglog p)  ~ (13)
for ‘almost all’ primes p. Their proof depends upon sieving techniques of
Brun. It is readily verified that their argument, combined with the
methods of this paper, allows one, in (13), to replace 27 —1 by u,, the pth
Lucas or Lehmer number, )

Theorems 1 and 2 may be used to strengthen a result of Schinzel
concerning the greatest prime factors of the terms of certain binary
recurrence sequences related to the Lehmer numbers. Ifu, ., = Pu, —Qu,_,
where P and @ are rational integers, PQ # 0, P2—4¢ 5= 0, and u,? # wu,u,,
we have | .

- = " 4 Q'™
where w and «' are solutions of 22— Pxz+@Q = 0; here Q and Q' are com-
putable in terms of w, w’, %y, and «,. Schinzel proves (see [29, Theorem 8] )
that if w and ' are real and, furthermore, w/w’ and Q/Q’ are multiplica-
tively dependent, then | |

| P(u,) > nv+u—1

whenever # > 0 and nv+% > 24 where % and v are the integers with
smallest absolute value such that
(/') = (=Q/Q)

with » > 0. Schinzel first shows that P(u,) > Puyim/e Where o = 1 or 2,
He then invokes the work of Ward [35] on intrinsic divisors of £, to
complete the proof. We point out that Theorems 1 and 2 may be applied
in place of the work of Ward and thus, for example, (12) holds with P,
replaced by P(u,) for recurrence sequences u, as above. |

Further, we remark that analogues of Theorem 1 hold with « and 8
replaced by integer-valued funoctions f(n) and g(n). In fact, if for any
positive integer n, f(n) > g(n) > 0, f(n) < ntoen, and f(n)/gn) > ¢, for
¢, > 1, then the statement of Theorem 1 applies with P, replaced by
P(®, (f(n),g(n))) and C replaced by (', a positive number which is
effectively computable in terms of x and ¢, only. We shall not give the
proof of this as it is essentially the same as that of Theorem 1; one simply
makes explioit the dependence of C on « and 8. As a consequence of the

r
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result quoted &bﬂve, Theorem 1 holds with P replaﬂed by P(@an(n, 1)) a,nd

C replaced by €', where O’ = ('(x) > 0, and thus applies to numbers of the
form n* -+ 1 (see Sierpinski [81] ). Accordingly, if  is the product of at most

k primes then |
Pnr+1) > Onlogn

where C is a positive number which is effectively computable in terms of %
only. -
We shall next establish a lower estimate for P, which applies when «
and B are replaced by functions of » whose quotient tends to infinity with
»n rapidly, for example, exponentially rapidly. This lower estimate is
sharper than that which one obtains by.employing the argument used in
the proof of Theorem 1. |
Let f(n), g(n), and I(n) be functions from the positive integers to the
positive integers, and put 2(n) = f(n)™ /g(n) and P, = P(D_ (f(n)}, g(n))).

TanoreM 8. If for any infeger n > 2, k{n) > 2%, and
max{f(n), ln)} < o,
B, > Co(n)loglog A{n)
for an effectively compuiable positive constant C.

then

The two conditions in the statement of Theorem 3 are in no sense

definitive and they certainly could be modified if an application so
required. We- mention two immediate consequences of Theorem 3.
First, for integers @ > b > 1, we have

P(a® —b%) > Cp(n)logn

for ¢ = C(a,b) > 0. Secondly, on recalling that ¢(n) > cn/loglogn for

gome positive constant ¢, we find that
P(nrtntl) 4 (4 1)%) > Cnlogn/loglogn

for some effectively computable positive constant C. The first estimate
follows on setting f(n) = a, g(n) = b, and In) = # in Theorem 8; thus
. h(n) = a®/b which is greater than 2» for » sufficiently large, since a > 2.
~ Similarly, setting f(n) = » and g(n) = l(n) = n+ 1, we see that the second
estimate holds, |

I would like to thank Professor A. Baker for his nelpful suggestions
concerning the presentation of this paper. I would also like to acknow-

ledge the financial support which I received from the Canada Council

while I was engaged on this research.
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2, Prellmmary lemmas on divisors of Lehmer numbers |

The aim of this section is to give an account of the propertms of divisors
of Lehmer numbers relevant to this paper. We shall split the section into
eight lemmas the first five of which. are required solely for the proofs of the
remaining three and are not, with the exception of Lemma 1, referred to
subsequently. The latter three lemmas are employed in the proofs of
Theorems 1, 2, and 3. Of these, Lemma 6 is the most important as it is
essential to the proofs of all three main theorems. Leramas 1-6 are not
new insofar as they are consequences of combining the work of Lehmer
f17] with the earlier work of Carmichael [7] and Lucas {20] on divisors of
Luecas numbers. We feel it worthwhile to include short self-contained
proofs for these lemmas since this obviates the necessity of labouring
through [7, 17, and 20]. We note that the proofs given avoid the use of
certain complicated identities favoured by Lucas and Lehmer. Lemma 7,
- which is crucial to the proof of Theorem 2, has not been explicitly stated
before to my knowledge although it is certainly implicit in earlier work.
Lastly, Lemma 8 is due to Ward [85] and is used for the proof of both
Theorems 1 and 2. |

We shall assume that o8 and {«-+B)? are coprime non-zero rational
integers and further that «/B is not a root of unity. The latter condition
assures us that the expressions «+ 8, and «?—g¢, for d > 0, which we
infend to divide by in forthcoming arguments, are non-zero. We shall not
require that « and B be real in Lemmas 1-7,

In the following lemmas 4, 4,, 4,, ... will denote algebraic mtegerﬂ
We prove

Luvoia 1. (af, uy) = (af,v,) = 1
Proof. We may write
(@B = a2 B2 af A = vy, + B4,
= (o34 B441) /(o +B) + 0B Ay = Vg g +0PA,.

Thus (of,v,) = 1 since, b}r'&ssﬁmption, («B, (¢ + )%} = 1. Similarly we
ﬁnd for » odd,

Uy = (o~ B/~ B) = m““1+ﬁ“‘1+aﬁﬁa = Vg + o4y,
and for n even,
= (&= B7)/(a—B)(e+ B) = (on~+B~1)/ (e B) + 0B Ay = 0,y +aBds,
But (a8, v,) = 1, and therefore we have (af, u,) = 1.

Lumua 2. If d divides n then (u,/ug, u;) divides n/d.
5388.3.33 | DD
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Proof. If @ divides n we have o = (8% + (b — f&))/ and upon expanding
the right-hand side we deduce that

(o= Bm)/ (22— B%) = (m/d)B" -

On multiplying both sides of the above equation by a¢ we find that,
when n - d 18 even,

| ot fug = (n/d) By~ + Agug,
and when n—d is odd, -
oYt + Bk /g = (0 Y P+ A gty
The lemma now follows by ii:tspeﬂtion of the above two equations since,
by Lemma 1, («f, %,) = 1. |

LEMMA 3. (thy, Uy) = Ugm fOr Positive integers m and n.

Proof. Given positive integers m and n we can certainly find positive
integers r and ¢ such that rm —sn = (m,n). Let rm = % and sn = [ 80 that
k—1= (k). We easily verify that |

(ot — B¥)(od + B) — (of — B e o+ B¥) = 2(of)(o*~ —B*7),
and since k—1 = (k, 1) we have, for k—1I even,
Up Uy — Uy, = 2(osB) gty
and for k1 odd, | | |
(o0 + B)2u,0y — gy, = 2(oBYuy; for I odd,
UV — (‘m-}-ﬁ')g'z&ﬂ}k I 2(aﬁ)'uk_; fOI‘ k Odd.

If 2 does not divide (u,,%) then from Lemma 1 and the above three
oquations, (v, u) divides u;_;. Assume now thab. 2 divides both #; and
w. Since ugy/u = v; we have, on setbing d = k and n = 2k in the two
equations below (14), that if & is even 2 divides v, while if k is odd 2
divides {a+B8)2%,; and the same holds with & replaced by I. Thus from
the above three equations we again find that (w, w) divides u.;. Now it
follows from (10) that u,, divides u;, and that w, divides w so therefore
(u,, %) must also divide (u,%); whence it divides uy_; = Umn)- But on
once again recalling (10) we see that u,,) divides both #,, and u,; thus
the lemma holds.

From Lemma 1 we see that if a prime p divides «f it does not divide u,
for any integer #. We shall show, however, that each prime » which does
not divide of does in fact divide u, for some integer n. We prove first

Losnta 4. If p does not divide af(o— B)a+ B)? then p divides Uy stpis.
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- Proof We e&aﬂy check that for primes p > 2

(U‘ ﬁ)ﬂ(ﬂd"l“ﬁ up__l%ﬂ = 2P +Bﬂr (mﬂ +ﬁ2 (%B)p—i |

By Fermat’s theorem we then have

(ﬂt‘.—-ﬁ)a Uﬁ"l“‘ﬁ ﬂ“luﬂ-i-l = 0 (mod _‘p),

- and thus the lemma holds for p > 2.

For p = 2 we have u,_y%,,; = 4y = of+ %+ of, and if 2 does not divide

afu, then it divides o? +f2+ 248 = (x+B)? and so the lemma holds. ‘We
note further that if 2 does not divide «fu, then 2 must divide %, = o®4- 82,

Lavmva 5. If p divides u,, (m > 2) then p divides /%, and if p > 2.
or if 4 divides u,, then in fact p (> 2) dwides u,,,/u,, to exactly the first
power. If p > 2 divides (a—pB)? then p divides w,, and ¢f p > 3 then p
exactly divides w,. If p divides (a-+B) then p dwades u@, and if p > 3 then
p exactly divides ty,.

- Proof. From (14) we have, for any prime p > 1 and any positive integer
m, | -
() (o) = 9=+ 7 grir-am— ) ..

- | +(om=gmp~-1,  (15)

We first prove« the lemma for p > 2 From (15) we have

Unngs/ Uy = DA g+ (o — P (m 2 1),

and sinos A, = o m_ fm we goe, for m > 2, that if p divides u,, ‘then P
divides u,,,/u,. Setting m =1 we find that if p divides (x— B)? then
p divides u,,; and, with m = 2, if p divides (x+ 8)? then p divides 'u.ﬂj,

We may also wrlte, from (16),

Ot 1~ "~ ) Ay (o~ BP9~ = (o

for m » 1. If p divides u,, for m > 2 then, since o™ — A% = u,,4,, p? does
not divide u,,,/%,; for 1f it did we could write the left-hand side of the
above equality as p24,,, where 4,; is a non-zero integer, and thus p would
divide «f, contradicting Lemma 1. If m = 1 and p > 8 divides (x—B)%,
then p? does not divide u,; for otherwise, from the above equation,
Pt A, = plaf)yn@-1} which aontradmts Lemma 1. Similarly, if m = 2 and
» > 3 divides {«+ )2 then p divides u,, to exactly the first power. We
remark that if 3 divides («— 8)? (respectively (« + 8)?), it may, in fact, divide
ug (respectively u,) to a high power.

It remains only to prwe the lemms for p = 2. In tha,t case we have,

f 15),
o om — o) (o ) == 2+ (o~ )
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whmh is (m +ﬁ)um/um for m odd and um/u for m even. The lemma now
follows as before if m is even or if m is odd and 2 does not divide (x-+ §)%
However, if 2 divides («+f)? then, as noted in the proof of Lemma 4, 2

must divide u, and so, from Lemma 3, 2 cannot dlﬂde w,, for m odd,
whence the lemma holds,

If p does not divide «f then we may associate with it the smallest
integer m for which p divides #,. We see from Lemmas 4 and 5 that m
exists. Now if p divides @, then p Idl‘?ldeﬂ w, and from Lemme 3 and the
‘minimality of m, ! = tmp® for some ¢ 21, {{,p) =1, and % > 0. In fact,
t = 1, for otherwise p would divide both Upmat/ Wpaph BN Uz, Whence,
from Lemma 2, p would divide ¢, uontra,dmtmg the assumption (¢, p) = 1,
Thus if p divides @, then I = mp®.

If p > 21is a prime which does not divide («— 8)*(x+8)%ef8 we h&ve from
Lemmas 3 and 4 that m > 2 divides either p—1 or p- 1. Now since m is
minimal, » divides ®,, and, from Lemma 5 and the above paragraph,
exactly divides ®, (k> 1). We note that for k> 1, p = P(mp*) since
m divides (p— 1)(p+ 1) and hence is composed solely of primes less than p.
Thus if p divides @, then either p = P{l) or p = £ 1 (mod ). |

If p > 8 divides («—pB)?, respectively (x-+B)%, then, from Lemma 5,
m = p, respectively 2p, since ((« -+ B)% (x—B)?) divides 2, and furthermore
p exactly divides @, respectively @y, for & > 1. Similarly, if 3 divides
(a—B)? (respectively (a+pB)%), then m = 3 (respectively 6), and 3 exactly
divides @4 (respectively Qg gq), for & > L.

Lastly we consider p = 2. If 2 does not divide of then, from the proof
of Lemma 4, we see that either 2 divides u, = @, or 2 divides 4, = @, and,
from Lemms 8, 2 divides ®; and exaoctly divides ¥, 4, for k> 1, in the
former case, while 2 exactly divides Dy, for k > 3 (and, in fact, for k= 3
on noting that 2 divides both (x+ B)2 and u,), in the latter case. |

We now have a rather acourate picture of the possible form of the prime
decomposition of @, which we shall summarize in the following manner.

Luvua 6. If n > 4, and n # 6, 12, then P(n/(3,n)) divides P, to ai most
the first power. Al other prime factors of @, are congruent fo +1 (mod n). 2

We note that if n = 12 the lemma holds mth some divisor of 6 in place
of P(n/(3,n)). From Lemma 6 we deduce

me 7. If m > 2 and n > 4 and n # 6 or 12 are distinct inlegers
with n > m then (D, Oy, divides P(n/(3,n)). |

Proof. If d divides (®,,®,,) then clearly it divides (u,,%,,) and, from
Lemma 3, U, ). Bubt now since n > m, @, divides u,/Uu,m) and from
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| Lemma 2 we see that 4 must dmde n. The lemma now follows from
Lemma 6. -

Finally, we shall record a result, essentially due to Ward [35], on
primitive divisors of Lehmer numbers with positive disoriminant. Recall
that & primitive divisor of the Lehmer number u,, is & prime which does not
divide («—B)*(c + B)2ug.. 1. If o, B, defined as before, are real numbers
we have

LEyMa 8, u, has @ primitive divisor for n > 12.

Proof. Ward [35] proved that |®,] > n forn > 12 unless o = 4 «}(1 -!-45)
and f = +4(1~,/5) in which case |®,| > n for n > 30. Now if [D,] > n
for n > 12 it plainly follows from Lemmas 6 and 7 that «, has a divisor
prime t0 ug...u,; and from the paragraphs preceding the statement
of Lemnms 6 we ‘then see that «, has, in fact, & primitive divisor.
For the four Lehmer sequences related to the Fibonacoi numbers we
merely check that, for » < 12 < 30, u, has a primitive divisor. This
completes the proof.

Ward dealt with the very closely related problem of intrinsic divisors
of Lehmer numbers. Unfortunately his preliminary analysis, §§2 and 3,
is marred by a number of minor errors. These do not affect his subsequent
work on estimates for @, and hence do not affect the proof of Lemma 8.
We note, however, that Theorem 1.2 of [35] is incorrect as stated; see
Durst [9] for the requisite modifications,

3. Further preliminary lemmas

- 'We shall now record a slightly modified version n of the recent theorem of
Baker mentioned in §1. Let oy,...;o, (%> 1) be mnon-zero algebraic
numbers with heights no greater than A4, ..., 4, respectively (4; > 4),
and let b,, ..., b, be rational integers with absolute values at most B (> 4).
Recall that the height of an algebraic number is defined as the maximum
of the absolute values of the relatively prime integer coeflicients in its
minimal defining polynomial.
- We assume that «;, ..., e, lie in a field of degree .I) over the rationals
and write, for brevity, .

A =bloga;+...+b,loge, and Q=logd,.. lﬂgA
We then have
Lemma 9. If A+ O then | |
logi Al > — (fﬂ,}_))""Q(L*::;g.Es')’a (16)
for an effectively computable positive constant c. |
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In fact Ba,ker {3] e&t&bllshed Lemma 9 with ¢ exphcﬂ;ly computed and
(log B)? replaced by log Blog Q' where Q' = Q/logd,; this estimate is
seen to be sharper than (16) if 4, = max, 4, when it is taken in conjunc-
tion with the “rivial’ estimate logIA] > —nDBlog(34,). Shorey [30], on
the other hand, obtained & weaker version of the lemma in which the
right-hand side of the inequality was multiplied by (log 2 +loglog B)an1,
However, neither of these variations in inequality (16) would have an
offoct on our results. What is important in the above estimates is the
precise and explicit dependence obtained with. respeot to all the p&r&meters
involved and, in particular, with respect to the parameter «.

- Next let =(x, m,l) denote the number of primes not greater than x and
aqua.l to I (mod m). We record the following version (see [15, Theorem
~ 8.8]) of the Brun-Titchmarsh inequality: |

- Lemma 10, If 1 € m < z and (m, Z)-——*lthen
w(x, m, 1) < 3x/p(m)log(x/m).

While the constant 3 in the above inequality may be replaced by 2,
gee [21], such an improvement would only be significant if one was to.
caloulate the numerical value of ¢ in Theorem 1 for some «, B, and «.

Finally, we require & result on the divisors of an integer n. Assume that
 the divisors are ordered according to size, and let ¢(n) be any real-valued
function for which lim,,,,, &) = 0. We then have

Lzuma 11. For almost all integers n, there exists an mteger 8, dependmg

only on n, such that
d,/dyq > NP, % (17)

We observe that Lemma 11 is best possible; for if the inequality (17) 3
held with some positive constant & in place of e(n) then, since 3
d./d,_, < P(d,) < P(n), almost all integers n would have a prime factor §
greater than n¢, This is false, of course. In fact in 1925 Vinogradov [34]
proved that the density of the set of integers » all of whose prime factors
are less than ¢ exceeds {ul{u+2)¥\* where % = [¢71] and u > u,; De
Bruijn, Buchstab, and, most recently, I—I&Iberatam [14] have sharpened
this lower estimate.

In 1936 Erdss [10] proved that: if &, 18 an arbitrary function of @ such  §
that Yim e, = 0, and if d, denotes the density of the integers having o 3
divisor between o and altes, then lim, ., &, = 0; and in 1948 he remarked 3
(see [11, p. 691]) that, by an argument similar to that used in [10], one
- could show that the number of integers not greater than n having a divisor
in the interval (nt—2,n?) is less than ym where n—0 as ¢ -» 0. The latter
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statement implies Lemma 11, Accordmgly we shall only give an outline
of the proof of the lemma; the reader will be referred to [10] for the -
necessary details. We note, however, that our proof of Lemma 11 is -
significantly less complicated than that of the main theorem of [10]

Prodf. Let ¢ be a small (< 1) positive number and let ¢, ¢y, go -- . denote
funotions of ¢ satisfying g,(c) - 0 as ¢ - 0. We shall show that, for
sufficiently large depending on s, the number of integers between = and
o with a divisor between #n# and ntte is less than g(e)n. This will imply
that, for n sufficiently large, all but g(e)n of tha integers m between 7
and 2n have divisors d, and ds_,_,1 satisfying

/ds_l > n® > mi®

gince we m&y get ¢ equal to the index of the smallest divisor of m larger
than ntte, On letting ¢ - 0 as n — co the lemma now follows easily.

We split the integers m between n and 2n having a divisor between nk
and ni+e into four disjoint sets. In the first set we pub those integers
~ divisible by an integer 4 > n* where A4 is composed solely of primes less
“than n¢ and where 2 = log(1/2¢). Arguing as in Lemma 1 of [10] with @
replaced by » and ¢, by ¢ we find, for some positive constant ¢, that less
than cx—in integers are in the first set. We put in the second set those
remaining integers which are divisible by at least 4x/3 prime factors lyng
between n¢ and nite, It follows, from an argument of Turan (see either
[10, Lemma €] or [33] ), that there are at most g,(e) integers in this seb.

The integers m which are left we split into two further sets, those
divisible by integers I,, between nt and nt+e with at most 2x/3 dis inet
prime factors which lie between n¢ and ni*s, and those not so divisible.
Plainly m is also divisible by m/l,,, an integer lying between nt-* and 2n},
(Note that 2nt < ntte for n sufficiently large.) If m is in the latter set then
m/l, has at most 2x/3 distinet prime factors between n* and nits, for
otherwise m would be a member of the second set. But now for any
integer m in the last two sets any divisor of either 7, or m/l, which is
composed solely of primes not greater than n® must be no larger than n*
in size, since m is nob & member of the first set. Thus all the integers m in
the last two sets are divisible by integers B, between ni—+@+l and nite
 with at most 2x/3 distinet prime factors all of which lie between n* and
nite, ‘We may now prove, as in [10, Lemma 8], that 3.8, 1/8; < g,(¢), and
thus that there are at most g,(e)n integers in the last two sets. Therefore
the number of integers between # and 2» having a divisor between n}
and ntte i less than (g,(e) +gs(e) +ca)n and so less than g(s)n, whence
Lemma 11 follows, by our earlier remarks. |
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& Proof of Theorem1 | |

~ Let of and (x+f)? be coprime non-zero integers with o, 8 distinet and
real. We may assume, without loss of generality since @, (e, B) is symmetrio

" in « and B for n > 2, that « >8] > 0. We shall further assume that 7
“has ab most «loglogn distinet prime factors, where 0 < « < 1/log 2, and

 that 7 exceeds a sufficiently large number which is effectively computable

in terms of o, 8 ,and « only. o |
Let dy = 1, and let dy,...,d; be all the divisors of » with pin/d,) # 0
ordered according to size. Then there exists an integer s, depending only

on 7, such that | |
dy/@y1 > exp{(logn)/g®)} B )
>

exp{(log n)*}, | | (19)

where A = 1 —xlog2; note that A > 0 since by hypothesis « < _1/10@2.
In fact one can take s as the smallest integer not less than 1 such that
d, » n*", which exists since d; = 7, and then clearly d, > nt/'d,_;; but we
have

t=g(n) o o (20)
< 2rloglogn = (log n)*< log 2, | (21)

~and 0 both (18) and (19) follow. |
We now proceed, as-in [82], o compare estimates for

’
R = I] {1~ (8/a)¥}uinsd.
. Y=g _ '
First we have

max(R, B4 < 1] (1-2%)%,

T3

where & = | /x|, and since, for d sufficiently large,

(1—af)1 < 1oL,
and, furthermore, by (19), d,—> 00 a8 n > 0, We 866 that the above
product is at most

| (]_ _I_.a;d;—l)! < 14 é (tmd:*'l)f_
fwml .

14

‘From (19) and (21) we clearly see that txd-1 < § for n su iciéntly large,
and thus, on recalling that « < 1/log2, that the above sum does not
exceed - ' -

Sttt < o log n.
Thus, since log(l +y) < y for y > 0, we obtain | | |
Hlog R} < |B/a|*logn, | (22)
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We prove now that B # 1 and hence that |logR| # 0, If, for some pair
of integers n > 3 and ¢ > 1, B = 1 then from the deﬁmtlon of R it follows

that
(1 ). (= ) = (=)o) (29
withk = t—s+1,H = 5} _ d.un/d,), and a,, ..., a; respectively a, 4, .. a;k,
given by those divisors d, of n, where s < r < ¢, for which u(n/d,} = —
respeotively u(n/d,) = 1. We note that @, may be taken to be » and th&t
all the other a,’s are less than @,. It now follows that the expression on the
left-hand side of (23) may be written as the product of «F, powers of
~B) and (x+-B), and some Lehmer numbers «,, with m < n. Similarly
the expression on the right-hand side of (23) may be written as the
product of u,, Lehmer numbers %, (m < =), and powers of (a—pg) and
(z+8). On squaring the expressions on both sides of the equality, (23)
becomes, for H > 0, an equation in integers only since (x—f£)? and («-+f)?
are integers. In fact H = 0 since, from Lemma 1, (of,%,) = 1 and since

also (aB, (a—B)2) = (af, (¢ +8)2) = 1. From Lemma 8, however, we see

that «, has a primitive divisor for # > 12 and thus (23) cannot hold; as a
consequence £ # 1 for we may assume that n > 12. |

We now employ Lemma 9 to derive a lower bound for [log R|. We
shall need the following identity

®,,(a, B) = [T (/8 — prsayuca) (24)
din
which is eagily verified from (10). From (24) we have
R--= oHD (a, ﬁ)-‘ﬂﬁl (ulr — BAr)—pinidn (25)
] i

where H is defined as above.
The product in (26) may be rewritten in the form

(o B (e = BT (o — ) (o8 — )0/, (26)
yan]
where § is 1 or 2 if d, is respectively odd or even, and where

g—1

K= 3% —pn/d) and L= Z —u{n/d.).
| ﬂ.ri zlﬂr 1
The terms (ad — B%)/(af — B%) In (26) are the Iﬁhmer numbers %; and thus

are integers which, since
_ (@ —¢)/ (@ ~y) =21+ Py Ly
plainly do not exceed d,a%-! < (2x)% in absolute value. Furthermore, we

hote that -
(o= BY<(a ~ B = (a/0)(ee— Bt B



442 o - C. L. STEWART_

where ‘Y1 and Ta are 0, 1, or —1, and where u,v are mtegers leaa than
(2e2)KIHL i absolute value. Thus the expression (26) is equal to
(0/b)(x— B)7*{c+ B)”* where a,b are integers which, since [K|+]|L| < 23,

are less than
(2a)¢31+m+dl—-1'i4ﬂ < aclﬂ‘li:-—l

and s0 also, by (21), less than o108 é:-1 in abgolute value; ¢y, ¢,, ... denote
positive numbers which are effectively computable in terms of «, 8, and «.
Therefore the height of the algebraic number represented by the produet |
in (25) is bounded above by qflosn de-3,

We plainly have |H| < 22,7 < n®. Furthermore, by Lemms 6, we
can write | |

©ple, B) = 20 H o4, (27)

where i, ..., Py a1 dlﬂtmct primes congruent to +1 (modn) and p, is
1 or P(n/(8,n)). Thus, on applying Lemma 9 with'«,, ..., «, given respect-
ively by Py, Pr» Do « and the product in (25), and further recalling
that |log B| # 0, we obtain
|log B| > exp(— (nD)"Q(log B)?), (28)
where B = 22, D = 4, ¢ is an effectively computable positive constant, and
Q = ¢,log p,...Jog p; log nlog A log afeds-rlogn

where 4 = max{4, height of «}. |
But now we can assume that p,, ..., 9, are all less than n?, for otherwise
the theorem is certainly valid and thus

| Q< cﬁz’c(log n)k+ed,_,.
Therefore, on combining (28) and (22), we find that

d,log|a/B|—loglogn < (klogn)estd,_,. (29)
This, together with (18}, gives

(logn)/q(n) < c,k{log k +loglogn),
and thus we have | :
k > eg(logn)/q(n)loglogn. (30)
It follows from Lemma 6 that at least half of the primes py,...,p, are
“congruent to one of either +1 or —~1 (modn); and we may assume, as it

makes no difference to the rest of the argument, that at least half are
congruent to —1 (modx). Let P denote the maximum of the p,'s con-
gruent to —1 (modn). We then have from (30) and from Lemma 10, on
getting | = — 1, m = n, and =(x, m,l) = [3k], that

co(p(n)logn)/g(nloglogn < =/log(z/n) (31)
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. for sﬁme mteger z < P. Now since r;:v(n) > cmﬂ/loghg ( a.nd further since,
from (21), (logn)/q(n) > (log 2R, for A > 0, we conclude that

T > aun(lag n)*/(loglog n)2,
Therefore Iog(a:/n) > Cyg Inglogn and it follows from (31) that

_ % > cyglp(n)logn)/g(n)
whence the theorem holds since B, > P > .

5. Proof of Theorem 2

The proof of Theorem 2 follows closely that of Theorem 1. Acﬁordmgly -

we shall refer the reader to the proof of Theorﬁm 1, when it is &pproprmte
rather than repeat the same arguments. o
We assume that for some function f(n), as in the statement of the
theorem, and some positive constant &, there exist arbitrarily large
integers n with at least 8n integers m, between n and 2n, satisfying .

B, < m(log m)®/f(m)loglogm, | (32)

for if there exists no such pair §,f, then the theorem plainly holds. We
further assume, without loss of generality, that f(n) is an increasing
funection. |

Now, as before, let d, = 1 and, for any integer n, let d,, ..., d; be all the
divisors of » with u(n/d,) # 0 ordered according to size. From Lemma 11
we observe that there exists an integer s, depending only on 7, such that

. dy/ @,y > oxp{(logn)/(f(n))¥, - (33)
and also, since plainly we may assume that (f(»))* < loglogn,
d,/d, , > exp{(logn)/loglogn} = (34)

for almost all integers m. Furthermore, almost all integers n have
(1 +o(1))log10gn distinet prime factors {see [16, p. 356]) and thus have

- ¢ g 20+o(1)]oglog 7

< (logn)t. I (35)

Thus there exist arbitrarily large integers » with at least $3n integers m
between # and 2n satisfying (32), (88), (34), and (35). Given such an
integer #, we may estimate the number of distinet prime factors of @, for
each of the 18n integers m between n and 2n, as in the proof of Theorem 1,
with (84) and (35) in place of (19) and (21) respectively. We argue as
before (note that the p, are less than B, and thus, from (32}, are less than
2, as was assumed in the proof of Theorem 1) until we reach (29) at which
point we have

d./d,_y < (klogmn)oue¥, - {36)
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Since f(n) is Btnctly mcraasmg we conclude, from (33) and (36), that
(logn)/(f(2n)} < cy5k(log k+loglog n).

Further, since we may assume that (f(n))* < loglogn, it plainly follows

that
(logn)/(f(n))tloglogn < k

for n sufficiently large.

Thus we may find &rblt;r&rﬂy large integers n with at least ;L;Sn integers
m between n and 2n satisfying (32) and for which the number of distinot
prime factors of ¥, exceeds (logn)/(f(n))tloglogn. Therefore, from
Lemme 7 and (32), there are (dnlogn)/2(f(n))tloglogn—4dn distinet
prime numbers less than d4n(logn)2/f(n)loglogn for mﬁmtely many
integers n. This contradicts the prime number theorem for » sufficiently
large, however, and the theorem now follows by our earlier remarks.

6. Proof of Theorem 3

We shall assume throughout that » exceeds a sufficiently large number
¢,; here ¢y, ¢y, ... denote effectively computable positive numbers.
We now proceed to compare estimates for

B = @, ((f(n)}'™, g(n))/(f(n)yemetn
= 1—p(n)/h(n)+ty/ (B(n))* 4 ... +ty0n/(R{n))*™
where the #,’s are the coefficients of the cyclotomic polynomial. The #;’s
are the values of the elementary symmetric functions on the primitive

nth roots of unity and as such. are integers satisfying |¢;| < (9:) < 7.

But now, since (1 —2z) € (L+a)* for > 0, we have
min{RB, B-1} > 1 —{(1 + (n¥/A(n))+ ... + (n3/h(n))?™-2) /h(n)}
and, since (n*/h{n)) < % for n sufficiently large, this is at least 1 —2/h(n)
Thus, on recalling that [log(l —y)| < 2y for 0 < y < %, we find that
|log B| < 4(h{n))2. (37)

We now prove that B # 1 and hence that |log R| > 0. We observe that
a root of the monic polynomial @,(1,2)—1 {» > 2) is an algebraic integer.
But now B = P,(1, (k(»))), and thus if B = 1 then (A{n))? is & root of

®,(1,2)— 1. This gives a contradiction, however, since (A(n))~ is a rational
number between 0 and 1 and thus is not an algebraic integer.

“We now employ Lemma 9 to give a lower bound for |log B} in terms of
the number of distinet prime factors of @, ((f( ()™, g(n)). We observe
that we may write |

= o i oS
Jusl,




A

 whence, from (39),
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-‘WhBI'E, from Lermma ﬁ Py = 1 or P(n/ (3, n)) pl, o P are dmtmct prlmes |
Gﬂﬂgmﬂl’lt to £1 (mod n); in fact, we may assume they are congruent to -

+1 (modn) (see [8]) and Xy,...,h, are positive integers. Thus, on

 applying Lemma 9 with D=1, n=~Fk+2, and with «,..., o, given

respectively by »4, ..., Prs Do, aDd f(n we find, since [log R| s 0, that
|log R| > exp(—nonQ(log B)?), (38)

where B = p(n)i(n)log f(n), ¢ is an effectively computable positive number,

and | |
Q = log py...log p; log n.log(4f(n)).

We assume, as before, that the p,’s are all less than n?; for otherwise the
theorem' plainly holds since A{n) < f(n)™ and max{ f(n i(n)} < ﬂlﬂﬂ'“
whence loglog h{n) < n for » sufficiently large. Therefore

Q< ogzk(log n)ets,

Furthermore, since I{n) < #'%8 %, we have B < ¢n’tiogn, Aceordmgly, on

combining (37) and (38) and taking logarithms, we find that

log h(fn) < (klogn)os,
Thigs implies that

¢sk > min{loglog 2(n)/ loglog 7, loglog h(n)/logloglog 2(n)}

which, because A(n) > 2%, is greater than

| cqloglog A(n)/logloglog A(n).
On setting m =n, I = 1, and =(z,m,l) = k in Lemma 10, we find that

Cxp(n )loglogh n)/logloglog hin) < z/log(x/n) - (39)
for some integer & < £5,. Now since the k distinot primes p, are aongruent |

to 1 (mod n), we have

x > cgnloglog h(n)/(logloglog h(n))2,
x > cqp(n)loglog h(n).

- This completes the proof of the theorem since x < B,
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