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We shall prove that if F is a cubic binary form with integer coefficients and nonzero

discriminant then there is a positive number c, which depends on F , such that the Thue

equation F (x, y) = m has at least c (log m)1/2 solutions in integers x and y for infinitely

many positive integers m.

1 Introduction

Let F (x, y) be a binary form with integer coefficients, degree r (≥3), and nonzero discrim-

inant. Let m be a nonzero integer and consider the equation

F (x, y ) = m (1)

in integers x and y. It has only finitely many solutions as was first established by Thue

[18] in 1909 in the case that F is irreducible over Q. There is an extensive literature

dealing with the problem of estimating from above the number of solutions to equation

(1); see e.g. [1, 11, 14], and [5]. By contrast there are only a few papers which treat the

problem of estimating the number of solutions of equation (1) from below. The first

substantial result in this context is due to Chowla [2].
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2 C. L. Stewart

In 1933, Chowla proved that there is a positive number c0 such that if k is a

nonzero integer then the number of solutions of x3 − ky3 = m in integers x and y is at

least c0 log log m for infinitely many positive integers m. This was refined by Mahler [6]

in 1935. He proved that there is a positive number c1, which depends on F , such that for

infinitely many positive integers m, equation (1) has at least

c1(log m)1/4 (2)

solutions. In 1983, Silverman [10] proved that the exponent of 1/4 in equation (2) can

be improved to 1/3. The purpose of this paper is to show that the exponent 1/3 can be

further improved to 1/2.

Theorem 1.1. Let F be a cubic binary form with integer coefficients and nonzero dis-

criminant. There is a positive number c, which depends on F , such that the number of

solutions of equation (1) in integers x and y is at least

c (log m)1/2 (3)

for infinitely many positive integers m. �

Theorem 1.1 as well as the estimates of Chowla, Mahler, and Silverman are

obtained by viewing equation (1), when it has a rational point, as defining an elliptic

curve E and then by constructing, from rational points on E , integers m′ for which

F (x, y) = m′ has many solutions in integers x and y. The solutions (x, y), so constructed,

have very large common factors. Silverman formalized this approach by proving the

following result.

Silverman’s Theorem. Let F be a cubic binary form with nonzero discriminant. Let m0

be an integer such that the curve E with homogeneous equation

E : F (x, y ) = m0z3 (4)

has a point defined over Q. Using that point as origin, we give E the structure of an

elliptic curve. Let r denote the rank of the Mordell–Weil group of rational points of E .

There exists a positive number c2, which depends on F , such that there are infinitely

many positive integers m for which the number of solutions of equation (1) in integers x

and y is at least

c2(log m)r/(r+2). �
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Cubic Thue Equations with Many Solutions 3

Thus, to establish equation (3), it suffices to prove that for each cubic binary form

F with integer coefficients and nonzero discriminant, there is an integer m0 for which

the rank of the group of rational points of the curve E , defined by equation (4), is at

least 2.

For particular forms, one can often improve on equation (3). For example, Silver-

man deduced from his result that there is a positive constant c3 such that for infinitely

many positive integers m, the equation

x3 + y3 = m

has at least c3(log m)3/5 solutions in integers x and y, by exhibiting a twist of x3 + y3 = 1

of rank at least 3. Stewart [15] found a twist of rank at least 6 and so replaced the

exponent of 3/5 by 3/4. Elkies and Rogers [3] have found a twist of rank 11 and so 3/4

may now be improved to 11/13.

Silverman [10] proved that there exist cubic binary forms with integer coefficients

and nonzero discriminant for which the number of solutions of equation (1) in integers

x and y is at least c4(log m)2/3 for infinitely many positive integers m. Liverance and

Stewart [4] employed elliptic curves of rank 12 found by Quer [9] to show that the exponent

of 2/3 can be improved to 6/7. Recently, Stewart [16] has shown that there are infinitely

many cubic binary forms with integer coefficients, content 1, and nonzero discriminant

which are inequivalent under the action of GL(2, Z) and for which the above estimate

applies.

2 Preliminary Results

The strategy which we shall employ to prove that we can find, for each cubic form F of

nonzero discriminant, an integer m0 for which the rank of equation (4) is at least 2 is the

one employed by Stewart and Top in [17] to study ranks of twists of elliptic curves. We

shall consider the nonsingular cubic curve ED over Q(t ) given by

ED : F (x, y) = D(t ),

where D is a polynomial in Z[t ] of positive degree. For each F we shall show that there

exists a polynomial D such that ED together with a Q(t ) point determines an elliptic

curve defined over Q(t ), which is not isomorphic over Q to an elliptic curve defined over

Q, and for which the rank of the group of Q(t ) points of ED is at least 2. We then specialize
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4 C. L. Stewart

t to a rational number t0 in order to find an appropriate m0 by means of the following

lemma due to Silverman [12].

Lemma 2.1. Let E be an elliptic curve defined over Q(t ) which is not isomorphic over

Q(t ) to an elliptic curve defined over Q. Suppose that t0 is a rational number for which

Et0 is an elliptic curve, where Et0 is obtained from E by specializing t to t0. Let

ρt0 : E (Q(t )) → Et0 (Q)

be the specialization homomorphism from the group of Q(t ) points of E to the group of

rational points of Et0 . ρt0 is an injective homomorphism for all but finitely many rational

numbers t0. �

Proof. This is a special caseof Theorem C of [12]. �

Let D(t ) be a polynomial with integer coefficients and positive degree and suppose

that D is not a perfect cube in C[t ]. Let C be a smooth, complete model of the curve given

by s3 = D(t ) and let H0(C , �1
C/Q) denote the vector space of holomorphic differentials on C .

Let E be an elliptic curve. We denote the set of morphisms from C to E defined over Q by

MorQ(C , E ). MorQ(C , E ) is an abelian group where the sum of two morphisms ϕ1 and ϕ2 is

defined to be the morphism which takes x in C to ϕ1(x) + ϕ2(x), where + denotes addition

in E .

Lemma 2.2. Let E/Q be an elliptic curve given by an equation y2 = x3 + k with k a

nonzero integer and let D ∈ Z[t ] be a nonconstant polynomial which is not a perfect

cube in C[t ]. Let C/Q be a smooth, complete model of the curve defined by s3 = D(t ) and

let ED/Q(t ) be defined by y2 = x3 + k(D(t ))2. For each point P = (x(t ), y(t )) in ED(Q(t )), we

define an element ϕP of MorQ(C , E ) by ϕP (t , s) = (x(t )s−2, y(t )s−3). The map

λ : ED(Q(t )) → H0(C , �1
C/Q

)

given by

λ(P ) = ϕ∗
P ωE ,

where ϕ∗
P ωE denotes the pullback via ϕP of the invariant differential ωE on E , is a

homomorphism with a finite kernel. �
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Cubic Thue Equations with Many Solutions 5

Proof. This is part 2 of Proposition 1 of [17]. �

We shall make use of Lemma 2.2 to calculate lower bounds for the rank of ED(Q(t ))

for various curves ED/Q(t ). We do so by calculating the rank of the image under λ in the

vector space of holomorphic differentials on C of sets of points from ED(Q(t )).

3 An Initial Simplification

Suppose that F (x, y) = a3x3 + a2x2y + a1xy2 + a0y3 with a0, a1, a2, a3 integers and that

the discriminant �(F ) of F is nonzero. Notice that the set of values with multiplic-

ities assumed by F at integer points (x, y) is unchanged when F (x, y) is replaced by

F (ax + by, cx + dy) with a, b, c and d integers for which ad − bc = 1. Thus, it is no

loss of generality to assume that a3 �= 0. Next observe that 27a2
3 F (x, y) = F1(X, y), where

X = 3a3x and F1(X, y) = X3 + 3a2 X2y + 9a3a1 Xy2 + 27a2
3a0y3. Further F1(X, y) = F2(Z , y),

where Z = X − a2y and F2(Z , y) = Z3 + (−3a2
2 + 9a1a3)Zy2 + (2a2

2 − 9a1a2a3 + 27a2
3a0)y3.

The discriminant of F2 is 729a2
3�(F ) and therefore to establish Theorem 1.1 it is suffi-

cient, by Silverman’s Theorem, to prove that whenever F is a cubic form

F (x, y) = x3 + axy2 + by3

with a and b integers and 4a3 + 27b2 �= 0, that there is an integer m0 for which the curve

Em0 with

Em0 : F (x, y) = m0

together with a specified rational point as the origin is an elliptic curve with rank at

least 2. In fact, we shall give an estimate from below for the number of cube-free integers

m0 below a given bound for which Em0 has rank at least 2.

Let U be a binary form with integer coefficients. We let S(U , x) denote the number

of cube-free integers t with |t | ≤ x for which there exist integers a, b, and z with z �= 0

such that U (a, b) = tz3. We shall make use of the following two results of Stewart and

Top [17]. The first is a special case of Theorem 2 of [17] and the second is a consequence

of Theorem 1 of [17].

Lemma 3.1. Let U be a binary form with integer coefficients and degree r which is not

a constant multiple of a power of a linear form and which is not divisible over Q by the
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6 C. L. Stewart

cube of a nonconstant binary form. There are positive numbers c5 and c6, which depend

on U , such that if x exceeds c5, then

S(U , x) >
c6x2/r

(log x)2
. (5)

�

We are able to remove the factor (log x)−2 from the right-hand side of inequal-

ity (5), provided that all the irreducible factors of F over Q have degree at most 7.

Lemma 3.2. Let U be a binary form with integer coefficients and degree r. Suppose that

r ≥ 3, U has a nonzero discriminant, and the largest degree of an irreducible factor of U

over Q is at most 7. Then there are positive numbers c7 and c8, which depend on U such

that if x exceeds c7, then

S(U , x) > c8x2/r.
�

4 Counting Twists of Rank at least 2

Let F (x, y) = x3 + axy2 + by3 with a and b integers with 4a3 + 27b2 �= 0. The quadratic

covariant H (x, y) of F is

H (x, y) = −3ax2 − 9bxy + a2y2

and the cubic covariant G(x, y) of F is

G(x, y) = −27bx3 + 18a2x2y + 27abxy2 + (27b2 + 2a3)y3.

Furthermore we have (see Chapter 24 of [8]),

(4G)2 = (4H )3 + 432(4a3 + 27b2)F 2. (6)

Suppose that D(t ) is a polynomial with rational coefficients and let Q be a Q(t )

point on

ED : x3 + axy2 + by3 = D(t )z3.

Then ED together with Q as origin is an elliptic curve over Q(t ). Define E ′
D by

E ′
D : zy2 = x3 + 432(4a3 + 27b2)D(t )2z3.
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Cubic Thue Equations with Many Solutions 7

Notice, by equation (6), that

ψ : ED → E ′
D

when we put

ψ ([x, y, z]) = [4zH , 4G, z3]. (7)

ψ is certainly regular if z �= 0 or G �= 0. If z = 0 and G = 0 then F = 0 and, by equation (6),

H = 0. But the resultant of the binary forms H and F is (4a3 + 27b2)2 which is nonzero.

Therefore ψ is a nonconstant morphism, and so an isogeny from the elliptic curve ED

with origin Q to the elliptic curve E ′
D with origin ψ (Q). The kernel of ψ is a finite group by

Corollary 4.9 on page 76 of [13]. Since ψ is defined over Q(t ), the rank of the Mordell–Weil

group of Q(t ) points of ED with origin Q is the same as that of E ′
D with origin ψ (Q). The

rank r of E ′
D does not depend on the choice of Q(t ) point for the origin. In the proof of our

next result, we shall determine a lower bound for the rank of ED(Q(t )) by determining a

lower bound for the rank of E ′
D(Q(t )) by means of Lemma 2.2 for three different choices

of polynomial D(t ).

Theorem 1.1 is a consequence of our next result.

Theorem 4.1. Let F (xy) = x3 + axy2 + by3 with a and b integers and 4a3 + 27b2 �= 0.

There exist positive numbers C1, C2, C3, and C4 such that if T is a real number larger

than C1, then the number of cube-free integers d with |d| ≤ T for which the curve given

by

x3 + axy2 + by3 = d,

together with a rational point, determines an elliptic curve of rank at least 2 is at least

C2T1/6/(log T )2 if ab �= 0, at least C3T1/6 if a = 0, and at least C4T2/9 if b = 0. �

5 The Proof of Theorem 4.1

For many of the calculations in the proof we have employed the symbolic computation

package MAPLE.

We first consider the case when ab �= 0. In this case, we may modify a construction

used by Mestre [7] to prove that there are infinitely many elliptic curves over Q with given

modular invariant and rank at least 2.
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8 C. L. Stewart

Put

D(t ) = −b3t12 − 3b3t10 + (−6b3 − a3b)t8 + (−7b3 − 2a3b)t6 + (−6b3 − a3b)t4 − 3b3t2 − b3,

and

ED : x3 + axy2 + by3 = D(t ).

Notice that

P1 = (−b(t4 + t2 + 1), a(t4 + t2))

and

P2 = (−b(t4 + t2 + 1), a(t2 + 1))

are points on ED. By equation (7), there is a morphism ψ defined over Q(t ) from ED to the

curve E ′
D where

E ′
D : y2 = x3 + 432(4a3 + 27b2)(D(t ))2.

Put P ′
1 = ψ (P1) and P ′

2 = ψ (P2). The invariant differential ωE ′ on E ′ : y2 = x3 + 432(4a3 +
27b2) is dx/(2y) and so, as in Lemma 2.2,

ϕ∗
P ′

1
ωE ′ = −1

3
ab(2t3 + t )

dt

s2

and

ϕ∗
P ′

2
ωE ′ = 1

3
ab(t5 + 2t3)

dt

s2
.

Since ab �= 0, by Lemma 2.2 the Q(t ) rank of E ′
D and so of ED is at least 2. By Lemma 2.1, the

rank of ED(t0) is at least 2 for all but finitely many rationals t0. Put U (x, y) = y12 D(x/y). To

determine the number of cube-free integers d with |d| ≤ T for which x3 + axy2 + by3 = d

has a rational point and defines an elliptic curve whose group of rational points has rank

at least 2, it is enough to estimate S(U , T ). Our result now follows from Lemma 3.1, since

the discriminant of U is 212a24b38(4a3 + 27b2)6 which is nonzero.

Next, we consider the case when b = 0. Then

P1 = (a(t2 + a)), (t (t2 + a) − 1)
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Cubic Thue Equations with Many Solutions 9

and

P2 = (a, (t2 + a)2 − t )

are points on

ED : x3 + axy2 = D(t ),

where

D(t ) = a2(t2 + a)(t6 + 3at4 − 2t3 + 3a2t2 − 2at + a3 + 1).

Let E ′
D be the curve given by

y2 = x3 + 1728a3(D(t ))2.

The morphism from ED to E ′
D determined by equation (7) maps P1 and P2 to P ′

1 and P ′
2,

respectively. The invariant differential ωE ′ on E ′ : y2 = x3 + 1728a3 is dx/(2y), and so we

may compute the pullbacks ϕ∗
P ′

1
ωE ′ and ϕ∗

P ′
2
ωE ′ as in Lemma 2.2. We obtain

ϕ∗
P ′

1
ωE ′ = 1

6
a(t4 + 2at2 + 2t + a2)

dt

s2

and

ϕ∗
P ′

2
ωE ′ = 1

6
a(4t3 + 4at − 1)

dt

s2
.

Since a �= 0, it follows from Lemma 2.2 that the Q(t ) rank of E ′
D and of ED is at least

2. As before, we apply Lemma 2.1 to find that the rank of ED is at least 2 for all but

finitely many rationals t0. Put U (x, y) = y9 D(x/y). Note that the discriminant of U is

28a36(1024a3 + 729) which is nonzero, since a is a nonzero integer. Further, the largest

degree of an irreducible factor of U over Q is at most 6. By Lemma 3.2, S(U , T ) > C3T2/9

and the result follows in this case.

Finally, we consider the case when a = 0. Put

P1 = (bt3 + 3bt2 + 3bt + 9b − 1, bt4 + 6bt2 − t + 9b − 3)

and

P2 = (bt3 − 3bt2 + 3bt − 9b − 1, bt4 + 6bt2 − t + 9b + 3).
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10 C. L. Stewart

Next, define D(t ) by

D(t ) = (b2t6 + 9b2t4 − 2bt3 + 27b2t2 + 18bt + 27b2 + 1) × (b2t6 + 9b2t4 + 27b2t2 + 27b2 − 1).

Then P1 and P2 are points on

ED : x3 + by3 = D(t ).

As before we may map P1 and P2 to P ′
1 and P ′

2, respectively on E ′
D, as in equation (7),

where

E ′
D : y2 = x3 + 2436b2(D(t ))2.

Let E ′ : y2 = x3 + 2436b2. The invariant differential ωE ′ on E ′ is dx/(2y). Then, as in

Lemma 2.2,

ϕ∗
P ′

1
ωE ′ =

(
1

6
b2t6 + b2t5 + 1

2
b2t4 +

(
6b2 − 1

3
b
)

t3 +
(

−3

2
b2 + 2b

)
t2

+ (9b2 + b)t − 9

2
b2 + 1

6

)
dt

s2

and

ϕ∗
P ′

2
ωE ′ =

(
1

6
b2t6 − b2t5 + 1

2
b2t4 +

(
−6b2 − 1

3
b
)

t3 +
(

−3

2
b2 − 2b

)
t2

+ (−9b2 + b)t − 9

2
b2 + 1

6

)
dt

s2
.

Since b �= 0, it follows from Lemma 2.2 that the Q(t ) rank of E ′
D and of ED is at least 2.

We apply Lemma 2.1 to find that the rank of ED is at least 2 for all but finitely

many rationals t0. Put U (x, y) = y12 D(x/y). The discriminant of U is 224339b50(27b2 − 1)

(8b − 1)6(8b + 1)6 which is nonzero, since b is a nonzero integer. Again, the largest degree

of an irreducible factor of U over Q is at most 6. By Lemma 3.2,

S(U , T ) > C4T1/6

and our result follows.
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