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1 Introduction

K.F. Roth has written 8 papers [18]–[25] on the distribution of sequences of
positive integers in arithmetic progressions and on related subjects. The start-
ing point of this work was the famous conjecture on the sharpening of van
der Waerden’s theorem [37] formulated first probably by Erdős and Turán in
1936 [10]:

Conjecture 1. If k, n are positive integers then let rk(n) denote the maximal

cardinality of a subset selected from {1, 2, . . . , n} so that it does not contain an

arithmetic progression of k terms. Then for any fixed k ≥ 3 and n → +∞ we

have rk(n) = o(n).

The first significant step in this direction was made 16 years later by Roth:
first in [18] he proved the k = 3 special case of this conjecture (by using the
Hardy–Littlewood method in a very elegant way), and then in [19] he sharpened

the result to r3(n) = O
(

n
log log n

)

. Unfortunately, his proof cannot be adapted to

the case k > 3. Thus he continued the work in the papers [20]–[25] by proposing
and trying other approaches for settling the conjecture for general k. These
efforts did not lead to the proof of the conjecture; it was Szemerédi who settled
first the case k = 4 [33] and then the general case [34] by using a very difficult and
ingenious argument of a completely elementary combinatorial nature. Since then
further proofs of the conjecture, now Szemerédi’s theorem, have been found. In
1977 Furstenberg [11] used techniques from ergodic theory to prove Szemerédi’s
theorem. In 2001 Gowers [12] gave a third proof of Szemerédi’s theorem.

Although Roth did not succeed in finding a proof for Conjecture 1, as a
byproduct of his efforts he opened up new directions of research and proved
results of basic importance; the real significance of some of them was realized
only much later.

It would be a hopeless task to try to give a more or less complete survey of
the 8 papers of Roth mentioned above and of the papers inspired by or related
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to them; this would take a whole book. The best that we can do in a paper of
limited extent is to split off and survey a relatively independent part of the 8
papers and the work inspired by it. Indeed, here we will focus on those results
where long arithmetic progressions are studied, i.e., on papers [21], [22] and [23]
(although for the sake of completeness we will also mention his other papers
shortly) and on the 20 or so papers inspired by them. First in Section 2 we will
give a survey of the main results of these 3 papers. In Section 3 we will present
the very elegant proof of his basic result in [21]. In Section 4 we will survey
the papers inspired by Roth’s work. Finally, in Section 5 we will analyze the
significance of his papers and we will also present a couple of related problems
which are still open.

Throughout this paper we will use the following notation: Z and N denote
the set of integers and the set of positive integers respectively. R and C denote
the set of real numbers and the set of complex numbers respectively. For any real
number x the integer part of x is denoted by [x], and ‖x‖ denotes the distance
of x from the nearest integer so ‖x‖ = min

{

x − [x], x + 1 − [x]
}

. We write
e(α) = e2πiα. We will use Vinogradov’s notation ≪: we write f(x) ≪ g(x) if
there is an absolute constant C such that |f(x)| < C|g(x)| for x > x0 (in other
words, f(x) = O(g(x)). c1, c2, . . . will denote positive absolute constants.

2 A survey of some of Roth’s papers

In Section 1 we mentioned his papers [18] and [19] written on the estimate of
r3(n). In [20] he extended the problem by studying systems of linear equations.
Let (aµν) be an ℓ × n matrix whose elements are integers. A set U of positive
integers is called an A-set if there are not distinct integers x1, x2, . . . , xn in U
such that

n
∑

ν=1

aµνxν = 0 for µ = 1, 2, . . . , ℓ.

Denote by A(x) the greatest number of integers that can be selected from
1, 2, . . . , x to form an A-set. In [20] Roth proved:

Theorem 1. Assume that

n
∑

ν=1

aµν = 0 for µ = 1, 2, . . . , ℓ,

and that among the columns of the matrix there exist ℓ linearly independent ones

so that if any one of these is excluded, then the remaining n− 1 columns of the

matrix can be divided into two sets so that among the columns of each set there

are ℓ linearly independent columns. Then A(x) = o(x).

Note that the matrix (1,−2, 1) satisfies the conditions, thus his earlier result
r3(n) = o(n) is a special case of this theorem.

Now let N ∈ N, A ⊂ {1, 2, . . . , N}. For q ∈ N and m, h ∈ Z, write

Aq,h(m) =
∣

∣

{

a : 1 ≤ a ≤ m, a ≡ h (mod q), a ∈ A
}∣

∣,
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in particular,

A(m) = A1,0(m) =
∣

∣

{

a : 1 ≤ a ≤ m, a ∈ A
}∣

∣,

and set

η =
A(N)

N
.

For q ∈ N and m, h ∈ Z, let

Dq,h(m) =
∣

∣

{

a : 1 ≤ a ≤ m, a ≡ h (mod q), a ∈ A
}
∣

∣

− η
∣

∣

{

a : 1 ≤ a ≤ m, a ≡ h (mod q)
}∣

∣

and

Vq(m) =

q−1
∑

h=0

D2
q,h(m).

In [21] Roth proved:

Theorem 2. For all N, Q ∈ N and A ⊂ {1, 2, . . . , N} we have

(2.1)

Q
∑

q=1

1

q

N
∑

m=1

Vq(m) + Q

Q
∑

q=1

Vq(N) ≫ η(1 − η)Q2N

where the implicit constant is absolute.

As Roth writes, (2.1) says that a sequence which is neither very thin nor very
dense cannot be “well-distributed simultaneously among and within all congru-
ence classes”. Roth’s proof, in a slightly generalized form, will be presented in
the next section.

It follows from Theorem 2 that:

Corollary 1. Let N, Q ∈ N with Q ≤ N1/2. Then for any A ⊂ {1, 2, . . . , N},
there exist q1, m1(≤ N), h1 ∈ Z such that 1 ≤ q1 ≤ Q and

∣

∣Dq1,h1
(m1)

∣

∣ =
∣

∣

∣

∣

∣

{

a : 1 ≤ a ≤ m1, a ≡ h1 (mod q1), a ∈ A
}
∣

∣(2.2)

− η
∣

∣

{

a : 1 ≤ a ≤ m1, a ≡ h1 (mod q1)
}∣

∣

∣

∣

∣

≫
(

η(1 − η)Q
)1/2

.

Indeed, (2.1) says that (2.2) holds on average. We get the best lower bound
here if we choose Q = [N1/2]:

Corollary 2. For all N ∈ N and A ⊂ {1, 2, . . . , N}, there exist q1, m1

(≤ N), h1 ∈ Z such that 1 ≤ q1 ≤ N1/2 and

∣

∣Dq1,h1
(m1)

∣

∣ ≫
(

η(1 − η)
)1/2

N1/4.
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Roth continued the work in this direction in a series of 4 papers [22], [23],
[24], [25]. In the introduction to the first part of the series [22] he presents his
motivation and goals in a very clear and compact form. Thus we will quote him:

“A well known conjecture” [a variant of the Erdős–Turán Conjecture 1] “as-
serts that if an integer sequence (more precisely, a strictly increasing sequence of
integers) has positive upper density, then it contains arbitrarily long arithmetic
progressions. This conjecture, which remains undecided, has led me to consider
the following general question.

Suppose that k is a large integer, and that the integer N is large as a function
of k. Let

(2.3) s1, s2, . . . , sN

be a set of N real numbers, and write

(2.4) L =

N
∑

n=1

sn.

We ask what lower bounds can one give for the expressions

(2.5) sup
n,q

∣

∣

∣

∣

k−1
∑

ν=0

(sn+νq − LN−1)

∣

∣

∣

∣

and

(2.6) sup
n,q

k−1
∑

ν=0

(sn+νq − LN−1),

where each supremum is taken over all pairs n, q of integers satisfying

(2.7) 1 ≤ n < n + (k − 1)q ≤ N.

Since we can always replace the numbers sn by the numbers (sn − LN−1),
we may restrict our attention to the case L = 0.

A lower bound for (2.5) is easily obtained by means of the method of our
previous paper [21]; we shall prove the following result in this way.

Theorem 3. Let k be a natural number and suppose that the integer N satisfies

N > (10k)7. Then, for every set (2.3) of real numbers, there exist integers n, q,
satisfying (2.7), such that

(2.8)

∣

∣

∣

∣

k−1
∑

ν=0

sn+νq

∣

∣

∣

∣

≥
{

1

10
kN−1

N
∑

j=1

s2
j

}1/2

.

“One-sided” estimates, such as a lower bound for (2.6), appear to be con-
siderably more difficult to obtain (but it is this type of result that is relevant to
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the above-mentioned conjecture), and almost the entire paper will be devoted
to proving a result of this kind.

We will now need to make use of the assumption that the set (2.3) satisfies
(2.4) with L = 0. In addition, we shall need to assume that the numbers sn all
lie within a suitable set S of real numbers; a set S will be “suitable” if there
exists a number Λ such that

(2.9) sup
x∈S

|x| ≤ Λ inf
x∈S

|x|. ”

He points out that without the loss of generality, one may replace (2.9) by

(2.10) 1 ≤ |sj | ≤ Λ (j = 1, 2, . . . , N),

and then he writes:
“We may therefore prove our result in the following form.

Theorem 4. Let Λ ≥ 1 and let k be an integer satisfying

(2.11) k > (102Λ)4.

Then there exists a number N1 = N1(Λ, k) such that the following statement is

true.

If N > N1 and the set (2.3) of real numbers satisfies (2.10) and

(2.12)

N
∑

j=1

sj = 0,

then there exist integers n, q, satisfying (2.7), such that

(2.13)
k−1
∑

ν=0

sn+νq >

{

10−4Λ−2
k−1
∑

ν=0

s2
n+νq

}1/2

.

Thus, in particular, we have

(2.14)

k−1
∑

ν=0

sn+νq > 10−2Λ−1k1/2

for this pair n, q.”

. . . “We have made no attempt at economy in relation to constants, and
there is no special significance in either the constant 1

10 appearing in (2.8) or
the constant 10−4 appearing in (2.13). Our method can be adapted to yield an
explicit value of N1 (in terms of Λ and k), but this value would be extremely
large.”

He also writes: “An important special case arises when S contains only a
finite number of elements; in this case S will certainly satisfy (2.9) for some
Λ, provided only it does not contain 0. It is perhaps worth mentioning that in
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this special case a famous theorem of van der Waerden [37] would enable us to
choose integers n, q (satisfying (2.7)) so that the numbers

(2.15) sn, sn+q, . . . , sn+(k−1)q

are all equal (or, even in the general case, so that these numbers all have the same
sign). But whilst such a choice would yield a very effective lower estimate for
(2.5) (in view of (2.9)), it would be entirely useless for the purpose of obtaining
a lower estimate for (2.6). For there would be nothing to prevent the common
value of the numbers (2.15) being negative.”

In the remaining part of this section we will quote again Roth repeatedly
but without using some of his notation.

In [23] he proves the following “. . . refinement . . . of Theorem 4.

Theorem 5. Let Λ ≥ 1 and let δ satisfy

10−4∆−2 ≤ δ ≤ 10−4Λ−1.

Let the integer k satisfy k > (102Λ)6δ. Then there exists a number N ′
1 =

N ′
1(Λ, δ, k) such that the following statement is true.

Suppose that N > N ′
1 and the set (2.3), in addition to satisfying (2.10),

(2.12), is such that

(2.16)

k−1
∑

u=0

s2
n+uq ≤ max

{

10−4δ−1k,
1

6

(k−1
∑

u=0

sn+uq

)2
}

for every arithmetic progression
{

n, n + q, . . . , n + (k − 1)q
}

. Then there exists

an arithmetic progression
{

n0, n0 + q, . . . , n0 + (k − 1)q0

}

for which

k−1
∑

u=0

sn0+uq0
>

{

δ

k−1
∑

u=0

s2
n0+uq0

}1/2

.

We note that Theorem 4 is simply the special case δ = 10−4Λ−2 of The-
orem 5. For in this case (2.10) ensures that (2.16) holds for all arithmetic
progressions

{

n, n+q, . . . , n+(k−1)q
}

, so that the additional premise becomes
void.”

From Theorem 5 Roth deduces:

Theorem 6. Let 0 < β < 1/2, and suppose that k > k1(β) and N > N1(β, k)
where k1 and N1 are sufficiently large. Then, if the sequence A ⊂ {1, 2, . . . , N}
is such that β ≤ |A|

N ≤ 1 − β, there exists an arithmetic progression {n, n +
q, . . . , n + (k − 1)q}, such that

(2.17)
∣

∣A∩
{

n, n + q, . . . , n + (k − 1)q
}∣

∣ − |A|
N

k > cβk1/2

where c is a positive constant.
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The significance of this result is that Roth shows that the Erdős–Turán
Conjecture 1 and the following conjecture on the sharpening of the statement
of Theorem 6 are equivalent:

“Conjecture 2. Let 0 < β < 1/2. Then there exists a positive number b = b(β)
depending only on β, such that the following statement is true.

Suppose that k > k1(β) and N > N1(β, k), where k1 and N1 are sufficiently

large. Then, if the sequence A ⊂ {1, 2, . . . , N} is such that β ≤ |A|
N ≤ 1 − β,

there exists an arithmetic progression
{

n, n + q, . . . , n + (k − 1)q
}

such that

(2.18)
∣

∣A ∩
{

n, n + q, . . . , n + (k − 1)q
}∣

∣ − |A|
N

k > bk. ”

In other words, in order to prove the Erdős–Turán Conjecture 1 it would be
sufficient to replace (2.17) in Theorem 6 by (2.18). However, there is a long way
to go from (2.17) to (2.18) and Roth has not been able to bridge this gap.

These last results appeared in 1967 in Part II [23] of his series “Irregularities
of sequences relative to arithmetic progressions”. Part III [24] of the series
appeared in 1970. He writes in the introduction: “Szemerédi has recently proved
[33], by a remarkably ingenious elementary method, that an integer sequence
containing no four consecutive terms of any arithmetic progression must have
zero density. Our purpose is to develop a new method, embodying a number
of Szemerédi’s ideas but analytic in nature, for proving the above theorem and
certain generalizations of it. We intend to carry out that task in the next paper
of this series. In the present paper we prove a theorem which will constitute the
basic tool for the analytic method. . . . Szemerédi proved that

lim
N→∞

N−1r4(N) = 0,

but a quantitative result would give information regarding the rate at which
N−1r4(N) tends to 0 as N → ∞. Our method can be adapted to give quantita-
tive results, but the proofs then become complicated and the resulting estimates
would be poor.”

After the technical preparation of Part III, in Part IV [25] Roth considers
the same generalization of the problem as in [20], i.e., he considers ℓ×n integer
matrices (aµν) and the solvability of the system of linear equations

n
∑

ν=1

aµνxν = 0 for µ = 1, 2, . . . , ℓ

in distinct integers. In [20] he could handle this system only for n > 2ℓ (this
follows from the linear independence condition on the column vectors in Theo-

rem 1) which excludes the matrix

(

1 −2 1 0
0 1 −2 1

)

, i.e., the case of the four

term arithmetic progressions. Here in [25] he also covers the case n = 2ℓ which
includes the four term arithmetic progressions.
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3 Proof of Theorem 2

In this section we will present the proof of Theorem 2. More exactly, we will
prove the result in a slightly generalized form inspired by Theorem 3 (but this
version does not follow from Theorem 3). This more general form of the re-
sult appears in [29] but its proof follows Roth’s original proof closely and no
additional effort is needed, thus it can be considered as a variant of Theorem 2.

Theorem 2’. Let N ∈ N, Q ∈ N with Q ≥ 2, and let s1, s2, . . . , sN ∈ C. Set

Q1 = [Q/2] and si = 0 for i ∈ Z, i < 1 and i > N . For n ∈ Z and q, k ∈ N

write

D(n, q, k) = sn + sn+q + sn+2q + · · · + sn+(k−1)q.

Then we have

(3.1)

Q
∑

q=1

N
∑

n=1−(Q1−1)q

∣

∣D(n, q, Q1)
∣

∣

2 ≥
(

2

π
Q1

)2 N
∑

m=1

|sm|2.

Note that Theorem 2 follows from Theorem 2’ by taking

sn =

{

1 − η for n ∈ A
−η for n /∈ A

(for 1 ≤ n ≤ N).

Proof of Theorem 2’. The proof will be based on a very elegant use of the com-
plex version of the Fejér kernel. Write

F (β) =

Q1−1
∑

j=0

e(jβ)

and

S(α) =

N
∑

n=1

sne(nα) =

+∞
∑

n=−∞

sne(nα).

Following Roth’s method, consider the integral

E =

1
∫

0

Q
∑

q=1

∣

∣F (qα)S(α)
∣

∣

2
dα.

Then by Parseval’s formula (and using si = 0 for i < 1, i > N) we have

E =

Q
∑

q=1

1
∫

0

∣

∣F (qα)S(α)
∣

∣

2
dα =

(3.2)
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=

Q
∑

q=1

1
∫

0

∣

∣

∣

∣

Q1−1
∑

j=0

e(jqα)
N

∑

n=1

sne(nα)

∣

∣

∣

∣

2

dα =

=

Q
∑

q=1

1
∫

0

∣

∣

∣

∣

∣

N+(Q1−1)q
∑

m=1

(Q1−1
∑

j=1

sm−jq

)

e(mα)

∣

∣

∣

∣

∣

2

dα =

=

Q
∑

q=1

1
∫

0

∣

∣

∣

∣

N+(Q1−1)q
∑

m=1

D
(

m − (Q1 − 1)q, q, Q1

)

e(mα)

∣

∣

∣

∣

2

dα =

=

Q
∑

q=1

N+(Q1−1)q
∑

m=1

∣

∣D
(

m − (Q1 − 1)q, q, Q1

)
∣

∣

2
=

Q
∑

q=1

N
∑

n=1−(Q1−1)q

∣

∣D(n, q, Q1)
∣

∣

2
.

On the other hand, for |β| ≤ 1/Q (so that |Q1β| ≤ 1/2) we have

|F (β)| = Q1

∣

∣

∣

∣

sin πQ1β

πQ1β

∣

∣

∣

∣

∣

∣

∣

∣

πβ

sin πβ

∣

∣

∣

∣

≥ Q1 ·
2

π
· 1 =

2

π
Q1.

Moreover, by Dirichlet’s theorem for every α ∈ R there exist q0 ∈ N and p0 ∈ Z

with 1 ≤ q0 ≤ Q and

|q0α − p0| <
1

Q

so that
Q

∑

q=1

∣

∣F (qα)
∣

∣

2 ≥
∣

∣F (q0α)
∣

∣

2
=

∣

∣F (q0α − p0)
∣

∣

2
>

(

2

π
Q1

)2

.

Thus we have

E =

1
∫

0

( Q
∑

q=1

∣

∣F (qα)
∣

∣

2
)

|S(α)|2dα ≥(3.3)

≥
(

2

π
Q1

)2
1

∫

0

|S(α)|2dα =

(

2

π
Q1

)2 N
∑

m=1

|sm|2.

(3.1) follows from (3.2) and (3.3), and this completes the proof of the theo-
rem.

4 Work inspired by Roth’s papers

Montgomery [17] discussed Theorem 2 in connection with the large sieve. In
Theorem 2 and in the arithmetic form of the large sieve similar quantities are
estimated but from the opposite sides. Montgomery gave a different proof for
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Theorem 2 and improved slightly on it. He replaced the second term on the
left-hand side of (2.1) by

Q
∑

q=1

qVq(N).

He also showed by using the Rudin–Shapiro construction in harmonic analy-
sis that the lower bound in (2.1) is the best possible apart from the implicit
constant.

For N ∈ N and EN = (e1, . . . , eN ) ∈ {−1, +1}N write

(4.1) f(EN ) = max
1≤n≤n+(k−1)q≤N

∣

∣

∣

∣

k−1
∑

i=0

en+iq

∣

∣

∣

∣

,

and let

(4.2) F (N) = min
EN∈{−1,+1}N

f(EN ).

Then it follows from Corollary 2 that

(4.3) F (N) ≫ N1/4.

From the opposite side Erdős [8] proved that

F (N) ≪ N1/2,

and Spencer [32] improved this to

F (N) ≪
(

N log log N

log N

)1/2

.

Sárközy [9] constructed a sequence EN ∈ {−1, +1}N with

(4.4) f(EN ) ≪ N1/3(log N)2/3

whence
F (N) ≪ N1/3(log N)2/3.

(Note that this is the only upper bound proved constructively, all the other
proofs are existence proofs.) Beck [2] improved the upper bound further to

F (N) ≪ N1/4(log N)5/2,

and finally Matoušek and Spencer [16] proved that

(4.5) F (N) ≪ N1/4

so that (4.3) and thus also Corollaries 1 and 2 are the best possible.
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Huxley [13] extended Roth’s work to sequences which have been sifted. He
showed that a sifted sequence cannot be too evenly distributed in those arith-
metic progressions in which it lies.

Choi [4] improved on the constant 1
10 on the right-hand side of (2.8) in

Theorem 3. In [5] Choi showed that the statement of Theorem 4 is valid with

N1(Λ, k) = 2
(

2(Λ−1s)2s+5s)6
where s = 2Λ

(

(2k2)!
)2

k8. This value of N1(Λ, k)
is extremely large and, indeed, for Λ fixed and k large, N > N1 implies that
k = O

(

(log log log N/ log log log log N)1/2
)

so that even this sharper form of
Theorem 4 gives only

max
n,q,k

k−1
∑

ν=0

sn+νq > c(Λ)

(

log log log N

log log log log N

)1/4

.

Sárközy [28] showed that a much better one-sided estimate can be given for

this maximum if we estimate the sums
k−1
∑

ν=0
sn+νq in terms of Q, the upper bound

for q, instead of k. Indeed, he proved that if Q, N ∈ N,

(4.6) Q ≤ 1

5

(

N

Λ

)2/5

,

and s1, . . . , sN are real numbers satisfying (2.10) and (2.12), then there exist
n, k, q ∈ N with q ≤ Q, n + (k − 1)q ≤ N and

k−1
∑

ν=0

sn+νq ≥ 1

40
Q1/2.

This lower bound is nearly best possible for any Q satisfying (4.6) (but, perhaps,
the upper bound in (4.6) can be replaced by c(Λ)N1/2). It follows from this
result that

(4.7) max
n,q,k

k−1
∑

ν=0

sn+νq > c(Λ)N1/5

(for s1, . . . , sN satisfying (2.10) and (2.12)).
As we remarked after Theorem 2 (quoting Roth), the theorem says that a

sequence cannot be well-distributed simultaneously among and within all con-
gruence classes. We are usually more interested in the irregularities of the
distribution among the congruence classes. However, to ensure the existence of
irregularities of this type, one needs an additional assumption. This problem
was studied by Sárközy [26], [27], and he proved such a result under the condi-
tion that

∣

∣{n : 1 ≤ n ≤ N, n − 1 /∈ A, n ∈ A}
∣

∣ is “large”, i.e., A consists of
many blocks.

The applicability of Theorem 2 and its corollaries is restricted by the fact
that only irregularities of size N1/4 can be guaranteed, while for a truly ran-
dom sequence there are irregularities of size N1/2. Sárközy [29] showed that
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for periodic sequences this gap disappears: if the period is N , then there are
irregularities of size cN1/2 with a nice explicit constant c, and this lower bound
is the best possible apart from the value of c. He applied this result to give lower
bounds for character sums, and improved on the earlier constant of Linnik and
Rényi. (Later his constant was improved further by Sokolovskii [31].)

Sárközy and Stewart [30] considered the following generalization of the prob-
lem studied in Theorem 2: Let b1 < b2 < . . . be a sequence of positive integers,
N ∈ N, s1, s2, . . . , sn ∈ C. Then estimate

(4.8) max
a∈Z,q,t∈N

∣

∣

∣

∣

t
∑

j=1

sa+bjq

∣

∣

∣

∣

.

They gave a lower bound for this quantity if the sequence b1, b2, . . . does not
increase very fast, and also in the special case bj = j2. The case of general
sequences b1, b2, . . . was studied by Beck, Sárközy and Stewart in [3]. They
proved that if N, t, Q ∈ N,

(4.9) 2t ≤ Q,

b1 < b2 < · · · < bt are positive integers, s1s2, . . . , sN ∈ C and we put si = 0 for
i < 1 and i > N , then we have

Q
∑

q=1

N
∑

a=−Qbt+1

∣

∣

∣

∣

t
∑

j=1

sa+bjq

∣

∣

∣

∣

2

≥ tQ

4

N
∑

n=1

|sn|2.

A condition of type (4.9) is necessary, and (4.9) is the best possible apart from
the constant factor 2. It follows from this theorem that if also 2tbt ≤ N is
assumed, then the maximum in (4.8) is

≥ t1/2

√
8

(

1

N

N
∑

n=1

|sn|2
)1/2

.

Knieper [14] and Valkó [36] studied different several dimensional generaliza-
tions of the problem in Theorem 2, and they gave lower bounds which are the
best possible apart from logarithmic factors.

In [35] Valkó studied the irregularities of the distribution of sums ai + aj

relative to arithmetic progressions.
Lovász [15] gave a new proof for Roth’s lower bound ≫ N1/4 for the maxi-

mum of the irregularities in the case of two-colourings, or equivalently sequences
whose terms are ±1, by using standard arguments from the field of semidefinite
optimization. Doerr and Srivastav [6] extended the problem to multicolourings,
and they gave Roth type lower bounds in this case. Doerr, Srivastav and Wehr
[7] studied the same several dimensional generalization of Roth’s problem as
Knieper [14] and they sharpened some of her results.

12



5 Summary and open problems

As the quotations from Roth’s papers show his main motivation in working in
this field was to try to get closer to proving Conjecture 1 of Erdős and Turán.
His efforts did not lead to the proof of the conjecture (which was proved later by
Szemerédi), however, he opened up a new direction of investigation by studying
the irregularities of distribution relative to long arithmetic progressions. His
papers inspired numerous interesting generalizations and extensions by others,
and important applications. These results also help us to understand the nature
and limitations of pseudorandomness (see, e.g., [1]) which plays so important a
role in cryptography and elsewhere.

The strong impact of Roth’s work is due not only to his results but also to
the methods developed by him. The ideas and tools which he introduced in [19]
and [21] have many applications (these two beautiful papers largely contributed
to the present research interest of the first author of this paper).

Finally, to indicate that in spite of the intensive work in this field there is
still a long way to go, we conclude this paper by presenting two open problems.

Problem 1. Recall that if f(EN ) and F (N) are defined by (4.1) and (4.2),
then by the results of Roth [21], and Matoušek and Spencer [16] we know that
F (N) ≍ N1/4. However, all the upper estimates given by Erdős, Spencer, Beck
and Matoušek are proved by existence proofs. The best construction is still
the one in (4.4) with f(EN ) < N

1

3
+ε. The problem is to improve on this.

f(EN ) = O(N1/4) will be, perhaps, very difficult but, at least, one might like

to give an explicit construction with f(EN ) < N
1

4
+ε.

Problem 2. While for the absolute values of the irregularities we know the
order of magnitude of the best possible estimate, it is not so in the case of one-
sided estimates. Recall that the best known lower bound is the one in (4.7):
> c(Λ)N1/5. Almost certainly, the best possible estimate is > c(Λ)N1/4; the

problem is to prove at least > c(Λ)N
1

4
−ε for N > N0(Λ, ε).
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