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Abstract

We construct a family of finite binary sequences which has a remarkable

uniformity with respect to specification of several terms and which also has

the property that every sequence in the family has small measures of normal-

ity, well distribution in arithmetical progressions and multiple correlations.

We also construct a pseudorandom bit generator whose output consists of

members of the family.

1. Introduction

Let p be an odd prime and consider the sequence of Legendre symbols E(p) =

(( 1
p ), ( 2

p ), . . . , (p−1
p )). One half of the terms of E(p) are 1 and the other half are −1

and, apart from a central symmetry, the distribution of 1’s appears to be chaotic

when E(p) is calculated for various small primes p. One might ask about the

apparently random behaviour of the sequences E(p) and a first step would be to

check whether or not given patterns (ε1, . . . , εk) with εi from {−1, 1} occur with the

expected frequency in E(p). In 1906 Jacobstahl showed this to be the case when

k is 2 or 3. In Davenport’s first paper [11] he treated the cases k = 4 or 5 and

two years later, in 1933 [12], he extended the work to cover all positive integers k

less than 10. Let Ep(ε1, . . . , εk) denote the number of occurences of (ε1, . . . , εk) as
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consecutive terms of E(p). Further progress was made by Gelfond and Linnik in

[13] in 1965, Bach [4] in 1987 and Peralta [25] in 1992 by means of the Weil bounds

[29], [30] for exponential sums. In particular, it follows from their work that

Ep(ε1, . . . , εk) =
p

2k
+ O(kp1/2). (1)

What other tests of randomness might one apply to the sequences E(p)?

In 1997, following on earlier work of Knuth [20] on pseudorandomness of finite

sequences, Mauduit and Sárközy [23] introduced several measures of randomness

for finite sequences. In particular, they introduced measures of normality, well

distribution in arithmetical progressions and multiple correlations. Let N be a

positive integer and let EN = (e1, . . . , eN ) be a sequence of terms from {−1, 1}. Let

k be a positive integer and let X = (ε1, . . . , εk) be a sequence of terms from {−1, 1}.

Let M be a positive integer and put

T (EN , M, X) = |{n : 0 ≤ n < M, (en+1, . . . , en+k) = X}| ,

where for any set Y , we denote its cardinality by |Y |. The normality measure of

order k, Nk(EN ), is defined by

Nk(EN ) = max
Xε{−1,1}k

max
0<M≤N+1−k

∣

∣T (EN , M, X) − M/2k
∣

∣ .

Note that (1) gives us information on Nk(E(p)).

The well distribution measure of EN , W (EN ), is defined by

W (EN ) = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

n=0

ea+nb

∣

∣

∣

∣

∣

,

where the maximum is taken over all positive integers a, b, t such that 1 ≤ a <

a + (t − 1)b ≤ N . Further, the correlation measure of order k of EN , Ck(EN ), is

defined by

Ck(EN ) = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

· · · en+dk

∣

∣

∣

∣

∣

where the maximum is taken over all k-tuples of distinct non-negative integers

D = (d1, . . . , dk) and positive integers M for which M + dk ≤ N .

For each ε > 0 the probability exceeds 1− ε that a randomly chosen sequence

EN from {−1, 1}N will have W (EN ) between two positive multiples, depending on

ε, of N1/2 and will have Ck(EN ) between two positive multiples, depending on ε,

of (kN log N)1/2 for N sufficiently large, see [9] and [21]. Further, Mauduit and

Sárközy [23] proved that the normality measure could be bounded from above by

the correlation measures. They proved that for all N, EN and k < N ,

Nk(EN ) ≤ max
1≤t≤k

|Ct(EN )| . (2)
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As a consequence they focussed on the measures W and Ck with the objective

of proving upper bounds for them for various sequences EN which approached in

strength those for a typical random sequence and this work initiated much further

study, see for example [8], [15] and [27]. Furthermore, they proved that there exist

positive numbers c1 and c2 such that

W (E(p)) < c1p
1/2 log p and Ck(E(p)) < c2kp1/2 log p.

In [14], Goubin, Mauduit and Sárközy considered a generalization of the se-

quence E(p). Let f be a polynomial in Fp[X] where we identify Fp with Z/pZ. Put

Ep(f) = (e1, . . . , ep) where

en =

{
(

f(n)
p

)

for (f(n), p) = 1,

1 otherwise.

They proved that if f has degree d (> 0) and f has no multiple zero in an algebraic

closure of Fp then

W (Ep(f)) < 10dp1/2 log p. (3)

Further they proved that provided k is 2, (4d)k < p or 2 is a primitive root modulo

p,

Ck(Ep(f)) < 10kdp1/2 log p. (4)

In [1], Ahlswede, Khachatrian, Mauduit and Sárközy used an argument based

on Lagrange interpolation to show that the family of sequences Ep(f) where f is

of degree at most d and has no multiple zero in an algebraic closure of Fp is quite

complex. In particular they showed that it was possible to specify any d of the

p terms and find a sequence from the family which satisfies the specification. Our

objective in this paper is to introduce families of sequences Ep(f) with a remarkable

uniformity with respect to specifications of up to d terms when d is small relative to

p. In particular, we shall show that within our families each possible specification

is roughly equally likely.

Let us now introduce our families of sequences. Let p be a prime and let ℓ be

an integer with 1 ≤ ℓ ≤ p. For each subset A of {1, . . . , p} we define the polynomial

fA(x) by

fA(x) =
∏

a∈A

(x − a). (5)

Further we define the sequence Ep,ℓ(fA) by

Ep,ℓ(fA) = (e1, . . . , eℓ),

where

ei =

{
(

fA(i)
p

)

when i 6∈ A,

(−1)j when i ∈ A and |{1, . . . , i} ∩ A| = j.
(6)
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For each integer d with 1 ≤ d ≤ p and positive integer m with ℓ + m ≤ p we put

F(p, ℓ, m, d) = {Ep,ℓ(fA) : |A| = d, A ⊂ {1, . . . , m}} . (7)

Note that since ℓ + m ≤ p, the sequences Ep,ℓ(fA) are subsequences of con-

secutive terms of the sequences studied by Goubin, Mauduit and Sárközy, apart

from the small modification made at the values of n where f(n) is congruent to 0

modulo p. It can be checked that this change does not affect the estimates (3) and

(4). Further the upper bounds for the well distribution and correlation measures

continue to hold when one passes to subsequences of consecutive terms. Therefore

when ℓ + m ≤ p and |A| = d,

W (Ep,ℓ(fA)) < 10dp1/2 log p, (8)

and, provided that k is 2, (4d)k < p or 2 is a primitive root modulo p,

Ck(Ep,ℓ(fA)) < 10kdp1/2 log p. (9)

Definition. A specification S of size t from {1, . . . , ℓ} is defined to be a

sequence (ε1, . . . , εt) of t terms from {1,−1} together with an index set (i1, . . . , it)

where 1 ≤ i1 < i2 < · · · < it ≤ ℓ.

For brevity we put F = F(p, ℓ, m, d). Let F(S) denote the set of sequences

(e1, . . . , eℓ) in F for which eij
= εj for j = 1, . . . , t. Thus F(S) consists of the

elements of F which satisfy the specification given by S.

Theorem 1. Let p be a prime and let ℓ, m and d be positive integers with

ℓ + m ≤ p,

min(ℓ, m) > 20dp1/2 log p, (10)

and d < p1/2. Let F = F(p, ℓ, m, d) be defined as in (7) and let t be a positive

integer. Then, for any specification S of size t from {1, . . . , ℓ},

∣

∣

∣

∣

|F(S)| −
|F|

2t

∣

∣

∣

∣

≤
12tp1/2 log p

m
|F|.

The uniform nature of our result has implications for the cryptographic

security of a pseudorandom number generator which we shall introduce and

discuss in §3.
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2. Proof of Main Theorem

The key tool we require for the proof of our main theorem is a consequence of

the Weil bounds [29], [30]. We shall use it in two different ways. The first application

of the Weil bounds allows us to conclude that different subsets A of {1, . . . , m} of

cardinality d give rise to different sequences E(A) = Ep,ℓ(fA) provided that the

length ℓ of the sequences satisfies (10). The second application allows us to control

an average taken over all members of our family F . Indeed the Weil bounds are also

used to obtain the estimates (8) and (9) for the well distribution and correlation

measures and so they are fundamental in this context.

Lemma 1. Let p be a prime number and let χ be a non-principal Dirichlet

character modulo p of order h. Let f be polynomial in Fp[x] of degree d (≥ 1) with

the multiple of at least one of the zeros of f , in the algebraic closure of Fp, coprime

with h. Let X and Y be real numbers with 0 < Y ≤ p. Then

∣

∣

∣

∑

X<n≤X+Y

χ(f(n))
∣

∣

∣
< 9dp1/2 log p.

Proof. This is a consequence of Weil’s Theorem; see, for example, Lemma

2 of [27] and Corollary 1 of [23].

Proof of Theorem 1. Our first step is to show that if ℓ satisfies (10), then

E(A1) and E(A2) are distinct whenever A1 is different from A2. Accordingly we

shall assume that E(A1) = E(A2) and show that this leads to a contradiction.

Let (e1, . . . , eℓ) be E(A1). Further, let χ be the character defined by the Legendre

symbol modulo p so that

χ(n) =

{

(n
p ) if (n, p) = 1,

0 otherwise.

Put f0(x) = fA1
(x)fA2

(x). Since A1 is different from A2, f0 has at least one root

of odd multiplicity. Thus, by Lemma 1,

∣

∣

∣

ℓ
∑

i=1

χ(f0(i))
∣

∣

∣
< 9(|A1| + |A2|)p

1/2 log p. (11)

But, by the definition of ei, recall (6),

ℓ =

ℓ
∑

i=1

e2
i = w +

ℓ
∑

i=1

χ(f0(i)),
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where w is an integer with 0 ≤ w ≤ |A1 ∪ A2|. Since |A1| = |A2| = d we have

ℓ < 18dp1/2 log p + 2d < 20dp1/2 log p,

which contradicts (10). Therefore distinct subsets of {1, . . . , m} give rise to distinct

sequences.

Let S be a specification of t terms (ε1, . . . , εt) from {1,−1} together with an

index set (i1, . . . , it) where 1 ≤ i1 < i2 < · · · < it ≤ ℓ. Then

|F(S)| =
ε1 . . . εt

2t

∑

E(A)∈F

t
∏

j=1

(eij
+ εj)

where E(A) = (e1, . . . , eℓ). Thus

|F(S)| =
|F|

2t
+

1

2t

t
∑

r=1

∑

1≤j1<···<jr≤t

εj1 . . . εjr

∑

E(A)∈F

∏

1≤s≤t

s 6∈{j1,...,jr}

eis

so
∣

∣

∣
|F(S)| −

|F|

2t

∣

∣

∣
≤

1

2t

t
∑

u=1

∑

1≤v1<···<vu≤t

∣

∣

∣

∑

E(A)∈F

u
∏

z=1

eivz

∣

∣

∣
. (12)

Thus it suffices to estimate
∣

∣

∣

∑

E(A)∈F

∏u
z=1 eivz

∣

∣

∣
. Let Sd(m) = {A ⊂ {1, . . . , m} :

|A| = d}. Since different subsets A give rise to different sequences E(A) we see that

∣

∣

∣

∑

A∈Sd(m)

u
∏

z=1

χ(fA(ivz
)) −

∑

E(A)∈F

u
∏

z=1

eivz

∣

∣

∣

≤
∑

A∈Sd(m)

p|
∏

u

z=1
fA(ivz )

∣

∣

∣

u
∏

z=1

eivz

∣

∣

∣
= |{A ∈ Sd(m) : p | fA(iv1

) · · · fA(ivu
)}| .

=
∣

∣

∣

{

A ∈ Sd(m) : p |
∏

a∈A

u
∏

z=1

(ivz
− a)

}∣

∣

∣
.

(13)

Each A in Sd(m) is a subset of {1, . . . , m} and hence of {1, . . . , p} and thus p |
∏

a∈A

∏u
z=1(ivz

− a) if and only if there exists y with 1 ≤ y ≤ u for which ivy
is in

A. In particular
∣

∣

∣

{

A ∈ Sd(m) : p |
∏

a∈A

∏u
z=1(ivz

− a)
}∣

∣

∣
is the number of subsets

A of {1, . . . , m} with |A| = d which contain at least one member of {iv1
, . . . , ivu

}.

This number is at most u
(

m−1
d−1

)

. Since u ≤ t we see, from (13), that

∣

∣

∣

∑

A∈Sd(m)

u
∏

z=1

χ(fA(ivz
)) −

∑

E(A)∈F

u
∏

z=1

eivz

∣

∣

∣
≤

td

m

(

m

d

)

. (14)
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For any integer c from {1, . . . , m} let Sd−1(m, c) denote the set of all (d−1)-element

subsets of {1, . . . , m} which do not contain c. We have

d
∑

A∈Sd(m)

u
∏

z=1

χ(fA(ivz
))=

m
∑

c=1

∑

A1∈Sd−1(m,c)

χ
(

u
∏

z=1

(ivz
− c)fA1

(ivz
)
)

=
∑

A∈Sd−1(m)

m
∑

c=1
c 6∈A

χ
(

u
∏

z=1

(ivz
− c)fA(ivz

)
)

=
∑

A∈Sd−1(m)

χ
(

u
∏

z=1

fA(ivz
)
)

m
∑

c=1
c 6∈A

χ
(

u
∏

z=1

(ivz
− c)

)

.

Put g(x) =
∏u

z=1(ivz
− x). Then

∣

∣

∣
d

∑

A∈Sd(m)

u
∏

z=1

χ(fA(ivz
))

∣

∣

∣
≤

∑

A∈Sd−1(m)

∣

∣

∣

m
∑

c=1
c 6∈A

χ(g(c))
∣

∣

∣
. (15)

Plainly,
∣

∣

∣

m
∑

c=1
c 6∈A

χ(g(c))
∣

∣

∣
≤

∣

∣

∣

m
∑

c=1

χ(g(c))
∣

∣

∣
+ d − 1. (16)

Since g is a polynomial of degree u with u distinct linear factors in Fp[x] we deduce

from Lemma 1 that

∣

∣

∣

m
∑

c=1

χ(g(c))
∣

∣

∣
< 9up1/2 log p ≤ 9tp1/2 log p. (17)

It follows from (15), (16) and (17) that

∣

∣

∣

∑

A∈Sd(m)

u
∏

z=1

χ(fA(ivz
))

∣

∣

∣
≤

1

d

(

m

d − 1

)

10tp1/2 log p.

Therefore, from (14),

∣

∣

∣

∑

E(A)∈F

u
∏

z=1

eivz

∣

∣

∣
≤

( td

m
+

10tp1/2 log p

(m − d + 1)

)

(

m

d

)

,

and so by (12),

∣

∣

∣
|F(S)| −

|F|

2t

∣

∣

∣
≤

( td

m
+

10tp1/2 log p

(m − d + 1)

)

(

m

d

)

.

Since |F| =
(

m
d

)

, d < p1/2 and m > 20d our result follows.
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3. A pseudorandom bit generator
and its cryptographic significance

A pseudorandom bit generator is a deterministic algorithm which, given a

random binary sequence of length k, outputs a binary sequence of length ℓ, larger

than k, which appears to be random. The input is known as the seed and the output

is a pseudorandom sequence, [24]. The importance of such generators comes from

the fact that it is often difficult to obtain a truly random seed and it is desirable

to be able to stretch random seeds to much longer, apparently random, sequences.

There are a number of different pseudorandom number generators which have been

proposed which appeal to techniques from number theory, see [22]. They are deemed

to be pseudorandom with respect to certain statistical tests. Those which pass all

polynomial-size statistical tests are viewed as cryptographically secure. No such

pseudorandom bit generators have been determined. However, it can be proved that

if problems such as factoring or the discrete logarithm problem are not solvable in

polynomial time then cryptographically secure pseudorandom bit generators exist

and they have been developed in, for example, [2], [6] and [7]. Our objective in

this section is to describe a pseudorandom bit generator whose output we can prove

always possesses small well distribution measure, correlation measure and normality

measure. In addition, the uniform nature of our main theorem allows us to deduce

certain cryptographic aspects of our generator unconditionally.

We now describe the generator. Let p be a prime and let ℓ, m and d be positive

integers with d ≤ ℓ and ℓ + m ≤ p. Choose a subset A of {1, . . . , m} of cardinality

d in a random way. A constitutes the random seed. Form the polynomial fA as in

(5). The output is the sequence E(A) = Ep,ℓ(fA) as in (6).

Hoffstein and Lieman [18] have proposed such a generator with fA replaced

by f where f is any polynomial in Fp[x] which is squarefree and neither even nor

odd. Further, their generator is of the sort introduced by Anshel and Goldfeld [3]

involving sequences of coefficients of certain zeta functions from the Selberg class

[28]. Earlier Damg̊ard [10] had proposed subsequences of the sequence of Legendre

symbols modulo a prime as a basis for a pseudorandom generator. However, in

the above constructions the claim that the output sequences are pseudorandom is

supported only by empirical evidence or unproved conjectures.

Let θ be a real number with θ < 1/2. A good choice for d, ℓ and m is to take

ℓ = m =
[

p
4

]

and

d = [pθ].

For any subset A of {1, . . . , ℓ} of cardinality d we put E(A) = Ep,ℓ(fA) as in (6).

Then, since fA(x) factors into distinct linear factors over Fp, by (8),

W (E(A)) < c3ℓ
1/2+θ log ℓ; (18)
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here c3, c4, . . . denote positive constants. Further, let k be a positive integer. If p is

a prime for which 2 is a primitive root, k is 2 or (4d)k is less than p then, by (9),

Ck(E(A)) < c4kℓ1/2+θ log ℓ. (19)

Now, provided that p is sufficiently large that (10) holds, the family F = {E(A) : A

a subset of {1, . . . , ℓ} of cardinality d} has cardinality
(

ℓ
d

)

. Furthermore, if any t of

the ℓ terms of our output are specified or determined then provided that

12t2t+4 < p1/2/ log p,

by our main theorem there are at least
(

ℓ
d

)

/2t+1 members of F with the same

specification. Thus the family is still large after specification of a small constant

times log p terms, and so determination of E(A) from the information given by

the specified terms is difficult under any attack provided that p and thus
(

ℓ
d

)

is

sufficiently large.

The general problem of reconstructing a hidden monic polynomial f of degree

d ≥ 1 over a finite field Fp of p elements given a black box which, for any x ∈

Fp, evaluates the quadratic character of f(x) has been considered by Russell and

Shparlinski [26]. They prove that for any ε > 0 and d with 1 ≤ d < p1/2/(log p)2

and an oracle which evaluates the quadratic character of f at any x in Fp one can

find any polynomial f of degree d over Fp in O(d2pd+ε) binary operations. This is

the sharpest result known and no further improvement is apparent if one restricts

one’s attention to polynomials which factor into linear polynomials over Fp. Thus,

with the present state of knowledge, there is no way to efficiently reconstruct A

from the output sequence E(A).

Recall that if p is a prime for which 2 is a primitive root then estimate (19)

holds for the correlation measures. In 1927, Artin conjectured that a positive pro-

portion of all primes have 2 as a primitive root and this was established by Hooley,

in 1967 [17], under the assumption of the Generalized Riemann Hypothesis. While

no unconditional proof of Artin’s conjecture is known, it is easy to test whether 2

is a primitive root for a given prime, see [5], and as a consequence it is easy to find

primes of an appropriate size for which 2 is a primitive root. Further, the reason

that the subset A is drawn from the first [p
4 ] integers and that the length ℓ is taken

to be [p
4 ] is to avoid the region of symmetry about p

2 in the sequence of Legendre

symbols (( 1
p ), ( 2

p ), . . . , (p−1
p )). The study of measures of randomness with respect

to symmetry has been undertaken by Gyarmati [16] in this context.

Suppose that we wish to generate a sequence of length ℓ = [p
4 ]. Let θ be less

than 1/2 and put d = [pθ]. (While our estimates for the well distribution measure

(18), the correlation measures (19) and, by (2), the normality measures become

weaker as θ approaches 1/2, the cryptographic security presumably increases when

θ increases.) In order to determine A, and hence our sequence E(A), we choose d
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distinct integers at random from {1, . . . , ℓ}. This can be done with a small multiple

of d log ℓ random binary digits with high probability. Thus our seed usually has

a small multiple of d log ℓ random digits and the length ℓ of our output E(A) is

slightly less than the ( 1
θ )-th power of the length of the seed. Notice also that the

size of the family F of sequences E(A) is
(

ℓ
d

)

and therefore is exponential in terms

of the length of the seed.
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