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Abstract
Let x, y, and z be coprime positive integers with x + y = z. In this paper we give
upper bounds for z in terms of the greatest square-free factor of xyz.

1. Introduction
Let x, y, and z be positive integers, and define G = G(x, y, z) by

G = G(x, y, z) =
∏
p|xyz
p a prime

p.

Thus G is the greatest square-free factor of xyz. In 1985, D. Masser [6] proposed a
refinement of a conjecture that had been recently formulated by J. Oesterlé. Masser
conjectured that for each positive real number ε there is a positive number c(ε), which
depends on ε only, such that, for all positive integers x, y, and z with

x + y = z and (x, y, z) = 1, (1)

we have
z < c(ε)G1+ε. (2)

The conjecture is now known as the abc conjecture. It captures in a succinct way
the idea that the additive and the multiplicative structure of the integers should be
independent, and, accordingly, it has profound consequences (cf. [1], [3], [4], [5],
[11], [13]).

In 1986, C. Stewart and R. Tijdeman [11] obtained an upper bound for z as
a function of G. They proved that there exists an effectively computable positive
constant c1 such that, for all positive integers x, y, and z satisfying (1),

z < exp
(
c1G

15). (3)

The proof depends on a p-adic estimate for linear forms in the logarithms of algebraic
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numbers due to A. van der Poorten [8]. In 1991 Stewart and K. Yu [12] strengthened
(3). They proved, by combining a p-adic estimate for linear forms in the logarithms
of algebraic numbers due to Yu [15] with an earlier Archimedean estimate due to
M. Waldschmidt [14], that there exists an effectively computable positive constant c2
such that, for all positive integers x, y, and z, with z > 2, satisfying (1),

z < exp
(
G2/3+c2/ log logG). (4)

Our purpose in this paper is to present two further improvements on (4).

theorem 1
There exists an effectively computable positive number c such that, for all positive
integers x, y, and z with x + y = z and (x, y, z) = 1,

z < exp
(
cG1/3(logG)3

)
. (5)

The key new ingredient in our proof of Theorem 1 is an estimate of Yu [17] for p-adic
linear forms in the logarithms of algebraic numbers which has a better dependence
on the number of terms in the linear form than previous p-adic estimates; for the
Archimedean case, see the earlier work of E. Matveev [7]. We employ this estimate
in order to control the p-adic order of x, y, and z at the small primes p dividing x, y,
and z. Next we combine the contributions from the small primes in order to reduce
the number of terms in our linear forms. We conclude with a further application of
estimates for linear forms in the logarithms of algebraic numbers in a fashion similar
to [12]. Here we appeal to a p-adic estimate due to Yu [16] and its earlier Archimedean
counterpart due to A. Baker and G. Wüstholz [2].

An examination of our proof reveals that the impediment to a further refinement
of Theorem 1 is not the dependence on the number of terms in the estimates for linear
forms in logarithms but instead is the dependence on the parameter p in the p-adic
estimates. This fact is highlighted by our next result, which shows that if the greatest
prime factor of one of x, y, and z is small relative to G, then the estimate for z from
Theorem 1 can be improved. In particular, let px , py , and pz denote the greatest prime
factors of x, y, and z, respectively, with the convention that the greatest prime factor
of 1 is 1. Put

p′ = min
{
px, py, pz

}
.

Denote the ith iterate of the logarithmic function by logi , so that log1 t = log t and
logi t = log(logi−1 t) for i = 2, 3, . . . .

theorem 2
There exists an effectively computable positive number c such that, for all positive
integers x, y, and z with x + y = z, (x, y, z) = 1, and z > 2,
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z < exp
(
p′Gc log3G∗/ log2G

)
, (6)

where G∗ = max(G, 16).

Thus, for each ε > 0 there exists a number c3(ε), which is effectively computable
in terms of ε, such that for all positive integers x, y, and z with x + y = z and
(x, y, z) = 1,

z < exp
(
c3(ε)p

′Gε
)
.

Observe that
p′ ≤ (

pxpypz
)1/3 ≤ G1/3,

and so we immediately obtain

z < exp
(
c3(ε)G

1/3+ε),
a slightly weaker version of Theorem 1. On the other hand, if p′ is appreciably smaller
than G1/3, (6) gives a sharper upper bound than (5).

For any integer n with n > 1, let P(n) denote the greatest prime factor of n. As
an illustration of the above remark, we deduce from Theorem 2 that there exists an
effectively computable positive number c4 such that if x and y are coprime positive
integers with x < y and y ≥ 16, then

P = P(xy(x + y)) > c4 log2 y log3 y
log∗

4 y
, (7)

where log∗
4 y = max{log4 y, 1}, a result that improves upon the lower bound of

c5 log2 y obtained by T. Shorey, van der Poorten, Tijdeman, and A. Schinzel [10].
Suppose y ≥ 16, and suppose (1) holds. Then by (6) there exists an effectively
computable positive number c6 such that

log log y < logP + c6 logG log3G
∗

log2G
, (8)

where G denotes the greatest square-free factor of xy(x + y). Plainly,

G =
∏

p|xy(x+y)
p ≤ exp

(∑
p≤P

logp

)
,

and so, by the prime number theorem, we have

logG < c7P, (9)

where c7 is an effectively computable positive number (cf. J. Rosser and L. Schoenfeld
[9, Theorem 9]). Estimate (7) follows directly from (8) and (9).
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2. Preliminary lemmas
For any algebraic number α, let h0(α) denote its absolute logarithmic Weil height, so
that

h0(α) = d−1


log |ad | +

d∑
j=1

logmax
(
1,
∣∣α(j)∣∣)


 ,

where the minimal polynomial for α over Z is

adx
d + · · · + a1x + a0 = ad

(
x − α(1)) · · · (x − α(d)).

Let p be a prime number, and put

q =
{
2 if p > 2,

3 if p = 2
and α0 =




−1 if p ≡ 3 (mod 4),

i = √−1 if p ≡ 1 (mod 4),

e2πi/3 if p = 2.

Put K = Q(α0). Let p be a prime ideal of OK , the ring of algebraic integers in K .
Suppose that p lies above p with ramification index ep and residue class degree fp.
Note that

ep = 1 and fp =
{
1 if p > 2,

2 if p = 2
(10)

(see [15, appendix] for the case p ≡ 1 mod 4 and the case p = 2). For nonzero α inK ,
we write ordpα for the exponent to which p divides the fractional ideal generated by
α in K .

Let α1, . . . , αn be nonzero elements of K , and put

hj = max
(
h0(αj ), logp

)
,

for j = 1, . . . , n. Let b1, . . . , bn be rational integers with absolute values at most
B (≥ 3). Next put

� = αb11 · · ·αbnn − 1.

lemma 1
Suppose that

[
K
(
α
1/q
0 , . . . , α

1/q
n

) : K] = qn+1, ordpαj = 0 for j = 1, . . . , n, and
� �= 0. Then there exists an effectively computable positive number c8 such that

ordp� <
p

(logp)2
cn8 h1 · · ·hn logB.

Proof
This follows from [17, Theorem 1] on applying (10).
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lemma 2
Suppose that ordpαj = 0 for j = 1, . . . , n, and suppose that � �= 0. Then there
exists an effectively computable positive number c9 such that

ordp� <
p

logp
(c9n)

2n
(
h1

logp

)
· · ·
(
hn

logp

)
logB.

Proof
This follows from [16, Theorem 1] on appealing to (10).

We also require an Archimedean estimate for linear forms in the logarithms of alge-
braic numbers.

lemma 3
Suppose that α1, . . . , αn are positive rational numbers, and put

 = b1 logα1 + · · · + bn logαn,
where log denotes the principal branch of the logarithm. If  �= 0, then there exists
an effectively computable positive number c10 such that

| | > exp


−(c10n)2n logB

n∏
j=1

max
(
h0(αj ), 1

) .
Proof
This is a consequence of [2, Theorem].

lemma 4
Let α1, . . . , αn be prime numbers with α1 < α2 < · · · < αn. Let q = 2 and
α0 ∈ {−1, i} or q = 3 and α0 = e2πi/3, and put K = Q(α0). Then[

K
(
α
1/q
0 , α

1/q
1 , . . . , α

1/q
n

)
: K

]
= qn+1

except when q = 2, α0 = i, and α1 = 2, and in this case[
K
(
α
1/2
0 , (1+ i)1/2, α1/22 , . . . , α

1/2
n

)
: K

]
= 2n+1.

Proof
This follows from [12, Lemma 3] except when q = 2 and α0 = −1. In this case, the
proof of [12, Lemma 3] again applies.
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lemma 5
Let 2 = p1, p2, . . . be the sequence of prime numbers in increasing order. There is
an effectively computable positive constant c11 such that, for every positive integer r ,
we have

r∏
j=1

pj

logpj
>

(
r + 3

c11

)r+3

.

Proof
This is [12, Lemma 4].

3. Proofs of Theorems 1 and 2
Note that Theorem 1 holds for z = 2 trivially. Henceforth, let x, y, and z be positive
integers with x + y = z, (x, y, z) = 1, and z > 2. We may suppose, without loss of
generality, that x ≤ y. Since z > 2, we see that x < y < z and G ≥ 6. Note that

max{ordpx, ordpy, ordpz} ≤ log z

log 2
. (11)

Put

G̃ = max

(
G

pxpypz
, 16

)
and

r = ω(xyz),
the number of distinct prime factors of xyz.

Let c12, c13, . . . denote effectively computable positive constants. By Lemma 5,

G̃ >

(
r

c12

)r
,

and so

r < c13
log G̃

log2 G̃
. (12)

Put m = r − 2 if x = 1 (whence px = 1) and m = r − 3 otherwise. Notice that, by
the arithmetic-geometric mean inequality,

∏
p|xyz

p �∈{px ,py ,pz}

logp ≤

 1

m

∑
p|xyz

p �∈{px ,py ,pz}

logp



m

≤
(
log G̃

m

)m
, (13)

provided that m is positive. From (12) and (13), we deduce that

∏
p|xyz

p �∈{px ,py ,pz}

logp < exp

(
c14

log G̃ log3 G̃

log2 G̃

)
, (14)
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with the usual convention that the empty product is 1. It also follows from (12) that

(log r)2r < exp

(
c15

log G̃ log3 G̃

log2 G̃

)
. (15)

We now estimate ordp(xyz) for each prime p that divides xyz and satisfies

p < e(log r)
2
. (16)

First suppose that p | z. Since (x, y, z) = 1 and x+y = z, we have (x, y) = (x, z) =
(y, z) = 1. Thus, for each prime p that divides z,

ordpz = ordp

(
z

−y
)

= ordp

(
x

−y − 1

)
≤ ordp

((
x

y

)4
− 1

)
. (17)

Let α1 < · · · < αn be the primes that divide either x or y except in the case when
p ≡ 1 mod 4 and α1 = 2. In that case, we take α1 = 1 + i in place of α1 = 2. Note
that 24 = (1+ i)8. Write (

x

y

)4
= αb11 · · ·αbnn ,

with b1, . . . , bn rational integers. We choose q, α0, K = Q(α0), as in §2. Let p be a
prime ideal of OK lying above p. Since p | z and (x, z) = (y, z) = 1, we have

ordpαj = 0,

for j = 1, . . . , n. Let B denote the maximum of the absolute values of the bj ’s. Then,
by (11),

logB ≤ log

(
8
log z

log 2

)
. (18)

Put

� =
(
x

y

)4
− 1 = αb11 · · ·αbnn − 1,

and note that
ordp� = ordp�. (19)

By (16), (18), and Lemmas 1 and 4,

ordp� < pc
n
16(log r)

2n log log z
∏
l|xy

l a prime

log l. (20)

It follows from (12), (14)–(17), (19), and (20) that

ordpz < exp

(
c17

log G̃ log3 G̃

log2 G̃

)
log(2px) logpy log log z. (21)

In a similar fashion, we deduce, for p satisfying (16), that
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ordpy < exp

(
c18

log G̃ log3 G̃

log2 G̃

)
log(2px) logpz log log z (22)

and that

ordpx < exp

(
c19

log G̃ log3 G̃

log2 G̃

)
logpy logpz log log z. (23)

We now define R, S, and T by

R =
∏

l|x,l �=px
l<e(log r)

2

lordlx , S =
∏

l|y,l �=py
l<e(log r)

2

lordly , T =
∏
l|z,l �=pz
l<e(log r)

2

lordl z,

where l runs through primes. Observe that

h0

(
R

−S
)
< r(log r)2 max


 max

l|x
l<e(log r)

2

ordlx, max
l|y

l<e(log r)
2

ordly


;

hence, by (12), (22), and (23),

h0

(
R

−S
)
< exp

(
c20

log G̃ log3 G̃

log2 G̃

)
logmax(px, py) logpz log log z. (24)

Similarly, we find that

h0

(
T

R

)
< exp

(
c21

log G̃ log3 G̃

log2 G̃

)
logmax(px, pz) logpy log log z (25)

and that

h0

(
T

S

)
< exp

(
c22

log G̃ log3 G̃

log2 G̃

)
logmax(py, pz) log(2px) log log z. (26)

We are now in a position to estimate ordp(xyz) for each prime p that divides xyz. In
particular, we no longer require condition (16). We first estimate ordpz for p | z. As
in (17), we have

ordpz = ordp

(
x

−y − 1

)
. (27)

Put α1 = R/(−S), and let
x

−y = α1αb22 · · ·αbnn ,
where α2, . . . , αn are distinct prime numbers and where b2, . . . , bn are nonzero ra-
tional integers. Since

α2 · · ·αn | G
and

αj ≥ e(log r)2 ,
for j = 2, . . . , n with αj �∈ {px, py}, we deduce that
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n− 3 ≤ log G̃

(log r)2
. (28)

Next observe that

n2n < exp

(
c23

log G̃

log2 G̃

)
(29)

since if r is at most (log G̃)1/2, then the result is immediate on noting that n is at
most r , while if r exceeds (log G̃)1/2, then (29) follows from (28).

Let B = max(|b2|, . . . , |bn|, 3), and note that (18) follows from (11) as before.
Put

� = x

−y − 1 = α1αb22 · · ·αbnn − 1,

and observe that (19) holds. Next put

Wp = exp

(
c24

log G̃ log3 G̃

log2 G̃

)
p

(logp)3
∏

l∈{px,py,pz}
logmax(l, p) · (log log z)2. (30)

We now apply Lemma 2, taking into account (12), (14), (24), (27), and (29), to
conclude that

(ordpz) logp < Wp logmax(px, py). (31)

Similarly, if p | y, then, by considering ordp
(
z/x − 1

)
and applying Lemma 2, we

find that
(ordpy) logp < Wp logmax(px, pz); (32)

while if p | x, then, by considering ordp
(
z/y− 1

)
and applying Lemma 2, we obtain

(ordpx) logp < Wp logmax(py, pz). (33)

Certainly,

log z =
∑
p|z
(ordpz) logp ≤ r

(
max
p|z (ordpz) logp

)
. (34)

Put
L = logmax(px, py) · logmax(px, pz) · logmax(py, pz).

By (12), (30), (31), and (34), we find that

log z

(log log z)2
< exp

(
c25

log G̃ log3 G̃

log2 G̃

)
pz

(logpz)2
L. (35)

Since y > z/2 and z ≥ 3,

log y > log z− log 2 >
1

4
log z. (36)

Plainly, (34) holds with z replaced by y, and so from (12), (30), (32), and (36), we
deduce that
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log z

(log log z)2
< exp

(
c26

log G̃ log3 G̃

log2 G̃

)
py

(logpy)2
L. (37)

Next, either x ≥ y1/2, in which case

log x ≥ 1

2
log y >

1

8
log z, (38)

or x < y1/2, in which case

log

(
x + y
y

)
= log

(
1+ x

y

)
< log

(
1+ 1

y1/2

)
<

1

y1/2
<

(
2

z

)1/2
. (39)

In the former case, we may appeal to (34) with z replaced by x, and so from (12),
(30), (33), and (38),

log z

(log log z)2
< exp

(
c27

log G̃ log3 G̃

log2 G̃

)
px

(log(2px))2
L. (40)

In the latter case, put α1 = T/S, and write
z

y
= α1αb22 · · ·αbnn ,

where α2, . . . , αn are distinct prime numbers and where b2, . . . , bn are nonzero ra-
tional integers. Then

0 < log

(
x + y
y

)
= log

(
z

y

)
= logα1 + b2 logα2 + · · · + bn logαn.

Note that we again have (29). Thus, on applying Lemma 3 and appealing to (11),
(12), (14), (26), and (29), we obtain

log log

(
x + y
y

)
> − exp

(
c28

log G̃ log3 G̃

log2 G̃

)
logmax(py, pz)

· log(2px) logpy logpz(log log z)2.
(41)

On comparing (39) and (41), we see that

log z

(log log z)2
< exp

(
c29

log G̃ log3 G̃

log2 G̃

)
logmax(py, pz) log(2px) logpy logpz.

Therefore, in both cases x ≥ y1/2 and x < y1/2, (40) holds.
Suppose that {px, py, pz} = {p′, p′′, p′′′}, and suppose that

p′ < p′′ < p′′′.
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It follows from (35), (37), and (40) that

log z

(log log z)2
< exp

(
c30

log G̃ log3 G̃

log2 G̃

)
p′

(log(2p′))2
logp′′(logp′′′)2. (42)

Just as for (14), we have

∏
p|xyz

logp < exp

(
c31

logG log3G
∗

log2G

)
,

whence, by (42),

log z

(log log z)2
< exp

(
c32

logG log3G
∗

log2G

)
p′

(log(2p′))2
. (43)

Theorem 2 follows directly from (43).

To prove Theorem 1, we remark that from (35), (37), and (40),(
log z

(log log z)2

)3

< exp

(
c33

log G̃ log3 G̃

log2 G̃

)
pxpypz

(log(2px) logpy logpz)2
× (logp′′)3(logp′′′)6.

Note that we may assume that
p′ > G1/4

since otherwise Theorem 1 follows from (43). Thus we have(
log z

(log log z)2

)3
< c34G̃pxpypz(logG)

3,

and so
log z < c35G

1/3(logG)3,

as required.
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