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CONGRUENCES AND THUE EQUATIONS 

C. L. STEWART 

1. INTRODUCTION 

Let F (x, y) = a,x' + a'_1 X,-I y + ... + aoY' be a binary form with rational 
integer coefficients and with r ~ 3. Let h be a nonzero integer. In 1909 Thue 
proved that if F is irreducible then the equation 

(1) F(x, y) = h 

has only finitely many solutions in integers x and y. In the first part of this 
paper we shall establish upper bounds for the number of solutions of (1) in 
coprime integers x and y under the assumption that the discriminant D(F) of 
F is nonzero. For most integers h these bounds improve upon those obtained 
by Bombieri and Schmidt in [5]. In the course of proving these bounds we 
shall establish a result on polynomial congruences that extends earlier work of 
Nagell [30], Ore [32], Sandor [33], and Huxley [19]. In fact we shall establish 
an upper bound for the number of solutions of a polynomial congruence that 
is, in general, best possible. 

In the second part we shall address the problem of finding forms F for 
which (1) has many solutions for arbitrarily large integers h. Finally we shall 
obtain upper bounds for the number of solutions of certain Thue-Mahler and 
Ramanujan-Nagell equations by appealing to estimates of Evertse, Gyory, Stew-
art, and Tijdeman [17] for the number of solutions of S-unit equations. 

2. THE THUE AND THUE-MAHLER EQUATIONS 

For any nonzero integer h let w(h) denote the number of distinct prime 
factors of h. In 1933 Mahler [23] proved that if F is irreducible then (1) has 
at most C!+w(h) solutions in coprime integers x and y, where C I is a positive 
number that depends on F only. Let PI' ... ,PI be distinct prime numbers. 
The equation 

(2) k k F(x, y) = p i l .,. PI I 
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in coprime integers x and y and integers k l , ••• , kt is known as a Thue-
Mahler equation. In fact Mahler proved the stronger result that (2) has at 
most CII+I such solutions. In 1938 Erdos and Mahler [9] proved that if F has 
nonzero discriminant, h > C2 and g is a divisor of h with g > h6/7 then the 
number of solutions of (1) in coprime integers x and y is at most C~+W(g), 
where C2 and C3 are positive numbers that depend on F only. In 1961 Lewis 
and Mahler [21] showed that the number of primitive solutions of (2), that is, 
solutions with x and y coprime, is at most 

C2Vr 1+1 c,(ar) + (c3r) , 

where c" c2 , and c3 are absolute constants, provided F has nonzero discrim-
inant, a,ao =1= 0, and the coefficients of F have absolute values not exceeding 
a. In 1984 Evertse [13] gave 

(3) 
3 2.7' (21+3) 

as an upper bound for the number of primitive solutions of (2) under the as-
sumption that F is divisible by at least three pairwise linearly independent 
linear forms in some algebraic number field. Evertse's result resolved a conjec-
ture of Siegel since his upper bound for the number of primitive solutions of 
(2) depends only on rand t, and so for (1) depends only on rand cv(h) , and 
does not depend on the coefficients of F. In 1987 Bombieri and Schmidt [5] 
refined the result of Evertse for the Thue equation. They proved that if F is 
irreducible then the number of solutions of (1) in coprime integers x and y is 
at most 

(4) 

where c4 is an absolute constant. Further they showed that one may take c4 
to be 430 if r is sufficiently large. 

Let 

A=(~ ~) 
and define the binary form FA by 

FA(x, y) = F(ax + by, cx + dy). 

Observe that if A is in GL(2, Z), in other words, A has integer entries and 
determinant ± 1 , and (x, y) is a solution of (1) in coprime integers x and y 
then A(x, y) = (ax+by, cx+dy) is a solution of F[I (X, Y) = h in coprime 
integers. For any A E GL(2, Z) we say that FA and -FA are equivalent to 
F. We remark that the number of solutions of (1) in coprime integers is the 
same for equivalent forms. For any polynomial G in C[zi ' ... , zn] that is not 
identically zero the Mahler measure M(G) is defined by 

{I (' 2nit 2nit 
M(G) = exp 10 dt l ··· 10 dtn log IG(e I, ... , e ")1· 
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Thus if n = 1 and G(z) = ar(z - a l )'" (z - a r ) with ar =1= 0, then, by Jensen's 
theorem, 

r 

M(G) = larl II max(1 , lail)· 
i=1 

Suppose that F is a binary form that factors as IT~=I (ajx - Pjy). The 
discriminant D = D(F) of F is given by 

D(F) = II(aiP j - aj P)2. 
i<j 

For any nonzero integer t we have 

(5) D(tF) = t2(r-l) D(F), 

and for any matrix A with integer entries 

(6) D(FA ) = (detA)'(r-l) D(F). 

Thus for any A E GL(2, Z) we have D = D(F) = D(FA ). For any nonzero 
integer n and prime number p let ordp n denote the exact power of p that 
divides n. For any real number x let [x] denote the greatest integer less than 
or equal to x. Let p be a prime number, and let r, k, and D be integers 
with r 2:: 2 and D =1= O. We define T = T(r, k, p, D) by 

and for any nonzero integer g we define G(g, r, D) by 
G(g, r, D) = IIpT(r .ordp g ,p ,D) . 

pig 

Recall that the content of F is the greatest common divisor of the coefficients 
of F. We shall prove the following result. 

Theorem 1. Let F be a binary form with integer coefficients of degree r (2:: 3) , 
content I, and nonzero discriminant D. Let h be a nonzero integer, and let e 
be a positive real number. Let g be any divisor of h with 

l+eIDll/r(r-l) 
(8) g > IhI 2/ r+e • 

G(g, r, D) -

The number of pairs of coprime integers (x, y) for which F(x, y) = h is at 
most 

(9) 2800 (1 + J_) rl+w(g) . 
8er 

Notice that if g or D is squarefree, or if g and D are coprime, then 
G(g, r, D) is 1. Further G(g, r, D) is always bounded from above by 
(D, i)I/2; here (D, g2) denotes the greatest common divisor of D and i. 
Thus Theorem 1 sharpens the result of Erdos and Mahler [9]. Furthermore if 
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we take g = Ihl and e any positive real number then condition (8) holds since 
on taking j = r - 2 in (7) we see that 

[ ordp D (r - 2) ] 
T(r,k,p,D)~ (r=-1)r+ -r- k, 

hence 
G(lhl, r, D) ~ Ihl(r-2)/r IDI 1/r(r-l) . 

Thus if D(F) =f. 0 then the number of primitive solutions of (1) is at most 
2800r1+w(h) ; in particular, we recover estimate (4) of Bombieri and Schmidt. 
In general this choice for g and e is not optimal. Indeed the significant feature 
of estimate (9) is that the term w(h) in estimate (4) has been replaced by the 
quantity w(g). For almost all integers h in the sense of natural asymptotic 
density, and any J > 0, w(h) = loglogh + O(loglogh 1/ 2+,,) (see [18]).00 the 
other hand (see [6]), if e < (r - 2)/r then for a positive proportion of integers 
h we may take g to be a prime, hence w(g) = 1, and estimate (9) becomes 
C(e)r2. In fact w(h) may be as large as logh/(410glogh) while w(g) = 1. 
No particular significance attaches to the constant 2800 in (9). It can certainly 
be improved. In particular, if either h or r is large, then (9) holds with a much 
smaller constant. 

Our proof depends upon the Thue-Siegel principle as enunciated in Bombieri 
and Schmidt [5] and follows quite closely the proof given in [5]. (The author 
would like to thank Professor Evertse for his suggestion, in connection with 
an earlier version of this result, that he follow the approach of Bombieri and 
Schmidt [5] for dealing with the small solutions of (1). This allowed him to 
remove a factor involving M(F) from his original estimates.) 

Our argument differs from that of Bombieri and Schmidt in that they reduce 
the study of (1) to the case when h = 1 by splitting solutions according to 
congruence classes modulo h. On the other hand, we reduce h to h / g by 
splitting the solutions into congruence classes modulo g. Further we appeal 
to Theorem 2 to spread apart solutions in the same congruence class. Both 
arguments owe much to the work of Mahler [26]. 

Observe that if IDI1/r(r-l) ~ IhI 2/rH , then we may apply Theorem 1 with 
g = 1 to deduce that the number of pairs of coprime integers (x, y) for which 
( 1) holds is at most 

2800 ( 1 + 8!r) r. 

Evertse and Gyory [12, 16] have obtained a related result for the Thue inequality 

(10) O<IF(x,y)l~h. 

Define (N(r) , J(r)) by (N(r), J(r)) = (6r72(;) , ir(r - 1)) for 3 ~ r < 400 
and (N(r) , J(r)) = (6r, 120(r - 1)) for r> 400. They prove that if 

IDI ~ h,,(r)exp(80r(r-1)), 
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then the number of solutions of (10) in coprime integers x and y with y 
positive is at most N(r). 

Recall that the term in the denominator on the left-hand side of inequality (8) 
is at most (D, i)I/2. If g ~ Ih1 2/rH then, since IDI is at least 1, whenever 
(D, i) 1/2 ::; Ihl e/2 inequality (8) holds with e replaced by e/2. This gives 
immediately the following consequence of Theorem 1. 

Corollary 1. Let F be a binary form with integer coefficients of degree r (~3), 

content 1, and nonzero discriminant D. Let h be a nonzero integer and let 
e be a positive real number. Let g be any divisor of h with g ~ IhI2/rH. If 
Ihl ~ (D, i)l/e then the number of pairs of coprime integers (x, y) for which 
F(x, y) = h is at most 

2800 ( 1 + 4~r ) rl+w(g) . 

If F has few nonzero coefficients, say s, then upper bounds for the num-
ber of primitive solutions of (1) have been given by Mueller and Schmidt [29] 
and Schmidt [34] that depend on sand h only. Further, the special case of 
binomial forms F(x, y) = arxr + aoyr has been much studied by the hyperge-
ometric method. This study was initiated by Siegel [35] in 1937 and refined by 
several authors, most recently Evertse [11] in 1982; see, in particular, Theorem 
2 of [11], which is of a similar character to Corollary 1. Finally we mention 
that Silverman [36] in 1983 proved that if D(F) =1= 0 and h is r-powerfree and 
sufficiently large relative to F then the number of primitive solutions of ( 1) is 
at most 

,zr2 (8r3)RF (h) , 

where RF(h) is the rank of the Mordell-Weil group of the Jacobian of the curve 
(1) over Q. 

3. ON POLYNOMIAL CONGRUENCES 

The results in this section were motivated by the reduction theory of §VI of 
Bombieri and Schmidt [5]. The author is grateful to Professor Bombieri for 
correspondence that clarified for him some aspects of their argument. 

Let Qp be a completion of an algebraic closure of Qp' the field of p-adic 
numbers. Let lip denote the usual p-adic value in Qp' so Iplp = p-I , as well 
as an extension of it to Qp ' Let tlp denote the ring of integers in Qp' and let 
Rp denote the ring of elements a in Qp with lalp ::; 1 . We define ordp y for 
y E Qp by ordp Y = -(log Iylp)/ logp. Recall that the content of a polynomial 
f with integer coefficients is the greatest common divisor of its coefficients and 
the discriminant D(f) of f is given by D(F), where F is the binary form 
F(x, y) = yr f(x/y) and r is the degree of f. 

For any prime p and nonzero integer D we define 1= I(p, D) by 

1= ordpD. 
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Further for primes p and nonzero integers r, k, and D with r 2: 2 , we have 
that T = T(r, k, p, D) , as defined in (7), satisfies 

T= 

if k 2: I, 

if ~ > k > ~I for j = 1 , ... , r - 2, }- -}+ 

if _1_ > k > 1. r -1 - -

Theorem 2. Let p be a prime number, and let f be a polynomial with integer 
coefficients, content coprime with p, degree r (2: 2), and nonzero discriminant 
D. Put ordp D = I and let s denote the number of zeros of f in Rp. For 
each positive integer k there is an integer t (= t(k)) with 0 ~ t ~ s (~r) 

and there are nonnegative integers bl (= bl (k)), ... ,bt (= bt(k)) and u l 
(= u I (k)) , ... ,ut (= ut (k)) such that the complete solution of the congruence 

(11) f(x)==O (modpk), 

is given by the t congruences 
k-u (12) x == bi (mod p ;) 

for i = 1, ... , t and such that if k > I then t(k) = t(l+I) and ui(k) = ui(l+I) 
for i = 1 , ... , t, while if j 2: k > I then 

(13) bi(J) == b/k) (mod pk-u;(k)) 

for i = 1 , ... , t. Further, for each positive integer k, pk divides the content of 
f(pk-U; X + bJ for i = 1 , ... , t, 

(14) 0 ~ ui(k) ~ T 

for i = 1 , ... , t, and 

( 15) 

Furthermore, for each positive integer k, at most sl of the integers bl , ... , bl 

are divisible by p, where Sl is the number of roots a of f with lalp < 1. 
Proof of Theorem 2. We first prove that the solutions of (11) are given by t such 
congruences and to this end our argument will follow initially that of Lemma 
7 of [5] or Proposition 4.8.1 of [1]. Let U = {a E Rpllf(a)lp ~ p-k}. Then 
U can be written as the disjoint union of maximal discs in Rp. Let aRp + b 
be such a disc with a, b E R p ' a =1= 0, and lalp ~ Iblp. Since f has content 
coprime with p there exists a y in Rp with If(y)l p = 1. Thus aRp + b is 
properly contained in Rp hence lal p < 1. Now let f(x) =ar(x-al)···(x-ar) 
in Qp . Observe now that since aRp + b is maximal, it contains a root a i of 



SOLUTIONS OF POLYNOMIAL CONGRUENCES 799 

f. For otherwise there exists an a' E Rp with lal p < la'i p < lai - blp for 
i = 1 , ... , r and so a'Rp + b is a disc in U that properly contains aRp + b , 
contradicting the assumption that aRp + b is maximal. Thus each maximal 
disc contains a root of f in Rp and so U is the disjoint union of at most s 
such discs. For each disc aRp + b we consider the disc aRp + b n Zp' This 
disc is either empty or of the form AZp + B with A, B E ZP' IAlp :::; IBl p ' 
and IAlp < 1 since lalp < 1. If x in Z satisfies f(x) :::::: 0 (mod pk) then 
If(x)lp :::; p-k and so x lies in one of the discs AZp + B. Thus there exists 
an integer t with 0 :::; t :::; s and integers b l , .•• , bt and u I "'" ut with 
o :::; ui :::; k for i = 1, ... , t such that x satisfies one of the congruences 
x:::::: bi (mod pk-u j) with 1 :::; i:::; t. 

For each integer i for which k - ui is less then k we consider the integers 
e· . = b. + jpk-u j for j = 1, ... , p. If for some integer i and for each integer 

I,J I 

j from 1 to p there is a root of f, say a, for which la - ei)p < la - ei,mlp 
for 1 :::; m :::; p with m =I- j then we replace the single congruence x :::::: bi 

(mod pk-u j) by the p congruences x:::::: ei,j (mod i-Uj +l ) for j = 1, ... , p. 
We now relabel the bi 's and ui 's to take into account the fact that we have p 

new congruences in place of the single congruence x:::::: bi (mod pk-u j). Since 
each maximal disc contains a root of f we see that to each of the original bi 's 
we may associate a root of f that is p-adically closer to it than to any of the 
other bi's. This situation still applies after the above substitution. Each such 
root is one of the s roots of f from Rp and hence 0 :::; t :::; s. Further, 
there can be only finitely many applications of the above procedure. Thus, we 
may assume that for each integer i for which k - ui is less than k there is 
an integer j = j(i) with 1 :::; j :::; p such that for each root a of f there 
is an integer m = m(a, j), different from j, with 1 :::; m :::; p such that 
la - ei,mlp :::; la - ei)p' But lei,j - ei,mlp = p-k+uj and so by the triangle 
inequality la - e· ·1 ~ p-k+u j . Note that we may replace b bye. and so 

I,J P I I,J 

may suppose that la-bilp~p-k+Uj for all roots a of fwhenever k-ui<k. 
Then we may suppose, without loss of generality, that ui > 0 for i = 1 , ... , t I ' 

and that ui = 0 for i = tl + 1, ... , t, where tl is an integer with 0:::; tl :::; t. 
Further, again without loss of generality, we may suppose that the roots of f 
are ordered so that 

( 16) 

for i = 1 , ... , t and j = 1 , ... , r. Put 

6i ,j = ordp(bi - a) 

for i = 1 , '" , t and j = 1 , ... , r and note that, by (16), 

(17) 6.>6. 
1,1 - I,J 
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for i = 1, ... , ( and j = 1, ... , r. Since If(bJlp '.5. p-k we have 

( 18) 
, 

ord a + '" ° . > k p' L... I,j-

J=I 

for i = 1, ... , (. Also, since laJ - bilp ~ p-k+Uj we have 

(19) 0 . . < k - U 
l,j - I 

for i = 1, ... '(I and j = 1, ... , r. Since f has content coprime with p, 

(20) ordp a, + L ordp a J = 0 . 
ordp aj<O 

Thus, for all integers b, 

(21 ) ordp a, + L ordp (b - a) = O. 
ordp aj<O 

Accordingly, by (18) and (21) with b replaced by bi , 

(22) 
I :SJ:S', 0, ,j2:0 

for i = 1, ... , (. Therefore, by (19) and (22), 

(23) ",* 
L... 0i,J ~ u i 

I:SJ:S', Hi 

for i = 1, ... , (. Here L:* indicates that the sum is taken over those terms ° j. that are nonnegative. Further, for integers i and j with 1 '.5. i < j '.5. r, 
I, 

ai - a j = (bh - a j ) - (bh - aJ for h = 1, ... , (, hence 

(24) ord (a. - a) ~ max {min(oh ., 0hn. 
p 1 j l:Sh:St ,I ,j 

Recall that 
I 1 

(25) 2 = 2 ordp D = (r - 1) ordp a, + L ordp(ai - a). 
i<j 

By (20), 

(r - 1) ordp a, + ord (a. - a.) > 0 p 1 j-

and so, by (25), 

(26) 

Thus it follows from (24) that 

(27) I L* . -2 ~ max {mm(oh i' 0h jn· 
I<h<t " i<j --
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By (17), min(t5 . . ,15) = 15 . for i =1= j and so [, [ I,j [,j 

(28) I 2:* 2:* 0 - > 15 .. + mm(t5 .,15 ) 2 - I,j [,j I,m 

I 5,J5" Jf.i J<m, Hi , m,.,i 

for i = 1 , 0 0 0 , t 0 

Let us for the moment fix i with 1 ~ i ~ t, and put ui = U 0 Let n denote 
the number of terms t5i , j with i =1= j and t5i , j ::::: 0; note that 0 ~ n ~ r - 1 0 

Relabel these terms as XI' .00 ,xn in such a way that XI ::::: x 2 ::::: 000 ::::: xn ::::: 00 

Then, from (28), 

hence 

(29) 

Further, by (23), 

(30) 

and, by (19), 

(31 ) 

I - > X + 2x + 0 0 , + nx 2 - I 2 n° 

-X > U - k m-

for m = 1, 0 •• , n. Since xm ::::: 0 for m = 1, 00. , n we deduce from (29) that 

~ ::::: j(xi +" 0 + xn) - (j - l)xI - (j - 2)X2 - '00 - x j _ 1 

for j = 1, ... , n. By (30) and (31), 
I '('-I) - > JoU + LL_(u - k) 2 - 2 ' 

hence 
I (j - 1) 

u~ j(j+l)+ j+l k 

for j = 1, o •• , no It also follows from (30) and (31) that n(k - u) ::::: u, whence 

u~ (n:l)ko 

Therefore 

, ( ( n ) k ' ( I ( j ) k) ) u ~ mm -- , mIn (' )(' 2) + -:--2 . n + 1 j=O, .. " n-I J + 1 J + J + 

Since n ~ r - 1 , we certainly have 

o ( (r - 1 ) k ' ( I ( j ) k)) u ~ mm -- , mIn (' )(. 2) + -'-2 ' r J=0, ... ,r-2 J+l J+ J+ 

which establishes (14). 



802 C. L. STEWART 

Note that for any pair of integers (i, j) with 1 :S i < j :S t, 
min(c5,c5)+min(c5,c5) c5+c5. (32) max(min(c5 ., c5)) 2: 1,1 I,j j,1 j,j > I,j j,1 

l~h9 h,1 h,j 2 - 2 

Further, for any pair of integers (i, j) with 1 :S i :S t < j :S r, 
max (min(c5h ., c5h )) 2: c5 .. 
l~h9 ,I,j I,j 

Thus, by (27), 

(33) 

and, by (23), 

(34) 

I ( ) 1 > '" ",* c5. + ",* c5 . , 
-~ ~ l,j ~ l,j 

i=1 I~j~r, Hi I<j~r 

Observe that if (34) holds with equality then (23), (27), and (33) must also 
hold with equality. By (23), c5i ,j :S 0 whenever i > tl . By (33), if 1 :S i:S tl 
and t < j :S r then c5i ,j :S O. By (32), if 1 :S i :S t, i < j :S t, and c5i ,j 2: 0 
then c5i ,j = c5j ,i' Therefore if u1 + ... + ul = 1 then, by (33), 

(35) II ( ) II ( ) * 2:* 1='" '" c5. ="'2 c5 .. ~ ~ l,j ~ I,j 
i=1 l~j9, Hi i=1 i<j~11 

Further if (34) holds with equality then by (19) and (23) we see that c5i ,i = 
k - ui for i = 1, ... , tl . Since 

(a i - bi) - (a i - b) = bj - bi 

and 
la i - bilp :S la i - bjlp , 

for 1 :S i :S tl and 1 :S j :S r we deduce that 

la i - bjlp = max(la i - bilp , Ibj - bilp)' 

Since c5i , i is an integer and ordp (b i - b) is also an integer, we conclude that 
c5i , j is an integer for all pairs (i, j) with 1 :S i :S t 1 and 1 :S j :S r. Therefore, 
by (35); 1 is an even integer. Accordingly, when 1 is odd inequality (34) is not 
sharp and so we may replace 1 in (34) by 1 - 1 . Therefore we have 

u1 + ... + ul :S 2 [~] . 

Further since t:S rand T:S [((r - l)/r)k] we also have 

u1 + ... + ul :S r [ (r ~ 1) k] 
Next consider f(pk-u ix + bi) for i = 1, ... , t. If tl + 1 :S i :S t then 

ui = 0 and since f(b i ) == 0 (mod /) it is immediate that pk divides the 
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content of f. Suppose therefore that 1 :::; i :::; t" hence that u i > O.We 
have Ip-kf(pk-u,x + bi)lp :::; 1 for all x in Zp and it suffices to prove that 
Ip -k f(pk-u; X + bi ) Ip :::; 1 for all x in Rp. We have 

, 
k-u II k-u If(p 'x + bJlp = la,l p Ip i X + bi - O:)p. 

j=' 

Recall that Ibi - O:)p ;::: p -(k-u) for j = 1, ... , r. Thus for x in Rp ' 
Ipk-u;x + bi - O:jlp :::; Ibi - O:jlp for j = 1, ... ,r and so for all x in Rp ' 
Ip-k f(pk-u;x + b)lp :::; Ip-k f(bj)lp :::; 1, as required. 

Next we take k = 1+ 1 in (11) and apply the argument of Sandor [33] to lift 
the t=t(/+l) congruences (12). This then gives that for k>l, t(k)=t(/+l) 
and ui(k) = u/l + 1) for i = 1, ... , t and also yields (13). 

Finally, observe that if plbi for some i with 1 :::; i :::; t then bi E AZp + B 
for one of the discs with IBlp :::; p -, . Therefore the maximal disc aRp + b for 
which aRp + b n Zp = AZp + B satisfies Iblp < 1. Since aRp + b is maximal 
it contains a root 0: of f and since lal p :::; Iblp' 100Ip < 1 . Therefore at most 
s, of the integers b" ... , bt are divisible by p. This complete the proof. 

That we may take t(k) and ui(k) for i = 1, ... , t to be constant for k > I 
follows from an argument of Sandor [33] as does the fact that the condition 
k > I cannot be weakened. It follows from Lemma 7 of Bombieri and Schmidt 
[5] that pk divides the content of f(pk-u; + bi) for i = 1, ... , t. However, 
they do not give an estimate for ui . Indeed, the main novelty in the statement 
of Theorem 2 lies in the estimates (14) and (15). These estimates are, in general, 
best possible. 

We shall show first that estimate (14) is best possible in the following sense. 
Let e and e be positive real numbers, r an integer with r ;::: 2, and p a 
prime number larger than r. Then there exist positive integers k and I with 
(8 - e) I :::; k :::; (e + e) I and there exists a polynomial f of degree rand 
discriminant D with I = ordp D and for which the solutions of (11) are given 
by t congruences (12) with 

Note that since p > rand (:::; r the congruences (12) are uniquely determined. 
Let r, t, m, and n be integers with r ;::: t ;::: 2, m > 0, and m ;::: n ;::: 0, 

and let p be a prime number with p > r. We define f(x) by 

(36) f(x) = (x + pm)(x + 2pm) ... (x + (pm) 
. (x + (t + l)pn)(x + t + 2)··· (x + r). 

Let D denote the discriminant of f. Then 1= ordp D = t(t - l)m + 2tn. 
Let s be a positive integer with s :::; m and take t = rand n = 0 in (36). 

Then 1= r(r-l)m. Put k = rs. The complete solution of f(x) == 0 (mod pk) 
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is given by x :::::: 0 (mod pS). In this case u, = k - s = ((r - 1)lr)k. Since 
1 ~ s ~ m, rm = II(r - 1), and m is at our disposal, we see that the upper 
bound for ui(k) in(14)of T=[((r-l)lr)k] is best possible for the range 1 ~ 
k ~ II(r-l). Next let} be an integer with 1 ~} ~ r-2 and take t =} + 1 in 
(36). Then 1 = }(j+ l)m+2(j+ l)n. Put k = (j+ l)m+n and v = k-(j+l)n. 
The complete solution of f(x):::::: 0 (mod pk) is given by x:::::: 0 (mod pm) , or 
x :::::: -(j + 2)pn (mod pV) , or x :::::: -i (mod pk) for i = } + 3, ... , r. In this 
case u, = k - m =}m + n, hence u, = 11((j + 1)(j + 2)) + (j l(j + 2))k . Note 
that as n varies from 0 to m, k varies from II) to I I (j + 1). Thus the upper 
bound for ui(k) in (14) is best possible for k with II} ;::: k ;::: 11(j + 1) for 
} = 1, ... , r - 2. Finally, take t = 2 and n = 0 in (36). Let s be an integer 
larger than m and put k = s + m = 1+ (s - m) . Then the complete solution of 
f(x) :::::: 0 (mod pk) is given by x :::::: _pm (mod pS) , or x :::::: _2pm (mod pS) , 
or x:::::: -i (mod pk) for i = 3, ... , r, and so u, = u2 = m = 112, whence 
the upper bound for u i (k) in (14) is best possible for the range k ;::: I and 
therefore for the range k ;::: 1 . Further we note that 

(37) u,+u2 =1 

and that the number of solutions modulo pk of f(x) :::::: 0 (modpk) is 2pm +r-2 
or equivalently 

(38) 1/2 2p + r - 2. 
We shall now show that estimate (15) is best possible for k ;::: II (r - 1). For 

the range k ;::: I it suffices to recall (37). Next, as before, let} be an integer 
with 1 ~} ~ r- 2 and take t =} + 1 in (36) so that 1 =}(j + l)m+2(j + l)n. 
Put k = (j + l)m + n + 1 and v = k - (j + l)n. The complete solution of 
f(x) :::::: 0 (mod pk) is given by x:::::: _ipm (mod pm+') for i = 1, ... ,} + 1, 
or x :::::: -(j + 2)pn (mod pV) , or x :::::: -i (mod pk) for i = } + 3, ... , r. In 
this case 

u, + ... + ur =}(j + l)m + 2(j + l)n = I, 
and if n is positive then 1 I) > k > I I (j + 1). Further for n positive the 
number of solutions modulo pk of f(x):::::: 0 (mod pk) IS 

(39) (j + l)pim+n + p(j+')n + r _) _ 2 

( . 1) T 1-(j+')T . 2 = j+ P +p +r-j-. 

Since m and n are still free to be chosen we see that estimate (15) is best 
possible for II} ;::: k ;::: 11(j + 1) for} = 1, ... , r - 2 and so for the range 
k;::: II(r-l). For k satisfying 1 ~ k < II(r- 1) the minimum of 2[1/2] and 
r[((r - 1)lr)k] is r[((r - 1)lr)k]. In this case estimate (15) is close to optimal 
as the following example shows. Let r, W, and m be positive integers with 
W ;::: m + 1 and r;::: 2. Let p be a prime number with p > r. We define g(x) 
by 
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Let D denote the discriminant of g. Then 1= ordp D = 2(w -m)+r(r-l)m. 
Put k = 1 + rm. The complete solution of g(x) == 0 (mod pk) is given by 
x == 0 (mod pm+l) or x == _ipm (mod pm+l) for i = 3, ... , r. Thus t = r-l , 

u1 + ... + u( = (r - 1)2m = (r _ 1) [(r ~ 1) k] , 
and the number of solutions modulo pk of g(x) == 0 (mod pk) is 

(40) (r - 1 )p[((r-l)/r)k) . 

For any prime p and nonzero integers r, k, and D with r ~ 2 and k > 0 
we define Q = Q(r, k, p, D) and B = B(r, k, p, D) in the following way. 
We put (Q, B) = (r, 0) except when T i- 0 and 2[1/2]/T::; r, in which case 
we put (Q, B) = (QI ,B1) where 

2[~]=QIT+Bl' 
with 0 ::; Q1 and 0 :::; BI < T. Now observe that the single congruence 
x == bi (mod pk-u j ) is equivalent to the pU j congruences x == aj (mod pk) , 
where aj = bi + jpk-u j for j = 1, ... , pU j • Thus the number of solutions 
modulo pk of (11) is pU j + ... + pUt. Since for any positive integers u, v with 
u ~ v we have 

u+l v-I U v p +p >p +p , 
it follows from (14) and (15) that 

pU j + ... + pUt::; QpT + pB + r _ Q _ 1. 

Since T::; [l/2] we see that 

QpT + pB + r _ Q _ 1 ::; 2p[l/2) + r - 2. 

Therefore we have proved the following result. 

Corollary 2. Let p be a prime number, k a positive integer, and f a polynomial 
with integer coefficients, content coprime with p, degree r (~ 2), and nonzero 
discriminant D. The number of solutions modulo pk of 

k (41) f(x) == 0 (mod p ) 

is at most 

( 42) T B Qp + p + r - Q - 1 , 

which in particular is at most 

( 43) 2p[l/2) + r - 2. 

In 1921 Nagell [30] and Ore [32] proved independently that the number of 
solutions modulo / of (41) is at most rp21. This was improved by Sandor 
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[33] in 1952 to r//2 for k > I and in 1981 Huxley [19] obtained the same 
bound for all positive integers k. Estimates (42) and (43) coincide when k ~ I 
and, by (38), they are best possible for this range. 

If k < I then we may have T < [l/2] in which case QpT + pB + r - Q - 1 is 
smaller than 2p[l/2J + r- 2. It follows from (39) that (42) is best possible for the 
range Ilj ~ k ~ 11(j+ 1) for j = 1, ... ,r-2. Finally since T::; [((r-1)lr)k] 
for all positive integers k we have 
(44) QpT + pB + r _ Q _ 1 ::; rp[((r-I)/r)kJ • 

Thus, by virtue of (40), estimate (42) is close to best possible for the range 
1 ::; k ::; II(r - 1). 

By Theorem 2 and the Chinese Remainder Theorem we obtain the following 
result. 

Corollary 3. Let m be a positive integer, and let f be a polynomial with integer 
coefficients, content coprime with m, degree r (~2), and nonzero discriminant 
D. There is an integer t with 0 ::; t ::; rw(m) , nonnegative integers bl , ... , bt , 

and positive integers d l ' ••• , dt satisjj;ing 

ordp d i ::; T(r, ordp m, p, D) 

for i = 1 , '" , t and all prime numbers p, such that the complete solution of 

(45) f(x) == 0 (mod m) 

is given by the t mutually disjoint congruences x == bi (mod midi) for i = 
1 , ... , t. 

By Corollary 2 and the Chinese Remainder Theorem the number of solutions 
modulo m of (45) is at most the product over all primes p dividing m of the 
upper bound given by (42) with k = ordp m. In particular, by (43) and (44), 
we see that the number of solutions modulo m of (45) is at most 

( 46) II . (2 [ordp D/2J 2 [((r-I)/r) ordp mJ) mm p + r - ,rp . 
plm 

We remark that the upper bound in (46) is again sharp. Let w, r, and 
jl' ... ,jw be positive integers with r ~ 2, and let PI' ... 'Pw be prime 
numbers larger than r. Put 

( 47) 

let v be an integer with v ~ w, and let Pw+1 ' ... 'Pv be primes that are larger 
than pi' ... P~w. Finally let k l , ... ,kv be positive integers with ki > 2ji for 
i = 1 , ... ,wand put m = p~, ... p~v . Then by the Chinese Remainder Theo-
rem and the discussion preceding (38), it follows that the number of solutions 
of (45) with h as in (47) is exactly 

II (2p[ordp D/2J + r - 2) . 
plm 
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4. PRELIMINARY LEMMAS 

Let a be an algebraic number of degree n and define the height of a, 
denoted by h(a), by 

h(a) = (M(f)) lIn, 

where f is the minimal polynomial of a over the integers. Let t and • 
be positive numbers such that t < J2/n and J2 - nt2 < • < t, and put 
A. = 2/(t -.) and 

Al = t2 
2 (nIOg(h(a)) + !!.2) . 

2 - nt 
Suppose that A. < n. A rational number x/y is said to be a very good approx-
imation to a if 

la-x/yl < (4e A1 H(x,y))-A, 
where H(x, y) = max(lxl, Iyl). Bombieri and Schmidt [5], building on the 
earlier work of Bombieri [2] and Bombieri and Mueller [4], and of course the 
classical work of Thue and Siegel, proved the following result. 

Thue-Siegel principle. If a is of degree n (~3) and x/y and x' /y' are two 
very good approximations to a then 

A I I -I A log(4e 1)+log(H(x ,y)):s;y (log(4e 1)+log(H(x,y))), 

where y = (nt2 +.2 - 2)/(n - I). 

We must also deal with the possibility that a is of degree I or 2. In this case 
we appeal to the following simple result. 

Lemma 1. Let a be an algebraic number with minimal polynomial f over Q, 
and let a be the leading coefficient of f and D the discriminant of f. Suppose 
that p / q is a rational number with q =I o. If a is a rational and a =I p / q then 

la -~I ~ lalql ~ M(})lql . 

If a is of degree 2 over Q then 

la -~I ~ min(M(f)-1 , (2IDII/2lfl). 

Proof. First assume that a is of degree 1. Then f(x) = ax - b with a and b 
coprime integers and with a =I o. Thus a = b / a and for any rational number 
p/q with q =I 0 and a =I p/q, 

la -~I = I~ -~I ~ lalql· 

Since M(f) ~ lal the result holds. 
Next assume that a is of degree 2. Then f(x) = ax2 + bx + c with a =I o. 

Let a ' denote the other root of f. For any rational number p / q with q =I 0 , 

I Pllap2+bpq+cll I 
(48) a - q = q2lalla' _ p/ql ~ q2lalla' _ p/ql . 
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Now either 

( 49) I pi' IDII/2 1 1 a - q 2 la - a I = Tal 2 rar 2 M(f) , 

or 

I I I ( I 
1/2 ,p, p, IDI a - - = (a - a) + a - -) < 21a - al < 2--. q q - - lal 

In the latter case, by (48), 

(50) 

and so the result follows from (49) and (50). 

From the proof of Lemma 1 of Lewis and Mahler [21] together with refine-
ments (a) and (b) of Bombieri and Schmidt [5, p. 72] we obtain the following 
result. 

Lemma 2. Let f be a polynomial with coefficients from the complex numbers 
C, degree n (22), and zeros ai' ... ,an in C. For every z in C, 

If(z)l> ID(f)11/2 min Iz - a·l· 
- n(n-l)/22n-l M(f)n-2 l:S:i:S:n I 

We may apply Lemma 2 to obtain the following version of Lemma 1 of [5]. 

Lemma 3. Let F be a binary form of degree r (2 3) with integer coefficients 
and nonzero discriminant D(F). For every pair of integers (x, y) with y -I 0 

. I x I 2,-1 r(,-I)/2(M(F))'-2 IF (x, y)1 
mm a - - < -----'-'---:--7::---'----'--'--'--'-'-

Q y - ID(F)11/2Iyl' , 
where the minimum is taken over the zeros a of F (z, 1). 
Proof. Put f(z) = F(z, 1) and denote the degree of f by n. Since F has 
degree at least 3 and D(F) -I 0, n is at least 2 and so by Lemma 2 

IF(x )11 1-' = If (~) I> ID(f)ll/2 min la - ~I· ,y Y Y - n(n-l)/22n-l(M(f))n-2 Q Y 

Since F is homogeneous, M(f) = M(F). Let 
, ,-1 , 

F(x, y) = a,x + a,_lx y + '" + aoy . 
If a, -I 0 then n = r, D(F) = D(f) , and the result follows immediately. If 
a, = 0 then a'_1 -10, n = r - 1, and ID(F)ll/2 = la,_IIID(f)11/2. But then 
M(f) 21a,_11 and the result again follows. 

5. PROOF OF THEOREM 1 

Let p be a prime and suppose that pk exactly divides h. If (x, y) is a 
primitive solution of (1) then certainly 

k F(x, y) == 0 (mod p ). 
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If p does not divide y then y is invertible modulo pk and so 

F(xy -I , 1) == 0 (mod pk). 

809 

By Theorem 2 there is an integer t with 0 ::; t ::; 5 , where 5 denotes the number 
of zeros of F(z, 1) in Rp ' and there are integers bl , .•. ,bt and u I ' ••• , ut 

with ui satisfying (14) such that xy-I == bi (mod pk-uj) for some integer i 
with 1 ::; i ::; t. We suppose, as we may without loss of generality, that for 
each integer j with 1 ::; j ::; t there is a primitive solution (x, y) of (1) for 
which xy-I == bj (mod pk-uj ). Note also that since D(F(z, 1)) divides D(F) 
(= D(F(X, Y))) we may take D(F) in place of D(F(z, 1)) in estimate (14). 

Put Fi(X, Y) = F(pk-U j X + biY, Y) for i = 1, ... , t. By Theorem 2 the 
content of Fi is divisible by pk. Since F has content 1 the content of Fi is 
a power of p and since pk exactly divides h and there is a primitive solution 
(x, y) of (1) for which xy-I == bi (mod pk-u,) the content of Fi is pk for 
i = 1, ... , t. Put PJX, Y) = p-k Fi(X, Y) for i = 1, ... , t. Plainly Pi has 
content 1 and by (5) and (6) 

~ p(k-uj)r(r-I) D(F) 
D(Fi) = k2(r-l) p 

(51 ) 

for i = 1, ... , t. Further since xy -I == bi (mod pk-uj) , there exists an inte-
ger Xi for which x = pk-U j Xi + biy. Thus (Xi' y) is a primitive solution of 
~ -k 
Fi(X, Y) = hp . 

Similarly if (x, y) is a primitive solution of (1) and p divides y then p 
does not divide x and so x is invertible modulo pk . In this case F (1 , y X -I) == 
o (mod pk) . By Theorem 2 applied to F (1 , z) there is an integer w with t ::; 
wand there are integers bt+ l , •.• ,bw and ut+ I ' ... , U w ' with u i satisfying 
(14) with D(F) in place of D(F(l, z)), such that yx- I == bi (mod pk-u,) 
for some integer i with t + 1 ::; i ::; w. We choose w to be minimal. Since 
p divides y it also divides bi for i = t + 1 , ... ,wand thus by Theorem 
2, w - t is at most 51' where 51 is the number of roots a of F(l, z) with 
lalp < 1. Since each nonzero root of F( 1, z) is the inverse of a nonzero root of 
F (z, 1), w ::; r. Arguing as before, but with the roles of x and y reversed, we 
determine binary forms Pi of content 1 that satisfy (51) for i = t + 1 , ... , w . 

Therefore if (x, y) is a primitive solution of (1) then it determines a triple 
(i, x' , y'), where 1 ::; i ::; wand (x', y') is a pair of coprime integers for 
which Pi(x' , y') = hp -k . Further, distinct primitive solutions of (1) determine 
distinct triples. We may assume, without loss of generality, that ordp g = ordp h 
for all primes p that divide g. Then, by repeating the above construction for 
each prime p that divides g we obtain a set W of at most rw(g) binary forms 
with the property that distinct primitive solutions (x, y) of (1) correspond to 
distinct triples (F, x' , y') , where F is in Wand (x', y') is a pair of coprime 
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integers for which F(x' , y') = hi g. Further if F is in W then F has content 
1 and, by (51) and Theorem 2, 

D F > g(r-2)(r-I)ID(F)1 
1 ( )1- G(g,r,D),(r-l) , 

hence, by (8), 

(52) ~ (I h 1
2/r+e)r(r-l) ID(F)I> -- g 

Let F be a form in W, let p a prime number, and let 

Bo = (~ ~), Bj = (~ -/) 
for j = 1, ... , p. Then, as in [5], we have 

p 

'Z} = U B/I} , 
j=O 

and the number of primitive solutions of F(x, y) = hi g is at most no + n l + 
... + np ,where n j is the number of primitive solutions of 

By (6), 

(53) 

FB(x,y)=hlg. 
} 

ID(FBJI = pr(r-I)ID(F)I. 
} 

Put n = hi g and take p = 41 in (53). Then, by (52) and (53), the number 
of primitive solutions of (1) is at most 42rw(g) times the maximum number of 
primitive solutions (x, y) of 
(54) G(x, y) = n 

for all binary forms G of degree r and for which 
(55) ID(G)I ~ (41InI2/r+e)r(r-l) . 

Suppose that G is such a form and that (xo' Yo) is a primitive solution of 
(54). Then there is an A in GL(2, Z) for which A-1(xO' Yo) is (1,0) and 
so (1, 0) is a solution of G A (x, y) = n. Note that G A has leading coefficient 
n. Thus we may suppose that G has leading coefficient n and that M(G) is 
smallest among all equivalent forms that have n as their leading coefficient. 

Let Yo be a positive real number. We shall now estimate the primitive 
solutions (x, y) of (54) for which 0 < y ~ Yo, and here we shall repeat the 
argument of Bombieri and Schmidt with some minor changes. We have 

G(x, y) = n(x - QlY) ... (x - QrY) , 

where QI' •.. ,Qr are distinct complex numbers. Put Li(x, y) = x - QiY for 
i = 1 , ... , r. Then by the same argument given for the proof of Lemma 3 of 
[5] we obtain the next result. 
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Lemma 4. Suppose (x, y) and (xo' Yo) are primitive solutions of (54). Then 
for 1 :S i , j :S r , 

(56) Li(xO' Yo) _ Lj(xo' Yo) _ (P _ P )( _ ) 
Li(x, y) Lj(x, y) - i j xYo xoy, 

where PI' ... , Pr depend on (x, y) and are such that the form 

J(u, w) = n(u - Plw)· .. (u - Prw) 

is equivalent to G. 

We may take (xo' Yo) = (1 ,0) in which case, by (56), 
1 1 

Li(x, y) - Lj(x, y) = (Pj - P)y. 

For every primitive solution (x, y) of (54) we choose j = j(x, y) with 
ILj(x, y)1 ~ 1. Then 

(57) 

Since ILj(x, y)1 ~ 1, (57) holds with Pj in place of Pj and so 
1 

ILi(x, y)1 ~ I Re(p) - Pillyl- 1. 

We now choose an integer m = m(x, y) with 1m - Re(p) I :S 1/2 and we 
obtain 

(58) 

for i = 1 , ... , r . 
For 1 :S i :S r , let Xi be the set of primitive solutions of (54) with 1 :S y :S Yo 

and ILJx, y)1 :S 1/2y. 

Lemma 5. Suppose (x, y) -I (x' ,y') are in Xi with y :S y'. Then 

y' 2 Y ~ "7 max(l, IPi - ml)' 

where Pi = Pi(x, y) and m = m(x, y). 
Proof. This is Lemma 4 of [5] and the proof goes through unchanged. 

Similarly we obtain the following version of Lemma 5 of [5]. 

Lemma 6. Suppose (x, y) is a primitive solution of (54) with y > 0 and 
ILi(x,y)l> 1/2y. Then 

1m - Pi! :S ;, 
where again Pi = Pi(x, y) and m = m(x, y). 

For each set Xi that is not empty let (xU), yU)) be the element with the 
largest value of y. Let X be the set of solutions of (54) with 1 :S y :S Yo 
minus the elements (X(I), /1)), ... , (x(r) , y(r)). 



812 C. L. STEWART 

Let i be an integer with 1 ::; i ::; , and, when Xi is non empty, let (x~i) , y~i)) , 
... , (x~i) ,y~i)) be the elements of Xi with yii) ::; ... ::; y~i) . Thus (x~i) , y~i)) = 
(xU) , yU)). By Lemma 5 

U) 
~ max(1 IP.(xU) yU)) _ m(xU) yU))I) < Yk+1 7 'I k ' k k 'k - (i) 

Yk 

for k = 1, ... , v - 1, hence 

II (t max(1, IPi(x, y) - m(x, y)l)) ::; Yo' 
(x,Y)EXnXi 

For (x, y) in X but not in Xi we have 

t max(1, IPi(x, y) - m(x, y)l) ::; 1 

by Lemma 6. Thus 

(59) II (t max(1, IPi(x, y) - m(x, y)I)) ::; Yo' 
(x,y)EX 

By Lemma 4 the form 
, 

J(u, w) = n II(u - Piw) 
i=1 

is equivalent to G and thus so also is the form 
, 

J(u, w) = n II(u - (Pi - m)w). 
i=1 

Therefore 
, M(J) M(G) II max(1, IPi(x, y) - m(x, y)1) = -I-nl- ;:::: -I-nl-' 

1=1 

Taking the product of (59) for i = 1, ... , , we find that 

(60) ((~)' M(G))IXI '. 
7 Inl ::;Yo' 

here IXI denotes the cardinality of X. By a result of Mahler [25], 

( ID( G) I) 1/(2r-2) 
M(G);:::: --, - , , 

and thus, by (55), 

Since ,1/(2,-2) ::; 31/4 we find that 

(61 ) M(G) ;:::: (~\~~2rlnI1+e'/2. 
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For any posItIve real numbers a, b, c, d we have (a + b)/(c + d) :::; 
max(a/c, bid) and thus 

(62) log Inl + rlog(7/2) 
(1 + (er/2)) log Inl + rlog(41 1/ 2 /3 1/ 4 ) 

< max (_2_ log(7/2) ) . 
- 2 + er' log(41 1/2 /3 1/ 4 ) 

Therefore, by (61) and (62), 

(63) (~)' M(G) > M(G)6 
7 Inl - , 

where () = min(er/(2 + er), ()I) and ()I = 1 - (log(7/2))/(log(41 1/ 2 /3 1/ 4)). 

Accordingly, by (60) and (63), 
rlog Yo 

IXI:::; () 10gM(G) . 

We now take Yo = M(G)2 so that IXI :::; 2r/(). Thus the number of primitive 
solutions (x, y) of (54) with 1 :::; Y :::; M(G)2 is at most (2r/()) + rand 
therefore, since ID(G)I = ID( -G)I and M(G) = M( -G), the number with 
lyl :::; M(G)2 is at most 2((2r/()) + r + 1). 

We shall now estimate the number of primitive solutions (x, y) of (54) with 
lyl 2: M(G)2. To each such primitive solution (x, y) we associate a root O'.j 

of G(x, 1) for which 

for j = 1, ... , r. For i = 1, ... , r let /U) denote the set of such solutions 
associated to O'.j' 

Now fix i and let (XI' y l ), (X2' Y2)' ... denote the elements of /U) with 
Yj > 0 for j = 1, 2, ... , ordered so that YI :::; Y2 :::; .... By Lemma 3, 

(64) 10'.. _ Xj I < 2,-1 r(r-I)/2 M(G),-2 Inl 
1 Yj - ID(G)II/2y; 

for j = 1 , 2, ... , and so 

IXj+1 _ Xjl < 2'r(,-I)/2 Inl M(G),-2 
- I 1/2 ' YJ+I Yj D(G)I Yj 

Since IXj+IYj - xjYj+11 2: 1, we have, by (55), 
,-I 

Y 
} 2 < Y I' M(G)'- - }+ 

( 65) 

We define the positive real number Jj for each integer j for which there exists 
an element (xj , Y) in /(i) by 

(66) 
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By (61) M(G) > 1 and so, by (65), (r - 1)6j ::; 6j +1 for j = 1,2, .... Note 
that 6 ~ 1 since YI ~ M(G)2 . Therefore 

(67) (r - 1)j-1 ::; 6j 

for j = 1, 2, ... , and for any positive integers k and I with (xk+l ' Yk+l) in 
/U) , 

(68) 

Let J; denote the minimal polynomial of 0: i over the rationals. Then J; 
divides G(x, 1) in Z[x], M(J;) ::; M(G) , and ID(J;)I ::; ID(G)I. We suppose 
first that O:i is a rational number. Then, by (55), (64), and Lemma 1, 

r-I < M(G)r-1 YJ - , 

which is impossible since YI ~ M(G)2. Next suppose that O:i is of degree 2 
over the rationals. Then by (55), (61), (64), and Lemma 1, 

y;-2::; (2r r(r-I)/2 In I)M(G)r-2 < M(G)2(r-2) , 

and again this is impossible since YI ~ M(G)2 . 
Finally suppose that O:i is of degree d over the rationals with d at least 3. 

We shall apply the Thue-Siegel principle with 

a =.1, 

and 
,= 1.2';2 - dt2 = 1.2at = .12t. 

Then A = 2/(t - ,) = 2/(.88t) and so A < .93d ::; .93r. Further, t2 /(2 - dt2 ) = 
a-2 = 100 so 

Al = lOO(dlog(h(o:)) + d/2) = 100(log(M(J;)) + d/2) 

and 

y = (dt2 + ,2 _ 2)/(d - 1) = ((.12)2 - (.01))2/((d + .OI)(d - 1)), 

hence 

( 69) -I 2 2 Y < 172(d -1) ::; 172(r-l) . 

Now observe that 
4eAJ ::; 4M(J;) 100 e 50d ::; 4M( G) 100 e 50r . 

By (61), M(G) ~ (411/2/3 1/4 / and so 

8e50r ::; (8 1/3e 50 )r < M(G)33. 

Therefore 

(70) 
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Note that by (55) and (64), laj - xj/Yjl < 1, hence Ix) < ly)(lajl + 1) < 
2M(G)Yj' Thus H(xj , Y) < 2M(G)Yj and so 

(71) (4eAj H(xj , Y))'" < M( G)(135+aj)J. < M( G)(135+,)j)(.93r). 

By (55), (64), and (66), 

(72) 

It follows from (71) and (72) that xj/Yj is a very good approximation to a j 

whenever 
6/2: (135 + 6)(.93r) , 

hence for 6j 2: 1794. But 6j 2: (r - 1/- 1 and so if we put 

k = 1 + [ log 1794 ] 
log(r - 1) , 

then Xk+1/Yk+l ' Xk+2/Yk+2' ... , xk+tiYk+1 are all very good approximations to 
a j whenever (xk+I' Yk+/) is in /U) . Suppose that there exists an integer I with 
12: 2 for which (xk+I ' Yk+/) is in /U) . Then by the Thue-Siegel principle and 
(69), 

A 2 A log(4e 1)+logYk+/:::; 172(r-l) (log(4e I) + log(2M(G)Yk+l)) , 

and so, by (70), 
2 

10gYk+/:::; 172(r - 1) (13410gM(G) + 10gYk+l)' 

Thus, recall (66), 
2 6k+/ :::; 172(r-l) (135+6k+1). 

Since 6k+l 2: 1794, we find that 6k+ti6k+l :::; 185(r - 1)2. Thus, by (68), 
(r - 1)/-3 :::; 185, whence 

I 3 log 185 < + . - log(r - 1) 

Therefore the number of primitive solutions in [U) is at most 

2(4 + log 331890jlog(r - 1)) 

for i = 1, ... , r. Consequently the number of primitive solutions of (1) is at 
most 

42rW(g)(2((2r/()) + r + 1) + 2r(4 + log 331890jlog(r - 1))). 
This in turn is at most 

84 1+W (g)( (22 4) 1 1 4 IOg331890) r max -()' + - + + - + + I ( 1 ) 
1 er r og r-

:::; max (2800,2160+ 3:r6) r 1+w(g):::; 2800 (1 + 8~r) rl+W(g) , 

as required. 
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6. LOWER BOUNDS FOR THE NUMBER OF SOLUTIONS 

OF THUE EQUATIONS 

Silverman [37], extending earlier work of Mahler [24] and Chowla [8], has 
shown that there exist cubic binary forms F, with nonzero discriminant, for 
which the number of solutions of the Thue equation (1) exceeds c(log Ihl)2/3 for 
infinitely many integers h, where C is some positive constant. However, the 
solutions constructed are generally not primitive solutions and as we remarked 
with Erdos and Tijdeman [10] it may be that there exists a number C, (r), 
which depends on r only, such that (1) has at most C, (r) primitive solutions 
whenever F has nonzero discriminant and degree r at least three. Bombieri 
and Schmidt [5] showed that we may have at least r distinct primitive solutions 
of (1). They gave the example 

F(x, y) = x' + a(x - y)(2x - y) ... (rx - y), 

where a is a nonzero integer. Then (1, 1), (1 , 2) , ... , (1 ,r) are primItIve 
solutions of F(x, y) = 1. We do not believe that for a fixed form F there 
are infinitely many integers h for which (1) has this many primitive solutions 
if r is large. Indeed we conjecture that there exists an absolute constant Co 
such that for any binary form F E Z[x, y] with nonzero discriminant and 
degree at least three there exists a number C, which depends on F , such that 
if h is an integer larger than C then the Thue equation (1) has at most Co 
solutions in coprime integers x and y. For each binary form F let v(F) 
denote the largest integer k such that (1) has at least k primitive solutions for 
arbitrarily large integers h; if k does not exist put v(F) = 00. Next, for each 
integer r let v*(r) be the supremum of v(F) over those binary forms F with 
integer coefficients, nonzero discriminant, and degree r. Of course if the above 
conjecture is valid then v*(r) ~ Co for r = 3,4, .... In this section we shall 
prove the following result. 

Theorem 3. We have 

(73) 

and 
v*(3) 2=: 18, 

v * ( 6k) 2=: 12, 
v * (6k + 3) 2=: 6, 

for k = 1,2, .... 

v*(4) 2=: 16, 

v * (6k + 1) 2=: 2 , 
v * (6k + 4) 2=: 8, 

v*(5) 2=:6, 

v * (6k + 2) 2=: 12, 
v*(6k+5)2:6 

Thus Co is at least 18. To prove Theorem 3 we shall determine various 
binary forms that are invariant under subgroups of GL(2, Z). Further, for 
(73) we shall also make use of parametric solutions of equations of the form 
F(u, v) = F(r, s). 

Let 

A=(~ ~) 
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be in GL(2, Z). Recall that if x, y is a coprime solution of FA(x, y) = h for 
some integer h, then (ax+by, cx+dy) is a coprime solution of F(X, Y) = h. 
We remark that if F is a form such that FA = F and (x, y) is a primitive 
solution of (1) then also A(x, y) = (ax+by, cx+dy) , A2(X, y), A 3(x, y), ... 
are primitive solutions and so we obtain many primitive solutions of (1). Plainly 
we may restrict our attention to those elements A of finite order in GL(2, Z) . 
In fact we shall look for forms F that are invariant under the action of a 
finite subgroup of GL(2, Z). Here again we may restrict our attention, this 
time to equivalence classes of subgroups of GL(2, Z) under conjugation. For 
let G be a finite subgroup of GL(2, Z), and let F be a binary form that is 
invariant under G, that is, FA = F for all A in G. Then, for any element T 
in GL(2, Z), FT is invariant under TGT- 1 • There are in total 13 mutually 
nonconjugate finite subgroups of GL(2, Z) and they are given in Table 1 (see 
p. 179 of [31]). 

We shall now determine those homogeneous binary forms of small degrees 
that are invariant under the above 13 groups. 

Plainly every binary form is invariant under C1 and every form of even 

TABLE 1 

Group Generators Group Generators 

C1 (~ ~) D2 (1 0) (-1 0) o -1 ' 0-1 
C2 (-1 0) o -1 D* 

2 
(01) (-1 0) 1 0' 0-1 

C3 (-~ -~) D3 (~ ~),(-~ -~) 
C4 (-~ ~) D* 

3 
( 0 -1) (0 1) -1 0 ' -1 -1 

C6 (~ -~) D4 (~ ~),(-~ ~) 

DI (~ -~) D6 (~ ~),(-~ ~) 
D* 

1 (~ ~) 
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degree is invariant under C2 • Forms F invariant under C3 satisfy 

(74) F(x, y) = F(y, -x - y). 

Thus if F is of degree 3 and we put F(x, y) = ax3 + bx2y + exi + di then, 
by (74), d = -a and e = b - 3a and so the forms of degree 3 invariant under 
C3 are F(x, y) = ax3 + bx2y + (b - 3a)xi - al with a and b not both zero. 
If F is invariant under C4 then F(x, y) = F(y, -x) and so F must be of 
even degree and symmetric up to alternating signs. Thus, if F is of degree 4 it 
has the form F(x, y) = ax4 +bx3y+ex2i -bxl +ay4 with a, b, and e not 
all zero. Next if F is invariant under C6 then F(x,y)=F(-y,x+y) and F 
is not of degree 3 or 5 while if it is of degree 4 it has the form a(x2 +xy + i)2 . 
The forms of degree 6 are 

6 5 42 33 F(x,y)=ax +bx y+ex y +(2e+10a-5b)x y 
2 4 5 6 + (e + 15a - 5b)x y + (6a - b )xy + ay 

with a, b, and e not all zero. 
F is invariant under DI whenever the coefficients attached to odd powers of 

yare zero, and is invariant under D~ whenever F is reciprocal. Further F is 
invariant under D2 whenever F is of even degree and the coefficients attached 
to odd powers of yare zero, while F is invariant under D; whenever F is 
of even degree and reciprocal. The forms invariant under D3 are for degree 3, 
axy(x + y), degree 4, a(x2 + xy + i)2 , degree 5, axy(x + Y)(X2 + xy + i), 
all with a -=j:. 0 , and for degree 6, 

(75) F(x, y) = ax6 + 3ax 5y + ex4i + (2e - 5a)x 3i + ex2y4 + 3axi + ai, 
I 

with a and e not both zero. The forms invariant under D; are for degree 3, 
~(x + 2y)(x - y)(2x + y), degree 4, a(x2 + xy + i)2 , degree 5, ~(x + 2y)(x-
y)(2x + Y)(X2 + xy + i) , all with a -=j:. 0, and for degree 6 they are of the form 
(75) with a and e not both zero. The forms invariant under D4 are reciprocal, 
of even degree, and the coefficients attached to odd powers of yare zero. The 
forms of degree 4 are 

4 2 2 4 F(x, y) = ax + ex y + ay , 

with a and c not both zero. Finally we consider forms F invariant under 
D6 • Then F(x, y) = F(y, x) = F(y, -x + y). There are no such forms of 
degree 3 or 5 and the only forms of degree 4 are a(x2 - xy + i)2 with a -=j:. O. 
The forms of degree 6 invariant under D6 are 

(76) F(x, y) = ax6 - 3ax 5y + ex4i + (Sa - 2c)x 3i + cx2/ - 3axi + ai , 

with a and c not both zero. For such a form F, if (x, y) is a solution of ( 1 ) 
then so also are (y, -x+y), (-x+y, -x), (-x, -y), (-y, x-y), (x-y, x) , 
(y,x), (-x+y,y), (-x,-x+y), (-y,-x), (x-y,-y), (x,x-y). Fur-
ther observe that these 12 solutions are distinct and primitive whenever (x, y) 



SOLUTIONS OF POLYNOMIAL CONGRUENCES 819 

is primitive and (x, y) is different from (1,0), (-1,0), (0,1), (0, -1), 
(1 , 1), (-1, -1), (1, -1), (-1, 1), (1,2) , (-1 , -2), (2, 1), and (-2, 1). 

Proof of Theorem 3. We shall first prove that v*(3) ~ 18. Consider F(x, y) = 
xy(x + y). By the above discussion F is invariant under D3 and so when-
ever (x,y) is a primitive solution of (1), (y, -x-y), (-x-y,x), (y,x), 
(-x - y, y), and (x, -x - y) are also primitive solutions. If x and y 
are coprime integers and, as is readily checked, (x, y) is not one of (1, 1), 
(-1, -1), (1, -2), (-1,2), (2, -1), or (-2,1) then the orbit of (x, y) 
under D3 consists of six distinct pairs. 

For integers a and b we define e = e(a, b) by 

e = {I if 312a + b , ° otherwise, 

and we put 
4 3 22 3 4 f(a,b)=-a -2ab+5ab +6ab +b. 

Next we put 

( b) =a(a-b) (b)=_(a+2b)(a+b) 
x a, 2 . 3e' Y a, 2 . 3e , 

( b)=(2a+b)(a+b) (b)=b(a-b) 
u a, 2 . 3e , va, 2 . 3e , 

( b) = b(2a + b) + v' f(a, b) (b) = b(2a + b) - v''''f(''--a-, b";""7) 
r a, 2 . 3e ,s a, 2 . 3e . 

We observe that 

F(x(a, b), y(a, b)) = F(u(a, b), v(a, b)) = F(r(a, b), s(a, b)) 
ab(a - b)(a + b)(a + 2b)(2a + b) 

4·33e 

We shall prove that if a and b are coprime odd integers for which f(a, b) 
is the square of an integer then (x(a, b), y(a, b)), (u(a, b), v(a, b)), and 
(r(a, b), s(a, b)) are pairs of coprime integers. Further we shall show that 
there is a finite set of pairs such that if (a, b) is not from that set then the 
orbits of (x, y), (u, v), and (r, s) under D3 are disjoint. This will then 
establish that v * (3) ~ 18 provided that we prove there are infinitely many 
pairs of coprime odd integers (a, b) satisfying 

(77) 2 z =f(a, b) 

for some integer z, since, as is easily verified, for any pair of integers (k, /) 
there are only finitely many pairs of coprime integers (a, b) with (x(a, b), 
y(a, b)), (u(a, b), v(a, b)), or (r(a, b), s(a, b)) equal to (k, /). 

Put f(w) = f(l, w). Corresponding to the curve Z2 = f(w) is the curve 
t2 = 4s3 - g2s - g3 ' where g2 and g3 are the invariants of the quartic f (see, 
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for instance, Chapter 16 of Mordell [27]). In particular, the map from the set 
of rational points (s, t) on the curve 

(78) 2 3 49 143 
t = 4s - 12 s + 216 ' 

minus the points (17/12, ±5/2) , to the set of rational points (w, Z) on the 
curve Z2 = f(w) given by 

t-5/2 3 (3)2 17 
(79) w = 2s _ 17/6 - 2. and Z = - w + 2. + 2s + 12' 
is injective. It follows that there are infinitely many rational solutions (Z, w) 
of Z2 = f( w) whenever there are infinitely many rational solutions (s, t) of 
(78), or, equivalently, infinitely many rational solutions (S, T) of 

(80) T2 = S3 - 1323S + 7722. 

Observe that P = (1057/16,29233/64) is a point on (80) (P = 4PI , where 
PI = (-21,162)), so that by the theorem of Lutz and Nagell (see Corollary 7.2 
of [38]), P is a point of infinite order in the group of rational points of the 
elliptic curve given by (80). This shows that there are infinitely many rational 
solutions (Z , w) of Z2 = f( w) . For each solution we write w = b / a, where a 
and b are coprime integers and then clear denominators by multiplying through 
by a4 to give a solution (a 2Z, a, b) of (77) with a and b coprime integers. 
Thus there exist infinitely many pairs of coprime integers (a, b) satisfying (77) 
and it remains to check that infinitely many of these pairs have a and b odd. 
First note that if a and b are coprime integers that give a solution of (77) and 
a is odd and b is even then 

i == _a4 == -1 (mod 4), 

which is impossible. On the other hand, if a and b are coprime integers that 
give a solution of (77) and a is even and b is odd then, since 

f(a,b)=f(-a-b,b), 

-a - band b are coprime odd integers that give a solution of (77). Thus there 
are infinitely many pairs (a, b) of coprime odd integers that give a solution of 
(77). 

We shall assume for the balance of the proof that a and b are coprime odd 
integers for which f( a, b) is the square of an integer. We first check that then 
x(a, b), y(a, b), u(a, b), v(a, b), r(a, b), and s(a, b) are all integers. We 
remark that since a and b are odd, a + b and a - b are even. Further if 
3 divides 2a + b then 3 divides a - b and a + 2b. Thus x(a, b), y(a, b), 
u(a, b), and v(a, b) are integers. Since a and b are odd, f(a, b) is odd 
and, since 

(81 ) 3 2 2 3 4 f(a,b)=(2a+b)(4a -3a b+4ab +b )-9a , 

r( a, b) and s( a, b) are integers. 
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Now we shall show that x(a, b) and y(a, b) are coprime. We remark that 
since a and b are coprime, a and (a-b)/(2.3 e ) are coprime and (a+2b)/3 e 

and (a + b)/2 are coprime. Thus if p is a prime that divides both x and 
y then either (i) pia and pl(a + 2b)/3e , or (ii) pia and pl(a + b)/2, or (iii) 
pl(a - b)/(2. 3e ) and pl(a + 2b)/3e , or (iv) pl(a - b)/(2. 3e ) and pl(a + b)/2. 
In case (i) pia and pl2b so p = 2, but a is odd, which is a contradiction. In 
case (ii) pia and plb, which is impossible. In case (iii) p divides 3a and 3b 
so p = 3. But one at least of (a - b)/(2. 3e ) and (a + 2b)/3e is not divisible 
by 3 and so case (iii) does not apply. Finally, in case (iv), pl(a - b)/2 and 
pl(a + b)/2, hence pl(a, b), which is impossible. Thus x(a, b) and y(a, b) 
are copnme. 

Next we show that u(a, b) and v(a, b) are coprime. Observe that (2a + 
b)/3e and (a + b)/2 are coprime and that b and (a - b)/(2. 3e ) are coprime. 
Thus if p is a prime that divides both u and v then either (i) pl(2a + b)/3e 

and plb, (ii) pl(2a + b)/3e and pl(a - b)/(2. 3e ), (iii) pl(a + b)/2 and plb, 
or (iv) pl(a + b)/2 and pl(a - b)/(2· 3e ). In case (i) plb and pl2a so p = 2, 
which contradicts the fact that b is odd. In case (ii) pl3a and pl3b, hence 
p = 3. But one of (2a+b)/3e and (a-b)/(2.3e ) is not divisible by 3 and so (ii) 
does not hold. In case (iii) pia and plb, which is impossible. Finally, in case 
(iv) pl(a+b)/2 and pl(a-b)/2, hence pia and plb, which is a contradiction. 
Therefore u(a, b) and v(a, b) are coprime. 

Finally we shall show that r(a, b) and s(a, b) are coprime. Suppose that p 
is a prime that divides both rand s. Then plr + s so plb(2a + b)/3e • Since 
b is odd, band (2a + b)/3e are coprime. If plb then, since plr, we see that 
plf(a, b) and hence that pia, which is a contradiction. On the other hand, if 
pl(2a + b)/3e then, since plr, plf(a, b) and so by (81) p19a4 • Thus p = 3. 
If 31(2a + b)/3e then 3212a + b and, since a and b are coprime, 3 does not 
divide a. From (81) we find that 

f(a, b) = (2a + b)((2a + b)( _7a2 + 2ab + b2 ) + 18a3 ) - 9a4 

and so 9 divides f( a, b) but 27 does not divide f( a, b). Since 9 divides 
2a + b we conclude that 3 exactly divides b(2a + b) + J f(a, b), hence 3 does 
not divide r. Therefore r(a, b) and s(a, b) are coprime. 

To complete our proof that v (F) ?:: 18, and hence that v * (3) ?:: 18, it suffices 
to show that apart from a finite set of pairs (a, b) the orbits of (x, y), (u, v), 
and (r, s) under D3 are disjoint. And a case by case analysis reveals that if 
a and b are odd and coprime and (a, b) is different from (1, -1), (-1, 1), 
(1,1), (-1, -1), (3, -1), (-3,1), (1, -5), (-1,5) then indeed the orbits 
are distinct as required. 

Next we shall prove that v*(4) ?:: 16. We consider F(x, y) = X4 +l, which 
is invariant under D4 • Thus whenever (x, y) is a solution of (1), it follows 
that (-x, y), (-x, -y), (x, -y), (y, x), (y, -x), (-y, -x) ,and (-y, x) 
are also solutions. We now appeal to the parametric solution due to Euler of 
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the equation X4 + l = u4 + v 4 . He showed (see [18, p. 201]), that if 

x(t) = t7 + t5 - 2t3 + 3t2 + t, 
y(t) = t6 - 3t5 _ 2t4 + t2 + 1 , 

u(t) = t7 + t5 - 2t3 - 3t2 + t, 
v(t) = t6 + 3t5 - 2t4 + t2 + 1, 

then X(t)4 + y(t)4 = U(t)4 + V(t)4. Put 

S(t) = _lll5 + 19t4 + 68t3 + 15t2 - 18t - 8 

and 
T(t) = lll6 + 14t5 + 7t4 + 15t3 - 24t2 + 8t + 66. 

Then 

(82) s(t)x(t) + T(t)y(t) = 66. 

If t == 0 (mod 66) then T(t) == 0 (mod 66), x(t) == 0 (mod 66), and y(t) == 
1 (mod 66), hence by (82), x(t) and y(t) are coprime. Next we put M(t) = 
-S( -t) and N(t) = T( -t). Then, since u(t) = -x( -t) and v(t) = y( -t) , we 
have 

(83) M(t)u(t) + N(t)v(t) = 66. 

Again if t == 0 (mod 66) then N(t) == 0 (mod 66), u(t) == 0 (mod 66), and 
v(t) == 1 (mod 66), hence by (83), u(t) and v(t) are coprime. Plainly the orbit 
of (x(t) , y(t)) under D4 does not contain (u(t) , v(t)) for t sufficiently large 
and thus v * ( 4) 2: 16. 

To prove that v*(5) 2: 6 we merely note that F(x, y) = xy(x+y)(x2 +xy+ 
i) is a form of degree 5 with nonzero discriminant that is invariant under D 3 • 

To prove that v*(6k) 2: 12 and v*(6k + 2) 2: 12 for k = 1,2, ... , it 
suffices to show that there exists a binary form with nonzero discriminant that 
is invariant under D6 for these degrees. Let 

6 5 42 33 24 5 6 Fe(x,y)=x -3xy+cxy +(5-2c)xy +cxy -3xy +y 

and put fc(x) = Fe(x, 1). Then the discriminant of Fe' and of fc, is 
-(4c + 3)3(c - 6)4. Thus the roots of fc are distinct provided that c 1S an 
integer different from 6. Further if c, and c2 are distinct integers then 

42 33 24 Fe (x, y) - Fe (x, y) = (c, - c2)(x y - 2x y + x y ) 
1 2 

2 2 2 =(C,-C2)X y (X-y) . 

Since fc ( 1) = 1 ,fc and fc have no roots in common. Further, by our earlier 
1 2 

discussion Fe(x, y) is invariant under D6 • Thus, for k = 1, 2, ... , 
k 

II F6+j (x, y) 
j=' 
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is a binary form of degree 6k and nonzero discriminant that is invariant under 
D S· 2 2 .. . d D d f (27Ci/6) f ( -27Ci/6) 6' mce x - xy + Y IS mvanant un er 6 an c e = c e = 
C - 6, 

k 

(x 2 - xy + i) II F6+/x, y) 
j=1 

is a binary form of nonzero discriminant of degree 6k + 2 for k = 1, 2, ... 
that is invariant under D6 • Thus 1/*(6k) :::: 12 and 1/*(6k + 2) :::: 12 for 
k = 1,2, .... 

Next we put Gc(x, y) = Fc( -x, y) so that 
6 5 42 33 24 5 6 Gc(x, y) = x + 3x y + cx y + (2c - 5)x y + cx y + 3xy + y . 

Then, recall (75), Gc is invariant under D 3 • Put gc(x) = Gc(x, 1) so that 
gc(x) = fc( -x) . Then, as before, the roots of gc are distinct provided c is an 
integer different from 6. Further if c1 and c2 are distinct integers then 

2 2 2 Gc (x, y) - Gc (x, y) = (C1 - c2 )x y (x + y) . 
1 2 

Since gc( -1) = 1, gc and gc have no roots in common. Now both xy(x + 
1 2 

y) and xy(x + Y)(X2 + xy + i) are invariant under D3 and gJe 27Ci/ 3 ) = 
gc(e- 27Ci / 3 ) = C - 6. Thus, for k = 1,2, ... , 

k 

xy(x + y) II G6+/x, y) 
j=1 

is a binary form of nonzero discriminant of degree 6k + 3 that is invariant 
under D 3 , and 

k 

xy(x + Y)(X2 + xy + i) II G6+/x, y) 
i=1 

is a binary form of nonzero discriminant of degree 6k + 5 that is invariant under 
D3 • Thus 1/*(6k + 3) :::: 6 and 1/*(6k + 5) :::: 6 for k = 1,2, .... Finally, 
observe that the binary form x 2i + ii is invariant under D 4 for j = 1 , 2, .. . 
and that the binary form xi + yj is invariant under D~ for j = 1, 2, ... . 
Thus 1/ * (6k + 4) :::: 8 and 1/ * (6k + 1) :::: 2 for k = 1 , 2, .... 

7. ON S-UNIT EQUATIONS 

Let K be an algebraic number field of degree d, with discriminant DK , and 
ring of integers &K' Let MK be the set of places (i.e., equivalence classes of 
multiplicative valuations) on K. A place v is called finite if v contains only 
non-Archimedean valuations and infinite otherwise. K has only finitely many 
infinite places. Let S be a finite subset of M K ' containing all infinite places. 
A number a E K is called an S-unit if lalv = 1 for every valuation I Iv from 
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a place v E MK \S . The S-units form a multiplicative group. Put K\ {O} = K* 
and let (0: 1 , 0:2 ,0:3) be in (K*)3. The number of solutions of the equation 

(84) 

in S-units ul and u2 is finite (see Lang [20]). We say that two triples 
(0: 1 ,0:2 ,0:3) and (PI' P2 , P3) in (K*)3 are S-equivalent if there exist a per-
mutation a of (1 , 2, 3) , a J1, E K* , and S-units el , e2 , e3 such that 

Pi = J1,e iO:"(i) for i = 1 , 2, 3. 

It is easy to check that if (0: 1 , 0: 2 ,0:3 ) and (PI' P2 , P3) are S-equivalent then 
the equation PI u l + P2u2 = P3 in S-units u l and u2 has the same number 
of solutions as (84). Next let PI' ... ' Pt be the prime ideals corresponding 
to the finite places in S. For any 0: E K* the principal ideal (0:) can be 
written uniquely as a product of two (not necessarily principal) ideals a' and 
a" , where a' is composed of PI' ... 'Pt and a" is composed solely of prime 
ideals different from PI ' ... , Pt. We put 

Ns(O:) = NK/<Q(a"). 

Recently, Evertse, Gyory, Stewart, and Tijdeman [17] proved that almost all 
equivalence classes of S-unit equations of the form (84) have very few solutions 
and their result is our next lemma. 

Lemma 7. Let S be a finite subset of M K containing all infinite places. There 
exists a finite set A of triples in (&'K \{0})3 with the following property: for each 
triple (0: 1 , 0:2 , 0:3) E (K*)3 that is not S-equivalent to any of the triples from 
A, the number of solutions of (84) is at most two. 
Proof. This is Theorem 1 of [17] together with the observation that we may 
take the triples in A from (&'K \ {0})3 . 

S-unit equations are of great interest since the study of many Diophantine 
equations can be reduced to the study of certain associated S-unit equations. In 
the next section we shall make use of such a reduction to study the Thue-Mahler 
equation and the generalized Ramanujan-Nagell equation. We shall also appeal 
to an eWective version of Lemma 7 established in [17]. 

Lemma 8. Let S be a finite subset of M K of cardinality s , containing all infinite 
places. Suppose that the rational primes corresponding to the finite places in S do 
not exceed P (22). Let B denote the set of triples (PI' P2 , P3) in (&'K\{0})3 
with 

(85) max(Ns(P I ), NS (P2 ) , NS (P3 )) :::; exp((C(s)c2s p d+I ), 

where C( and C2 are certain explicitly computed numbers depending only on 
d and IDKI. Then for each triple (o:( , 0:2 ,0:3) E (K*)3 that is not S-equivalent 
to any of the triples in B, the number of solutions of (84) is at most s + 1 . 
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Proof. If in inequality (85) we replace max(Ns(p,), NS (P2 ) , NS (P3 )) by 
max(h(p,), h(P2 ) , h(P3)) we have Theorem 2 of [17]. The result now follows 
from the observation that for each P in &K \ {O} , 

d 
1 ::; Ns(P) ::; INK/Q(P)1 ::; h(P) . 

8. THUE-MAHLER AND RAMANUJAN-NAGELL EQUATIONS 

Bombieri [3] has obtained an estimate for the number of primitive solutions 
of the Thue-Mahler equation (2) that is better with respect to the dependence 
on the degree r than the estimate (3) of Evertse and yet is still independent of 
the coefficients of F . It follows from his result that, if r is at least 6 and the 
discriminant of F is nonzero then there are at most 

(4(t + 1))2(4r)26(1+') 

primitive solutions of (2). 
Let h be a nonzero integer, let t be a nonnegative integer, and let P, ' ... , Pt 

be prime numbers. In this section we shall estimate the number of primitive 
solutions of the equation 

(86) 

of course if h = 1 we again obtain (2). We shall establish bounds for the number 
of solutions of (86) in coprime integers x and y and integers k\ ' ... , kt under 
the assumption that h is coprime with Pi for i = 1, ... , t and sufficiently 
large. Our bounds are much sharper with respect to the parameter t than the 
exponential dependence on t of previous results. 

Theorem 4. Let F be a binary form with integer coefficients, content 1, degree 
r (2: 3), and nonzero discriminant D. Let t be a nonnegative integer and let 
P, ' ... 'Pt be prime numbers of size at most P (2: 2). Let h be a positive 
integer that is coprime with Pi for i = 1, ... , t. For h sufficiently large the 
number of solutions of equation (86) in coprime integers x and y and integers 
k, ' ... ,kt is at most 

(87) 4 w(h) 
r . 

Further there exists a number C that is effectively computable in terms of rand 
D such that if 

(88) h > exp((t + 2)C(I+') p r3 ), 

then the number of solutions of (86) in coprime integers x and y and integers 
k, ' ... ,kt is at most 

(89) 2(t + 1)r3+w(h) • 

The most significant aspect of Theorem 4 is the dependence of the upper 
bounds (87) and (89) on the parameter t. Estimate (87), which is independent 
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of t, applies for h sufficiently large. However, since the proof of (87) depends 
upon Lemma 7 and hence upon the Thue-Siegel-Roth-Schmidt theorem it does 
not yield an effective estimate for how large h must be. For this reason we 
have also given the slightly weaker estimate (89) that is linear in t and holds 
subject to h satisfying the effective estimate (88). 

In fact, estimates as sharp as (87) and (89) do not apply for general h. Let e 
be a positive number and let 2 = PI ' P2 ' ... be the sequence of prime numbers. 
In [10] Erdos, Stewart, and Tijdeman proved that for every integer r with r 2': 2 
there exists a number to(e, r) , which is effectively computable in terms of e 
and r such that if t is an integer with t 2': to(e, r) then there exists a monic 
polynomial f, with integer coefficients, degree r, and nonzero discriminant 
for which the equation 

(90) 

has at least 

(91 ) 

solutions in nonnegative integers x, kI ' ... , kt . Recently Moree and Stewart 
[28] proved that, provided we replace r2 - e by r - e in (91), we may also 
suppose that f is irreducible. 

We remark that when t = 0 estimate (87) gives a slight improvement, for h 
sufficiently large, of the estimate (4) of Bombieri and Schmidt [5]. Further, if 
r is odd then the proof of Theorem 4 allows one to replace 4rw(h) in (87) by 
2rw(h) and similarly to eliminate the factor 2 in estimate (89). 

Equation (90) is an example of a Ramanujan-Nagell equation. In [13] Evertse 
proved that if f is a quadratic polynomial with integer coefficients and nonzero 
discriminant and PI' ... 'P t are distinct prime numbers then equation (90) 
has at most 3· 76+4t solutions in integers x, kI ' ... , kt . Let h be a positive 
integer. Next we shall establish estimates for the number of solutions in integers 
x, kI ' ... ,kt of the generalized Ramanujan-Nagell equation 

(92) 

Theorem 5. Let f be a polynomial with integer coefficients, content 1, leading 
coefficient a, degree r (2': 2), and nonzero discriminant D. Let t be a non-
negative integer and let PI' ... 'P t be prime numbers of size at most P k 2). 
Let h be a positive integer that is coprime with Pi for i = 1, ... , t. For h 
sufficiently large the number of solutions of (92) in integers x and kI' ... , kt 
is at most 

(93) 

Further there exists a number C, which is effectively computable in terms of a, 
r , and D, such that if 
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then the number of solutions of (92) in integers x and k" ... ,kt is at most 
(t + l)r2+w (h) . 

Finally we mention that Evertse and Gy6ry [14] have also applied the es-
timates for the number of solutions of S-unit equations from [17] to bound 
the number of solutions of equations such as (86). Let S = {PI ' ... ,pt } be 
a set of primes. Two binary forms F and G are S-equivalent if G(x, y) = 
ef-' F(ax + by, ex + dy) for certain integers a, b, e, d, e, f with lad - bel, 
lei, and If I composed of primes from S. For any algebraic number field Land 
integer r ~ 3 let A(r, L) be the set of binary forms of degree r with integer 
coefficients that factorize into linear forms in L[x, y] and whose factorization 
contains at least three pairwise linearly independent linear forms. Evertse and 
Gy6ry show, for instance, that the set of forms in A(r, L) for which (86) has 
more than 2(r, 2) solutions is contained in the union of a finite collection of 
S-equivalence classes. 

9. PROOF OF THEOREM 4 

Since D =1= 0, F(x, y) has at most a single power of x and at most a single 
power of y in any factorization in qx, y]. Thus we may factor F as 

<> <> (94) F(x, y) = ax I (x - Ct,+<> y) ... (x - Ct r_<> y)y 2 
I 2 

and 

(95) <> <> F(x, y) = by 2(y - Y,+<> x)··· (y - Yr-<> x)x I, 
2 I 

where a and b are nonzero integers, £5, and £52 are from {O, I}, and Yr+'-j = 

Ct-:-' for j = 1+£5" ... , r-£52 . Put K = Q(Ct,+<> , •.. , Ctr_<» and let &K denote 
} I 2 

the ring of algebraic integers of K. Let q be a prime number and let q be a 
prime ideal in &K lying above q. For each Ct E K* we define ordq Ct to be the 
exponent of q in the prime ideal decomposition of the fractional ideal of K 
generated by Ct. We shall suppose that 

ordq Ct'+<>1 ~ ... ~ ordq Ctw ~ 0 > ordq Ctw+' ~ ... ~ ordq Ctr-<>2 ' 

where £5, :::::: w :::::: r - £52 • Since F has content 1, 

(97) 

Put u = r - £52 and if £5, = 1 put Ct, = O. Then, from (94) we have 
<> F(x, y) = a(x - Ct,Y) ... (x - CtuY)Y 2. 

Similarly put v = r - £5, and if £52 = 1 put Y, = 0 so that, by (95), 
<> F(x, y) = bey - Y,x)··· (y - Yvx)x I. 

We shall now consider the tuples of the form 

(98) (ord X<>I, ord (x - Ct'+' y), ... ,ord (x - Ct r_, y), ordq /2), q q u l q u2 
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where (X, y) yields a primitive solution of (86). If q does not divide hPI ... PI 
then (98) is determined independently of x and y. For if q f a then by (86) 
it is (0, 0, ... , 0) whereas if qla then by (86), (96), and (97) it is 

(0, ... , 0, ordq a w +I ' .•• ,ordq a r- J2 , 0). 

We shall now show that if qlh then there are at most r positive tuples of the 
form (98) whenever x and y give coprime solutions of (86). 

We first suppose that (x, y) yields a solution of (86) in coprime integers and 
that qlh and q f y. We now choose an integer I, with 1 :::; I :::; u, for which 

ord (x - a,y) = max ord (x - aiy). 
q l:Si:Su q 

Since q f y, ordq a j = ordq ajy < 0 :::; ordq x and hence ordq(x - ajy) = 
ordq aj for j = w + 1, ... , u. Since qlh we conclude from (86) that 1 :::; I :::; 
w. Observe that, for j = 1 , ... , u , 

x - ajy = X - a,Y + (a, - a)y, 

hence, since q f y , 

(99) ordq(x - ajy) = min(ordq(x - a,y) , ordq(a, - a)). 

Further, by (86) we have 

(100) ordq a + ordq(x - aly) + ... + ordq(x - auY) = ordq h. 

Equations (99) and (100) determine ordq(x - a,y) and hence also 
ordq(x - ajy) for j = 1, ... , u. Thus there are at most w possible tuples 
(98) that can arise from primitive solutions (x, y) of (86) for which q f y and 
qlh. 

Suppose now that (x, y) is a primitive solution of (86) for which qly and 
qlh. Then, since x and yare coprime, q f x. Since Yr+l - j = ajl for 
j = 1 + £51 ' ... , r -£52 we have, by (96), 

ordq YI+J2 2: ... 2: ordq Yr- w > 0 2: ordq Yr- w +1 2: ... 2: ordq Yr-J1 • 

Further, since F has content 1, 

(101) ordq b + ordq Yr- w+1 + ... + ordq Yr-J1 = o. 
Now q f x and qly so ordq Yj = ordq YjX :::; 0 < ordq y and hence 
ordq(y - Yjx) = ordq Yj for j = r - w + 1, ... , r - £51 • We now choose k 
so that 

ord (y - YkX) = max ordq(Y - YiX). 
q 1:SI:SV 

Since qlh we see from (86) and (101) that 1 :::; k :::; r - w. Further, for 
j = 1, ... ,v, 
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We also have, from (86), 

(103) ordq b + ordq(y - ylx) + ... + ordq(Y - Yvx) = ordq h. 

As before, (102) and (103) determine ordq(Y - hX), hence ordq(y - yjx) for 
j = 1, ... , v, and thus in turn they determine (98). 

Therefore if (x, y) gives a primitive solution of (86) and qlh then (98) is 
one of at most (r-w)+w = r possible tuples, whereas if q t hPI···pt the tuple 
(98) is uniquely determined. Since K is Galois over ij, all prime ideals of &K 
lying over q are conjugate. Every automorphism of K induces a permutation 
of (Cl: 1+0 ' ... , CI:,_o) and thus corresponding to each tuple (98) there is, for 

I 2 

each prime ideal q' lying over q in &K' a unique tuple of the form (98) but 
with q replaced by q' . 

For notational ease we write 
, 

F(x, y) = a II ((;liX - Cl:iY) , 
i=1 

where ()i = 1 for i = 1, ... , r except when <52 = 1 in which case (), = 0 and 
CI:, = -1 . Let S denote the set of infinite places in K together with those finite 
places that correspond to a prime ideal in &K that divides an ideal generated by 
Pj for j = 1, ... , t. Let {(XI' YI ), ... , (xn , Yn )} be a set of pairs of coprime 
integers that give solutions of (97) and suppose that the set is maximal subject 
to the constraint that whenever j =j:. i the tuple 

(104) ( ()IXj - Cl:IYj , ... , (),Xj = CI:,yj ) 
()IXi - Cl:IYi (),Xi CI:'Yi 

is not a tuple of S-units. Then, by the preceding discussion, n:::; rw(h) • 

Let x and Y be coprime integers that give a solution of (86). Then there 
is an integer j with 1 :=:; j :=:; n such that the tuple (104) is a tuple of S-units 
when we replace Xi' Yi by x, Y respectively. We may assume, without loss of 
generality, that 

NS((()lxj - Cl: IY)(()2Xj - Cl:2Y) (()3Xj - Cl:3Y)) 
> Ns ((()· x - CI: y)(() X - CI: y.)(() x· - CI:. Y·)) 
- 'I J 'I J '2 J '2 J '3 J '3 J 

for all triples (iI' i2, i3) with 1 :=:; i l < i2 < i3 :=:; r. Thus, by (86), 

(105) NS((()lxj - Cl:IY)(()2Xj - Cl:2Y) (()3Xj - Cl:3Y)) 2: (Ns(h/a))3/,. 

Let KI = ij(Cl: I , Cl: 2 , Cl: 3 ) and let SI denote the set of infinite places in KI 
together with those finite places that correspond to a prime ideal in &K that 

I 

divides an ideal generated by Pj for j with 1 :=:; j :=:; t. Let d l denote the 
degree of KI over ij. It follows from (105) that 

h 3/, (106) NSI ((()IXj - Cl: IY)(()2Xj - Cl:2Y) (()3Xj - Cl:3Y)) 2: (Nsl (/a)) . 
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A = a(02a3 - 03a2)(OIXj - aly) , 

1J = a(03a l - 0la3)(02Xj - a2y) , 

r = a(02al - 0la2)(03Xj - a3y). 
Plainly A, 1J, and r are in &K \ {O}. Further 

I 

and 

where U I , 

( 107) 

a(02a3 - 03a2)(OIX - alY) = AU I ' 

a(03a l - 0la3)(02x - a2y) = 1JU2' 

a(02a l - 0la2)(03x - a3y) =!U3' 
U 2 ' and u3 are SI-units. But then 

(02a3 - 03a2)(OIX - alY) _ A 
(02al - 0la2)(03x - a3y) - TVI ' 
(03a l - 0la3)(02x - a2y) _ 1J ° - -V2' (02a l - 0la2)( 3X - a3y) r 

where VI and V2 are SI-units, and so 

(108) AVI+1JV2=r. 

Further, by (107), each pair of SI-integers (VI' V2) determines at most two 
pairs of coprime integers (x, y), ((x, y), (-x, -y)). 

Suppose that (PI' P2, P3) is a triple in (&K \ {0})3 that is SI-equivalent to 
I 

(A, 1J, r). Then there exist a permutation (J of (1, 2, 3), a j1 in K;, and 
SI-units el , e2, e3 such that j1e lA = P(J(I) , j1e21J = P(J(2) , and j1e3r = P(J(3)' 
We shall now show that the maximum of Ns (PI)' Ns (P2) , and Ns (P3) is 

I I I 

large. To this end, let p be a prime ideal of &KI \{O} and put a l = ordp a 
and bl = ordp(02al - 0la2). Let (iJ' ... , i,) be a permutation of (1, ... , r) 
for which 

ordp ail ~ ordp a i2 ~ ... ~ ordp ai, ' 

and let g be that integer with 0 ~ g ~ r for which 

ord a· < ... < ord a· < 0 < ord a· < ... < ord a· . p II - - P Ig - P Ig+1 - - P I, 

Since F has content 1 we have 

(109) -a l = ordp a· + ... + ordp a· . 
II Ig 

Thus 

L ordp(OPi - °ia ) 
i<j, ordp (lIp;-II,Q)<O 

~ (n - 1) ordp ail + (n - 2) ordp a i2 + ... + (n - g) ordp a ig 

~ -(n - l)a J • 
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Therefore, since 
2n-2 IT 2 D = a (8Pt - 8/y.) , 

i<j 

we find that 
ordp(8 l a 2 - 82a l ) + max(ordp (82a 3 - 83( 2 ) , ordp (83a l - 8 I( 3)) 

( 110) 1 
:'S 2" ordp D. 

We have 

(Ill) 82(8 1x j - alY) - 81 (82xj - a 2y) = (81a 2 - 82a l )Yj 

and 

(112) a 2(8 l x j - alY) - a l (82Xj - a 2y) = (81a 2 - 82a l )xj . 

Thus, by (109) and (Ill), 

(113) min(ordp(81 Xj - aly), ordp(82x j - a2y)) :'S a l + hi + ordp Yj , 

while, by (109) and (112), 

(114) min(ordp(8 Ix j - aly), ordp(82xj - a2y)) :'S a l + hi + ordp xi" 

Since Xj and Yj are coprime we conclude that 

min(ordp(8 Ixj - aly), ordp(82x j - a2y)) :'S a l + hi· 

Therefore 
min( ordp A, ordp 17) 

( 115) 
:'S 2a l + hi + max(ordp (82a 3 - 83( 2 ), ordp (83a l - 8I( 3))· 

Thus, by (110) and (115), 

Accordingly, 

( 116) 

831 

Since a3(82a 3 - 83( 2 )(83a l - 8I( 3)(8 Ia 2 - 82a l ) is in &'K \{O}, it follows from 
I 

(106) and (116) that 

Ns (P I P2P3) ~ (Ns (h/a))3/r(Ns (a 2D))-3 ~ h3d1/r(Ns (a 3D))-3. 
I I I I 

Thus 

(117) max(Ns (PI)' Ns (P2), Ns (P3 )) ~ hdl/rla3DI-dl. 
I I I 

On the other hand, by Lemma 7, there is a finite set A of triples in (&'K \ {0})3 
I 

such that if (t5I , t52 , t53) is in (K~)3 and the SI-unit equation t5l u I +t52u2 = t53 
has more than two solutions in SI-units ul and u2 then (t5I , t52 , t53 ) is SI-
equivalent to one of the triples from A. Thus, by (117), if h is sufficiently 
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large then the equation (108) determined by the triple (A., 17, r) has at most 
two solutions in S,-units V, and V2 and these solutions arise from at most 
four primitive solutions of (86), in fact at most two primitive solutions if r is 
odd. Since there are at most n such triples (A., 17, r) the number of solutions 
of (86) in coprime integers x, y and integers k, ' ... , kt is at most 4n, hence 
at most 4rw (h) for h sufficiently large. 

To prove (89) we apply Lemma 8 with K = K, ' S = S, ' and d = d, . Note 
that 

IS,I+ 1 ~ d,t+d, + 1 ~ r(r-l)(r-2)(t+ 1)+ 1 < /(t+ 1). 

Further, there exist numbers C, and C2 that are explicitly computable in terms 
of d, and IDK I such that if (0:,,0:2 ,0:3) is a triple in (Kn 3 that is not S,-

1 

equivalent to a triple (v" v2, v3) in (&K \{0})3 with 
1 

max(Ns (v,), Ns (v2), Ns (v3)) ~ exp(C,(t+ I)C2(t+')pd1+') , 
1 1 1 

then equation (84) has at most IS,I + 1 solutions in S,-units u, and u2 • Thus, 
by (117), provided 

h > (laI 3IDI/ exp(rC, (t + 1{2(t+') pd1+'), 

equation (108) has at most IS,I + 1 , hence at most r3 (t + 1) , solutions in S,-
units V, and V2 and these solutions arise from at most 2r3 (t + 1) primitive 
solutions of (86). Since the number or primitive solutions of (86) is unchanged 
when we replace F by FA for any A in GL(2, Z) , we may suppose that lal 
is minimal. It follows from Theorem 1 of Evertse and Gyory [15] that we may 
suppose that lal is less than a number that is effectively computable in terms of 
rand D only. Therefore there is a number C3 , which is effectively computable 
in terms of rand D, such that if 

h > exp((t+2)c3(t+')p,3), 

then (86) has at most 2(t + l)r3+w (h) solutions in coprime integers x, y and 
integers k" ... , kt • 

10. PROOF OF THEOREM 5 
Let f(x) = a(x - 0:,)'" (x - 0:,), let K = Ql(o:" ... ,0:,), and let S denote 

the set of infinite places in K together with those finite places that correspond 
to a prime ideal in &K that divides an ideal generated by Pj for j = 1, ... , t. 
Let {x" ... ,xn } be integers that give solutions of (92) and suppose that the 
set is maximal subject to the constraint that whenever j =1= i the tuple 

( 118) ( Xj-O:, Xj-O:,) , ... , 
Xi - 0:, Xi - 0:, 

is not a tuple of S-units. Then, as in the proof of Theorem 4, n ~ rw(h) . 
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Let x be an integer that gives a solution of (92). Then there is an integer j 
with 1 ::; j ::; n such that the tuple (118) is a tuple of S-units when we replace 
Xi by x. We may assume, without loss of generality, that 

Ns((x - al)(x - a 2)) ?:. Ns((x - a )(x - a )) 
} } } II } 12 

for all pairs (iI' i2) with 1 ::; i l < i2 ::; r. Thus, by (92), 

h 2/, 
(119) Ns((xj-al)(xj-a2))?:.(Ns( fa)) . 

Let KI = Q(a l ,a2 ) and let SI be defined for KI in an analogous way to 
our definition of S for K. Let dl be the degree of KI over Q. By (119), 

h 2/, (120) NSI ((Xj - al)(xj - a 2)) ?:. (Nsl (fa)) . 

Put A = a(xj - a l ), 17 = a(xj - a 2), and r = a(a2 - a l ). Then A, 17, and 
r are in &K \{O} and 

I 

a(x - al) = AU I and a(x - a 2) = 17U2' 

where u1 and u2 are SI-units. Then 

(121 ) 

and each pair of SI-units (u 1 ' u2) determines a unique integer x. 
If ([31' [32' [33) is a triple in (&K \ {0})3 that is SI-equivalent to (A, 17, r) 

I 
then, by (120), 

Thus, as in the proof of (110), 

N ([3 [3 [3 )?:.h2dl /'(N (aD))-2 
Sl 1 2 3 Sl 

?:. h2dl/'laDI-2d, . 

We now complete the proof by appealing to Lemmas 7 and 8 as we did for 
the proof of Theorem 4. Here we make use of the fact that d l ::; r(r - 1) and 
lSI I + 1 ::; d 1 t + d 1 + 1 < r2 (t + 1) . 
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