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1. INTRODUCTION 

Let E be an elliptic curve over Q. By the rank of E we shall mean the rank 
of the group of rational points of E. Mestre [31], improving on the work of 
Neron [34] (cf. [13], [39] and [46]), has shown that there is an infinite family 
of elliptic curves over Q with rank at least 12. However, computational work 
(see [3], [4], [7] and [47]) suggests that a typical elliptic curve will have much 
smaller rank, with curves of rank 0 or 1 being predominant. Indeed, Brumer 
[6] has proved, subject to the Birch, Swinnerton-Dyer conjecture, the Shimura, 
Taniyama, Weil conjecture and the generalized Riemann hypothesis, that the 
average rank of an elliptic curve, ordered according to its Faltings height, is at 
most 2.3. 

In this article we shall study the behaviour of the rank as we run over twists 
of a given elliptic curve over Q. That is, we shall restrict our attention to 
families of elliptic curves defined over Q which are isomorphic over C. There 
are families of quadratic, cubic, quartic and sextic twists (see, for example, 
Proposition 5.4 of Chapter X of [42]). Let E be an elliptic curve over Q with 
Weierstrass equation l = x 3 + ax + b and for any non-zero integer d let Ed' 

denote a quadratic twist of E given by the equation di = x 3 + ax + b. Let 
r(d) denote the rank of Ed' Note that if d1 and d2 are non-zero integers, 
then Ed is isomorphic to Ed over Q if and only if d1/d2 is the square of a 

I 2 
rational number. Subject to the conjectures of Birch and Swinnerton-Dyer and 
of Shimura, Taniyama, and Weil, Goldfeld [14] conjectured in 1979 that 

1 L r( d) "'"2 L 1. 
O<ldl~x O<ldl~x 

Further, in 1960 Honda [18] (see also [38], p. 162) conjectured that the rank 
of any twist of a given elliptic curve E over a number field K is bounded by 
a constant which depends on E and K only. Some related work on ranks of 
twists may be found in [12], [22] and [35]. 
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In 1987, Zagier and Kramarz [47] examined cubic twists of the curve E 
given by the affine equation X3 + y3 = 1 . In particular they looked at the twists 
Ed of E given by the equation X3 + yl = d. They calculated the value of 
the L-series of Ed and its derivative at 1 for all cube-free positive integers d 
less than 70,000. Subject to the Birch and Swinnerton-Dyer conjecture their 
calculations suggest that a positive proportion of the twists Ed of E have rank 
even and at least 2 and a positive proportion have rank odd and at least 3. 
The first theoretical results in this context are due to Gouvea and Mazur [15]. 
Let E be an elliptic curve over Q, given by i = Xl + ax + b. For any non-
zero integer d let Ed denote the curve given by dy2 = Xl + ax + b and let 
e be a positive real number. For any real number T, let S(T) denote the 
number of square-free integers d with Idl :5 T for which the rank of Ed is 
even and at least 2. They proved, subject to the parity conjecture (see §12), 
that there are positive numbers Co and C1 , which depend on e and E, such 
that whenever T exceeds Co then S(T) is at least C1 T~-8. Thus, in the 
terminology of Gouvea and Mazur, ! is an exponent for S(T) , subject to the 
parity conjecture. In [28], L. Mai extended the work of Gouvea and Mazur 
to the case of cubic twists of x 3 + yl = 1. He proved, subject to the parity 
conjecture for cubic twists (see §12), that for each positive real number e there 
exist positive numbers C2 and C3 , which depend on e, such that for any real 
number T larger than C2 the number of cube-free integers d with Idl :5 T 
for which the rank of the curve· given by x 3 + i = d is even and at least 2 is 

2 
at least C3 Tl- 8 

Our aim in this paper is to generalize these results and t6 remove the de-
pendence on the parity conjecture. Further we shall give a positive response to 
the question, posed by Gouvea and Mazur [15], of whether there are positive 
exponents associated to functions counting the number of twists of an elliptic 
curve E which have rank larger than 2. For instance, we shall prove that there 
is a positive number C4 such that if T is larger than 657, then the number of 
cube-free integers d with Idl :5 T for which the curve given by Xl + yl = d 

I 
has rank at least 3 is at least C4 T6. Furthermore, by employing a construc-
tion of Mestre [30], we shall prove that if E is an elliptic curve over Q with 
j-invariant different from 0 and 1728 and, as usual, Ed denotes the quadratic 
twist of E, then there are positive numbers Cs and C6 which depend on E, 
such that if T exceeds Cs ' then S(T) is at least C6 Tt /(Iog T)2 . 

Our strategy will be to provide curves which are degree 2, 3, 4 and 6 cyclic 
covers of the projective line and which have the property that their jacobian 
contains over Q, up to isogeny, many copies of a given elliptic curve. This 
method is not new, indeed Tate and Shafarevich [45] used it in the context of 
finite fields instead of Q. 

For any positive integer k and any integer n we say that n is k-free if 
n is not divisible by the k th power of a prime. To estimate the number of 
twists of large rank that our constructions yield we shall appeal to an estimate, 
of interest in its own right, for the number of k-free values below a given 
bound assumed by a binary form with integer coefficients evaluated at integer 
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arguments. Our result depends upon recent work of Greaves [16] who studied 
the related problem of estimating the number of pairs of integers (a, b) with 
lal and Ibl below a given bound for which F(a, b) is k-free. To apply the 
work of Greaves we shall employ an argument due to Erdos and Mahler [11] 
and a result of Stewart [43] on the number of solutions of the Thue equation. 
Greaves' result sharpened work of Gouvea and Mazur which in turn depended 
on a result of Hooley [19] which gives an asymptotic formula for the number 
of k-free positive integers up to x represented by an irreducible polynomial 
with integer coefficients of degree k + 1 (;::: 3) and having no fixed kth power 
divisors. 

Part of the research reported on here was done while the second author 
worked at Queen's University in Kingston, Ontario. During the remaining part 
he was employed by the Erasmus University in Rotterdam, the Netherlands. It 
is a pleasure to thank these institutions for their hospitality. 

2. STRATEGY 

Let E be an elliptic curve defined over Q. Our aim is to construct many 
twists of E having large rank. To do so we shall regard E as an elliptic curve 
over Q(t). We shall study twists ED of E where D is a polynomial in :£[t] 
of positive degree and where ED and E are not isomorphic over Q(t) but 
become isomorphic over an extension Q(t, s) of Q(t) where sn = D(t) and n 
is 2, 3, 4 or 6 when we are considering quadratic, cubic, quartic or sextic twists 
respectively. 

Our approach will be to first construct D so that the rank of the group of 
Q(t)-points of ED is large. Next we will appeal to a specialization argument to 
show that most specializations of t to a rational number give an elliptic curve 
over Q with rank at least as large as the rank of ED over Q(t). Finally we shall 
use our result on n-free values assumed by binary forms to count the number 
of different twists we get by specializing. The binary form F(X, Y) which we 
will arrive at is given by F (X, Y) = y l D( ~) where I is the smallest multiple 
of n greater than or equal to the degree of D. 

3. SPECIALIZATION 

Let E be an elliptic curve defined over Q(t) which is not isomorphic over 
Q(t) to an elliptic curve defined over Q. By specializing t to a rational number 
to one obtains in general an elliptic curve EI /Q and a specialization homo-

o 
morphism PI : E(Q(t)) -+ E t (Q) from the group of Q(t)-points of E to the 
00· 

group of rational points of Et • We shall make use of the following result due 
o 

to Silverman. 

Lemma 1. In the above situation, 

PI : E(Q(t)) -+ E/ (Q) 
o 0 

is an injective homomorphism for all but finitely many rational numbers to' 
Proof. This is a special case of Theorem C of [40]; one takes the abelian variety 
to be an elliptic curve. 
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4. CALCULATION OF THE RANK OF ED OVER Q(t) 

Let D(t) be a polynomial with integer coefficients and degree at least 1 and 
let n be an integer larger than 1. Suppose that D is not a perfect pth power in 
C[t] for any prime p which divides n. Let C be a smooth, complete model of 
the curve given by sn = D(t) and let Ji1(C, Q~/Q) denote the vector space of 
holomorphic differentials on C. Let E be an elliptic curve. We denote the set 
of morphisms from C to E defined over Q by MorQ(C, E) and give it the 
structure of an abelian group by defining the sum of two morphisms 'PI and 'P2 
to be the morphism which takes x in C to 'PI (x) + 'P2(X) where + denotes 
addition in E. 

Proposition 1. Consider the following four situations. 
1. (quadratic twists) E/Q is an elliptic curve given by an equation l = 

ax3 + bx2 + cx + d and DE Z[t] is a non-constant polynomial which is not a 
perfect square in C[t]. C /Q is a smooth. complete model of the curve defined 
by i = D(t) and ED/Q(t) is given by D(t)l = ax3 + bx2 + cx + d . 

For each point P = (x(t) , yet»~ in ED(Q(t» we define an element f/Jp of 
MorQ(C,E) by f/Jp(t,s) = (x(t),sy(t». 

2. (cubic twists) E /Q is an elliptic curve given by an equation y2 = x 3 + k 
and DE Z[t1 is a non-constant polynomial which is not a per/ect cube in C[t1. 
C /Q is a smooth. complete model of the curve defined by s3 = D(t) and ED/Q(t) 
is given by l = x 3 + k(D(t»2. ' 

For each point P = (x(t) , y(t» in ED(Q(t» we define an element 'Pp of 
MorQ(C, E) by f/Jp(t, s) = (X(t)s-2, y(t)s-3). 

3. (quartic twists) E/Q is an elliptic curve given by an equation y2 =x3+ax 
and D E Z[t] is a non-constant polynomial which is not a perfect square in C[t]. 
C /Q is a smooth complete model of the curve defined by S4 = D(t) and ED/Q(t) 
is given by l = x 3 + aD(t)x . 

For each point P = (x(t) , y(t» in ED(Q(t» we define an element f/Jp of 
MorQ(C, E) by f/Jp(t, s) = (X(t)s-2, y(t)S-3). 

4. (sextic twists) E /Q is an elliptic curve given by an equation y2 = x 3 + k 
and D E Z[t] is a non-constant polynomial which is not a perfect square or a 
perfect cube in C[t]. C/Q is a smooth. complete model of the curve defined by 
s6 = D(t) and ED/Q(t) is given by l = x 3 + kD(t). 

For each point P = (x(t) , y(t» in ED(Q(t» we define an element f/Jp of 
MorQ(C, E) by f/Jp(t, s) = (X(t)S-2 ,y(t)S-3). 

In each of the above four cases the map 
o I 2: ED(Q(t» --+ H (C, nc/Q) 

given by 
2(P) = 'P;wE , 

where 'P;w E denotes the pullback via 'P p of the invariant differential WE on 
E • is a homomorphism with a finite kernel. 
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Proof. We shall first prove that A is a homomorphism. Observe that A = A2 oA} 
where AI: ED(Q(t» -+ MorQ(C, E) by AICP) = f/Jp and A2: MorQ(C, E) -+ 

HO (C , n~ /Q) by A2 (f/J) = f/J * WE' In all four cases Al is a homomorphism as 
may be verified by appealing to the addition law on E and on ED' Also A2 
is a homomorphism as may be confirmed as in the proof of Theorem 5.2 of 
Chapter III of [42]. 

To see that A has a finite kernel notice that only constant morphisms yield 
a vanishing pullback of wE' The result then follows in each case. 

Observe that, by the proof of Proposition 1, polynomials D for which the 
rank of ED(Q(t» is large will have many independent morphisms from C to 
E of the appropriate form. 

We shall use Proposition 1 to establish lower bounds for the rank of ED(Q(t» 
for various curves E D/Q(t) as above. To do so we shall start with a set of 
points in ED(Q(t». Then it is a straightforward task to calculate the rank of 
the group generated by the image under A of these points in the vector space 
of holomorphic differentials on C. Since A is a homomorphism this rank is a 
lower bound for the rank of ED(Q(t». 

Let D, nand C be defined as at the start of this section. Let 'n be a 
primitive nth root of unity and define ',an automorphism of C , by '( t , s) = 
(t, 'ns). Then , acts on the differentials of C via the pullback {* f(t, s) dt = 
fCt, 'ns) dt for any function f on C. Hence one obtains a linear action on 
the space HO(C, n~/Q) of holomorphic differentials on C. This action: yields 
a decomposition 

in which ~(C, n~/Q)('!) is the eigenspace on which' acts by multiplication 
by,! . 

Corollary 1. Consider the four situations of Proposition I. For each case we 
have 

rankED(Q(t» ::; dimHoCC, n~/Q)('n)' 
Proof. We check in each of the four cases that f/J;WE has the form r(t)sdt 
where r(t) is a rational function of t. Thus f/J;WE is in HO(C, n~/Q)('n) 
and our first assertion now follows from Proposition 1 since the kernel of A is 
finite. . 

We remark that the term on the right-hand side of the above inequality is 
equal to HomQ(Jac(C), E). 

5. POWER-FREE VALUES OF BINARY FORMS 

Let 

(1) 
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be a binary form with integer coefficients and positive degree r. Let A, B , M 
and k be integers with M 2': 1 and k 2': 2. We shall now define three counting 
functions associated with k-free values of F. We shall include the congruence 
condition X == A (mod M) and Y == B (mod M) in the definition of these 
functions since such a condition is required for applications involving the parity 
conjecture (see §12). It is also useful when one wishes to estimate the number 
of fields with discriminant in absolute value below a given bound and for which 
the ideal class group is of a certain type. Let w be the largest positive integer 
such that w k divides F(a, b) for all integers a and b with a == A (mod M) 
and b == B (mod M). For any real number x let Nk{x) and Pk(x) denote the 
number of pairs of integers (a, b) with 1 ~ a :5 x, 1 :5 b :5 x, a == A (mod M) 
and b == B (mod M) for which F(a, b) is k-free and for which F(a, b)/wk 

is k-free respectively. For any real number x let Rk(x) denote the number 
of k-free integers t with It I :5 x for which there are integers a and b with 
a == A (mod M), b == B (mod M) and F(a, b) = twk • 

Let f be a polynomial with integer coefficients which is irreducible over the 
rational numbers. Let r denote the degree of f and suppose that r is at least 
3. For any real number x let N(f, r - I, x) denote the number of positive 
integers n not exceeding x for which f(n) is (r - I)-free. Hooley [19], [20] 
proved that 

N(f, r - 1, x) = C7x + O(x(logx)(2/(r+I))-I), 
where C7 is a non-negative number which depends on f and r and which is 
positive when f has no fixed (r - 1 )th power divisor larger than 1. Let F be 
a binary form as in (1). Suppose that F has non-zero discriminant, arao #- 0 , 
and that all of the irreducible factors of F over Q have degree at most 3. 
Gouvea and Mazur adapted the sieving argument of Hooley to prove that 

221 
(2) N2(x) = C8x + O(x /(logx)Z), 
where C8 is a non-negative number which depends on A, B, M and F . ~o 
count the number of distinct quadratic twists of an elliptic curve given by y2 = 
X 3 +aX +b which their construction yields they need a corresponding result for 
R2(x). Suppose that M is a positive integer, a and b are integers divisible by 
M and that 4a3 + 27b2 #- O. Let F(X, Y) = Y(X3 + aXy2 + b y 3) and let A 
and B be integers coprime with M. For any non-zero integer h the number 
of pairs of integers (s, t) with F(s, t) = h is, since Y is a factor of F, at 
most 3r(h) where r(h) denotes the number of positive integers which divide 
h. Using this fact and their result on N2(x) they deduce, in the special case 
above, that for each positive real number e there are positive numbers C9 and 
CIO which depend on e, a, b, A, Band M such that if x is a real number 
larger than C9 , then 

!-e R2(x) > ClOx 
In a recent article Greaves [16] improved on the result (2) of Gouvea and 

Mazur. Let F, A , B , M and k be as in the introduction to this section. 
Define Wo to be the largest positive integer such that w~ divides F(a, b) for 
all integers a and b. Let m denote the degree of the largest irreducible factor 
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of F over Q. Greaves assumes that F has non-zero discriminant, a,ao =I 0 
and Wo = 1. He then proves that there is a non-negative number Cll , which 
depends on M, A ,B and F , such that if 1m ::; 6 , then 

2 2 I 
N2(x) = Cllx + O(x /(logxP) 

and there is a non-negative number C12 , which depends on M, A, B, F and 
k , such that if m ::; 2k + 1 , then 

2 2 Nk(x) = C12x + O(x / logx); 
here the O-constants depend only on F. Further he proves that if M = I, 
then Cll and Cl2 are positive. 

Our aim is to prove corresponding results for Rk(x). As a first step we shall 
modify the arguments of Greaves so that they apply to the functions Pk(x). 
Again let F , A, B , M and k be as in the introduction to this section. For each 
prime p let ordpt denote the p-adic order of t. Put m = ordpM , v = ordp wk 
and I = k + m + v. Let S be the set of those primes which divide M, w , or 
the discriminant of F. Let s(p) denote the number of pairs of integers (a, b) 
with 1 ::; a ::; v', 1 ::; b ::; pi, a == A (mod pm), b == B (mod pm) and for 
which F(a, b) 1= 0 (mod pk+v). Put 

(3) C13 = IT s~r 
p p 

(The authors would like to thank Professor M. Filaseta for his comments con-
cerning the definition of C13 .) The number of pairs (a, b) with 1 ::; a ::; pk 

and 1 ::; b ::; l for which p divides both a and b is p2k-2. Further the 
number of pairs (a, b) with 1 ::; a ::; pk, 1 ::; b ::; pk , for which p does 
not divide both a and b and for which F(a, b) == 0 (mod pk), is at most 
rpk provided that p does not divide the discriminant of F (see, for example, 
Theorem 2 of [43]). Thus 

(4) 2k 2k-2 k s(p)?p -p -rp 
for primes p which are not in S. It follows from the definition of w that 
s(p) ? I for all primes p. Therefore the product defining C13 converges to a 
positive real number. 
Lemma 2. Let A, B, M, F, k and w be defined as in the introduction to this 
section. Suppose that F has non-zero discriminant, a,ao =I 0 and that m 
denotes the degree of the largest irreducible factor of F over Q. If m ::; 6, then 

221 P2(X)=C13x +O(x /(logx)3) 
while if m ::; 2k + 1 , then 

2 2 Pk(x) = C13x + O(x / logx) , 
where the O-constants depend only on F, M and k. 
Proof. Put A. = (logx)/2k and assume that x is sufficiently large that 

(5) 
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that all primes p in S are less than A and that all primes which divide arao 
are also less than A. 

We suppose that F(X, Y) = ll~=l ~(X, Y) where the forms Fi have integer 
coefficients and are irreducible in Q[X, YJ. Let Eo(x) denote the number of 
pairs of integers (a, b) with 1 ::; a ::; x and 1 ::; b ::; x for which p divides 
both a and b for some prime p with p > A. For i = 1, ... ,t let Ei(x) 
denote the number of pairs (a, b) with 1 ::; a ::; x and 1 ::; b ::; x for which 
there is a prime p larger than A which does not divide both a and b and for 
which pk divides ~(a, b). Put 

V = IT/, 
p<). 

and for integers i and j denote the set of pairs of integers (a, b) with iV < 
a ::; (i + I)V and jV < b ::; (j + I)V by W;,j" Notice that the set of pairs 
(a, b) with 1 ::; a ::; x and 1 ::; b ::; x contains the union of the sets W;, j 
with 0 ::; i, j ::; [f; J - 1 and is contained in the union of these sets with 
o ::; i , j ::; [f;]. Thus, by the Chinese Remainder Theorem, and (5), 

Pk(x) = (IT S(~»)X2 + O(x i ) + O(tEJX») 
p-::;). p i=O 

and so, by (4), 

Pk(x) = CI3X2 + O(x2/ logx) + o( t Ej(X)) ; 
1=0 

here the O-constants depend on F, M and k. 
It only remains to estimate the error terms Ej(x) for i = 0, ... , t. This is 

done in [16] by Greaves with A = t log x . Moreover Greaves' argument works 
equally well with A = (logx)j2k; only a minor modification is required in the 
proof of Lemma 2 of [16] where the terms E;I)(X) are estimated. The result 
now follows. 

Let F be a binary form, as in (1), with integer coefficients, non-vanishing 
discriminant, degree r at least 3 and arao =f. O. For any integer x let R(x) 
denote the number of integers t with It I ::; x for which there exist integers a 
and b with F (a, b) = t. In 1938 Erdos and Mahler [11] proved that there is a 
positive number C14 , which depends on F, such that for x sufficiently large 

], 
R(x) > CI4 X r. 

Mahler [27J has shown that this estimate is best possible apart from the number 
C14 . We shall modify the argument of Erdos and Mahler in order to estimate 
the number of distinct k-free integers t of absolute value at most x for which 
there are integers a and b with F(a, b) = t. 
Theorem 1. Let A, B, M and k be integers with M 2: 1 and k 2: 2. Let F, 
as in (1), be a binary form with integer coefficients, non-zero discriminant and 
degree r with r 2: 3. Let m be the largest degree of an irreducible factor of F 
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over Q and suppose that m ~ 2k + 1 or that k = 2 and m = 6. There are 
positive numbers CIS and C I6 which depend on M, k and F, such that if x 
is a real number larger than C15 , then 

.1 
Rk(x) > CI6X'. 

Erdos and Mahler appealed to a modification of Mahler's [26] p-adic version 
ofthe Thue-Siegel theorem to establish their result. We have found it convenient 
to appeal to a recent result of Stewart [43] on the number of solutions of the 
Thue equation for the proof of Theorem 1, although we could also get by with 
Mahler's result or Lemma 8 of [11]. In fact the full power of these results is not 
needed since in the proof of Theorem 1 we only need an estimate for relatively 
small solutions of the Thue equations involved and an argument based on a gap 
principle suffices for this purpose. Thus the Thue-Siegel principle (see [43]) is 
not required. 

6. PROOF OF THEOREM 1 
We may assume that k ~ r since m is at most r and since if an integer is 

k-free it is also (k + 1)-free. We may also assume, without loss of generality, 
that a,ao =1= O. To see this note that if a,ao = 0, then there is a matrix 

L= (ml m2) 
m3 m4 

in SL(2, Z) for which F(mIX + m2Y, m3X + m4Y) = a~Xr + a~_IX'-ly + 
... +a~Y' with a;a~=I=O. Denote F(mIX+m2Y, m3X+m4 Y) by FL(X, Y). 
Since L is in SL(2, Z) the discriminant of F L is the same as the discriminant 
of F. Further let A' = mlA + m2B and B' = m3A + m4B and observe 
that the set of integers of the form F L (a, b) with a == A' (mod M) and 
b == B' (mod M) is the same as the set of integers of the form F(a, b) with 
a == A (mod M) and b == B (mod M). Accordingly, we may replace F by F L 
if necessary. 

For any prime p and any rational number a let lalp denote the p-adic value 
of a, normalized so that Iplp = p-I . Let u be a positive real number. For any 
real number 0 with 0 < 0 ~ 1 and for any non-zero integer h we define s(h) 
by 

s(h) = II Ihl;l, 
p~u6 

Ihl;I~U6 
P1'wD 

where D denotes the discriminant of F. Let U denote the set of pairs of 
integers (a, b) with 1 ~ a ~ u, 1 ~ b ~ u and F(a, b) =1= 0 and such that the 
only primes which divide the greatest common divisor of a and b also divide 
wD. Next we define S(O, u) by 

S(O, u) = II s(F(a, b)). 
(a,b)EU 
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We shall now estimate S(8, u) by an argument similar to that of Lemma 
1 of [11]. Note, however, that the proof of Lemma 1 of [11] is incorrect as it 
stands since the authors do not give a valid estimate for ordp G. They overlook 
the contribution from pairs (x, y) for which p divides both x and y. This 
can be easily fixed by requiring that the pairs (x, y) in the product defining 
G are pairs of coprime integers. The balance of their argument goes through 
unchanged. 

Let p be a prime which does not divide wD and let z be a positive integer 
for which pZ S u9 • Note that the content of F divides D. For"each integer b 
which is coprime with p there are at most r integers a modulo pZ for which 

(6) F(a, b) == 0 (mod pZ). 

Thus there are at most rU([7] + 1) solutions of (6) from U for which p does 
not divide b. The same estimate applies for the number of solutions of (6) 
from U for which p does not divide a. Thus 

Therefore 

[6t!g'p"] 2 00 2 2 
d S(8 ) L 4ru L 4ru 4ru or u < --< --=--p ,- z - z 1· 

z=! P z=! P p-

S(8, u) S exp (4ru2 L ~o:~). 
p~u8 
pfwD 

Hence, by Theorem 425 of [17], there is a positive number C17 , which depends 
on 8, such that if u exceeds C17 , then 

S(8, u) S u59ru2. 

Consequently, if u exceeds C17 , the number of pairs (a, b) 1ll U for which 
s(F(a, b»;::: u t is at most 

(7) 2 408ru . 

Next observe, as in Lemma 2 of [11], that if h and b are integers with 
Ihl :::; u t and 1 S b S u, then there are at most r integers a with F(a, b) = h. 
Accordingly, the number of pairs of integers (a, b) with 1 S a S u, 1 S b :::; U 

1 
and IF(a, b)1 S w r u 2 is at most 

(8) 

We now fix 8 by putting 

(9) 8 = C13/120r; 
recall (3). Let T be the set of pairs of integers (a, b) with 1 S a S u, 
1 :::; b :::; u, a == A (mod M), b == B (modM) and for which F(a, b)/wk is 
k-free, IF(a, b)1 ;::: wrut and s(F(a, b» < u f . Note that if F(a, b)/wk is 
k-free, then, since k:::; r, the greatest common divisor of a and b divides w . 
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Thus T is contained in U. For any set X we denote the cardinality of X by 
IXI. By Lemma 2, (7), (8) and (9) there are positive numbers CIS and C 19 , 
which depend on F, M and k, such that if u exceeds C18 , then 

(10) ITI> fCIJ i . 
As we remarked above, if (a, b) is in T, then the greatest common divisor of 
a and b divides w. Let d be that divisor of w which occurs most often as 
the greatest common divisor of a pair (a, b) from T. Let To be the set of 
pairs (a, b) from T whose greatest common divisor is d and let TI be the 
set of pairs (~, S) with (a, b) in To' It follows from (10) that 

2 (11) . I Ttl > C13u /(2T(W» , 

provided that u exceeds CIS' Observe that if (a' , b') is in T I , then a' and b' 
are coprime, 1::; a' ::; u, 1 ::; h' ::; u, IF(a', b')1 ~ u! and s(F(a', b')) < ut . 

For any non-zero integer h let w(h) denote the number of distinct prime 
factors of h. Let h be an integer for which there is a pair (a', b') in TI with 

(12) F(a' , b') = h. 

Put h = s(F(a' , b'» . g and note that Igl 2: Ihli. If u is larger than IDI24 , 
then h is larger than IDI12 and so, on taking e = 1/12 in Corollary 1 of [43], 
we deduce that the number of pairs (a', b') from TI for which (12) holds is 
at most 
(13) 5600ri+w(g). 

Let H denote the maximum of {Iaol, '" , lar!} and observe that if (a', b') is 
in TJ , then 

(14) IF(a', b')1 ::; rHur •. 

The prime divisors p of g either divide wD or satisfy W(a', b')I;1 2: UO • 

Thus, provided that uO 2: r H , 

(15) w(g) ::; w(wD) + (r + 1)/(). 

Therefore, by (9), (11), (13) and (15) there are positive numbers C20 and C21 , 
which depend on F, M and k, such that if u exceeds C20 ' then the number 
of distinct integers h of the form F(a', h') with (a', b') in TI is at least 
C2J U2 and so the number of distinct integers F(a, b) with (a, b) in T is also 

2 at least C21 u . 
Let x be a teal number with x> rHC;o and put u = (x/rH)t ; note that u 

exceeds C20 • We now define T as above and observe that if (a, b) is in T, 
then jF(a, b)1 ::; x. Thus 

1 
Rk(x) ~ ITI2: C21 (x/rH)r , 

and this completes the proof of Theorem 1. 



954 C. L. STEWART AND J. TOP 

7. VALUES OF BINARY FORMS MODULO k TH POWERS 

Let A, B ,M and k be integers with M :2: 1 and k :2: 2. Let F be a 
binary form as in (1). For any real number x let Sk(X) denote the number of 
k-free integers t with It I ~ x for which there exist integers a, band z with 
a == A (mod M), b == B (mod M), z non-zero and F(a, b) = tzk. It is the 
function Sk(x) which we use to count the number of different twists of elliptic 
curves produced by our constructions. Plainly we have 

Sk(x) :2:. Rk(x) , 

and so the estimate for Rk(x) given by Theorem 1 furnishes a lower bound for 
Sk(x) provided that the hypotheses of Theorem 1 apply. Our next result gives 
a weaker lower bound for Sk(x) which, however, is more widely applicable. 

Our first version of this result gave a lower bound for Sk(X) of C23XI / r flog x . 
Professor A. Granville pointed out to us how to improve this to C23x 2/r/(logx)2. 
We are very grateful to him for allowing us to incorporate his ideas into our 
proof. 

Theorem 2. Let A, B , M and k be integers with M:2: 1 and k :2: 2. Let F 
be a binary form with integer coefficients and degree r which is not a constant 
multiple of a power of a linear form and which is not divisible over Q by the kth 
power of a non-constant binary form. There are positive numbers C22 and C23 , 
which depend on F and M, such that if x is a real number.larger than C22 , 
then 

1 2 
Sk(X) > C23X' /(logx) . 

Proof. C24 , C25 ' • •• will denote positive numbers which are effectively com-
putable in terms of F and M. We may write F(X, Y) = FI (X, Y) ... Fi(X, Y) 
where FI , •• , ,FI are binary forms with integer coefficients, F;+ I divides F; 
for i = 1, ... , I - 1- and Fi is either linear or has a non-zero discrimi-
nant for i = 1, ... , I. Since F is not divisible by the kth power of a 
nOD-constant binary form, I is at most k - 1. Next we write FI (X, Y) = 
GI (X, y) ... Gm(X, Y) where GI , ... , Gm are non-constant forms with inte-
ger coefficients which are irreducible in Q[X, Y] . 

. We first deal with the case that one of GI , ... , Gm is non-linear. We may 
assume without loss of generality that GI is non-linear. Put G(X) = GI (X, 1) 
for brevity. 

Let u be a positive real number for which u/2 exceeds the maximum of M, 
the content of F and the discriminant of Fl' Let W be the set of primes p 
with u/2 < p < u for which the congruence G(X) == 0 (mod p) has a solution. 
By the Chebotarev density theorem [24] there are positive numbers C24 and 
C25 such that if u .exceeds C24 , then 

IWI > C2su/logu. 
Let p be a prime in Wand let v be an integer with 0:5 v < p for which 

G(v) == 0 (mod p), hence for which FI (v, 1) == 0 (mod p). Since p is larger 
than u/2, p does not divide the content or the discriminant of Fl' Thus, 
by Hensel's lemma, there is a unique integer VI with 0 ~ VI < p such that 
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if x == v (mod p) and FI(x, 1) == 0 (mod p2), then x == v + VIP (mod p2). 
We have FI(r, s) == 0 (mod p) whenever (r, s) is a pair of integers with 
r == v s (mod p) . The set of such pairs (r, s) forms a lattice Ap of determinant 
p. Further the set of pairs (r,s) in Ap for which FI(r,s)==0(modp2) forms 
a sublattice of determinant p2 . 

Let (ro' so) be an element of Ap different from (0, 0) for which 
max(lrol ,Isol) is minimal and put mp = max(lrol, Isol). Let d denote the 
degree of GI . There exists a positive number C26 such that whenever (r, s) 
isin Ap with (r, s) =/: (0, 0) , then 

d (16) 0 < IG,(r, s)1 < C26 (max(l r l, lsI) ; 
note that GI (r, s) is non-zero since G, is irreducible and of degree at least two. 
Thus if u exceeds C27 and the maximum of Irl and lsi is at most u t , then 
at most d primes from W divide GI (r, s). If u exceeds C28 the number of 
pairs of integers (r, s) with 

! 
max(lrl, lsi) < (C25u/(IOdlogu»2 

is at most C25 u/(2dlogu). Accordingly, by inequality (16), there are at most 
I 

C25u/(2Iogu) primes pin W forwhich mp is less than (C25 U/(lOd log u»)2 . 
Let W, be the set of primes p in W for which 

( 17) 

and note that 

( 18) 

Let p be a prime in ~ and let (ro' so) and (rl' Sl) be a basis for Ap with 
max(lrll, Is,1) minimal. It follows from (17), as in Lemma 1 of [16] (see in 
particular (2.8) of [16]), that 

( 19) 

Since M and p are coprime and the determinantirosl - rlsol of Ap is p, 
there exist integers j and k with 0 :S j < M and 0 :S k < M for which 
jro + krl == A (mod M) and jso + kSI == B (mod M) . Put (r2' S2) = j(ro' so) + 
k(rl' SI)' (r3, S3) = (r2' S2) + M(ro' so) and (r4' S4) = (r2' S2) + M(rl ' s,) . 
Note that rj == A (mod M), Sj == B (mod M) and FI(rj , Sj) == 0 (mod p) 
for i = 2, 3 and 4. Further, we can find two linearly independent vectors in 
{(r2' S2)' (r3' S3)' (r4' S4)} and these two vectors generate a sublattice of Ap 
of determinant at most C30u log u by virtue of (19). Since the set of pairs 
(r, s) in Ap for which Ft(r, s) == 0 (mod p2) forms a sublattice of Ap of 
determinant p2 and p2 exceeds u2/4 we see that ordpFI (rj' Sj) = 1 when i 
is 2, 3 or 4 provided that u exceeds C31 • Thus for each prime p in WI there 
exists a pair of integers (a, b) with 

(20) a == A (mod M), b == B (mod M), 



956 C. L. STEWART AND J. TOP 

and 
I 

(21 ) max(lal, Ibl):::; C32(ulogu)2. 

Assume that F is as in (1) and put H = max{la,l, ... , laol}. Then put 
2 2 

U = (x/rH)r /(C32 10gx) so that when x exceeds C33 and (21) holds, then 
!p(a, b)l:::; x. Observe that, by (18), 

(22) 1 2 I W; I > C34X r /(logx) . 
To each prime p in WI there exists a pair of integers (a, b) satisfying (20) 

andwith IF(a, b)1 :::; x. Put F(a, b) = tpzk where tp and z are integers with 
tp k-free and z positive. Next put T = {tplp E W;}. Since I is less than k, 
we have 

1 :::; ordpF(a, b) < k, 

and therefore p divides tp for each prime p in WI' Further for each integer 
t in T we have It I :::; x. Furthermore, for each integer t in T there are at 
most r primes p from W; with tp = t provided that u exceeds C35 , since 
each prime p in W; exceeds u/2. Thus 

Sk(X) ;::: ITI ;::: I W; I/r, 
and the result follows from (22). 

We are left with the case where G I ' ... , G m are linear forms. We first treat 
the case when m is at least three. As before let w be the largest integer such 
that w 2 divides FI (a, b) for all integers a and b with a == A (mod M) and 
b == B (mod M). Let u be a positive real number and define T to be the 
set of integers FI (a, b) with I :::; a :::; u, 1 :::; b :::; u, a == A (mod M), b == 
B (mod M) and FI (a, b)/w2 square-free. It is established in the penultimate 
paragraph of the proof of Theorem 1 that there exists a positive number C36 

such that if u exceeds C36 , then ITI is at least C37 u2 • If F, (a, b) is in T 
and p is a prime which divides FI (a, b) but does not divide w, then 

1 :::; ordpF(a, b) < k. 

Put u = (x/rH)f and note that !p(a, b)1 is at most x when the maximum of 
lal and 'bl is at most u. Therefore 

when x is at least C39 • 

Finally we must deal with the possibility that F, is the product of two linear 
forms. We may suppose that FI (X, Y) = (eX + dY)(eX + fY) with e, d, e, 
and f integers. Since eX + d Y and eX + fY are non-proportional, we may 
assume that e is non-zero. Put a = A + kM and b = B + [eM so that 

FI (a, b) = (eA + dB + (k + d/)eM)(eA + fB + (ek + ef/)M). 

Let SI denote the greatest common divisor of eA + dB and eM. Then by 
the prime number theorem for arithmetic progressions with error term, if u 
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is a real number larger than C40 ' then the number of primes p of the form 
«eA + dB)jSl + t(CMjSl» with t an integer and uj2 < p < u· is at least 
C41 uj log u. For each integer I as above we put k = t - dl so that we have 
(eA + fB + (ek + efl)M) = (eA + fB + etM + (cf - de)IM). Let S2 be the 
greatest common divisor of eA + fB + elM and (cf - de)M . Then, again by 
the prime number theorem for arithmetic progressions with error term, if u is 
a real number larger than C42 , then the number of primes p of the form 

«eA + fB + etM)jS2 + «ef - de)MjS2)/) 

with I an integer and u < p < 2u is at least C43 u j log u. Therefore when 
u exceeds C44 , there exist at least C45 (uj log U)2 pairs of primes (p, q) with 
uj2 < p < U and u < q < 2u for which there exist integers a (= a(p, q) and 
b (= b(p, q)) with a == A (mod M), b == B (mod M), 0 < Ica+dbl :::;lcIMu, 
o < lea + fbi:::; 21cf - delMu and for which p divides ca + db and q 
divides ea + fb. For each pair of primes (p, q) as above we put t(p, q) = 
F(a(p, q), b(p, q)). We now take 

I 

U = x' j(max(lcIM, 21ef - deIM)). 

Plainly It(p,q)1 is at most x for all pairs (p, q) and provided that x exceeds 
C45 each integer t(p,q) contributes 1 to Sk(x). Our result now follows. 

8. QUADRATIC TWISTS 

In the next four sections we shall establish unconditional estimates for the 
number of twists of large rank of various elliptic curves. For many of our calcu-
lations in these sections we have employed the symbolic computation package 
MAPLE. 

Our first result gives an unconditional analogue of the result of Gouvea and 
Mazur [15) but with an exponent of t in place of t. The proof depends 
on a construction used by Mestre [30) to prove that there are infinitely many 
elliptic curves over Q with given modular invariant and rank at least 2. Our 
contribution will be to make this result quantitative. 

Theorem 3. Let a and b be rational numbers and assume ab( 4a3 + 27 b2) =f. O. 
There exist positive numbers C46 and C47 • which depend on a and b. such that 
if T is a real number larger than C46 • then the number of square-free integers 
d with Idl :::; T for which the curve given by 

d/ = x 3 +ax+b 

has rank at least 2 is at least C47T~ j(log T)2 . 
Proof. Following Mestre we put 

3 f(t) = t + at + b, 

and 
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Let PI = (g(t) , (a2(t2 + 1)2t3)-I) and P2 = (t2 g(t), (a(t2 + 1»-2) and note 
that PI and P2 are points on ED where ED is given by the equation D(t)i = 
x 3 + ax + b. Let E be the curve given by i = x 3 + ax + b. The invariant 
differential WE on E is given by WE = ~;. In the notation of Proposition 
1, tp; WE = ab(2t2 + 1)~ and tp; WE = -ab(t5 + 2t3)~ and so the rank of 

I 2 

ED(Q(t)) is at least 2. The degree of D is 14 and D is divisible by t2 + 1 
in Q[t). Provided that ab "# 0, (t2 + 1)2 does not divide D in Q[t). Put 
F(X, Y) = y I4D(XjY). Let FI and F2 be binary forms satisfying F = FIF22 
with F2 in Z[X, Y] and of maximal degree. Then X2 + y2 divides FI and 
we may apply Lemma 1 and Theorem 2 to give our result. 

Our next two theorems treat quadratic twists of special families of elliptic 
curves; for these families we are able to establish larger exponents than ~. 

Theorem 4. Let a, band c be rational numbers and put A = _(a2 + ac + c2) . 
Assume that a and c are not both zero and that 4A3 + 27b2 "# O. There exist 
positive numbers C48 and C49 , which depend on a, band c. such that if T is 
a real number larger than C48 • then the number of square-free integers d with 
Idl :::; T for which the curve given by 

di =x3 +Ax+b 
I 

has rank at least 2 is at least C49 T4 . 
Proof. Motivated by the construction of Schoof, §2 of [37] (see also [10], [29]), 
we put 

2 r l (t) = -ct + 2at + a + c, 2 r2(t) = (a + c)t + 2ct - a 

and 
D(/) = (r l (t)3 + Ar1(t)(t2 + 1 + 1)2 + b(t2 + t + 1)3)(t2 + t + 1). 

We define ED/Q(t) by the equation 

D(t)/ = x 3 + Ax + b; 

and put 
( ri(t) 1·). Pi = 2 '2 2 for l = 1 , 2. 

t +1+1 (I +t+l) 
Here PI and P2 are points from ED(Q(t». The discriminant of D is 
313 A 12(4A 3 + 27b2)3 and so, by assumption, is non-zero. Let E/Q be given 
by i = x 3 + Ax + b. Let C be the curve given by i = D(t). Then, as in 
Proposition 1, 

• 1 2 dt 
tpp WE = --2 «2a + c)t + 2(a + 2c)t - a + c)-

I S 

and 
* 1 2 dt tp W = --«-a + c)t - 2(2a + c)t - a - 2c)-. P2 E 2 s 
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Since a and c are not both zero the differentials are non-zero and linearly 
independent. Thus, by Proposition 1, the rank of ED(Q(t» is at least 2. Our 
result now follows on appealing to Theorem 1 since the degree of D is at most 
8 and the largest irreducible factor of D in Q[t] has degree at most 6. 
TheoremS. Let a and b be rational numbers with a(3a-b)(a+b) i= o. There 
exist positive numbers Cso and CSl ' which depend on a and b, such that if 
T is a real number larger than Cso ' then the number of square-free integers d 
with Idl:::; T for which the curve given by 

di = ax3 + bx2 + bx + a 

has rank at least 2 is at least CSI T! . 
Proof. Let D(t) = at6 + bt4 + bt2 + a and denote by ED/Q(t) the curve given 
by D(t)i = ax3 + bx2 + bx + a. The points (t2, 1) and (t-2, C 3 ) from 
ED(Q(t» are mapped by A, as in Proposition 1, to the differentials t!lf and 
-!If respectively, on the curve C given by i = D(t). The discriminant of 
D is -64a2(3a - b)6(a + b)2 and our result'now follows from Lemma 1 and 
Theorem 1. 

The last example of quadratic twists presented here yields twists of rank at 
least 3 for a class of elliptic curves. It is based on an idea of Schoen [36] and 
in fact was discovered independently by him. . 

One starts with an elliptic curve Ea given by an equation 
2 Ea: Y = x(x - I )(x - a). 

We assume that both a and a-I are squares in Q* . Under this assumption the 
curves E a , E I /a and EI/(I_a) are isomorphic over Q. Note that the condition 
is equivalent to a being of the form (b;t l )2 for b i= 0, ± I in Q. 

Using the projections (x, y) 1-+ x: E --+ pi one defines a fibre product 

C = Ea Xpl E I / a XIP'I EI/(I_a)" 

Locally, C can be described by the equations 

{ 
y~ = x(x - l)(x - a), 

Yi=x(x-l)(x-~) , 

yi = x(x - 1) (x - I~a). 
One can describe C alternatively using the functions x, Y I and u = X(;::l) , 
v = l/!t) . These satisfy the relations 

{ 
y~ = x(x - l)(x - a), 

u2 = (x - a) (x - ~) , 

v2 = (x - a) (x - l~a). 
It is easily checked that the latter two equations define a rational curve with a 
Q-rational point. Parametrizing this curve allows us to prove our next result. 
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Theorem 6. Let b be a rational number with b i= 0, I, -I. Put a = (b~t )2 . 
There exist positive numbers CS2 and CS3 ' which depend on b, such that if T 
is a real number larger than CS2 ' then the number of square-free integers d with 
Idl:S T for which the curve given by 

2 dy = x(x - l)(x - a) 
1 

has rank at least 3 is at least CS3 TT, . 

Proof. Put A = a3 - a2 - a + I, B = a3 - a2 + a , 

At2 -B 
U - ---::,------

- At2 - 2At + B ' 
At2 _ B U2 _ a2 

V = 2 and x( t) = --;;---
-At +2Bt-B a(U2 -l)· 

Next put 

and 
D(t) = y(t)-2X(t)(X(t) - I)(x(t) - a). 

Let E/Q be defined by y2 = x(x - I)(x - a) and ED/Q(t) be defined by 
2· 1 D(t)y = x(x-l)(x-a). Notice that PI = (x(t) , y(t» , P2 = (ax(t) , a 2 y(t)/U) 

and P3 = (1 + (a - I)x(t) , (a - 1)~y(t)/V) are in ED(Q(t)). In the notation 
of Proposition 1, 

* 2 2 dt 'fJp WE = -a(a - I)(At - 2Bt + B)(At - 2At + B)-, 
1 s 

* 1 2 2 dt 'fJpwE=-al"(a-I)(At -2Bt+B)(At -B)-, 
2 s 

* ! 2 2 dt 'fJp WE = a(a - 1) (At - B)(At - 2At + B)-, 
3 s 

and thus, since A i= B , the rank of ED(Q(t» is at least 3. 
The discriminant of D is 24oa7o(a_I)8o(a+ 1)20(a2 -a+ 1)30(2a_I)3o and 

the degree of D is II. Further D factors as 

- a(a - l)t(t - 1)(At - B)(At2 - (2a3 - 6i + 4a)t + B) 

. (At2 - (A + B - l)t + B)«a - 1)3t2 - 2(B - a2 )t + B) 

. «A + 2a2 - 2)t2 - (2a3 - 2a)t + B). 

Thus we may apply Lemma 1 and, on clearing denominators in D, Theorem I 
to obtain our result. 

9. CUBIC TWISTS 

A cubic twist of an elliptic curve only exists if the elliptic curve admits an 
automorphism of degree 3. This means that such a curve has j-invariant 0, and 
it can be given by an equation l = x 3 + k . 
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Here we will restrict ourselves to the curves studied by Zagier and Kramarz 
[47] and Mai [28], which are described by the equation 

X 3 + y3 = m. 

Define a morphism of degree 3 by 

-Xy c;=-m ' 
The image is the curve given by 

,,2 + " = mc;3 , 

or equivalently in homogeneous coordinates by ",(,,+() = mc;3 which one can 
dehomogenize alternatively as 

xy(x+y)=m. 

The morphism of degree 3 does not affect the rank. The curves we look at 
are the cubic twists of the curve E/Q given by xy(x + y) = 1. Note that 
Proposition 1 is applicable also for the curves given by our equation, since we 
can write it in the form (8m" + 4m)2 = (4mc;)3 + 16m2 . 

In a sense the most· general parametrized twist E( of E is given by the 
equation 

xy(x+y)=t. 

Since the curve defined by S3 = t is rational, it follows from Proposition 1 that 
rankE(Q(t)) = o. A special case of a conjecture of Silverman (see p. 556 of 
[41]) then claims that for almost all specializations, the curve xy(x + y) = N 
(and hence also X 3 + y3 = N) has rank at most 1. This contrasts with the 
experimental data found by Zagier and Kramarz [47]. 

The next thing we want is a polynomial m (t) such that the curve C given by 
S3 = m(t) admits many morphisms to E with the property that the pullbacks 
of the standard invariant differential on E are all in the same eigenspace for 
the action of the automorphism of order 3. One way to try to find such m( t) is 
to look for cases where the zeroes of m(t) in pi admit a lot of symmetry with 
respect to the action of PGL2(Q). This will give automorphisms on the curve C 
and one can hope to find elliptic quotients to which the standard automorphism 
of degree 3 on C descends, which will force such a quotient to have j-invariant 
o. 

Such polynomials of degree 5 were studied by Igusa [21] who classified the 
genus 2 curves with additional automorphisms. One of them, suitably normal-
ized for our purposes, is m(t) where 

m(t) = 2t(t - 1)(t + 1)(2t + 1)(t + 2). 

Indeed our choice is motivated by some related work of Stewart [43] where the 
surface xy(x + y) = m(t) is employed to prove that there are arbitrarily large 
integers h for which the Thue equation xy( z + y) = h has at least 18 solutions 
in coprime integers x and y. 
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We now take C to be the curve given by S3 = m(t). This gives a model of a 
genus 4 curve; a basis of the holomorphic differentials which will be convenient 
for us is given by 

On C we define the involution 

( 1 - t 3S) 
O".(t,s)= 1+2t' (1+2t)2 . 

One checks that the space of 0"; -invariant holomorphic differentials is generated 
by co3• Hence the quotient of C by 0". is elliptic; in fact invariant functions 
are 

x = t(t - 1) and y = -(t + 2)(t + 1) 
s s 

which clearly satisfy the relation xy(x + y) = 1. 
A second involution is given by 

0"2(t, s) = (t+21' 3s 2)' 
t- (t-I) 

Here co 4 generates the space of invaliant differentials. Invariant functions are 
given by 

u= (2t+l)(t+l) and 
s 

which also satisfy uv (u + v) = 1 . 
One can find another involution defined as 

t - 1 v=--s 

( t+2 -3S) 
0"3(t, s) = - 21 + 1 ' (2t + 1)2 . 

This one has co2 as invariant differential and the functions 

w = 2 2t + 1 and z = 2 P - 1 
s s 

are invariant. They satisfy wz(w + z) = 4. This equation defines an elliptic 
curve which has bad reduction at 2 while the curve given by xy(x + y) = 1 has 
good reduction at 2. Hence over Q the two elliptic curves are not isogenous. 

Since this exhausts the biggest eigenspace for the action of the automorphism 
of degree 3, recall the proof of Corollary 1, we conclude that the Q(t)-rank of 
the elliptic curve given by xy(x + y) = m(t) is 2. From a geometric point of 
view it might be interesting to note the following result. 

Proposition 2. The smooth minimal surface associated with the equation 

xy(x + y) = 2t(t - l)(t + 1)(2t + l)(t + 2) 
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is an elliptic K3-surface with Picard numlJer 20. As an elliptic sur/ace over the 
I-line it has rank 6. 
Proof. The fact that this defines a K3-surface is easily verified using the criterion 
given in [1], pp. 276-277. Using Tate's algorithm [44], pp. 46-52, one finds that 
this surface has six bad fibers. Each of these is of type IV which means that 
they look like three rational curves meeting transversally in one point. 

The Shioda-Tate formula for the Picard number p then says that 

p=r+2+6·2=r+14, 
with r the CCt)-rank of the elliptic curve defined by our equation. The dis-
cussion preceding this proposition implies that the IQ( ¢'4, t)-rank is at least 3. 
Hence using the action of the endomorphism ring on three such independent 
points one obtains a Z-module of rank 6. It follows that p ~ 6 + 14 = 20. Since 
for all K3-surfaces the inequality P:S 20 holds, this proves the proposition. 

We will now discuss rank 3 twists of X 3 + y3 = 1. Write 

m(t) = 2A(t)B(t)C(t)D(t)F(t)G(t) 

with A(t) = t, B(t) = 1, C(t) = t - 1, D(t) = t + 1, F(t) = t + 2 and 
G(t) = 2t + 1. Our aim is to find for many t's a point (a, b) on xy(x + y) = 
2ABCDFG which is independent from the two points we already have. 

Our basic idea is to try (a, b) such that a + b = itAB. This choice of 
two of the six forms A, ... , G may seem arbitrary, but in fact it is not. The 
points we had before also correspond to such pairs. Using isomorphisms of 
C one can change from one pair to another; on E this corresponds to such 
things as translation by a point of order 3 or the [-1 ]-map. In terms of such 
transformations, the pair (A, B) is the only one we have not yet discussed. 

If a solution (a, b) satisfies a + b = itAB , then obviously a, b are roots 
of the equation X2 - itABX + 2CDFG/it = O. Hence the discriminant of this 
expression, or equivalently 

12 2 16 4 40 3 40 16 
/I, t - Tt - Tt + Tt + T' 

has to be a square. This is described by a family of elliptic curves over the 
it-line; for example sections are given by t = ± 1 . 

Originally we looked for fibers in this family which have infinitely many IQ-
rational points. Then base changing the family given by xy(x + y) = m(t) 
over the t-line to such an elliptic curve yields a family with three independent 
sections; the third one given by the point (a, b). Specializing to rational points 
on that elliptic curve then yields, in general, twists xy(x + y) = m with rank at 
least 3. The main disadvantage of this method is that one obtains at best very 
weak density results on the number of twists obtained in this way. The point 
is that the number of rational points on an elliptic curve which have bounded 
height is much smaller than the number of such points on a rational curve. 

One resolves this problem by taking instead of a base change to a fiber, a 
base change to a section of the family 

y2 = it2t2 _ ~/ _ 40 (3 + 40 (+ ~ 
it it it it' 
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Taking the point (t = I, Y = A) as zero element for the group law, we computed 
that twice the point (t = -1 , Y = A) , which itself only leads to a degenerate 
'twist' X 3 + y3 = 0, equals the point 

( t=I-A3 y=A(A6-17») 
I+A3 ' (I+A 3)2' 

The base change of the family xy(x + y) = m(t) to this section can be seen as 
a family over the A-line, written as 

( 1 ,1,3) xy(x+y) = m --3 . 
1+,1, 

As an elliptic curve over Q(A) this is isomorphic to 

xy(x + y) = (1 - A3)( I + A3)(3 + ,1,3)(3 - A\ 

On this model the point (a, b) which we have constructed can be written as 

To check that the three points we now have are indeed independent one studies 
the corresponding differentials. Our points yield morphisms from the curve 
given by s3 = (A6 - 1)(A6 - 9) to the elliptic curve given by xy(x + y) = I. An 
invariant differential on this elliptic curve can be written as X(2~:X) • The third 
point we constructed corresponds to the morphism 

( 4 A6 - 9) (A, s) f-t X = s' y = -zs . 
From this description it is clear that the pull back of any differential on 

E is in the + I-eigenspace of the action on differentials of the automorphism 
given by (A, s) H ('6A, s). The other two differentials are pullbacks under the 
morphism given by 

, ( 1 - A3 -lAs' ) (A, s ) f-t t = -. --3' S = 3 2 
I+A (1+,1,) 

to the curve given by S3 = 2t(t - l)(t + 1)(1 + 2)(21 + 1). It follows easily that 
they are not in the + I-eigenspace of the automorphism mentioned. 

Thus the elliptic curve defined over the function field Q(A) by the equation 

xy(x + y) = (A6 - I)(A6 - 9) 

has Q(A)-rank at least 3. We remark that we are able to prove that the Q(A)-rank 
is 3 and that the C(A)-rank is 14; we do not give the details here. 

We shall now apply the above results to estimate the number of cubic twists 
of the elliptic curve given by x 3 + i = 1 which have rank at least 2 or rank at 
least 3. 
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Theorem 7. There exist positive numbers C54 , C55 , and C56 such that if T is 
a real number larger than C54 , then the number of cube-free integers d with 
Idl ::; T for which the curve given by 

X3 + i = d 
1 

has rank at least 2 is at least C55 T'J , and for which it has rank at least 3 is at 
1 

least C56 T" . 
Proof. This result follows from Lemma 1, our discussion above and Theorem 
1. For the case of rank 2 we apply Theorem 1" to the binary form F(X, y) = 
2XY(X - Y)(X + Y)(2X + Y)(X + 2Y) whereas for the case of rank 3 we take 
F(X, Y) = (X6 _ y 6)(X6 _ 9y6 ) • 

10. QUARTIC TWISTS 

The only elliptic curves over Q for which quartic twists exist are those with 
j-invariant 1728. Such curves can be given by an equation i = X3 + ax . 

Let E /Q be the elliptic curve given by the equation i = x3 + x. To get 
quartic twists of E of rank 2 we take D(t) = _t4 - 1 and let ED/Q(t) be given 
by the equation i = X3 + D(t)x. Notice that PI = (_t2 , t) and P2 = (-1 , t2 ) 

are in ED(Q(t». Further on taking C to be the Fermat curve S4 = _t4 - 1 
and following the notation of Proposition 1 we find that "';, WE = ~ and 
"';, wE = -t~ . Thus the rank of ED(Q(t» is at least 2. 

Mestre [30] has shown how to find polynomials D for which the rank of 
ED(Q(t» is at least 4. He proceeds as follows. Let XI' x 2 ' X3 be in Q(t). Put 

4 2 X4 = -(XI +X2+X3) , p(x) = (X-X I)(X-X2 )(X-X3)(X-X4) = X +a2x +alx+ao 
and Pi = (Xi' Xi) for i = 1, 2, 3, 4. Plainly Pi is on the curve given by 
X4 + a2i + aly + ao = 0 for i = 1, 2, 3, 4. Further, if ao = _u4 with 
u in Q(t), then (u, 0) is also on the curve. Note that if X = -4a2x 2 and 

232 Y = 4a2x(2a2y + a l ), then Y = X + 4a2(4a2aO - al)X . 
Mestre [30] takes u = 1 and, appealing to a parametric solution due to Euler 

of ao = - 1 , he chooses 

( 2t2 - 1) x = t ') , 
I 2r + 1 

4t 
and x3 = 2 • 

2t - 1 

Mestre then proves that the curve he gets when he specializes to t = 1 has rank 
at least 4 and so ED (Q(t» has rank at least 4 where Do(t) = 4a2(4a2aO - a~). 

o 
U sing the above ideas we shall prove our next result. 

Theorem 8. There exist positive numbers C57 , C58 , C59 and C60 such that if T 
is a real number larger than C57 , then the number of fourth power free integers 
d with Idl::; T for which the curve given by 

i = X3 +dx 
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I I I 2 
has rank at least 2, 3 or 4 is at least CS8 T2 , C59 T4 or C60 Tf6 / (log T) re-
spectively. 
Proof. By the above discussion the rank of ED(Q(I» is at least 2 when D(t) = 
_t4 - 1. Applying Lemma 1 and TheoreJ;ll 1 the result for the case of rank 2 
follows. 

Define Do(t) as above and put DI(t) = (2t(212 - 1)(2t2 + 1)2)4Do (t). Then 

DI(I) = (2t2 + 3)(6(2 + 1)(4t4 + 12t2 + 1)(12t4 + 4(2 + 3) 

. (64t 12 + 32t lO + 304t8 + 176l + 76t4 + 2t2 + 1)(2t2 + 1)2(2t2 - 1{ 

Note that the rank of ED (Q(t» is at least 4 since it equals the rank of 
I 

ED (Q(t» which is at least 4. Put D2(t) = DI (t)/((2t2 + 1)(2t2 - 1». Since 
o 

the degree of DI is 32 and the discriminant of D2 is _2854312516834 we may 
apply Lemma 1 and Theorem 2 to deduce our result for the case of rank 4. 

If we choose XI = 1, x2 = 1 and X3 = t + 2 in Mestre's construction and 
put D(t) = 16((2 - 3)(312 + 8t + 7)(t2 + 1 - 1 )(t2 + 31 + 3) , then we deduce from 
Proposition 1 in the usual manner that the rank of ED(Q(t» is at least 3 where 
ED is given by i = X3 + D(t)x. Since the discriminant of D is 2763656 and 
the degree of D is 8 our result follows from Lemma 1 and Theorem 1. 

11. SEX TIC TWISTS 

The only elliptic curves over Q for which sextic twists exist are those with 
j-invariant O. Such curves can be given by an equation i = X3 + k . 

Let E /Q be the elliptic curve given by the equation i = x 3 + 1. We 
shall employ two different constructions to produce twists of E of large rank. 
The first construction produces twists of E of rank 3 and 4 while the second 
construction, due to Mestre [30], produces twists of rank 5 and 6. 

We shall now describe our construction of rank 3 and rank 4 twists. Let 
XI' x2 and X3 be in Q(t) and put F(X, Y) = (X -XI Y)(X -x2Y)(X -X3y) + 
y3 . Put P; = (Xi' 1) for i = 1 , 2, 3 and P~ = (1 , 0). Plainly P: ' P~ , P~ and 
P~ are points on the curve EF given by F(X, Y) = 1. We shall choose XI' x2 
and X3 so that the rank of the Q(t)-points of E F is at least 3. If, in addition, 
-xl x2X 3 + 1 is a cube in Q(t), say v 3 , then P; = (0, t) is another point on 
F(X, Y) = 1 and an appropriate choice of XI ' x2 and x3 will ensure that the 
rank of EF(Q(t» is at least 4. Let H(X, Y) be the quadratic covariant of F, 
let G(X, Y) be the cubic covariant of F and let Do be the discriminant of 
F. We have 

(23) 232 (4G) = (4H) -27.16.Do·F 

(see Chapter 24 of [32]), and so there is a morphism defined over Q(t) from 
EF to the curve ED given by i = x3 + D where D = -27· 16· Do' Thus we 
obtain a family of sextic twists of E. 

Our initial construction of families of rank 5 and rank 6 twists of E de-
pended on work of Craig [8], [9]. In [8] Craig proved that infinitely many 
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imaginary quadratic fields have a subgroup of the class group isomorphic to 
the direct product of three copies of the cyclic group of order 3. To do so he 
constructed a polynomial D of degree 24 (see §4 of [8]) and exhibited five dif-
ferent points in ED(Q(t». Using Proposition 1 one may check that the rank 
of ED(Q(t» is at least 5. Since the discriminant of D is _218433007186473 we 
may apply Theorem 2 to deduce that rank 5 twists of E occur with exponent 
/2 . In [9] Craig sharpened his earlier result by proving that there are infinitely 
many imaginary quadratic fields for which the 3-rank of the ideal class group 
is at least 4. Nakano [33] deduced from Craig's construction that there are in-
finitely many twists of E of rank 6. Using the polynomial D of §8 of [9] and 
proceeding in the usual manner one finds that rank 6 twists of E occur with 
exponent A. 

We are able to obtain larger exp.onents however, by employing the following 
construction of Mestre [30]. Let XI' ... ,xs be in Q(t). Put 

X6 = -(XI + ... + xs)' 
p(X) = (X - XI)'" (X - X6) 

643 2 
= X + a4X + a3X + a2X + a l X + ao ' 

2 g(X) = X + a4 /3 

and 
3 2 

,(X) = '3X +'2X +'IX +'0' 
2 3 where '3 = a3 , '2 = a2 - a4 /3, '1 = al and '0 = ao - (a4 /3) . Next put 

3 2 2 3 
F(X, Y)='3X +'2X Y+'I XY +'oY, 

let EF denote the curve F(X, Y) = -1 and put P; = (g(1;l' g(~) for i = 
1, ... , 6. We shall choose XI' ... ,xs so that Ep(Q(t» has rank at least 5. 
Further if '3 is a cube in Q(t), say v3 ; then P; = (-~, 0) is in EF(Q(t». 
Mestre takes 

and 

XI = -x2 = 126(35t - 19)(14t - 13)(t + 1), 

X3 = 63( -980t3 + 3549t2 - 3084t + 1135), 
x4 = 63(112713 - 3108t2 + 3525t - 988), 

Xs = -11387613 + 265629t2 - 259980t + 69103 

X6 = 10461513 - 293412t2 + 232197t - 78364. 

In this case '3 = (2XI/3)3 and by specializing to t = 1 he proves that the rank 
of EF(Q(t» is at least 6. We now use (23) as before to obtain sextic twists 
of E. 
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Theorem 9. There exist positive numbers C61 ' C62 , C63 , C64 and C65 such that 
if T is a real number larger than C61 • then the number of sixth power free 
integers d with Idl :5 T for which the curve given by 

2 3 Y =X +d 
I 1 I 2 

has rank at least 3, 4, 5 or 6 is at least C62 TJ , C63 P , C64 T9 / (log T) or 
C65 Ttr / (log T)2 respectively. 
Proof. We shall prove the result for rank 3 and 4 twists with the first construc-
tion we discussed above. Accordingly take XI = 1, x2 = t, X3 = 2t + 1. Then 
using (23) and Proposition 1 we find that the rank of ED(Q(t» is at least 3 
where ED is given by l = X3 + D(t) and 

D(t) = 243\-4t6 + 8t4 - 40t2 + 31). 
Our result now follows from Lemma 1 and Theorem 1 on noting that the 

.discriminant of D is 25633°567631. 
For rank 4 twists we take XI = (l...:..t2)/2, x2 = 2(t2+t+l) and x3 = t2-t+l. 

Then, using (23) and Proposition 1 we find that the rank of ED(Q(t)) is at least 
4 where ED is given by l = X3 + D(t) and 

D(t) = - 6075t l2 - 38070t ll - 81513t10 - 83106t9 - 67797t8 - 39528t7 

- 27270t6 - 58968t5 - 8918114 - 84834t3 - 52353t3 - 23814t + 9261. 
As before, our result follows from Lemma 1 and Theorem 1 on noting that 

the discriminant of D is 26437256718133313433733241313807861. 
For rank 5 twists we take XI = 1, x2 = 2, X3 = -3, x4 = 0, X5 = t and 

X6 = -t in Mestre's construction. Again by (23) and Proposition 1 we find that 
the rank of ED(Q(t» is at least 5 where ED is given by l = X3 + D(t) and 

D(t) = -;~4 (t18 + 2973t l2 - 369249t6 + 11764900). 

Our result now follows from Lemma 1 and Theorem 2 on noting that the 
discriminant of D is _223233°5287481118. 

Finally with the choice of XI' ••• ,x6 made by Mestre above and the trans-
formation (23) we obtain D(t) for which the rank of ED(Q(t» is at least 6. 
The degree of D is 54 and the discriminant 

227563883851872886132417619182333116476 ... 

is non-zero. Our result follows from Lemma 1 and Theorem 2. 

12. PARITY 

In this section we briefly recall a conjecture on the parity of the rank of the 
Mordell-Weil group of an elliptic curve. We shall restrict our attention to the 
case of twists of a given curve. 

Let E /Q be an elliptic curve with conductor N. Suppose that E is given 
by the equation l = f(x). Let d be a square-free non-zero integer and Ed 
be given by the equation dl = f(x). Let red) denote the rank of Ed(Q). 
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Parity conjecture for quadratic twists. Suppose that d and 2N are coprime. 
Then 

(_I)r(d)-r(l) = Xd( -N), 

where Xd is the quadratic Dirichlet character belonging to the field Q(.fd) . 

We refer to §2 of [5] for a discussion of this conjecture; see [22], [23] for 
some recent work on this problem. We also have corresponding conjectures 
for cubic, quartic and sextic twists. Birch and Stephens [2] worked out explicit 
versions of these conjectures in the cubic and quartic cases. Recently Liverance 
[251 has done this for the sextic case. 

Parity conjecture for cubic twists. Let d be a cube free integer and let Ed be 
the elliptiC curve given by x 3 + l = d. Let r(d) denote the rank of Ed(Q). We 
have 

where 

and 

( ) r(d) II -1 =-w3 • wp ' 

{ -I 
w3 = 1 

{ -I 
W = 

p 1 

pi3 

if d : ±I, ±3 (mod 9), 
otherwise, 

if pld and p == 2 (mod 3), 
otherwise. 

Parity conjecture for quartic twists. Let d be a fourth power free integer and 
suppose d ~ 0 (mod 4). Let Ed be the curve given by i = x 3 + dx and let 
r(d) denote the rank of Ed(Q). Then 

r(d) d IT (-I) =jdf.w2 • wP ' 
Pi2 

where 
W = {-I tfd: 1, 3,11,13 (mod 16), 

2 1 otherwise, 
and 

W = {-I if p211d and p: 3 (mod 4), 
p 1 otherwise. 

Note that the condition d ~ 0 (mod 4) above is not significant since r(d) = 
r( -4d). This follows from the fact that the curves Ed and E-4d are 2-
isogenous over Q. 

Parity conjecture for sextic twists. Let d be a sixth power free integer with d 
factoring as d = 2u3v d6 where (d6• 6) = 1. Let Ed be the curve given by 
l = x 3 + d and let red) denote the rank of Ed(Q). Then 

( _I)r(d) = -w w II w 2 3 p' 
#2,3 
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{ -1 if 2 t u or 21u, d2 == 1 (mod 4), u::j:. 4, 
w2 = +1 if2Iu,d2==-1 (mod 4) oru=4,d2 == 1 (mod 4), 

{ 
-1 if v == -1 (mod 3) or 31v, d3 == ±2 (mod 9), 

W3 = + 1 if v == + 1 (mod 3) or 31v , d 3 == ±4 (mod 9) , 

(_I)V(~) if 3Iv ,d3==±1 (mod 9), . 
W = {-I if pld , p == 2 (mod 3), 

p + 1 otherwise, . 
and where dn is the largest divisor of d prime to n (with the same sign as d), 
so that d2 = 3v d6 and d3 = 2u d6 . 

In many instances it is possible to employ the above conjectures to conclude 
that, for reasons of parity, the rank of a twist of a given elliptic curve is larger 
by one than our constructions indicate. This is the approach taken by Gouvea 
and Mazur [IS]. Let E/Q be given by the equation i = x 3 + Ax + B. They 
observe that if D(t) = t3 +At+B, then certainly the point (t, 1) is in ED(Q(t)) 
where ED is given by D(t)i = x 3 + Ax + B. Let C be the conductor of E 
and observe that we may assume that A and B are integers divisible by M 
where M = 12· C by changing the model for E. By the parity conjecture for 
quadratic twists and the law of quadratic reciprocity there is a set U, consisting 
of half of the coprime residue classes modulo M, with the property that if d 
is positive and belongs to a member of U, then the rank of Ed is even. Put 
F(X, Y) = Y(X3 + AXy2 + By3 ) and Fl (X, Y) = F(X + jMY , Y) where j 
is the smallest positive integer for which Fl (X, 1) has non-positive roots. Since 
FJ (X, Y) == Y X 3 (mod M) there are integers ao and bo for which FJ (ao' bo) 
belongs to a member of U. Thus, as noted by Gouvea and Mazur, whenever 
d = Fl (a, b) is sufficiently large, with a == ao (mod M) and b == bo (mod M), 
the rank of Ed is at least 1 and so, by the parity conjecture, is even and at least 
2. In our proof of Theorem 1 we estimate Rk(x) by considering terms F(a, b) 
where a and b are positive integers. Since Fl (a, b) is positive when a and b 
are positive, we may appeal to Theorem 1 to obtain a slight refinement of their 
result; the exponent of ! - e in their lower bound may be replaced by !. 

Similarly we may recover the result of Mai on cubic twists of E where E /Q 
is given by the equation X3 + y 3 = 1 . Let D(t) = t3 + 1 and observe that (t, 1) 
is a point in ED(Q(t)) where ED is given by X3 + y 3 = D(t) . On recalling the 
discussion at the start of §9 and applying Proposition 1 we see that the rank of 
ED(Q(t)) is at least 1. Put F(X, Y) = X3 + y3 and note that if X == 1 (mod 9) 
and Y == 0 (mod 9) , then X 3 + y 3 == 1 (mod 9). If d is a square-free positive 
integer with d == 1 (mod 9), then the number of primes congruent to 2 modulo 
3 which divide d is even. Thus, by the parity conjecture for cubic twists, the 
rank of X 3 + y3 = d is even. 

Observe that F (a, b) is positive when a and b are positive. Thus, by 
Theorem 1, there are positive numbers C66 and C67 such that the number of 
square-free positive integers t with t ::; x for which there are integers a and 
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b with a == 1 (mod 9), b == 0 (mod 9) ~nd a3 + b3 = t is at least C66X 2/ 3 

for x at least C67 • Therefore, by Lemma 1 and the parity conjecture for cubic 
twists, there are positive numbers C68 and C69 such that the number of positive 
integers d with d :::; x for which the rank of X 3 + y3 = d is even and at least 
2 is at least C6SX 2/ 3 for x greater than C69 •. 

As a final application let F(X, Y) = (X6 - y6)(X6 _ 9y6) and observe that if 
a and b are positive integers with a < b , then F (a, b) is positive. It follows, 
as in the proof of Lemma 2, that the number of pairs of integers (a, b) with 
1 :::; a :::; x, 1 :::; b :::; x, a < b, a == 1 (mod 9) and b == 0 (mod 9) for which 
F(a, b) is square-free is !C13x 2 + O(x2 /(logx)*); the estimates for the error 
terms in the proof are unchanged. Similarly, on modifying the proof of Theorem 
1 by replacing U by the set of pairs of integers (a, b) in U with a < band 
using the above observation we deduce that there are positive numbers C70 
and C71 such that if x exceeds C70 , then the number of square-free positive 
integers t with t:::; x and t == 1 (mod 9) for which there exist integers a and 
b "with F(a, b) = t is at least c71xt. Thus by Lemma 1; Proposition 3 and 
the parity conjecture for cubic twists there exist positive numbers C72 and C73 
such that the number of positive integers d with d:::; x for which the rank of 
X 3 + y3 = d is even and at least 4 is at least C72x! for x greater than C73 • 
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