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 CONGRUENCES, TREES, AND p-ADIC INTEGERS

 WOLFGANG M. SCHMIDT AND C. L. STEWART

 ABSTRACT. Let f be a polynomial in one variable with integer coefficients,

 and p a prime. A solution of the congruence f(x) 0(modp) may branch out

 into several solutions modulo p2, or it may be extended to just one solution,
 or it may not extend to any solution. Again, a solution modulo p2 may or
 may not be extendable to solutions modulo p3, etc. In this way one obtains

 the "solution tree" T = T(f) of congruences modulo pA for A = 1, 2 .... We
 will deal with the following questions: What is the structure of such solution

 trees? How many "isomorphism classes" are there of trees T(f) when f ranges

 through polynomials of bounded degree and height? We will also give bounds

 for the number of solutions of congruences f(x) 0(mod pA) in terms of p, A
 and the degree of f.

 INTRODUCTION

 The tree U = U(p) of residue classes modulo powers of a given prime p is defined
 as follows. Consider the diagram

 {O} = Z/pOZ l Z/pJZ 2 Z/p2 ...
 where the I?A are the natural homomorphisms. The vertices of U are the elements

 of Z/pA7Z for A = 0, 1,..., and the directed edges are u -* v where u E Z/P>\,
 v E Z/p>AlZ and 'IA(u) = v for some A > 0. Thus U is a rooted tree with root
 {0}. Exactly one directed edge emanates from each vertex of U, except for the
 vertex {0}, from which no edge emanates. On the other hand, every vertex is the
 end point of precisely p directed edges. The notation u > v for vertices will mean
 that there is a sequence of vertices and edges u -* u(1) + . u() = v. Thus v
 is obtained from u by a finite number of applications of homomorphisms 'IA. We
 will write u _ v if u > v or u = v. The level A(u) of a vertex u is A if u E Z/p\Z.
 A subtree, or simply a tree, is defined as a nonempty subset T of the vertices of U
 such that when u E T and u > v, then v E T. Thus T together with the directed
 edges u -* v where u, v E T is again a tree with root {0}. But we will identify
 subtrees with their set of vertices. An example of a tree is the tree Lv consisting
 of all vertices u E U of level < v.

 Given x E Z (or E 7p where 7p is the ring of p-adic integers), we will write
 xx for its residue class modulo pA, i.e., its image under the canonical isomorphism
 Z- 7Z/p,7Z (or 7p -* Zp/pA7Zp). Every vertex of U is of the type xx with x E Z,
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 9 .

 s T /

 that ~ xI = yI impie x.=Y ehv

 4~~~~~~~~~~ /

 I~~~~~~~~~
 4~~~~~~~~~~ /

 (xy))\ = 0,\ if and only if there exist integers IL1 and v with IL1 + v _ A

 (1) ~~for which x, = O and y, = ?.

 Now let f E Z[X] or E Zp[X]. We define T(f) to consist of vertices x>, where
 x E Z, A _ O, such that (f (x)),\ = 0,\, i.e., f (x) -=O (modp,\). When xx\ E T(f)
 and ti < A, then x. E T(f), so that T(f) is a tree, the solution tree of f.

 Basic to our investigation will be a notion of products of trees. Given trees
 S, T C U, we define ST to consist of vertices u for which there are s E S, t E T
 with s _ u2, t < u and A(u) < A(s) + A(t). See Figure 1, where the underlying prime
 is p = 39

 Put differently, xx\ e ST if there are ,u, v with x,, E S, xv e T and M < A, v < A,
 A < tt + v. Clearly ST is again a tree, and ST contains S U T. The conditions
 ,u< A, v < A are not necessary, i.e., x,\ E ST if there are ,u, v with x,, E SI xv E T

 and A < ,ll + v. We now observe that

 (2) T(fg) = T(f)T(g)

 for any polynomials f A, ge: for xi E T(fg) precisely if (fn(x)g(x)) = 0o,, which by (1)
 is the same as (f (x)), = 0i,, (g(x))t = iv for I-an v with ,u + v > A, i.e., XA E T(f),
 XV E T(g) for ft, v having xt + v > A, and this is the same as x. E T(f)T(g).

 In part I of thes e T(f) sthatT e set aT of trees T C U as a structure with
 the binary operations of product and intersection. In part II we will study solution
 trees of polynomials using this structure. Among our results will be the following.

 A stalk is defined as a tree K having at most one vertex at each level. Thus a
 stalk is either fin ite, of the type a re u() ,w - u(,x T or infinite, of the type
 A ? u(f ) ? .v . Clearly a finite stalk may be written as { x1 Tv Th condoxv
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 CONGRUENCES, TREES, AND p-ADIC INTEGERS 607

 with x E Z, and an infinite stalk as {O} - xi - with x E Zp. Note that there
 is a 1-1 correspondence between infinite stalks and p-adic integers. In fact p-adic

 integers could be defined as infinite stalks.

 Theorem A. Let P consist of U and of products of finitely many stalks, i.e., trees

 of the form K1 ... Km with stalks K1, . .. , Km (with the empty product interpreted
 to be the tree Lo = {O}). Then P is a substructure of T, i.e., it is closed under
 intersections.

 Note that P is trivially closed under products. Theorem A will be proved in the
 context of rather more general trees than the trees U(p).

 We will show that every solution tree T(f) lies in P. It is U when f = 0, and

 is a finite product of stalks when f $4 0. Given an ideal I in Zp[X], define T(I) as
 the intersection of the trees T(f) with f E I.

 Theorem B. The set of trees T(I) where I runs through the ideals of Zp[X] is
 identical with P.

 Two trees T, T' will be called isomorphic if there is a bijective map TI: T -* T'

 such that t, < t2 on T precisely when J(t1) < J(t2) on T'. Clearly such a map I
 (an "isomorphism") will have A(J(t)) = A(t) for t E T.

 Now let f E 7p[X] be a non-constant polynomial with discriminant D = D(f).
 Define 6(f) as the order of D with respect to p, i.e., the largest integer 6 with pb I D
 when D $4 0, and 6 = ox when D = 0.

 Theorem C. Given d ? 2 and 6 > 1, the number of isomorphism classes of trees
 T(f) where f runs through the polynomials in Zp[X] of degree d and with 6(f) < 6
 is

 (3) < ci (d)6d,

 where c1 (d) is a positive number which depends only on d. Except for the determi-
 nation of c1 (d) this bound is best possible.

 A variation is

 Theorem C'. Given d ? 1 and H > 1, the number of isomorphism classes of
 trees T(f) where f runs through the polynomials in Z[X] of degree < d and with
 coefficients of modulus < H is

 (4) < C2(d)((logH/logp)d + 1),

 where again c2(d) is positive and depends on d. Except for the determination of
 C2 (d) this bound is best possible.

 Lastly, we mention the following.

 Theorem D. Let A, d be positive integers, and write A/d as a regular continued
 fraction:

 (5)- A/d = co +

This content downloaded from 129.97.93.153 on Mon, 13 Nov 2023 14:25:59 +00:00
All use subject to https://about.jstor.org/terms



 608 WOLFGANG M. SCHMIDT AND C. L. STEWART

 with n odd. Suppose p > d, and f E Zp[X] is a primitive (in the sense that not all
 coefficients are divisible by p) polynomial of degree d. Then the number of solutions

 of the congruence

 (6) f (x) 0 (modpA)
 does not exceed

 (7) Cip ? + C3 pACoc21 + ... + CnpAcc2cn-l

 This bound is best possible for every A, d and prime p ? d.

 We will deduce the

 Corollary. Define d1 by A = dco + dl, so that A/d = c0 + (di/d). Note that
 1 < d, < d. Then the number of solutions of the congruence (6) is at most

 (d/dj)pA-co-l

 In particular, the number is < dpA-co-l. This is the bound given by Stewart in

 [2, (44)], since (with [ ] denoting the integer part) his exponent is [A(d - 1)/d] =

 A-co + [-di/d] = A-co-1.
 The proof of Theorem D, being the most technical, is given in the last two

 sections of the paper. However, sections 1,3,4, 6 up to (6.2), 8 up to (8.4) (but
 excluding Theorem 8.1) should provide enough background for this proof.

 I. THE STRUCTURE OF TREES UNDER PRODUCTS AND INTERSECTIONS

 1. General Universal Trees and the Structure T. We will develop our theory

 within the framework of a more general rooted tree U. A rooted tree U consists of

 vertices, with a distinguished vertex {O}, its "root," together with directed edges
 u -* v where u,v are vertices, such that exactly one edge emanates from each
 vertex, except that no edge emanates from {O}, and such that starting from any

 vertex u $A {0}, there is a finite diagram u -* u(1) -* -* u(e) = {0} of vertices
 and directed edges. It is then clear that this diagram is unique; the level of u is
 A(u) = X, whereas the level of {O} is 0. We will write u E U if u is a vertex of U.
 The relations u > v and u > v are defined as before. We will call u, v compatible if

 u > v or v > u; otherwise they are incompatible. The valence of a vertex u is the
 number (possibly an infinite cardinality) of directed edges terminating at u. We

 say that U is of valence 0 (or ? 0) if every vertex is of valence X (or ? q). We will
 suppose throughout that U is of valence > 2, i.e., that for every u E U there are
 v 7& v' with v -* u, v' -* u. From now on, U will be fixed and will be called the
 universal tree.

 The definition of subtrees T of U will be as in the Introduction. A vertex t of

 T will also be called an element of T and we will write t E T. Again Lv will be
 the tree of all vertices of U of level < vi. The definition of products of trees also
 will be as before. We are going to study the set T of all subtrees (briefly "trees")
 under the operations of product and intersection. (It is true that T is also closed
 under union, but union will play only an auxiliary role.) It is clear that both the
 product and the intersection satisfy the commutative and the associative law. In

 fact, a vertex u lies in a product T1 ... Tm precisely if there are ti, 1 < i < m, with
 ti E Ti, ti < u, such that A(u) < Zi24 A(ti). We have

 (1.1) TU = U, T n U = T,
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 CONGRUENCES, TREES, AND p-ADIC INTEGERS 609

 as well as

 (1.2) TL? = T, TnL? = Lo

 for every tree T, where Lo is the tree consisting just of {O}. Finally, the distributive
 law

 (1.3) T(Rn S) = TRnTS

 holds: clearly the left hand side is contained in the right hand side, and when u
 lies in the right hand side, there are t, t' E T, r E R, s E S, all of them < u, having
 A(u) < A(t) + A(r), A(u) < A(t') + A(s). But since both r,s are < u, they are
 compatible, say s < r, so that s E R n S. Now in view of A(u) < A(t') + A(s) we
 have u E T(R n S), so that u lies in the left hand side of (1.3).

 We will call a set with two binary operations and n a pseudolattice if these
 operations are commutative and associative, if the distributive law (1.3) holds, and
 if there are elements U, Lo with (1.1), (1.2). Thus T is a pseudolattice.

 The elements U, Lo of a pseudolattice are clearly unique. The best known exam-
 ple of a pseudolattice is the set J of ideals in a commutative ring R with identity,
 under the operations and +, and with (0), R playing the r6les of U, Lo.

 Given a tree T, let TA be the set of its vertices of level A. In particular, Uo =
 LO = {O} and UC/ = LA\Ll-' for A > 0. Given u E U1, let T(u) consist of all trees
 T E T such that T1 is empty or consists of u only. Thus T = Lo or T contains u
 but no other element of Ul. It is then clear that T(u) is a subpseudolattice of T
 (with the r6le of U played by the tree U(u) consisting of {0} and all eleinents > u).
 Further T is a direct product:

 (1.4) T= 17 T(u).
 UEU1

 We end this section with some more notation. When u -* v write u- = v, so
 that u- is the element directly below u. Again a stalk is a tree with at most one
 vertex at each level. A finite stalk is of the type K(u), consisting of all t with t < u.
 We define the level A(K(u)) to be A(u). When K = K(u) is finite of level A > 0,
 let K- be the stalk K(u-) of level A - 1. An infinite stalk consists of vertices u,
 (v E Z>?) with u,+1 - u,; for such a stalk K we set A(K) = 00.

 Given u E U and a tree T, let UT be the element of highest level in the stalk
 K(u) n T. Then u lies in a product of trees T1,... Tm precisely if

 m

 (1.5) A(u) < EA>(uTi=).

 Given u E U and a, where a is a nonnegative integer or +oo, write F(u, a) for
 the "fan" consisting of vertices t > u with A(u) < a. When a > A(u), we may
 consider F(u, a) to be a tree with root u, but it is not a subtree of U as defined
 above unless u = {0}. When a = A(u), then F(u, a) consists only of u, and when
 a < A(u), then F(u, a) is empty. When u, v are incompatible, fans F(u, a), F(v, /3)
 are disjoint.

 When T C U is a tree, we define a function aT on U as follows. If u E T, we let
 aT(u) be the largest number (or possibly x0) with F(u, aT(U)) C T. When u ? T,
 then aT(U) = A(UT). Thus u E T precisely when A(u) < aT(U). It is easily seen
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 610 WOLFGANG M. SCHMIDT AND C. L. STEWART

 that for trees S, T we have

 (1.6) as(u) + aT(U) < aST(U).

 The following will not be used in the sequel. In the case when U is the tree U(p)

 of the Introduction, set ,M(u) = p-A(u) for u E U. Then ,l(u) is the Haar measure
 of the set of elements x E 7p whose image modulo pA(u) lies in u. Given a tree
 T C U, set

 pu(T) = Z u(u).
 uET

 Since T is not a subset of 2p, ,(T) is not a Haar measure, and in fact many trees
 T will have ,u(T) = ox. It may be shown that

 (1.7) a(ST) = a(S) + 1(T)
 for any subtrees S, T.

 2. Lean Trees. A tree T will be called lean if aT(U) < o for every u E U. This
 means that for every u there is a vertex v of U with v > u, v ? T.

 Proposition 2.1. T is lean if and only if cancellation by T holds, i.e., if TR = TS

 implies R = S.

 Proof. Suppose that T is lean and TR = TS. By symmetry it will suffice to show

 that R C S. So let r E R; we will show that r E S.
 Assume at first that r ? T. Set t = rT. Pick u > r with A(u) = A(t) + A(r);

 this is possible since U is of positive valence. Then u E TR = TS. Therefore there

 exist t' < u s < u with t' E T, s E S and A(u) < A(t') + A(s). Now since u > t',
 u > r, the vertices t', r are compatible, and since r ? T, we have r > t'. By the
 maximal choice of t in K(r) n T, we have A(t') ? A(t). Combining our relations we

 obtain A(r) < A(s), and since u _ r, u _ s this gives r _ =; therefore r E S.
 Next, suppose that r E T. We clearly may suppose that r 7& {O}. Since T is lean,

 aT(r) < oo. There is then a t* > r having A(t*) = aT(r) + 1 and t* ? T. But t* -* t
 with A(t) = aT(r) and t E T. On the other hand, aTR(t) > A(t) + A(r) > A(t), so
 that there is a u E TR = TS with u ? t* and A(u) = A(t) + A(r). Since u E TS,
 we have elements t' E T, s E S with t' <u s < u and A(u) < A(t') + A(s). Now

 t ? t' (otherwise t' > t* with t* 0 T), which yields A(t') < A(t). Combining our
 relations we get A(r) < A(s), and therefore r < s in view of u _ s and u ? t > r.
 Thus r E S.

 Now suppose that T is not lean. Pick v E T with aT(V) = 00. Set S = K(v)
 and R = K(v) U F(v, oo). Then S C R are trees, and we will show that

 (2.1) TR = TS

 For suppose that u E TR. When u > v, then u E T C TS. When u g v, we
 note that u > t, u > r with certain t E T, r E R having A(u) < A(t) + A(r). But
 since u J v, we have r 2 v; therefore r E S and thus u E TS. We have shown
 that TR C TS, and since the reverse inclusion is obvious, (2.1) follows. Therefore
 cancellation by T does not hold. D

 Let L consist of U and all the lean trees.

 Proposition 2.2. L is a subpseudolattice of T, i.e., L is closed under products.

 Note that L is trivially closed under intersections.
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 CONGRUENCES, TREES, AND p-ADIC INTEGERS 611

 Proof. It suffices to verify that ST is lean when both S, T are lean. But if cancel-
 lation by S and T holds, then clearly cancellation by ST holds.

 Every stalk is lean, and therefore so is every finite product of stalks. D

 3. The Semigroup Generated by Stalks. Consider the abelian semigroup AZ0
 generated by nonzero stalks, i.e., by stalks =$ Lo. The elements of AZ0 are of the
 form

 (3.1) K= Z n(K) K,
 K

 where the sum is over nonzero stalks K and n(K) E Z>O, with n(K) = 0 for all
 but finitely many K. Elements of AZ0, called stalk sums, will also be written as

 (3.2) K = Ki E" .. Km,

 where K1, ... , Km are nonzero stalks and where the empty sum is the zero element

 0 of AZ0. This zero element will also be symbolized by Lo. Let AC be the union of AZ0
 and an element we will denote by U. Define U (3 K = U, U E3 U = U. Given a sum

 (3.2), define r(u) = TK(u) as the number of stalks Ki with u E Kj; in particular

 T({0}) = K_({0}) = m. Then

 (i) T(u) > 0 for u E U,
 (ii) ZuEUi T(u) = T(f0}),
 (iii) when ui -* u (i = 1, ... ., ) with distinct u1, ... , ue, then

 Z T(Ui) < T(U).
 i=l1

 The reason for (ii) is that K1,... ,Km, being different from Lo, each contain a
 vertex of level 1. The reason for (iii) is that no stalk can contain more than one of

 the vertices u1, ... , ue, and every stalk containing one of them also contains u.
 An integer valued function r on U with (i), (ii), (iii) will be called a stalk function.

 We will show that for such a function there is a unique K E AZ0 with r = TK. Set

 m = r({0}). When m = 0, then r = rO. When m > 0, we certainly can construct
 K1, ... , Km such that each u of level 1 is contained in precisely r(u) of the stalks
 K1,.. ., Km. In fact this determines K1,... Km up to level 1. Suppose we have
 constructed K1,... ,Km up to level A such that for each u of level < A, exactly
 r(u) of them contain u. Now when A(u) = A, then by (iii) there are only finitely
 many ui -* u with r(ui) > 0; say u1,... ,ue. Of the r(u) stalks containing u we
 continue r(ui) up to ui. This is possible by (iii), and T(u) - Ei1 T(u2) stalks will
 terminate at u. In this way K1, .. ., Km are constructed up to level A + 1. It is
 now apparent by induction on A that there is exactly one K with r = TK. Thus
 there is a 1-1 correspondence between stalk functions and elements K E AZ0. This
 correspondence can be extended to AZ = AZ0 U U by setting Tu(U) = +0 for each u.

 (But ru is not a stalk function as defined above.)
 Given a stalk function T, we set

 5(u)= E T(s).

 {o}<s_u

 Then

 (i) a({0}) = 0, and a(u') > a(u) when u' > u,
 (ii) C(u) > 0 for only finitely many u E Ul,
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 612 WOLFGANG M. SCHMIDT AND C. L. STEWART

 (iii) when ui -* u (i = 1,... ,I) with distinct ul... ,ue, and u -* u-, then

 (3.3) U(u-) + ZU(ui) < (t + 1)U(u).

 For (iii) is the same as

 Z(U(ui) - a(u)) < 5(u) - (U-)
 i=1

 which amounts to condition (iii) for r (restricted to vertices u > {O}). An integer
 valued function a on U with (i), (ii), (iii) will be called a sum function.

 When a is a sum function, define r by r(u) = a(u) - a(u-) when u $4 {O}, and
 by

 T({O})= E (u).
 U(=Ul

 Then r is easily seen to be a stalk function. There is a 1-1 correspondence between
 stalk functions and sum functions, therefore between elements K of AZ0 and sum
 functions. Given K, let UK be the corresponding sum function. The correspondence
 can be extended to IC = ACo U U by setting au(u) = +00 for u E U. It is clear that

 (3.4) T7K~K =TK + TK, UKETK = OK +041.
 ( )_1 ffl-2 -1 + -2 = -1 22

 In particular the set of sum functions is closed under addition.

 We define a binary operation A on sum functions by

 (a A 5')(u) = min(au(u), a'(u)).

 To see that a A a' is in fact a sum function we have to check (iii). Say without loss
 of generality a(u) < u'(u). Then writing a" = a A a' we have

 ee

 U"(u-) + E a"(u2) < U(u-) + E a(u%) < (t + 1)U(U) = (t + 1)U"(U).
 i=l i=l

 We consider the binary operations + and A on the sum functions, where we
 include au. Then the set of sum functions becomes a pseudolattice. For clearly +
 and A are commutative and associative, and for any sum function a,

 ca+au =au, aAau =a,

 af + go = a, af A ao = a_.

 It remains for us to check the distributive law

 a + (U' A a") = (a + ') A (a + a"),

 but this holds since

 a(u) + min(a'(u), a"(u)) = min(u(u) + a'(u), a(u) + a"(u)).

 Because of the 1-1 correspondence between AZ and sum functions, A induces a
 binary operation on AZ, also denoted by A. In view of (3.4), IC with the operations
 E), A becomes a pseudolattice. We have

 K 3 _U= U KAU=K
 KDO = K K AO= O.
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 CONGRUENCES, TREES, AND p-ADIC INTEGERS 613

 Example. Let K be an infinite stalk. Let r, s E K with A(r) = A, A(s) = 2A. Set

 K= K, H= 2K(r), F= K(s).

 Then it is easily seen that for every u E U, with UK as defined in section 1,

 (JK(u) = A(UK), UH(U) = min(2A(uK), 2A), CF(U) = min(A(uK), 2A),

 so that (UK? A aH)(u) = min(jK (u), uH_(u)) = aF(u), and therefore

 KAH=F.

 4. Proof of Theorem A. Given K as in (3.2), set

 (4.1) K*=Kl Km.

 Also set 0* = LO, _* -U.

 Lemma 4.1. u E K* precisely when A(u) < aK(u).

 Proof. Suppose K is given by (3.2). Then by (1.5), u E K* precisely when

 m m

 A(u)<EA(UKi)=E E 1 = 5 TK(S)=cTK(U).
 i=l i=1 sEKi {O}<s?u

 D

 Lemma 4.2. For H, K in IC,

 (4.2) (H K K) *H*K*

 (4.3) (H A K) *=H* n K*.

 Proof. We have u E H*K* precisely if there exist h, k < u with h E H*, k E _*
 and A(u) < A(h) + A(k). But then by the preceding lemma

 A(h) < JH(h), A(k) < UK(k)

 so that

 (4.4) A(u) ?H (U) + UK (u) .

 Conversely, suppose (4.4) holds, and we have H = H1 E . He and (3.2). Then

 m

 A(u) < 5H(U) + JK(U) = A A(UHi) + A(UKi)
 i=l i=l

 and u E H*K* so that u E H*K* precisely when A(u) < JH(u) + JK(u) =
 jHffK(u), and (4.2) follows. This relation is obvious when H or K equals U.

 Next, u E (H A K)* precisely when A(u) < min(ajH(u), ajK(u)), and this holds
 precisely when u E H* n K*. D

 Recall that P C T as defined in the Introduction consisted of U and of products
 of stalks. The map * from K into T is a map onto P. In view of Lemma 4.2 we
 have

 Theorem 4.3. The map * is a pseudolattice homomorphism from K onto P.

 Corollary. P is a subpseudolattice of T.
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 614 WOLFGANG M. SCHMIDT AND C. L. STEWART

 Recall that the operations on T were product and intersection. In particular,

 P is closed under intersection. Thus we have proved Theorem A in the context of
 universal trees more general than the trees U(p) of the Introduction.

 Let P' C T consist of all trees of the type LVT with n > 0 and T E P. Thus P'
 consists of U and products L'K1 ... Km where K1, . ,Km are stalks. When U1 is
 finite, i.e., when U contains only finitely many elements of level 1, then L = L1 E P
 and P' = P. But when Ui is infinite, P' properly contains P.

 Theorem 4.4. P' is a subpseudolattice of T, i.e., it is closed under intersection.

 Proof. We have to show that (LeS) n (LIT) lies in P' when S, T lie in P. Say

 i _ n; then by the distributive law the above intersection is Le(S n LqT) with
 q = n - > 0. We will show that s n LqT lies in P. According to (1.4) we may
 write S as a product of factors S(u) E T(u) (u E U1), and since S is a finite product
 of stalks, S(u) = {0} for u outside a finite set M C U1. Similarly T is a product
 of factors T(u) E T(u) (u E U1), and L = L' may be considered a product (an
 infinite product when U1 is infinite) HuEU,L(u), where L(u) is the unique stalk of
 level 1 in T(u). Then

 s n LqT = (s(u) n L(u)qT(u)).
 uEM

 Each of the factors in the product lies in P by the Corollary to Theorem 4.3, and
 therefore also the product. D

 Now L as well as stalks are lean, so that

 P C P' C L C T.

 An element

 (4.5) K = LK E3 nK-

 of AZ0, where K is a stalk of finite level A > 0 and where i ? 1, i + n > 2, will be
 called a couple. When A > 1, K is a sum of i + n nonzero stalks, whereas for A = 1,

 K = ?K E nK- = ?K has i summands. In particular when i = 1, K = K will be
 called a degenerate couple; other couples are nondegenerate.

 Say K = K(t), so that K consists of t = t\ -t>_+ t - t -* to = {0}. We
 have

 0 when u t,

 TK(U) = when u =t,

 i#+n when u<t,

 and therefore

 f( + n)A(uK) when A(UK) < A(t),

 -(u) - (i + n)(A- 1) + i when A(UK) = A(t).

 K* is the union of the fans

 F(t>, ( + n)v) with 0 < v < A

 and the fan
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 tl . .. tp

 t t

 FIGURE 2. (p = 5)

 5. Uniqueness of Factorization. In how far is the representation of a tree as a
 product of stalks unique? Put differently, in how far is the map * from IC onto 'P
 one-to-one? A partial answer is provided by the following

 Proposition 5.1. Suppose U i-s of valence ? p, where the integer p is not neces-
 sarily a prime. Suppose Kl,... , Km and H1,... , Hn are nonzero stalks with

 (5.1) K1 . Km =Hi .. Hn.

 Then unless m ? p, n > p or m > p, n ? p, we have m = n and Ki = H
 (i = 1, ... ,rn) after suitable reordering. Put differently, we have K = H with

 (5.2) K =Ki ED..EDKm, H =Hi ED...EDHn.

 In particular, products of fewer than p stalks have a unique factorization a-s a
 product of stalks. The bounds of the Proposition are best possible, as is seen from
 the following example. Let U be a tree of valence p (unique up to isomorphisms!).

 Let t E Ul, so that A(t) = 1, and let tj7..., tp be the elements of level 2 having
 ti --* t (i = 1, ... , p). Then

 (5.3) K(t1) ... K(tp) = KtPl
 See Figure 2, where the underlying prime is p = 5.

 For both sides of (5.3) consist of {O}1 and the vertices u ? t with A(u) ? p ? 1.
 Writing K = K(t1) ED ... ED K (tp), Hf (p?+ 1) K(t), we have JK (u) = JH (U) = 0
 when u 2tt, and

 U) () p? for u>=t, JH(U)=P?l foru?t.

 Proof of the Proposition. Let K, H be given by (5.2). In view of Lemma 4.2, the
 relation (5.1) says that

 (5.4) A (u) ? UK (U) precisely when A (u) ? JH (U).

 We have to show that unless m ? p, n > p or m > p, n ? p, we have identically

 ~K (U) = JH (U).

 If not, choose u of minimal level with JK(U) $, JH(U), say UK(U) <JUH(u). By
 (5.4) we have

 (5.5) JK(U) <oyH(U) < A(u)
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 or

 (5.6) A(u) ? cK(u) < cH(u).

 In the first case, u ? H1 U ... U H,, so that JH(u-) = o7H(U), similarly K(u-) =
 JK(u), contradicting the minimality of u. In the second case, suppose at first that
 at least p stalks Ki contain u. Then pA(u) < JK(u) < oH(U). On the other hand,
 cYK(u) < mA(u), aH(u) < nA(u), so that m > p, n > p. We may therefore suppose

 that fewer than p stalks Ki contain u. Then there is a t with t -- u which is
 constrained in no stalk Ki. Then every s ? t has

 5K_(S) = UKK(U) < CH(U).

 But JH(u) ?> :r(u) + 1 > A(u) + 1 = A(t) by (5.6). There is then an s > t

 with A(s) = oii(u); and this s has JH(S) > JH(u). Thus JK(s) < A(s) < UH(s),
 contradicting (5.4).

 Now suppose that U has infinite valence. Then the map * onto P is injec-
 tive, i.e., the presentation of a tree as a product of stalks (if possible at all) is

 unique. Also the presentation of elements of 7P' as LeK1 ... Km is unique. For
 if LeK1 ... Km = L9H1 ... Hn and if, say f ? g, we may cancel by 1/, so that
 K1 ... Km = Lg-H1 ... Hn. Here the left hand side has only finitely many elements
 of level 1, hence so does the right hand side. Thus f = g and K1 ... Km = H1 *Hn
 so that again m = n and Ki = Hi (i = 1, ... , n) after suitable ordering. C

 6. Poincare Series. Let T C U be a tree, and A > 0. We define T(A) to be the

 set of u E U such that aTT(U) > A, but aTT(V) > A for no v < u. Then it is clear
 that the elements of T(A) are mutually incompatible. Since aT(U-) = aT(U) when

 u ? T, it follows that T(A) C T. When t E T,, then because aYT(t) > A, there is
 a u < t lying in T(A). But then t E F(u,A); in fact t e F'(u,A) where F'(u,A)
 consists of the "top" of F(u, A), i.e., its elements of level A. Therefore

 (6.1) TA= U F'(u, A).
 uET(A)

 Since the elements of T(A) are incompatible, the union here is disjoint.
 Suppose U is of finite valence p. Then F'(u, A) has cardinality p'-/(u). Therefore

 the width of T at level A, defined as the cardinality IT I of T,, has

 (6.2) ITAI = S PA-A(U)
 uET(A)

 The Poincare' Series of T is the formal series
 00

 (6.3) X3T(Z) = E ITIIZ'>.
 A=O

 More generally, suppose T C U is a tree such that T(A) is finite for every A.
 Inspired by (6.2), we define polynomials

 (6.4) PTA(Z) = E Z'(-) (u A 0),
 uET(A)

 and we define a General Poincare Series
 00

 (6.5) q3T(Z, Z) = E PTA (z)ZA;
 A=O
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 S T

 w2 W3
 Wi

 U1 U2 U3 U1 , U

 FIGURE 3. (p = 3)

 this series lies in Z[z][[Z]]. In the case when U is of finite valence p we have

 qT(Z) = q3T(P, Z). The example of Figure 3 with p = 3 shows that it may happen
 that XT(Z) = Ts(Z) yet qJT(Z, Z) $ qS3(z, Z), so that the General Poincare Series
 encodes more information than the ordinary Poincare Series.

 Here 13s(Z) = 13T(Z) = 1 + 3Z + 3Z2. But S(1) = T(1) = {O}, S(2) = {U2},
 T(2) = {w1, W2, W3}, so that q3S(z, Z) = 1 + zZ + ZZ2, q3T(Z, Z) = 1 + zZ + 3Z2.
 Note that both S, T are products of stalks.

 Theorem 6.1. Let K be a stalk sum whose infinite stalks occur with multiplicities

 c1 > 0,... ,ce > 0, and let C be the set of distinct numbers among cl,... ,ce.
 Suppose

 (6.6) T = K*Lf

 where n > 0. Then the General Poincare' Series q3T(Z, Z) is rational, i.e., it lies in
 Q(z, Z), and its denominator divides

 fJ (1 - zc-lZc
 cEC

 Therefore when U is of valence p, the Poincare Series qJT (Z) is a rational function
 whose denominator divides

 fl (1 _pclZc).
 cEC

 Lemma 6.2. Suppose T = T. Te and S = T1 U U Te where Tl7... ,Te are
 trees. Then

 aT(U) = aT(US).

 When u 0 S, or when v 0 S for some v u, then
 e

 (6.7) aT(u) = A(UT%).

 i=l

 Proof. Suppose u ? S, so that u > v us with v ? S. We have us E T and

 aTT(US) > A=1A((us)Ti) = Z (=lA(uTj). On the other hand, when t > v we
 have t E T precisely when A(t) < Ee=1 A(tT%) = Z=1 A(uTv). Therefore aT(u) <
 a4T(uS), and since the reversed inequality is trivial, our first assertion follows. Also
 (6.7) follows in this case.
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 When u E S but v -* u with v ? S, apply our arguments to v. We have vs = u,
 therefore

 e e

 aT(U) = aT(VS) = Z(vTi) = ZA(uT).
 i=l i=l

 Lemma 6.3. Suppose K is a sum of m stalks and T is given by (6.6). Then for
 every u E U,

 atT(U) < (A(u) + l)m + n.

 Proof. Set S = K1 U... U Km U L' where K1,... , Km are the summands of K.

 Since U is of valence > 2, there is for every u E U a u(-) > u such that u(1) lies in
 at most m/2 of these stalks K1, . . . , K,. There is a u(2) - U(1) lying in at most
 m/4 of these stalks. Et cetera. Let v be least such that u(v) lies in none of these m

 stalks. When u itself lies in none of the stalks, set v = 0, u(?) - u. Pick w > u(')
 with A(w) > n. Then w 0 S, so that by (6.7),

 m

 CT (W) = A (WKi) + A (WLn-)
 i=l

 Now at most m/2 of the stalks Ki reach u(1), at most m/4 reach u(2), and so on.
 Therefore

 m

 S A(WKi) < mA(u) + (m/2) + (m/4) +?** = (A(u) + 1)m.
 i=l

 We obtain

 aYT(U) < aT(W) < (A(u) + 1)m + n.

 C

 Proof of Theorem 6.1. Suppose

 K = ciKj E *E eceKe ED diHi @ .*.*. * dqHffq

 where K1, ... ,Ki are distinct infinite stalks and H1, . . . , Hq are distinct finite
 stalks. The total number of stalks counting multiplicities is m = cl + *. + ct + d1 +
 ... *+ dq. Choose A1 so large that A1 > A(Hi) for 1 < i ? q and A1 > A(Ki n Kj)
 for1<i<j<f. Set

 A2 = (A1 + 1)m + n.

 Now when u E T(A) where A > A2, then A(u) > A1 by Lemma 6.3, and u is
 contained in exactly one of K1,... ,K5, but not in H1,... , Hq or L'.

 Let ui,,1 be the element of Ki of level ,u where ,t > A1. Then since there is a
 v - - ui, with v not in any of the Ki, the Hi, or L', there is a formula like (6.7) for

 aT(ui,/,), and similarly for ui,/,u+. Since ui,,+1 lies only on the summand Ki of K,
 and since this summand occurs with multiplicity ci, we have aOT(Ui,,+1)-oaT(ui,,)
 ci. Therefore

 aT(Ui,,) = ,Ci + ui (M > A1),
 where gi is a nonnegative integer. Given A > A2, we have aT(Ui,,) > A precisely
 when pci + gi > A, and the smallest p, with this property is p(i, A) =[(A - gi)/cil
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 where, for any real number x, [xl denotes the smallest integer greater than or equal
 to x. We may conclude that

 T(A) = {Uj,8(1,A),...ui,U/, (j\)

 By (6.4)

 (6.8) PTA(z) = E Z (') (AS> A2).
 i=l

 To finish the proof it will suffice to show that for each i, 1 < i < X, the series

 E zA,I(i,A)ZA
 A>>2

 is rational with denominator 1 - zci-lZci. We may as well do this with the sum

 over A > A2 replaced by the sum over A > gi. Writing A = gi + p + ciy with
 1< p < ci and v > 0, we have p(i, A) = v + 1, and our sum becomes

 Ci oo

 E E zgi+p+civ-v-lzgi+p+civ
 p=l v=O

 = zgiZgi+l(1 + zz + ... ? (ZZ)ci-l)( - Zci-lZci)-l.

 Given a natural number q written as q = Ei=o c%p with p> 1 and with digits
 ci in {0,1,... ,p-1}, set

 k

 digp(q) = 5ci
 i=O

 Proposition 6.4. When U is of finite valence p, K is a stalk sum with m sum-
 mands and T is the tree given by (6.6), then

 digp ITxI < m (A = 0,11...)

 Proof. We have T = SLn with S = K*. It is easily seen that alT(u) = as (u) + n.

 Therefore by Lemma 6.2, alT(U) = alT(U-) unless u E K1 U ... U Km. Therefore

 T(A) C K1 U ... U Km, so that JT(A)I < m. So the sum in (6.2) has at most m
 summands. The assertion now follows from the fact that if a number q = EZ=o cipi

 with ci ? 0, then digp(q) < Ek Ci. C

 For later use we will discuss an example. Suppose 0 < a1 < ... < am-i are
 given integers. Let Km be an infinite stalk and Ki for 1 < i < m an infinite
 stalk with A(Ki n Km) = ai. This is possible since U is of valence greater than
 1. Set K = K1 E ... ED Km and let T be the tree (6.6). When ui,, E Ki of level
 p > am, + n, then by Lemma 6.2,

 m

 OYT(Ui,/) = Z A((ui,/)Kj) + A((Ui,,1)Ln)
 j=1

 = a, + * * ai-i + (m -i)aj + p +n = p + bi

 with bi = a1 + . ?+ ai_1 + (m - i)aj + n (a term involving the non-existent am
 only appears for bm). We have b1 < ... < bm-, = bm. Since each Ki occurs
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 with multiplicity ci = 1, the quantity pu(i, A) of the proof of Theorem 6.1 has
 ,u(i, A) = A - bi, so that PA = PT,\ is given by

 m

 (6.9) PA(z) = Zb

 for large A.

 Now suppose that

 (6.10) 0<n<al < *.. < amn1.

 It is then easily seen that T(A) = {0} when A < n, and T(n + 1) = {ul}, where u1
 of level 1 is on K1 n n Km. We used the fact that U is of valence > 1. Therefore

 Pa = zA when A < n, but Pn?i (z) = Zn. Therefore the number n can be detected
 from the Poincare series 'PT(Z, Z), and then by (6.9), also bl, ... , bm_i, hence also
 al, . .. ,amnl can be detected. Put differently:

 For different values of n, a,,... ,aml with (6.10) we obtain different General
 Poincare' Series 13T(Z, Z). When U is of finite valence p > 1, then in fact we obtain
 different Poincare Series l3T (Z).

 7. Discriminants and Resultants. Let K = K1 , ffl Km be a stalk sum.
 Given such K, define its discriminant to be

 a(K)= E A(Ki nKj),
 i<i,j<m

 i$Aj

 and given another stalk sum H = H1 f ... * Hn, define their resultant to be

 m n

 p(K,_H) = EZ A(Ki nHj).
 i=1 j=1

 The discriminant is zero when K = 0 or m = 1, and the resultant is zero when

 K = 0 or H = 0. The discriminant is finite precisely when every infinite stalk
 appears in the stalk sum K at most once, and the resultant is finite precisely when
 K H have no infinite stalk as a common summand. Note that the discriminant
 (when finite) is always even. We have

 (7.1) 6(K + H) = 6(K) + 6(H) + 2p(K H),

 (7.2) p(K ED K',H ) = p(K, H) + p(K', H).

 In the Introduction we defined isomorphisms of trees. Now two stalk sums
 K = K1 ... ff Km and H = H1 E ... ED Hm will be called isomorphic if after

 suitable ordering of the summands there is a bijection I: Um=1 Ki -- Ui H=
 whose restriction to Ki is an isomorphism onto Hi (i = 1,... ,m). Clearly when
 the universal tree has some fixed valence and K, H are isomorphic, we have an
 isomorphism of trees: K* , H*.

 A stalk sum will be called a polynomial sum (the name being justified in section
 11) if it is a sum of infinite stalks and of couples as defined in section 4. When

 K, H are isomorphic and one is a polynomial sum, then so is the other.
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 Theorem 7.1. Given m > 1, 6 > 1, the number of isomorphism classes of poly-
 nomial sums with m nonzero summands and discriminant < 6 is

 ? c3(m)M-r1.

 Except for the determination of C3 (m) this bound is best possible.

 Proof. Let

 K= Hi E) .. (DHp EDJl (D .. ( Jq -1K ( .. (-K

 be a polynomial sum where Hi (1 < i < p) is an infinite stalk, Ji (1 < i < q) is a

 stalk of level 1 (i.e., a degenerate couple) and K, (1 < i < k) is a nondegenerate
 couple, say K. = fjK(aj) + niK(a7). Set

 Hp+i = Ji (1 < i < q), Hp+q+i = K(aj) (1 < i < k).

 The isomorphism class of K depends only on p, q, k, on ?%, ni (1 < i ? k) and on
 the isomorphism class of

 H = H1i . Hp E1 Hp+1 D . e Hp+q qe @ H+ lE. Hp+q+k.

 The isomorphism class of a single stalk H depends only on A(H). When H1,...,

 Hi-, are given, the isomorphism class of H1 ~ ... + Hi, ED Hi depends only on
 A(Hi) and on Hi n (H1 U ... U Hi-). This intersection is in fact a stalk of the
 type Hi n Hj. (1 < ji < i - 1) and is determined once we know ji and the level
 A(Hi n Hj3). Therefore the class of H depends only on ji (2 < i ? p + q + k), on

 (7.3) A(HifnHj) (2<i<p+q+k)

 and on A(Hp+q+i) = A(K(ai)) (1 < i < k). This last level will be written as

 (7.4) A(K(ai) n K(aj)) when 1 < i < k and ei > 2,

 and as 1 plus

 (7.5) A(K(ai) n K(a-)) when 1 ? i ? k and .i = 1.

 When K has m nonzero summands we have p + q + 2k < m, since each K. has
 at least 2 summands. The number of choices for p, q, k, the ?i, ni (1 ? i ? k) and
 ji (2 < i ? p + q + k) is under a bound c4 (m). The quantities (7.3) and (7.4) (when
 ii > 2) and (7.5) (when ii = 1, so that ni > 1) are summands of 6(K), hence
 are < 6. There are not more than 6 + 1 choices for each of them. The number of
 quantities (7.3), (7.4) and (7.5) is (p+q+k -1) +k < mr-1. Therefore the number
 of isomorphism classes is < c4(m)(8 ? 1)m1 ? c3(m)8m1.

 To show that our estimate is best possible, recall that the stalk sums K con-
 structed at the end of section 6 have distinct Poincare series and therefore are

 non-isomorphic for different values of the parameters 0 < a, < ... < am. We
 have

 6(K) = 2(ami, + 2am-2 + + (m - 1)aj).

 For large 6, the number of possibilities for a1,... , am-, with 6(K) < 6 is at least
 C5(m)6m1-. D

 We are going to finish this section with three lemmas which will be useful later
 on.
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 Lemma 7.2. Let K, H be stalk sums. Then

 6 (K) = E '7K (U) (7~K(U)-)

 p(K,H) = E TK(U)7H(U).

 Proof. When K = Ki E *.*.* E KmI

 (K) =E A(Ki n Kj)= 1
 i$j i$j u${O}

 uEKi nKj

 - S 5 1 = 5 TK (U) (rK (U)-l).
 u${O} i j U${O}

 uEKinlK,

 The second assertion is shown similarly. D

 Lemma 7.3. Let K = K1 e ... e Km E KCo. Then for every vertex u,

 JK(U) - A(u) 6(-K).
 2=

 Proof. Consider the vertices UK1, ... UKm (following the definition of UT in section

 1). Set Aj = A(UKj) (j = 1,... ,m) and suppose that A1 ? ? Am. We observe
 that

 m m

 S _TK(t) = E 1 =EAj,
 {O}<t?u j=1 {O}<t?U j=1

 tEK,

 S 'rK(t)=5E E 1= Emin(Ai,Aj),
 {O}<t?u i=1 j=1 {O}<t_u i=1 j=1

 tEKi nKj

 so that by Lemma 7.2,

 6(K) > 5 TK(t)(QK(t)-1)=Emin(Ai,Aj)
 {O}<t?u i$Aj

 =2(A2 + 2A3 + + (m-1)Am) _ 2(A2 + + Am)

 by our ordering of A2,... ,Am. On the other hand each A(UK.) ? A(U), and therefore

 m 1

 JK(U) - A(U) = 5A(UKj - A(U) ? A2 + + Am ? 6(K).
 i=l

 Lemma 7.4. Again let K = KE. EeKm. Let u,l... ,ue be mutually incompatible
 vertices of K1 U ... U Km. Then

 E(JfK(Ui) - A(Ui)) < 8(K).
 i=1
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 Proof. Since ui, Uj with i $& j are incompatible, they cannot lie in the same stalk.
 We may therefore suppose without loss of generality that ui E Ki (i = 1,... ,.
 We claim that

 qK(ui)-A(ui) < EA(Ki nKj) (i = 1 ...
 jii

 and this will clearly imply the lemma. But

 fK (Ui) = : E TK(t) = E E 1
 {O}<t<ui {O}<t<ui Kj3t
 m

 = E E 1?A(ui)+EA(KiinKj).
 j=1 {O}<t<ui is

 tEKj

 8. The Width. We called the cardinality ITA I the width of T at level A. The total
 width w(T) is the maximum of JTA/ over A = 0,1. These widths need not be
 finite.

 Theorem 8.1. Let U be a universal tree of finite valence p, where p is not nec-
 essarily a prime. Let K be a stalk sum with m > 1 summands and with finite
 discriminant 8. Then

 (8.1) w(K*) ? 2p612 + m - 2.

 This estimate is best possible for every p > m and every even 8.

 In the context of polynomials, the Theorem is due to Stewart [2, (38)]. In fact
 all the assertions of Stewart's Theorem 2 could be derived in the present context.

 Proof. Set T = K* and o = rK. Then by Lemma 4.1, u E T precisely if A(u) ?

 r(u). Similarly we have u E T precisely when A(u) < caT(U). In complete analogy
 to our procedure in section 6, we define TT(A) to be the set of u E U such that
 a(u) > A but a(v) > A for no v < u. In analogy to (6.1) we have

 (8.2) TA = U F'(u,A)
 uETT(A)

 where the union is disjoint. From this we obtain

 (8.3) TA I = E pA-A(u)
 uETT(A)

 which is analogous to (6.2). Thus if TT(A) = {ui,... ,ue} and wi A - A (ui)
 (i=,. ,f),we have

 e

 (8.4) ITAI = EpWi
 i=1

 We observe that in view of wi < v(ui) -A(ui),
 (i) wi < 6/2 by Lemma 7.3,
 (ii) =w < 6 by Lemma 7.4,

 (iii) f < m, since u1, . ., ue are incompatible elements of K1 U ... U Km.
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 F(ul, T (U1)) F(U2, a T (U2)) U3 ... Urn... 6 ? .

 \\10/ \\11/ b/~~~~~62 + vo

 U1 U2
 level

 K1 v K2 K3 - . . . Krn
 6/2

 FIGURE 4

 Since pW+l + p'l > pW + pf when w > 0, it is clear that if, say, w > ... ?w,
 the maximum of the sum in (8.4) is taken when f = m and wi = W2 = 6/2 and

 W3 = = we = 0, so that indeed ITAI < 2p8/2 + m -2 for each A, whence (8.1).
 That (8.1) is best possible is seen from the example illustrated in Figure 4.

 We have infinite stalks K1,... , Km with A(K1 n K2) = 6/2 and A(Ki n Kj) = 0
 when i = j and {i, j} I= {1, 2}. For A = 6 + v the set TT(A) (with T = Ki ... Km)
 is given by TT(A) = {ui,... ,Um}, where U1,u2 on K1, K2 have level 6/2 + v
 while U3,... , Um on K3,... , Km have level 6 + v. Therefore w, = w2 = 6/2 and
 W3 = .=. Wm =

 A further theorem on widths will be given in section 15.

 II. POLYNOMIAL TREES

 9. Polynomial Trees in a Discrete Valuation Ring. The diagram of the
 Introduction could have been written as

 {0} = Zp/pO7P AI ZP/pZP AI Z/p22 <

 More generally, let R be a discrete valuation ring with maximal ideal p, and consider

 {O} = R/p?R A- R/pR -2 R/p2R '

 where the (A are the natural homomorphisms. We obtain a tree U = U(R) whose
 vertices are the elements of R/pAR for A = 0,1,..., and the directed edges are
 u -* v where 4A(u) = v for some A. Given x E R, we write xA for the image of x
 under the natural homomorphism R -+ R/pAR.

 When f E R[X] we define T(f) to consist of elements xA where x E R, A ? 0

 and (f(x))A = 0A, i.e., f (x) 0 O (modp'). Then T(f) is a subtree of U(R). Again
 (2) holds, i.e.,

 (9.1) T(fg) = T(f)T(g)
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 for polynomials f, g. Now if I is an ideal in R[X], we let T(I) be the intersection
 of the trees T(f) with f E I. Then T(I) is again a tree. Clearly

 (9.2) T(I + J) = T(I) n T(J).

 On the other hand, if I = (fl) + + (fm) (a sum of principal ideals) and

 J = (gi) + * + (ge), so that IJ = Ei Ej (fi)(gj), then

 T(IJ) = nnT(fig;) = nnT(fi)T(gj)
 i j i j

 (nTT(fi))(nT(gj)) = T(I)T(J)
 i i

 by repeated application of the distributive law (1.3). Thus

 (9.3) T(IJ) = T(I)T(J).

 The ideals I of R[X] form a pseudolattice J under product (.) and sum (+).
 In view of (9.2), (9.3), the map I -* T(I) gives a homomorphism from J into
 the pseudolattice T of subtrees of U(R), with T having the binary operations of
 product (.) and intersection (n).

 We will be most interested in two types of discrete valuation rings f. The
 first is R = Zp, already discussed in the Introduction. The other is the power
 series ring R = k[[X]] where k is a field. In this case p = (X) and the residue
 class field is k. When k is of finite cardinality q (a prime power), then U(R) is of
 finite valence q. When k is infinite, U(R) is of infinite valence. Rf/pA consists of
 polynomials t(X) E k[X] modulo pA, hence is a vector space of dimension A over
 k. Its elements are uniquely represented by polynomials of degree < A. Given
 f (X) E R[X] = k[[X]] [X], say f (X) = f (X, X), the elements of T(f ) of level A are
 represented by polynomials t(X) of degree < A with

 f (X, t(X)) -0 (mod X>).

 10. A Generalized Theorem B. Let . be the absolute value on R given by

 I = 2-ord(x) where ord is the valuation on R. We will suppose from now on that
 R is complete under this absolute value, i.e., that every Cauchy sequence has a limit
 in R. The following theorem is a generalization of Theorem B.

 Theorem 10.1. The set of trees T(I) where I runs through the ideals of R[X] is
 identical with P', i.e., the set of trees consisting of U and of products L nK1 ... Km
 where n > 0 and K1, . . . , Km are stalks.

 In this section we will prove the easy half of this theorem, namely that U and
 products L nK1 ... Km are of the type T(I). To begin with, U = T(0) and Lo =
 T(1) where 0,1 stand for the constant polynomials equal to 0, 1. By (9.3) it will
 now suffice to show that L and any stalk K is of the type T(I). Now when ir
 is a generator of the ideal p, then the constant polynomial f (X) = 7r clearly has
 T(7r) = L. Hence L is indeed of the type T(I).

 By our hypothesis that R be complete there is a 1-1 correspondence between
 elements y of R and infinite stalks, such that y corresponds to the stalk K with

 vertices yA (A E 7>0). The polynomial f (X) = X -y has (f (x))A = xA -yA = 0 in
 Rf/p precisely when xA = yA, and therefore T(f) = K. Thus every infinite stalk
 is of the type T(I) with a principal ideal I. Every finite stalk K may be expressed
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 as K = K1 n K2 where K1, K2 are infinite stalks. (Here we used that U(R) is of
 valence ? 2.) So if K1 = T(f1), K2 =T(f2) and I = (fi) + (f2), we have

 K = KI n K2 =T(fi) n T(f2) = T(I)
 by (9.2).

 11. Proof of Theorem B. We will prove Theorem 10.1. It remains for us to show
 that every nonzero ideal I has T(I) of the type LnK1 ... Km. Since T(I + J) =
 T(I) n T(J) and since P' is closed under intersection by Theorem 4.4, it will suffice
 to show that T(f) is of the type LnK1 ... Km for every polynomial f $4 0 in R[X].
 Such a polynomial may be written as f = 7r'fo with n ? 0 and fo a primitive
 polynomial, i.e,. a polynomial whose coefficients are not all divisible by 7r. Since
 T(7r) = L, we may concentrate on primitive polynomials.

 Proposition 11.1. When f is a primitive polynomial, there is a polynomial sum
 K = Ki E3 .E Km such that

 (11.1) T(f) =K* = K .Km.

 When R has the property that there are irreducible polynomials of arbitrary degree in
 F[X] where F is the residue class field (e.g., when this field is finite, e.g., when R =
 Zp), then conversely for every polynomial sum K there is a primitive polynomial f
 with (11.1).

 The concept of a polynomial sum had been introduced in section 4; our present
 proposition justifies the terminology. A primitive polynomial may be written as a
 product of primitive polynomials which are irreducible over the quotient field F of
 R. Hence it will be enough to establish

 Proposition 11.2. When f is a primitive irreducible polynomial, then T(f) is Lo,
 or an infinite stalk, or K* where K is a couple.

 Conversely, there are primitive irreduccible polynomials f with T(f) = Lo or
 T(f) = K where K is a given infinite stalk. When R has the property enunciated in
 Proposition 11.1 and when K is a couple, there are primitive irreducible polynomials
 f with T(f) = K*.

 Proof. A primitive polynomial f of degree zero is a constant not divisible by 7r,
 and then T(f) - LO. When f is primitive and irreducible of degree d > 0, then f
 factors as c(X - - (X - (d) in its splitting field N. The absolute value I I on
 F can uniquely be extended to N, and then 16 = = Idl (see [1, Chapter XII,
 Proposition 2.5]).

 Assume at first that this common absolute value is > 1. Then since lxl < 1 for
 x E R, we have Ix -iI = IeiI and If(x)I = Icl 11 I.dl = Ic'l, where c' is the
 constant term of f. Since f is primitive, it may be deduced that ic'l = 1, so that

 (x) = 1 and (f(x))A\ $4 0\ for A > 0. Therefore T(f) = LO.
 Next suppose that the common absolute value is < 1. Let us first consider the

 case when f is of degree d = 1. We have f(X) = c(X - y) with y E R, Icl = 1.
 Then T(f) = T(X - y) is the infinite stalk K with vertices y\ where A E >Z0.
 Suppose, then, that d > 1. Again we write f (X) = c(X - 6) (X - id), where

 d lie in the splitting field N of f over F, with F the quotient field of R.
 We have Icl = 1 by primitivity. Let F' be the field F' = F(s) with ( = 4. Then
 [F': F] = d = ef, where e is the ramification index and f the degree of the residue
 class field extension.
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 Choose y E R with IY - (I minimal - this is possible by the completeness of R.
 We have

 (11.2) {x - j _ly - 4j
 for every x E R. Say

 (11.3) lY- = 2-h/e
 with h a nonnegative integer. Pick A E Z with

 (11.4) A- 1 < h/e < Al

 and let K be the stalk K = K(yA,).
 Again for x E R, let x, be its image in R/pl'. Let v be largest integer with

 XV = yv; then Ix-yl = 2-V. When v < A, then Ix - yl > IY - 6I and Ix - = 2-'.
 Since the absolute value is the same for conjugates over F, we have Ix - I =2-'
 (i = 1,... ,d) and If(x)I = 2-d> Therefore x1- E T(f) precisely when 1tt < vd.
 Therefore when 0 < v < A, the fan F(y>, dv) C T(f). When v > A, then Ix - I <
 2-A < 2h/; hence Ix - 6j < 2h/, so that Ix- = 2-hk by (11.2). Therefore
 If(x)l = 2-dh/e = 2-hf. Thus xju E T(f) precisely when ,t < hf. In particular, the
 fan F(y>, hf) C T(f). It is easily checked that

 (11.5) hf = (A-1)d+t with 1 < f < d.

 We may conclude that T(f) is the union of the fans

 F(yv, dv) (O < v < A)

 and

 F(yA, (A - 1)d + ?).

 When A = 0, then h = 0, ? = d and T(f) = LO. When A > 0, the discussion at the
 end of section 4 shows that T(f) = K*, where K is the couple K = tK(y\)+nK(y-)
 with n = d - ?. When A = f = 1, then K = K(yi) is degenerate, i.e., a single stalk
 of level 1.

 Note that when h/e E 2, so that A = h/e, we have hf = Ad; therefore f = d,
 and T(f) is K(yA\)d. In general, we should ideally represent T(f) as the d-th power
 of a stalk of level h/e, but this is not possible when h/e ? 2. However, T(f) is
 K(yA)tK(yA_l)n, and here the "mean level" of the factors is

 d1 (A + n(A - 1)) = d-1((A - 1)d + ) = d-1hf = h/e
 by (11 5).

 For the converse we may clearly restrict ourselves to the assertion on couples. Say
 K = ?K(yA) + nK(y-) where y E R. When K is degenerate we set n = 1, so that
 always d = e+n ? 2. Suppose at first that n > 0. Set e = d, f = 1, h = (A-1)d+?,
 so that (11.4), (11.5) hold, and h/e ? 2. Let F' = F(ir') be the totally ramified
 extension of F with (7r')e = 7r. We have F' = F(irIh+rr 'h+l) for suitable r E R (see
 the argument in [1, chapter VII, ?6]). Then 7 = Ih'h +r7rh+l +y has 1I-yI = 2-h/e
 and every x E R has Ix- yl :& I-yl; therefore -?xl = 14-y-(x-y)I > 2-h/e,
 so that (11.2), (11.3) hold. We take f to be the defining polynomial of ( over F.

 In the case when n = 0, let d = ? and set e = 1, f = d, h = A, so that
 again (11.4), (11.5) hold. Let g(X) be a monic irreducible polynomial of degree d
 with coefficients in the residue class field F of R- such a polynomial exists by
 hypothesis. - lifts to an irreducible polynomial g in R[X]. Let F' = F(r7) where r1
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 is a root of 9, so that F' D F is unramified and of degree d. Note that jr4 = 1 and

 set ( = 7rr\77 + y, so that 1 -yl = 1 -rnl = 2-A. When x E R, write x - y = 7rP
 with 1J = 1. Then 1 -xl = 17rAy- 7rP(I > 2->, since either A 7& p, or A = p
 and r,r\ -7rP = 7r(-7 - () and 1? - = 1, since '7, ( have different images in the
 residue class field F(r). Therefore (11.2), (11.3) hold. We take f to be the defining
 polynomial of ( over F. O

 We have given a canonical procedure to associate with every primitive irreducible

 polynomial f a polynomial sum K = K(f) with T(f) = K(f)*. Therefore we can

 associate in a canonical way a sum K = K(f) with every primitive polynomial f
 in such a way that

 (11.6) K?(flf2) = K_(fi) ef K?(f2)

 and

 (11.7) T(f)=K(f)*

 by (9.1). The number m of summands of K(f) has

 (11.8) m < d

 where d = deg f.

 12. Discriminants and Resultants of Polynomials. Given a nonconstant

 polynomial f E R[X], let D(f) be its discriminant when degf > 1, and D(f) = 1
 when deg f = 1. Given nonconstant polynomials f, g e R[X], let R(f, g) be their
 resultant. It is easily checked that for nonconstant polynomials fl, f2, g,

 D(f1f2) = D(f1)D(f2)R(f1, f2)2, R(f1f2, g) = R(fi, g)R(f2, g)

 Thus the quantities 8(f) = ordD(f), p(f,g) = ordfR(f,g) have

 (12.1) 8(flf2) = 8(fl) + ?(f2) + 2p(fl, f2),

 (12.2) P(fif2, 9) = P(fl, 9) + P(2, 9),

 where some of these may be +oo.

 Proposition 12.1. Let f, g in R[X] be primitive and nonconstant. Then

 (12.3) 6(K(f)) < 6(f),

 (12.4) P(K(f),_K(g)) < p(f I ).

 Proof. In view of the relations (7.1), (7.2) for stalk sums and the corresponding
 relations (12.1), (12.2) for polynomials, and in view of (11.6), we may restrict
 ourselves to polynomials f, g which are primitive and irreducible (over the quotient
 field F of R).

 We begin with (12.3). When f is of degree 1, then K(f) has at most one

 summand, so that 8(K(f)) = 0 and (12.3) is true. When degf > 1 and the roots
 of f have absolute value > 1, then K = 0 and again 8(?(f)) = 0. We are left with
 the case when f is of degree d > 1 and its roots 41, . .. , (d have common absolute
 value < 1. With suitable y E R we have (11.3), so that

 (12.5) lY- jj = 2-h/e (i = 1 ... I d).

This content downloaded from 129.97.93.153 on Mon, 13 Nov 2023 14:25:59 +00:00
All use subject to https://about.jstor.org/terms



 CONGRUENCES, TREES, AND p-ADIC INTEGERS 629

 Then K(f) = fK(yA) + nK(y-) with f + n = d. Therefore

 6(K(f)) = ?(? - 1)A + n(n - 1)(A - 1) + 2 ln(A - 1)
 = (d-1)((A-l)d + f)-?(d-?)

 < (d-1)((A-l)d + ?) = (d-1)hf

 by (11.5). On the other hand, lIj- jl < 2-h/n by (12.5), and the leading coefficient
 of f has modulus 1, so that

 6(f) = ordD(f) ? d(d - 1)h/e = (d - 1)hf.

 Now (12.3) follows.
 As for (12.4), write

 f (X) = c(X - ;1) ..(X - ;d), 9(X) = C (X - 1) ... (X - d')

 in a suitable field extension. We note that K(f) = 0 or K(g) = 0 if the roots (i

 of f or the roots rj of g have absolute value > 1. Then p(K(f),K(g)) = 0 and
 we are done. We suppose, then, that the roots of f as well as of g have absolute

 values < 1. We assume initially that d > 1, d' > 1. We have (12.5) and similarly

 ly'-r7jl = 2-h /e (1 < j < d') for suitable y, y' in R. Further, K(f ) = ?K + nK-,
 K(g) = #'K' + n'K'- with K = K(yA), K' = K (y' ) for suitable A, ,u.

 Suppose at first that K n K' is properly contained in K as well as in K'. Then
 A(K n K') = A(K- K') = A(K n K'-) = A(K- n K'-) = v, say, where v <

 min(A,ut)- We have p(K(f),K(g)) = dd'v. On the other hand ly - y'l- 2-V', and
 since v < A-1 < h/e by (11.4), similarly v < h'/e', we have Jfi-rIl = ly-y'l = 2-V
 (1 < i < d, 1 < j < d'), so that p(f,g) = dd'v, and (12.4) holds with equality.

 We now suppose that K n K' is not properly contained in both K and K';
 say KnK' = K, so that K C K'; therefore A < ?,. We have A(KnK') = A,

 A(K n K'-) < A, and A(K- n K') = A(K- n K'-) = A - 1; therefore

 p(K(f),K(g)) < ?d'A + nd'(A - 1) = d'(dA - n).

 When A < ,t we have h/e < A < ,t - 1 < h'/e', and when A = f,, so that
 K = K', we may suppose without loss of generality that h/e < h'/e'. The infinite

 chains corresponding to y, y' both contain K, and therefore ly - y'l< 2-A. Since
 lY- jj = 2 ly -'-Nl = 2-h /e, we obtain J -j ri<2-h/, and therefore

 p(f,g) > dd'h/e = d'hf = d'(dA-d +) = d'(dA-n)

 by (11.5). So (12.4) follows.
 We have assumed that d > 1, d' > 1. But when, e.g., d = 1, the construction

 of K(f) follows the same pattern as before, if we set e = f = 1, f = 1, n = 0 and
 h = A = x. We leave the details to the reader. FD

 13. Proof of Theorems C and C'. For Theorem C we will again work in the

 more general framework of complete discrete valuation rings R. When f (X) =
 irnfo(X) with fo primitive, we have T(f) = LnK*(fo). Here K(fo) has m < d =

 degf summands by (11.8). We have 6(K(fo)) < 6(fo) by (12.3), and we have
 6(f) = (2d - 2)n + 6(fo), so that d ? 2 yields

 n + 6(K(fo)) < 6(f).
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 Given n, the number of isomorphism classes of trees T(fo) where fo runs through
 primitive polynomials with 6(fo) < 6 is < c6(d)6d-l by Theorem 7.1 and (11.7).
 Taking the sum over n < 6, we obtain the bound cl (d)6d of Theorem C.

 When n, a1,... , ad-, satisfy (6.10) (but with d in place of m), the polynomial

 f (X) = rn (X -ra,) ... (X - rad-1)X
 has T(f) = LnK* with K a stalk sum as described in section 6. Here

 (13.1) 6(f) = (2d - 2)n + 2((d - 1)al + (d - 2)a2 + ... + adl).

 The number of d-tuples n, a1, . . ., ad4 with 0 < n < a1 < <ad-, and with the
 right hand side of (13.1) below 6 is _ c7(d)6d when 6 is large. By what we have said
 in section 6, different d-tuples n, a,,... , ad give rise to different Poincare series
 for f. Therefore as f ranges through polynomials of degree d (where d ? 2) and
 with 6(f) < 6, we obtain at least c7(d)6d different Poincare series, and therefore at
 least that many nonisomorphic trees T(f). This proves Theorem C.

 We now turn to Theorem C'. In section 7 we defined isomorphisms of polynomial
 sums. We allowed reorderings of the summands. Now given ordered m-tuples
 (K1,... , Km) of stalks, we will say (K1, ... , Km) and (Hi,... , Hm) are isomorphic
 if there is a map 'I: U Ki -- U Hi whose restriction to Ki is an isomorphism
 Ki -+ Hi (i = 1,... , m). Each stalk sum with m summands gives rise to at most
 m! ordered m-tuples, so that as a variation on Theorem 7.1 we see that there are
 < c8 (m)6m-1 isomorphism classes of ordered m-tuples of stalks of discriminant < 6.

 Now let f be a polynomial of degree d > 0 in Z[X], and write

 (13.2) f (X) = Pnf, (X)el . .. f (X)e,
 where fi,... , fs are nonproportional polynomials which are irreducible over Q, and

 whose coefficients lie in Z but are not all divisible by p. Say K(fi) = Ki1D . DKim,
 The number of possibilities for s, e1,... ,es,m1,... , ms is under a bound c9 (d).
 From now on we will consider those quantities fixed. Set

 g(X) = fi (X) ... fs(X).
 Then the height H(g) of g, i.e., the maximum modulus of its coefficients, has

 H(g) < clo(d)H(f) < clo(d)H. The discriminant D(g) is $4 0, and has ID(g)l <
 Cii(d)H 2d-2, so that its p-adic order 6(g) < c12(d) ((log H/ logp) + 1). By Theorem
 7.1, the number of isomorphism classes of stalk sums K(g) = K(fi) D ... _ K(fs)
 is

 < c13(d)((logH/logp)d-l + 1).

 By the variation on Theorem 7.1 given above, the number of isomorphism classes
 of ordered tuples

 (Kill ... I Kim,v I..IKs,,... lKsm.)
 is still under this bound, provided c13 (d) is replaced by a suitable larger constant.
 Given the class of this tuple, and given e1, ... , es, the isomorphism class of

 K(flel ... fses ) = (Kl ... Klml)el ... (Ks, ... Ks m ) e
 is determined. Since there are < (log H/log p) + 1 possibilities for the extra pa-
 rameter n in (13.2), the upper bound (4) of Theorem C' is established. That this
 bound is essentially best possible is seen by considering polynomials
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 14. The Poincare Series of f. Suppose our ring R has a residue class field

 of finite order p (a prime power!). For example, R = 7p where p is a prime, or
 R = k[[X]] where k is a field of cardinality p. The Poincare' series of f is the
 Poincare series of T(f), and is

 00

 43f (Z) = I T(f)A IZA\.
 A=O

 By Theorems 6.1 and B, this series lies in Q(Z). As is well known by deep work
 of Igusa, and reproved by Denef, this is also true in the considerably more difficult
 case of polynomials in several variables.

 Recall that IT(f)Ax1 is the number of solutions of f (x) 0 O (mod pA). Proposition
 6.4 yields

 (14.1) digpjT(f)Axj < degf
 for nonconstant f. Theorem 8.1 gives

 (14.2) IT(f)AI ? 2p6/2 + d - 2,
 where deg f = d > 0 and 6 is the p-adic order of the discriminant of f.

 The Poincare series has a different interpretation when R = k[[X]] where k is
 infinite. Recall from (6.1):

 (14.3) TA = U F'(u,A).
 uET(A)

 Here u is a polynomial u = u(X) (mod XA(U)), and F'(u, A) consists of polynomials
 t(X) (modulo X) having t(X) _ u(X) (mod XA(U)). Therefore F'(u, A) is a linear
 submanifold of UA of dimension A - A(u). Since k is infinite, the decomposition of
 TA into a finite union of linear submanifolds is unique.

 Theorem 14.1. Suppose R = k[[X]] where k is infinite, and suppose f E R[X].

 Then for each A, T(f ),A is a finite union of linear submanifolds MX1,... , MA,hn(x) of

 UA. Set PA(z) = I)ZCi, where ci = dim M,X, and set 93(z, Z) = - PA\(z)zA
 Then 93(z, Z) lies in Q(z, Z).

 The proof is obvious, since the MAi\ are the F'(u, A) with u E T(f )(A), and since
 by (6.4), (6.5), T3(z, Z) is the Poincare series of T(f), which is rational by Theorems
 6.1 and B.

 15. Width and Continued Fractions. Our main theorem here can be stated
 in the context of stalks:

 Theorem 15.1. Let U be a universal tree of finite valence p, which need not be a
 prime. Let

 (15.1) T = K, . Km

 be a product of m > 1 stalks. Given A > 0, write A/m as a regular continued
 fraction:

 A/m = co +
 cl+

 +1/Cn
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 with n odd. Then ifp > m, we have

 (15.2) TA\ ? clpA co-l + c3p-cO-c2-1 + ... + Cnp-C0-c2--cn-1-l

 This bound is best possible for every A > 0, m > 0 and p ? m. But we will show
 this only when p is a prime, in section 16 in the context of polynomial trees.

 The cardinality IT,I can only decrease if some factors in (15.1) are removed, and
 therefore the bound (15.2) remains valid when T is a product of < m stalks. Since
 for a polynomial f we have m = mr(K(f)) < d = deg f, Theorem D follows.

 Corollary. Define ml by A = mcO + ml, so that A/m = co + (m/r/m). Note that
 1 ? Mr _ m. Then

 (15.3) ITA\ ? (m/mr)pA-col

 In particular, ITAI ? mrp-co-1. This is the same bound as in Stewart [2, (44)]
 in the context of polynomial trees, since his exponent is [A(m - 1)/m] = A - co +
 [-mi/m] = A - co - 1. Our Corollary yields the Corollary to Theorem D.

 Deduction of the Corollary. Introduce the notation

 [ao] = a0, [ao,a,... , ae] = a0 +

 + l/ae

 for reals aj, with a,, a2,... positive. Our hypothesis then becomes

 (15.4) A/m = [co, ci,... ,cn].

 Define mo, m1,... ., Mn by mo = m, A = moc0 + mrn,

 (15.5) Min2 = Mir1ci1 + Mi (2 < i < n).

 Then each mi E Z and

 A/m = A/mo = co + 1/(mo/ml) = [co, mo/mi] =

 = [Co, ... * Ci- iMi/mi]

 = [CO, ... *Cn-limn-l/Mn]

 for i in 1 ? i ? n. Comparison with (15.4) gives

 (15.6) mi_l/mi = [ci,... ,cn] (1 ? i ? n).

 Therefore

 (15.7) Ci = mi1/mi - 1 = (mi- mi+1) (1 <i < n-1),

 but Cn = Mn-l/Mn-
 We will show that for odd g in 1 ? g < n,

 (15.8)

 T I< cpA-co-l + ... + c2P-Co--C93-l + (Mg/m g)pA-co--c9--l

 which for g = 1 is to be interpreted as (15.3). When g = n, (15.8) is the same
 as (15.2), since Cn = mn-l/mn. To do induction down from g to g - 2 (assuming
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 g ? 3) it will suffice to show that iAg 0, where Ag is the difference of the right
 hand sides of (15.8) for g - 2 and for g. But

 p- \+co+ .+Cg3+1,9 = (mg-3/m-2) - Cg-2 - (m9l/m9)P9-1

 ? (m93/m92) - (m93 - m9l)/m9g2 -(m/g-lm)p1 ? 0

 by (15.7) and since m9p ? p ? m ? m9g2.

 Proof of Theorem 15.1. Set K = K1 D... D Km. Let TT(A) be the set of section 8;
 say TT(A) = {u1,... , ue}. Then in particular, u1,... , ue are incompatible vertices
 of K1 U U Km. We recall

 (15.9) avi = A- A(uj) (i = 1, ......... if)
 and formula (8.4):

 e

 (15.10) ITA\1 = Ep
 i=l

 By relabeling the stalks of K we may suppose that ui lies precisely on the stalks

 Ki1,... ,Kiqi. The stalks K,j (1 < i < K. 1 < j < qi) are among the summands of
 K, and Ki , K., ,j for i 74 i' are distinct by the incompatibility of ui, ui,. Therefore

 (15.11) qi + + qe < m.

 We may suppose that qi ? ? qe.

 Let mo,m1,... ,mn be as above. Then m = mo > m1 > mn1_ m n, with
 Mn-1 = mn precisely if cn = 1. In what follows, g, h will be odd integers. We have

 A = moco + ml = ...

 (15.12) = mOcO + m2c2 + + m9g1c9g1 + m9 (1 ? < n),

 MO - mlCl + m2 =

 (15.13) = mlcl + m3c3 + + m9cg + m9g+ (1 < g < n)
 where we set mn+l = 0. Define

 (15.14) e-1 = 0, e9 = C1 + C3 + *+ Cg (1 < g < n),

 (15.15) f-2=0, fg1l=co+C2+***+Cg-1 (1<g<n).
 For 1 < g < n, let A4 be the following assertion.
 (a) The estimate (15.2) is true if e < e9.

 (b) The estimate (15.2) is true if e ? e9 and if qeg < m9 or A(uj) > fg-, + 1 for
 some j in e9g2 < j < e9.

 (c) When ? > e9, then
 e9

 EpWi < C1pAfo1 + + cgp
 i=l

 Now Al, A3,... ,An imply (15.2) as follows. By (a) we may suppose that f ? en
 By (b) we may suppose that qeg ? m9 (1 < g < n), so that

 ql + q2 + + qeg > elml + (e3-el)m3 + * * * + (es-ee-2)mg
 (15.16) = ClMl + C3M3 + + Cgmg

 = m -Mg+
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 634 WOLFGANG M. SCHMIDT AND C. L. STEWART

 by the ordering q, > q2 > ... and by (15.13). Applying this with g = n, recalling
 that mn+1 = 0 and comparing with (15.11), we obtain f = en. Now (15.2) follows
 from (15.10) and part (c) of An.- D

 Before proceeding further we insert the following. For any real number x let [xl
 denote the smallest integer greater than or equal to x.

 Lemma 15.2. Given integers m > 0, A, b, set

 Wp(v) = min(A -v, v(m -1) + b).

 Set v1 = F(A - b)/ml. Then for v E Z we have p(v) < p(vl) = A - vi. When
 v > vi we have p(v) < A - v- 1.

 Proof. The maximum of p(v) for v E JR is taken at v = (A - b)/m, and the

 maximum for v E Z is taken at v1 or vo = [(A - b)/m]. Here p(vl) = A -v,
 p(vo) = vo(m-1) + b, and

 (p(vl) -o(vo) = A-b-mvo + vo -vi
 = A - b - m[(A - b)/m] + [(A - b)/m] - F(A - b)/ml

 >0

 since A - b is an integer. Therefore the maximum of p(v) for v E Z is taken at

 v=vi, and is q(vl) = A-vl. When v > vi, then q(v) = A-v < A-vi-1. D

 We will now in turn prove AlI A3, ... n A. We will prove Ag+2, assuming that
 either g = -1 or that 1 < g < n - 2 and Al, A3,. . . , Ag have been established. In
 the latter case we may suppose that f > e9 and that (15.16) holds. Then in view
 of (15.11),

 (15.17) qeg+l + + qe -< Mg+l.

 When g = -1 this is the same as (15.11).

 Lemma 15.3. For e9 < i < ? and wi given by (15.9),

 wi < A - fg+l - F(m9+2 - qi)/mg+ll

 Proof. Write r = TK, aJ = KYK. Then

 9

 (15.18) (ui) = E T(t) = T(ui) + E Eh
 {O}<t<U. h=-1

 where

 Eh = E T(t) when -1 < h < g-2,
 {o}<t<ui

 fh-1 <A(t)?_fh+l

 g=- E T(t).
 {o} <t<uj
 fg_1<A(t)

 Suppose h ? g and {0} < t < ui, fh-1 < A(t). Now if 1 < j ? eh (only possible if
 g ? h ? 1), say er_2 < j < er where 1 ? r < h with r odd, then we may suppose

 by part (b) of Ar that A(uj) _ fr-+1 ? fhl+1 < A(t). Since j ? eh ? e9 < i
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 and therefore uj, ui are incompatible, also uj, t are incompatible, and the stalks
 Kj, (1 < v < qj) containing uj do not contain t. Therefore when fh-l < A(t),

 (15.19) T(t) < m - (q, + + qeh) < mh+1

 by (15.16), which is true by induction with g replaced by h < g. Note that (15.19)
 is trivially true for h = -1. We may conclude that for -1 < h < g - 2,

 (15.20) Eh -< (fh+l - fh-l)mh+l = Ch+lmh+l.

 Now suppose that

 (15.21) fg-1 < A(uj) - 1.

 Then by (15.19),

 Z9 < (A(ui) - fg-, - 1)mg+i.

 Since r(ui) = qi, (15.18), (15.20) and (15.12) yield

 o(ui) < qi + como + * * * + c9g1m9g1 + (A(ui) - fgi - 1)mg+l
 = qi + A - m9 + (A(ui) - fg-i - 1)mg+i.

 The vertices ui had A < j(ui) by the definition of TT(A) (see section 8), and
 therefore

 Wi = A - A(uj) = min(A - A(uj), A(uj)(m9+, - 1) + bi)

 with bi = qi + A - m - mg+1(fg91 + 1). By Lemma 15.2, wi < A - v(i), where
 v(i) = F(A - bi)/mg+1l. But

 A-bi = mg+1(fg-1 + 1) + m9 -

 = mg+i(fg91 + 1 + Cg+l) + m9+2 - qi

 = mg+l(fg+l + 1) + mg+2 - qi,

 so that

 (15.22) v(i) = fg+1 + 1 + F(m9+2 -qi)mg+
 and

 wi < A - fg+1 - F(m9+2 -qi)/mg+ll,
 as asserted in the Lemma. This holds when (15.21) is valid.

 We will show that (15.21) is always valid, i.e., that fg-, > A(uj) is impossible.
 For in that case Eg = 0, and in view of (15.19),

 Zg-2 = E T(t)
 {o}<t<ui

 fg-3 <A(t) <fg- 1

 < (fg- - fg-3)mg-1 = Cg_lmg_l,

 so that by (15.18), (15.20), (15.12),

 o(ui) < qi + como + * * * + c9g3m9g3 + C9g1m9g1

 = qi + A - m9.

 By hypothesis i > e9, so that qi < mg+' < mg by (15.17), and therefore o(ui) <
 A, contradicting the fact that we had o(ui) > A. The proof of the lemma is
 complete. o
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 When e9 < i _ X, we have qi < m9g+ from (15.17); therefore

 (15.23) F(mg+2- ) when qi ? m9+2,
 {i when qi < mg?2.

 Therefore by Lemma 15.3,

 < - fg+- 1 when qi ? m9g+2
 - A - fg+1-2 when qi < m9+2.

 Set a = 0 if q,g < m9+2; otherwise let a be largest integer with e9 + a < ?
 and qeg+a _ m9+2. By (15.17), am9+2 < m9g+, so that a < m9+l/m9+2 =
 [c9+2, ... , c,] by (15.6), and therefore

 (15.24) a < c9+2

 (Note that n = g + 2 or n > g + 4.) We obtain

 A - fg+1- 1 when e9 < i < e9 + a,

 Wviv A - fg+1- -2 when e9 + a < i <t

 Using the last assertion of Lemma 15.2 we can modify Lemma 15.3 to get

 wi< A - fg+- 2

 also when e9 < i < e9 + a and A(uj) _ v(i) + 1, which by (15.22), (15.23) is the
 same as A(uj) _ fg+1 + 2.

 By part (c) of Ag (when g ? 1) we see that

 e-9

 (15.25) 5 pWi < ZChp>fhPl + E pWi;
 i=l h=1 i=eg+l

 when g = -1 this is trivially true if we understand the first sum on the right hand
 side to be 0. The second summand on the right hand side is

 ? (a - E)p-fg+ll + (fl- a + 2)pAf9?l2

 where we set E = 1 if a > 0 and A(uj) _ fg+1 + 2 for some i in e9 < i < e9 + a, and
 E = 0 otherwise. Now when

 (15.26) a-E < Cg+2,

 the second summand is

 < C +2\-fs+l-l _ p-fg+l-l + \-fg+1-2

 < C 2p-fg+l-l

 since p ? m > X, and then (15.2) follows from (15.10), (15.25).
 When f < e9+2, we have e9 + a < ? < e9+2; therefore a < C9+2, and (15.26)

 holds. This establishes part (a) of A9+2. When f ? e9+2 and qg9+2 < m9+2, then
 a < eg+2 -e = C9+2 and again (15.26) holds. When f ? e9+2 and a = C9+2 (note
 (15.24)!) and if A(uj) _ fg+1 + 2 for some i in e9 < i < e9 + a = e9+2, then E > 0,
 whence (15.26) and (15.2) hold. This gives part (b) of assertion Ag+2. Finally
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 wi < A- f9+-1 for i > e9, so that by the truth of part (c) of A9 (or trivially
 when g =-1)

 eg+2 e9 eg+2

 Epwi?pwi+ E pWi
 i=1 i=l i=eg+l

 9

 Chp-fh-l 1+ cg2pA-fg+l -1

 h=1

 which is part (c) of Ag+2.

 16. Congruences with Many Solutions. We still have to prove that the bound
 (7) in Theorem D is best possible. We will retain the notations introduced in the
 preceding section. From (15.5) we infer that for odd g, 1 ? g < n - 2,

 (16.1)

 mg-I = c9m9 + m9+l = = c9m9 + C9+2m9+2 + * + Cn-2mn-2 + CnMn
 Set a1 = 0 and, for odd g,

 a9 = c1m1fo + c3m3f2 + * + C9g2m9-2f9-3 (3 < g < n),
 bg= fgI(c9m9 + C9+2m92 + 2 * + cnmn) + m9 (1 < g < n).

 Lemma 16.1. ag + bg = A (1 < ? < n).

 Proof. By (15.13) with g = n,

 bg = fg9l(m - c1m-** *-c9g2m9g2) + Mi9,
 with the interpretation that b1 = fom + m1. Therefore a1 + b1 = com + mi1 = A.

 When g ? 3, we note that a9 - a92 = c9g2Mr92f9-3 and

 bg -bg2 = (fg-3 + c9g1)(c9M9 + ? * + cnMn) + M9

 - fg3(cg-2Mgn2 + * + CnMn) - mg92

 = c9gI(c9r9 + ... + CnMn) - cg2Mgn2fg-3 + M9 -Mg-2
 so that

 a9 + bg - a92 -bg2 = cg1rm9l - cg1m9l = 0

 by (15.5), (16.1). The lemma follows by induction from g - 2 to g.
 To motivate what follows we wish to point out that the extremal case in the

 preceding section was when f = en and when A(uj) = fg-1 + 1, qj = m9 for
 e9g2 < j < e9 (g odd, 1 < g < n). It will be convenient to relabel the uj as u
 with 1 < g < n and 1 < i < cg = e- e9g2, so that A(ugi) = fg-1 + 1, and m9
 stalks of K contain each ugi.

 We now begin our construction of a polynomial f E Z[X]. Pick v1 < V3 < ...<

 vn in U(p) with A(vg) = fg-1. Next, given g, pick ugi (1 ? i ? cg) in U(p) having
 ugi > vg, A(ugi) = fg-1 + 1 = A(vg) + 1, and such that ug1,... IUgc9V?9+2 are
 mutually incompatible when g < n - 2, and just ug,... , ugc9 are incompatible
 when g = n. (See Figure 5.)

 Since cg + ? < m < p when g < n -2, and since Cn < p (with equality only when
 n = 1, c1 = p = m/ml, so that m = p, m1 = 1), such a choice is possible. We claim
 that with this choice, any two vertices ugi, Uhj with (g, i) $4 (h, j) are incompatible.
 This is clear when g = h, and if, say, g < h, then ugi, v9+2 are incompatible and
 v9+2 < Vh < Uhj, so that indeed Ugi, Uhj are incompatible. Given h, i with h odd,
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 1 ? h < n? 1 < i < Ch, pick integers Xhiw E Z (1 < w ? mh) lying in the residue
 class Uhi (mod pfh-1+l). Set

 f (X) = r|(X -Xhiw)

 where the product is over the set S of triples h, i, w with h odd, 1 < h < n,
 1 < i < Ch, 1 < w < mh. Then, by the case g = n of (15.13),

 n

 deg f =E ChMh = m.
 h=1

 Lemma 16.2. Suppose x E Z lies in the residue class ugj (modpfg-1+l), where

 1<g<n, 1<j<cg. Then

 (16.2) f (x) 0 O (mod p).

 Proof. We claim that for (h, i, w) c S we have

 1fhl when h <g,

 (16.3) ord (x-xhiW) ? -1 when h ? g,

 fg_ + I when (h, i) = (g, j).
 When h < g, we observe that vh < Uhi, Vh < Vg < ugj, so that (since x C

 Ugj9, Xhiw E Uhi, and since A(vh) = fh-1) indeed ord (x-xhiw) > fh-1. When h > g,
 we similarly have vg < ugj, vg ? Vh < Uhi, and therefore ord (x - Xhiw) > fg-1.
 Finally, when (h,i) = (g,j), we have both X,Xhiw in the class ugi (modpfg-1+l),
 and (16.3) follows.
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 Let S = SA U SB, with SA, SB respectively consisting of triples (h, i, w) with

 h < g and with h > g. By (16.3)

 ord Ji(x - Xhiw) > cCmlJo? + + C92m9g2f9-3 = a9,
 SgA

 since for given h there are ChMh choices for i, w. Similarly

 ord Ji(x - Xhiw) > fg_l(c9m9 + * + c'm') + m9 = bg.
 SgB

 We may conclude that ord f(x) > a9 + bg = A, and (16.2) follows. LI

 The number of x (modpA) which lie in the residue class u9j (modpfg-1+l) is
 pf-fg-1-1. Since the u9j are pairwise incompatible, we obtain distinct residue
 classes x (mod pA) for distinct pairs g, j. We may infer that the number of solutions
 of (16.2) is

 n cg

 SE E A-fg91-1 = c1pA-fo-1 + ***+ Cnp f
 g=1 j=1

 By taking m = d we see that the bound (7) is in fact best possible.
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