Congruences, Trees, and p-Adic Integers
Author(s): Wolfgang M. Schmidt and C. L. Stewart
Source: Transactions of the American Mathematical Society, Vol. 349, No. 2 (Feb., 1997),
pp. 605-639
Published by: American Mathematical Society
Stable URL: https://www.jstor.org/stable/2155389
Accessed: 13-11-2023 14:25 +00:00

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society

CONGRUENCES, TREES, AND p-ADIC INTEGERS

WOLFGANG M. SCHMIDT AND C. L. STEWART

Abstract

Let f be a polynomial in one variable with integer coefficients, and p a prime. A solution of the congruence $f(x) \equiv 0(\bmod p)$ may branch out into several solutions modulo p^{2}, or it may be extended to just one solution, or it may not extend to any solution. Again, a solution modulo p^{2} may or may not be extendable to solutions modulo p^{3}, etc. In this way one obtains the "solution tree" $T=T(f)$ of congruences modulo p^{λ} for $\lambda=1,2, \ldots$. We will deal with the following questions: What is the structure of such solution trees? How many "isomorphism classes" are there of trees $T(f)$ when f ranges through polynomials of bounded degree and height? We will also give bounds for the number of solutions of congruences $f(x) \equiv 0\left(\bmod p^{\lambda}\right)$ in terms of p, λ and the degree of f.

Introduction

The tree $U=U(p)$ of residue classes modulo powers of a given prime p is defined as follows. Consider the diagram

$$
\{0\}=\mathbb{Z} / p^{0} \mathbb{Z} \stackrel{\Phi_{1}}{\leftarrow} \mathbb{Z} / p^{1} \mathbb{Z} \stackrel{\Phi_{2}}{\leftarrow} \mathbb{Z} / p^{2} \mathbb{Z} \leftarrow \cdots
$$

where the Φ_{λ} are the natural homomorphisms. The vertices of U are the elements of $\mathbb{Z} / p^{\lambda} \mathbb{Z}$ for $\lambda=0,1, \ldots$, and the directed edges are $u \rightarrow v$ where $u \in \mathbb{Z} / p^{\lambda} \mathbb{Z}$, $v \in \mathbb{Z} / p^{\lambda-1} \mathbb{Z}$ and $\Phi_{\lambda}(u)=v$ for some $\lambda>0$. Thus U is a rooted tree with root $\{0\}$. Exactly one directed edge emanates from each vertex of U, except for the vertex $\{0\}$, from which no edge emanates. On the other hand, every vertex is the end point of precisely p directed edges. The notation $u>v$ for vertices will mean that there is a sequence of vertices and edges $u \rightarrow u^{(1)} \rightarrow \cdots \rightarrow u^{(\kappa)}=v$. Thus v is obtained from u by a finite number of applications of homomorphisms Φ_{λ}. We will write $u \geqq v$ if $u>v$ or $u=v$. The level $\lambda(u)$ of a vertex u is λ if $u \in \mathbb{Z} / p^{\lambda} \mathbb{Z}$. A subtree, or simply a tree, is defined as a nonempty subset T of the vertices of U such that when $u \in T$ and $u>v$, then $v \in T$. Thus T together with the directed edges $u \rightarrow v$ where $u, v \in T$ is again a tree with root $\{0\}$. But we will identify subtrees with their set of vertices. An example of a tree is the tree L^{ν} consisting of all vertices $u \in U$ of level $\leqq \nu$.

Given $x \in \mathbb{Z}$ (or $\in \mathbb{Z}_{p}$ where \mathbb{Z}_{p} is the ring of p-adic integers), we will write x_{λ} for its residue class modulo p^{λ}, i.e., its image under the canonical isomorphism $\mathbb{Z} \rightarrow \mathbb{Z} / p^{\lambda} \mathbb{Z}$ (or $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} / p^{\lambda} \mathbb{Z}_{p}$). Every vertex of U is of the type x_{λ} with $x \in \mathbb{Z}$,

[^0]

Figure 1. $(p=3)$
$\lambda \in \mathbb{Z}_{\geqq 0}$. Now when $0 \leqq \mu \leqq \lambda$, we have $x_{\mu} \leqq x_{\lambda}$, and for x, y in \mathbb{Z} or \mathbb{Z}_{p} we note that $x_{\lambda}=y_{\lambda}$ implies $x_{\mu}=y_{\mu}$. We have

$$
\begin{gather*}
(x y)_{\lambda}=0_{\lambda} \text { if and only if there exist integers } \mu \text { and } \nu \text { with } \mu+\nu \geqq \lambda \\
\text { for which } x_{\mu}=0 \text { and } y_{\nu}=0 . \tag{1}
\end{gather*}
$$

Now let $f \in \mathbb{Z}[X]$ or $\in \mathbb{Z}_{p}[X]$. We define $T(f)$ to consist of vertices x_{λ} where $x \in \mathbb{Z}, \lambda \geqq 0$, such that $(f(x))_{\lambda}=0_{\lambda}$, i.e., $f(x) \equiv 0\left(\bmod p^{\lambda}\right)$. When $x_{\lambda} \in T(f)$ and $\mu \leqq \lambda$, then $x_{\mu} \in T(f)$, so that $T(f)$ is a tree, the solution tree of f.

Basic to our investigation will be a notion of products of trees. Given trees $S, T \subseteq U$, we define $S T$ to consist of vertices u for which there are $s \in S, t \in T$ with $s \leqq u, t \leqq u$ and $\lambda(u) \leqq \lambda(s)+\lambda(t)$. See Figure 1 , where the underlying prime is $p=3$.

Put differently, $x_{\lambda} \in S T$ if there are μ, ν with $x_{\mu} \in S, x_{\nu} \in T$ and $\mu \leqq \lambda, \nu \leqq \lambda$, $\lambda \leqq \mu+\nu$. Clearly $S T$ is again a tree, and $S T$ contains $S \cup T$. The conditions $\mu \leqq \lambda, \nu \leqq \lambda$ are not necessary, i.e., $x_{\lambda} \in S T$ if there are μ, ν with $x_{\mu} \in S, x_{\nu} \in T$ and $\lambda \leqq \mu+\nu$. We now observe that

$$
\begin{equation*}
T(f g)=T(f) T(g) \tag{2}
\end{equation*}
$$

for any polynomials f, g : for $x_{\lambda} \in T(f g)$ precisely if $(f(x) g(x))_{\lambda}=0_{\lambda}$, which by (1) is the same as $(f(x))_{\mu}=0_{\mu},(g(x))_{\nu}=0_{\nu}$ for μ, ν with $\mu+\nu \geqq \lambda$, i.e., $x_{\mu} \in T(f)$, $x_{\nu} \in T(g)$ for μ, ν having $\mu+\nu \geqq \lambda$, and this is the same as $x_{\lambda} \in T(f) T(g)$.

In part I of this paper we will study the set \mathcal{T} of trees $T \subseteq U$ as a structure with the binary operations of product and intersection. In part II we will study solution trees of polynomials using this structure. Among our results will be the following.

A stalk is defined as a tree K having at most one vertex at each level. Thus a stalk is either finite, of the type $\{0\} \leftarrow u^{(1)} \leftarrow \cdots \leftarrow u^{(\nu)}$, or infinite, of the type $\{0\} \leftarrow u^{(1)} \leftarrow \cdots$. Clearly a finite stalk may be written as $\{0\} \leftarrow x_{1} \leftarrow \cdots \leftarrow x_{\nu}$
with $x \in \mathbb{Z}$, and an infinite stalk as $\{0\} \leftarrow x_{1} \leftarrow \cdots$ with $x \in \mathbb{Z}_{p}$. Note that there is a $1-1$ correspondence between infinite stalks and p-adic integers. In fact p-adic integers could be defined as infinite stalks.

Theorem A. Let \mathcal{P} consist of U and of products of finitely many stalks, i.e., trees of the form $K_{1} \cdots K_{m}$ with stalks K_{1}, \ldots, K_{m} (with the empty product interpreted to be the tree $L^{0}=\{0\}$). Then \mathcal{P} is a substructure of \mathcal{T}, i.e., it is closed under intersections.

Note that \mathcal{P} is trivially closed under products. Theorem A will be proved in the context of rather more general trees than the trees $U(p)$.

We will show that every solution tree $T(f)$ lies in \mathcal{P}. It is U when $f=0$, and is a finite product of stalks when $f \neq 0$. Given an ideal I in $\mathbb{Z}_{p}[X]$, define $T(I)$ as the intersection of the trees $T(f)$ with $f \in I$.

Theorem B. The set of trees $T(I)$ where I runs through the ideals of $\mathbb{Z}_{p}[X]$ is identical with \mathcal{P}.

Two trees T, T^{\prime} will be called isomorphic if there is a bijective map $\Psi: T \rightarrow T^{\prime}$ such that $t_{1}<t_{2}$ on T precisely when $\Psi\left(t_{1}\right)<\Psi\left(t_{2}\right)$ on T^{\prime}. Clearly such a map Ψ (an "isomorphism") will have $\lambda(\Psi(t))=\lambda(t)$ for $t \in T$.

Now let $f \in \mathbb{Z}_{p}[X]$ be a non-constant polynomial with discriminant $D=D(f)$. Define $\delta(f)$ as the order of D with respect to p, i.e., the largest integer δ with $p^{\delta} \mid D$ when $D \neq 0$, and $\delta=\infty$ when $D=0$.

Theorem C. Given $d \geqq 2$ and $\delta \geqq 1$, the number of isomorphism classes of trees $T(f)$ where f runs through the polynomials in $\mathbb{Z}_{p}[X]$ of degree d and with $\delta(f) \leqq \delta$ is

$$
\begin{equation*}
\leqq c_{1}(d) \delta^{d} \tag{3}
\end{equation*}
$$

where $c_{1}(d)$ is a positive number which depends only on d. Except for the determination of $c_{1}(d)$ this bound is best possible.

A variation is
Theorem \mathbf{C}^{\prime}. Given $d \geqq 1$ and $H \geqq 1$, the number of isomorphism classes of trees $T(f)$ where f runs through the polynomials in $\mathbb{Z}[X]$ of degree $\leqq d$ and with coefficients of modulus $\leqq H$ is

$$
\begin{equation*}
\leqq c_{2}(d)\left((\log H / \log p)^{d}+1\right) \tag{4}
\end{equation*}
$$

where again $c_{2}(d)$ is positive and depends on d. Except for the determination of $c_{2}(d)$ this bound is best possible.

Lastly, we mention the following.
Theorem D. Let λ, d be positive integers, and write λ / d as a regular continued fraction:

$$
\lambda / d=c_{0}+\frac{1}{c_{1}+} \begin{array}{ll}
& \tag{5}\\
& \ddots \\
& \\
& +1 / c_{n}
\end{array}
$$

with n odd. Suppose $p \geqq d$, and $f \in \mathbb{Z}_{p}[X]$ is a primitive (in the sense that not all coefficients are divisible by p) polynomial of degree d. Then the number of solutions of the congruence

$$
\begin{equation*}
f(x) \equiv 0\left(\bmod p^{\lambda}\right) \tag{6}
\end{equation*}
$$

does not exceed

$$
\begin{equation*}
c_{1} p^{\lambda-c_{0}-1}+c_{3} p^{\lambda-c_{0}-c_{2}-1}+\cdots+c_{n} p^{\lambda-c_{0}-c_{2}-\cdots-c_{n-1}-1} \tag{7}
\end{equation*}
$$

This bound is best possible for every λ, d and prime $p \geqq d$.
We will deduce the
Corollary. Define d_{1} by $\lambda=d c_{0}+d_{1}$, so that $\lambda / d=c_{0}+\left(d_{1} / d\right)$. Note that $1 \leqq d_{1} \leqq d$. Then the number of solutions of the congruence (6) is at most

$$
\left(d / d_{1}\right) p^{\lambda-c_{0}-1}
$$

In particular, the number is $\leqq d p^{\lambda-c_{0}-1}$. This is the bound given by Stewart in $[2,(44)]$, since (with [] denoting the integer part) his exponent is $[\lambda(d-1) / d]=$ $\lambda-c_{0}+\left[-d_{1} / d\right]=\lambda-c_{0}-1$.

The proof of Theorem D , being the most technical, is given in the last two sections of the paper. However, sections $1,3,4,6$ up to (6.2), 8 up to (8.4) (but excluding Theorem 8.1) should provide enough background for this proof.

I. The Structure of Trees under Products and Intersections

1. General Universal Trees and the Structure \mathcal{T}. We will develop our theory within the framework of a more general rooted tree U. A rooted tree U consists of vertices, with a distinguished vertex $\{0\}$, its "root," together with directed edges $u \rightarrow v$ where u, v are vertices, such that exactly one edge emanates from each vertex, except that no edge emanates from $\{0\}$, and such that starting from any vertex $u \neq\{0\}$, there is a finite diagram $u \rightarrow u^{(1)} \rightarrow \cdots \rightarrow u^{(\ell)}=\{0\}$ of vertices and directed edges. It is then clear that this diagram is unique; the level of u is $\lambda(u)=\ell$, whereas the level of $\{0\}$ is 0 . We will write $u \in U$ if u is a vertex of U. The relations $u>v$ and $u \geqq v$ are defined as before. We will call u, v compatible if $u \geqq v$ or $v \geqq u$; otherwise they are incompatible. The valence of a vertex u is the number (possibly an infinite cardinality) of directed edges terminating at u. We say that U is of valence ϕ (or $\geqq \phi$) if every vertex is of valence ϕ (or $\geqq \phi$). We will suppose throughout that U is of valence $\geqq 2$, i.e., that for every $u \in U$ there are $v \neq v^{\prime}$ with $v \rightarrow u, v^{\prime} \rightarrow u$. From now on, U will be fixed and will be called the universal tree.

The definition of subtrees T of U will be as in the Introduction. A vertex t of T will also be called an element of T and we will write $t \in T$. Again L^{ν} will be the tree of all vertices of U of level $\leqq \nu$. The definition of products of trees also will be as before. We are going to study the set \mathcal{T} of all subtrees (briefly "trees") under the operations of product and intersection. (It is true that \mathcal{T} is also closed under union, but union will play only an auxiliary rôle.) It is clear that both the product and the intersection satisfy the commutative and the associative law. In fact, a vertex u lies in a product $T_{1} \cdots T_{m}$ precisely if there are $t_{i}, 1 \leqq i \leqq m$, with $t_{i} \in T_{i}, t_{i} \leqq u$, such that $\lambda(u) \leqq \sum_{i=1}^{m} \lambda\left(t_{i}\right)$. We have

$$
\begin{equation*}
T U=U, \quad T \cap U=T \tag{1.1}
\end{equation*}
$$

as well as

$$
\begin{equation*}
T L^{0}=T, \quad T \cap L^{0}=L^{0} \tag{1.2}
\end{equation*}
$$

for every tree T, where L^{0} is the tree consisting just of $\{0\}$. Finally, the distributive law

$$
\begin{equation*}
T(R \cap S)=T R \cap T S \tag{1.3}
\end{equation*}
$$

holds: clearly the left hand side is contained in the right hand side, and when u lies in the right hand side, there are $t, t^{\prime} \in T, r \in R, s \in S$, all of them $\leqq u$, having $\lambda(u) \leqq \lambda(t)+\lambda(r), \lambda(u) \leqq \lambda\left(t^{\prime}\right)+\lambda(s)$. But since both r, s are $\leqq u$, they are compatible, say $s \leqq r$, so that $s \in R \cap S$. Now in view of $\lambda(u) \leqq \lambda\left(t^{\prime}\right)+\lambda(s)$ we have $u \in T(R \cap S)$, so that u lies in the left hand side of (1.3).

We will call a set with two binary operations • and \cap a pseudolattice if these operations are commutative and associative, if the distributive law (1.3) holds, and if there are elements U, L^{0} with (1.1), (1.2). Thus \mathcal{T} is a pseudolattice.

The elements U, L^{0} of a pseudolattice are clearly unique. The best known example of a pseudolattice is the set \mathcal{J} of ideals in a commutative ring R with identity, under the operations \cdot and + , and with (0), R playing the rôles of U, L^{0}.

Given a tree T, let T_{λ} be the set of its vertices of level λ. In particular, $U_{0}=$ $L^{0}=\{0\}$ and $U_{\lambda}=L^{\lambda} \backslash L^{\lambda-1}$ for $\lambda>0$. Given $u \in U_{1}$, let $\mathcal{T}(u)$ consist of all trees $T \in \mathcal{T}$ such that T_{1} is empty or consists of u only. Thus $T=L^{0}$ or T contains u but no other element of U_{1}. It is then clear that $\mathcal{T}(u)$ is a subpseudolattice of \mathcal{T} (with the rôle of U played by the tree $U(u)$ consisting of $\{0\}$ and all elements $\geqq u$). Further \mathcal{T} is a direct product:

$$
\begin{equation*}
\mathcal{T}=\prod_{u \in U_{1}} \mathcal{T}(u) \tag{1.4}
\end{equation*}
$$

We end this section with some more notation. When $u \rightarrow v$ write $u^{-}=v$, so that u^{-}is the element directly below u. Again a stalk is a tree with at most one vertex at each level. A finite stalk is of the type $K(u)$, consisting of all t with $t \leqq u$. We define the level $\lambda(K(u))$ to be $\lambda(u)$. When $K=K(u)$ is finite of level $\lambda>0$, let K^{-}be the stalk $K\left(u^{-}\right)$of level $\lambda-1$. An infinite stalk consists of vertices u_{ν} ($\nu \in \mathbb{Z}_{\geqq 0}$) with $u_{\nu+1} \rightarrow u_{\nu}$; for such a stalk K we set $\lambda(K)=\infty$.

Given $u \in U$ and a tree T, let u_{T} be the element of highest level in the stalk $K(u) \cap T$. Then u lies in a product of trees T_{1}, \ldots, T_{m} precisely if

$$
\begin{equation*}
\lambda(u) \leqq \sum_{i=1}^{m} \lambda\left(u_{T_{i}}\right) \tag{1.5}
\end{equation*}
$$

Given $u \in U$ and α, where α is a nonnegative integer or $+\infty$, write $F(u, \alpha)$ for the "fan" consisting of vertices $t \geqq u$ with $\lambda(u) \leqq \alpha$. When $\alpha \geqq \lambda(u)$, we may consider $F(u, \alpha)$ to be a tree with root u, but it is not a subtree of U as defined above unless $u=\{0\}$. When $\alpha=\lambda(u)$, then $F(u, \alpha)$ consists only of u, and when $\alpha<\lambda(u)$, then $F(u, \alpha)$ is empty. When u, v are incompatible, fans $F(u, \alpha), F(v, \beta)$ are disjoint.

When $T \subseteq U$ is a tree, we define a function α_{T} on U as follows. If $u \in T$, we let $\alpha_{T}(u)$ be the largest number (or possibly ∞) with $F\left(u, \alpha_{T}(u)\right) \subseteq T$. When $u \notin T$, then $\alpha_{T}(u)=\lambda\left(u_{T}\right)$. Thus $u \in T$ precisely when $\lambda(u) \leqq \alpha_{T}(u)$. It is easily seen
that for trees S, T we have

$$
\begin{equation*}
\alpha_{S}(u)+\alpha_{T}(u) \leqq \alpha_{S T}(u) \tag{1.6}
\end{equation*}
$$

The following will not be used in the sequel. In the case when U is the tree $U(p)$ of the Introduction, set $\mu(u)=p^{-\lambda(u)}$ for $u \in U$. Then $\mu(u)$ is the Haar measure of the set of elements $x \in \mathbb{Z}_{p}$ whose image modulo $p^{\lambda(u)}$ lies in u. Given a tree $T \subseteq U$, set

$$
\mu(T)=\sum_{u \in T} \mu(u)
$$

Since T is not a subset of $\mathbb{Z}_{p}, \mu(T)$ is not a Haar measure, and in fact many trees T will have $\mu(T)=\infty$. It may be shown that

$$
\begin{equation*}
\mu(S T)=\mu(S)+\mu(T) \tag{1.7}
\end{equation*}
$$

for any subtrees S, T.
2. Lean Trees. A tree T will be called lean if $\alpha_{T}(u)<\infty$ for every $u \in U$. This means that for every u there is a vertex v of U with $v>u, v \notin T$.
Proposition 2.1. T is lean if and only if cancellation by T holds, i.e., if $T R=T S$ implies $R=S$.

Proof. Suppose that T is lean and $T R=T S$. By symmetry it will suffice to show that $R \subseteq S$. So let $r \in R$; we will show that $r \in S$.

Assume at first that $r \notin T$. Set $t=r_{T}$. Pick $u \geqq r$ with $\lambda(u)=\lambda(t)+\lambda(r)$; this is possible since U is of positive valence. Then $u \in T R=T S$. Therefore there exist $t^{\prime} \leqq u, s \leqq u$ with $t^{\prime} \in T, s \in S$ and $\lambda(u) \leqq \lambda\left(t^{\prime}\right)+\lambda(s)$. Now since $u \geqq t^{\prime}$, $u \geqq r$, the vertices t^{\prime}, r are compatible, and since $r \notin T$, we have $r>t^{\prime}$. By the maximal choice of t in $K(r) \cap T$, we have $\lambda\left(t^{\prime}\right) \leqq \lambda(t)$. Combining our relations we obtain $\lambda(r) \leqq \lambda(s)$, and since $u \geqq r, u \geqq s$ this gives $r \leqq s$; therefore $r \in S$.

Next, suppose that $r \in T$. We clearly may suppose that $r \neq\{0\}$. Since T is lean, $\alpha_{T}(r)<\infty$. There is then a $t^{*}>r$ having $\lambda\left(t^{*}\right)=\alpha_{T}(r)+1$ and $t^{*} \notin T$. But $t^{*} \rightarrow t$ with $\lambda(t)=\alpha_{T}(r)$ and $t \in T$. On the other hand, $\alpha_{T R}(t) \geqq \lambda(t)+\lambda(r)>\lambda(t)$, so that there is a $u \in T R=T S$ with $u \geqq t^{*}$ and $\lambda(u)=\lambda(t)+\lambda(r)$. Since $u \in T S$, we have elements $t^{\prime} \in T, s \in S$ with $t^{\prime} \leqq u, s \leqq u$ and $\lambda(u) \leqq \lambda\left(t^{\prime}\right)+\lambda(s)$. Now $t \geqq t^{\prime}$ (otherwise $t^{\prime} \geqq t^{*}$ with $t^{*} \notin T$), which yields $\lambda\left(t^{\prime}\right) \leqq \lambda(t)$. Combining our relations we get $\lambda(r) \leqq \lambda(s)$, and therefore $r \leqq s$ in view of $u \geqq s$ and $u \geqq t \geqq r$. Thus $r \in S$.

Now suppose that T is not lean. Pick $v \in T$ with $\alpha_{T}(v)=\infty$. Set $S=K(v)$ and $R=K(v) \cup F(v, \infty)$. Then $S \varsubsetneqq R$ are trees, and we will show that

$$
\begin{equation*}
T R=T S \tag{2.1}
\end{equation*}
$$

For suppose that $u \in T R$. When $u \geqq v$, then $u \in T \subseteq T S$. When $u \nexists v$, we note that $u \geqq t, u \geqq r$ with certain $t \in T, r \in R$ having $\lambda(u) \leqq \lambda(t)+\lambda(r)$. But since $u \nexists v$, we have $r \nexists v$; therefore $r \in S$ and thus $u \in T S$. We have shown that $T R \subseteq T S$, and since the reverse inclusion is obvious, (2.1) follows. Therefore cancellation by T does not hold.

Let \mathcal{L} consist of U and all the lean trees.
Proposition 2.2. \mathcal{L} is a subpseudolattice of \mathcal{T}, i.e., \mathcal{L} is closed under products.
Note that \mathcal{L} is trivially closed under intersections.

Proof. It suffices to verify that $S T$ is lean when both S, T are lean. But if cancellation by S and T holds, then clearly cancellation by $S T$ holds.

Every stalk is lean, and therefore so is every finite product of stalks.
3. The Semigroup Generated by Stalks. Consider the abelian semigroup \mathcal{K}_{0} generated by nonzero stalks, i.e., by stalks $\neq L^{0}$. The elements of \mathcal{K}_{0} are of the form

$$
\begin{equation*}
\underline{\underline{K}}=\sum_{K} \oplus n(K) \cdot K \tag{3.1}
\end{equation*}
$$

where the sum is over nonzero stalks K and $n(K) \in \mathbb{Z}_{\geqq 0}$, with $n(K)=0$ for all but finitely many K. Elements of \mathcal{K}_{0}, called stalk sums, will also be written as

$$
\begin{equation*}
\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}, \tag{3.2}
\end{equation*}
$$

where K_{1}, \ldots, K_{m} are nonzero stalks and where the empty sum is the zero element $\underline{\underline{0}}$ of \mathcal{K}_{0}. This zero element will also be symbolized by L^{0}. Let \mathcal{K} be the union of \mathcal{K}_{0} and an element we will denote by $\underline{\underline{U}}$. Define $\underline{\underline{U}} \oplus \underline{\underline{K}}=\underline{\underline{U}}, \underline{\underline{U}} \oplus \underline{\underline{U}}=\underline{\underline{U}}$. Given a sum (3.2), define $\tau(u)=\tau_{\underline{\underline{K}}}(u)$ as the number of stalks K_{i} with $u \in \overline{K_{i}}$; in particular $\tau(\{0\})=\tau_{\underline{\underline{K}}}(\{0\})=m$. Then
(i) $\tau(u) \geqq 0$ for $u \in U$,
(ii) $\sum_{u \in U_{1}} \tau(u)=\tau(\{0\})$,
(iii) when $u_{i} \rightarrow u(i=1, \ldots, \ell)$ with distinct u_{1}, \ldots, u_{ℓ}, then

$$
\sum_{i=1}^{\ell} \tau\left(u_{i}\right) \leqq \tau(u)
$$

The reason for (ii) is that K_{1}, \ldots, K_{m}, being different from L^{0}, each contain a vertex of level 1. The reason for (iii) is that no stalk can contain more than one of the vertices u_{1}, \ldots, u_{ℓ}, and every stalk containing one of them also contains u.

An integer valued function τ on U with (i), (ii), (iii) will be called a stalk function. We will show that for such a function there is a unique $\underline{\underline{K}} \in \mathcal{K}_{0}$ with $\tau=\tau_{\underline{\underline{K}}}$. Set $m=\tau(\{0\})$. When $m=0$, then $\tau=\tau_{\underline{0}}$. When $m>0$, we certainly can construct K_{1}, \ldots, K_{m} such that each u of level 1 is contained in precisely $\tau(u)$ of the stalks K_{1}, \ldots, K_{m}. In fact this determines K_{1}, \ldots, K_{m} up to level 1. Suppose we have constructed K_{1}, \ldots, K_{m} up to level λ such that for each u of level $\leqq \lambda$, exactly $\tau(u)$ of them contain u. Now when $\lambda(u)=\lambda$, then by (iii) there are only finitely many $u_{i} \rightarrow u$ with $\tau\left(u_{i}\right)>0$; say u_{1}, \ldots, u_{ℓ}. Of the $\tau(u)$ stalks containing u we continue $\tau\left(u_{i}\right)$ up to u_{i}. This is possible by (iii), and $\tau(u)-\sum_{i=1}^{\ell} \tau\left(u_{i}\right)$ stalks will terminate at u. In this way K_{1}, \ldots, K_{m} are constructed up to level $\lambda+1$. It is now apparent by induction on λ that there is exactly one $\underline{\underline{K}}$ with $\tau=\tau_{\underline{\underline{K}}}$. Thus there is a $1-1$ correspondence between stalk functions and elements $\underline{\underline{K}} \in \overline{\bar{K}}_{0}$. This correspondence can be extended to $\mathcal{K}=\mathcal{K}_{0} \cup \underline{\underline{U}}$ by setting $\tau_{\underline{\underline{U}}}(u)=+\infty$ for each u. (But $\tau_{\underline{\underline{U}}}$ is not a stalk function as defined above.)

Given a stalk function τ, we set

$$
\sigma(u)=\sum_{\{0\}<s \leqq u} \tau(s) .
$$

Then
(i) $\sigma(\{0\})=0$, and $\sigma\left(u^{\prime}\right) \geqq \sigma(u)$ when $u^{\prime} \geqq u$,
(ii) $\sigma(u)>0$ for only finitely many $u \in U_{1}$,
(iii) when $u_{i} \rightarrow u(i=1, \ldots, \ell)$ with distinct u_{1}, \ldots, u_{ℓ}, and $u \rightarrow u^{-}$, then

$$
\begin{equation*}
\sigma\left(u^{-}\right)+\sum_{i=1}^{\ell} \sigma\left(u_{i}\right) \leqq(\ell+1) \sigma(u) . \tag{3.3}
\end{equation*}
$$

For (iii) is the same as

$$
\sum_{i=1}^{\ell}\left(\sigma\left(u_{i}\right)-\sigma(u)\right) \leqq \sigma(u)-\sigma\left(u^{-}\right)
$$

which amounts to condition (iii) for τ (restricted to vertices $u>\{0\}$). An integer valued function σ on U with (i), (ii), (iii) will be called a sum function.

When σ is a sum function, define τ by $\tau(u)=\sigma(u)-\sigma\left(u^{-}\right)$when $u \neq\{0\}$, and by

$$
\tau(\{0\})=\sum_{u \in U_{1}} \sigma(u)
$$

Then τ is easily seen to be a stalk function. There is a $1-1$ correspondence between stalk functions and sum functions, therefore between elements $\underline{\underline{K}}$ of \mathcal{K}_{0} and sum functions. Given $\underline{\underline{K}}$, let $\sigma_{\underline{\underline{K}}}$ be the corresponding sum function. The correspondence can be extended to $\mathcal{K}=\overline{\mathcal{K}}_{0} \cup \underline{\underline{U}}$ by setting $\sigma_{\underline{\underline{U}}}(u)=+\infty$ for $u \in U$. It is clear that

$$
\begin{equation*}
\tau_{\underline{\underline{K}}_{1} \oplus \underline{\underline{K}}_{2}}=\tau_{\underline{\underline{K}}_{1}}+\tau_{\underline{\underline{K}}_{2}}, \quad \sigma_{\underline{\underline{K}}_{1} \oplus \underline{\underline{K}}_{2}}=\sigma_{\underline{\underline{K}}_{1}}+\sigma_{\underline{\underline{K}}_{2}} . \tag{3.4}
\end{equation*}
$$

In particular the set of sum functions is closed under addition.
We define a binary operation \wedge on sum functions by

$$
\left(\sigma \wedge \sigma^{\prime}\right)(u)=\min \left(\sigma(u), \sigma^{\prime}(u)\right)
$$

To see that $\sigma \wedge \sigma^{\prime}$ is in fact a sum function we have to check (iii). Say without loss of generality $\sigma(u) \leqq \sigma^{\prime}(u)$. Then writing $\sigma^{\prime \prime}=\sigma \wedge \sigma^{\prime}$ we have

$$
\sigma^{\prime \prime}\left(u^{-}\right)+\sum_{i=1}^{\ell} \sigma^{\prime \prime}\left(u_{i}\right) \leqq \sigma\left(u^{-}\right)+\sum_{i=1}^{\ell} \sigma\left(u_{i}\right) \leqq(\ell+1) \sigma(u)=(\ell+1) \sigma^{\prime \prime}(u)
$$

We consider the binary operations + and \wedge on the sum functions, where we include $\sigma_{\underline{\underline{U}}}$. Then the set of sum functions becomes a pseudolattice. For clearly + and \wedge are commutative and associative, and for any sum function σ,

$$
\begin{array}{rlr}
\sigma+\sigma_{\underline{\underline{U}}}=\sigma_{\underline{\underline{U}}}, & \sigma \wedge \sigma_{\underline{\underline{U}}}=\sigma, \\
\sigma+\sigma_{\underline{\underline{0}}}=\sigma, & \sigma \wedge \sigma_{\underline{\underline{0}}}=\sigma_{\underline{\underline{0}}} .
\end{array}
$$

It remains for us to check the distributive law

$$
\sigma+\left(\sigma^{\prime} \wedge \sigma^{\prime \prime}\right)=\left(\sigma+\sigma^{\prime}\right) \wedge\left(\sigma+\sigma^{\prime \prime}\right)
$$

but this holds since

$$
\sigma(u)+\min \left(\sigma^{\prime}(u), \sigma^{\prime \prime}(u)\right)=\min \left(\sigma(u)+\sigma^{\prime}(u), \sigma(u)+\sigma^{\prime \prime}(u)\right)
$$

Because of the $1-1$ correspondence between \mathcal{K} and sum functions, \wedge induces a binary operation on \mathcal{K}, also denoted by \wedge. In view of (3.4), \mathcal{K} with the operations \oplus, \wedge becomes a pseudolattice. We have

$$
\begin{aligned}
\underline{\underline{K}} \oplus \underline{\underline{U}} & =\underline{\underline{U}},
\end{aligned} \quad \underline{\underline{K}} \wedge \underline{\underline{U}}=\underline{\underline{K}},
$$

Example. Let K be an infinite stalk. Let $r, s \in K$ with $\lambda(r)=\lambda, \lambda(s)=2 \lambda$. Set

$$
\underline{\underline{K}}=K, \quad \underline{\underline{H}}=2 K(r), \quad \underline{\underline{F}}=K(s) .
$$

Then it is easily seen that for every $u \in U$, with u_{K} as defined in section 1 ,

$$
\sigma_{\underline{\underline{K}}}(u)=\lambda\left(u_{K}\right), \quad \sigma_{\underline{\underline{H}}}(u)=\min \left(2 \lambda\left(u_{K}\right), 2 \lambda\right), \quad \sigma_{\underline{\underline{F}}}(u)=\min \left(\lambda\left(u_{K}\right), 2 \lambda\right),
$$

so that $\left(\sigma_{\underline{\underline{K}}} \wedge \sigma_{\underline{\underline{H}}}\right)(u)=\min \left(\sigma_{\underline{\underline{K}}}(u), \sigma_{\underline{\underline{H}}}(u)\right)=\sigma_{\underline{\underline{F}}}(u)$, and therefore

$$
\underline{\underline{K}} \wedge \underline{\underline{H}}=\underline{\underline{F}}
$$

4. Proof of Theorem A. Given $\underline{\underline{K}}$ as in (3.2), set

$$
\begin{equation*}
\underline{\underline{K}}^{*}=K_{1} \cdots K_{m} \tag{4.1}
\end{equation*}
$$

Also set $\underline{\underline{0}}^{*}=L^{0}, \underline{\underline{U}}^{*}=U$.
Lemma 4.1. $u \in \underline{\underline{K}}^{*}$ precisely when $\lambda(u) \leqq \sigma_{\underline{\underline{K}}}(u)$.
Proof. Suppose $\underline{\underline{K}}$ is given by (3.2). Then by (1.5), $u \in \underline{\underline{K}}^{*}$ precisely when

$$
\lambda(u) \leqq \sum_{i=1}^{m} \lambda\left(u_{K_{i}}\right)=\sum_{i=1}^{m} \sum_{\substack{s \in K_{i} \\\{0\}<s \leqq u}} 1=\sum_{\{0\}<s \leqq u} \tau_{\underline{\underline{K}}}(s)=\sigma_{\underline{\underline{K}}}(u) .
$$

Lemma 4.2. For $\underline{\underline{H}}$, $\underline{\underline{K}}$ in \mathcal{K},

$$
\begin{align*}
& (\underline{\underline{H}} \oplus \underline{\underline{K}})^{*}=\underline{\underline{H}}^{*} \underline{\underline{K}}^{*} \tag{4.2}\\
& (\underline{\underline{H}} \wedge \underline{\underline{K}})^{*}=\underline{\underline{H}}^{*} \cap \underline{\underline{K}}^{*} \tag{4.3}
\end{align*}
$$

Proof. We have $u \in \underline{\underline{H}}^{*} \underline{\underline{K}}^{*}$ precisely if there exist $h, k \leqq u$ with $h \in \underline{\underline{H}}^{*}, k \in \underline{\underline{K}}^{*}$ and $\lambda(u) \leqq \lambda(h)+\lambda(\bar{k})$. But then by the preceding lemma

$$
\lambda(h) \leqq \sigma_{\underline{\underline{H}}}(h), \quad \lambda(k) \leqq \sigma_{\underline{\underline{K}}}(k),
$$

so that

$$
\begin{equation*}
\lambda(u) \leqq \sigma_{\underline{\underline{H}}}(u)+\sigma_{\underline{\underline{K}}}(u) \tag{4.4}
\end{equation*}
$$

Conversely, suppose (4.4) holds, and we have $\underline{\underline{H}}=H_{1} \oplus \cdots \oplus H_{\ell}$ and (3.2). Then

$$
\lambda(u) \leqq \sigma_{\underline{\underline{H}}}(u)+\sigma_{\underline{\underline{K}}}(u)=\sum_{i=1}^{\ell} \lambda\left(u_{H_{i}}\right)+\sum_{i=1}^{m} \lambda\left(u_{K_{i}}\right)
$$

and $u \in \underline{\underline{H}}^{*} \underline{\underline{K}}^{*}$, so that $u \in \underline{\underline{H}}^{*} \underline{\underline{K}}^{*}$ precisely when $\lambda(u) \leqq \sigma_{\underline{\underline{H}}}(u)+\sigma_{\underline{\underline{K}}}(u)=$ $\sigma_{\underline{\underline{H}} \oplus \underline{\underline{K}}}(u)$, and (4.2) follows. This relation is obvious when $\underline{\underline{H}}$ or $\underline{\underline{\underline{K}}}$ equals $\underline{\underline{\underline{U}}}$.

Next, $u \in(\underline{\underline{H}} \wedge \underline{\underline{K}})^{*}$ precisely when $\lambda(u) \leqq \min \left(\sigma_{\underline{\underline{H}}}(u), \sigma_{\underline{\underline{K}}}(u)\right)$, and this holds precisely when $u \in \underline{\underline{H}}^{*} \cap \underline{\underline{K^{*}}}$.

Recall that $\mathcal{P} \subseteq \mathcal{T}$ as defined in the Introduction consisted of U and of products of stalks. The map $*$ from \mathcal{K} into \mathcal{T} is a map onto \mathcal{P}. In view of Lemma 4.2 we have

Theorem 4.3. The map $*$ is a pseudolattice homomorphism from \mathcal{K} onto \mathcal{P}.
Corollary. \mathcal{P} is a subpseudolattice of \mathcal{T}.

Recall that the operations on \mathcal{T} were product and intersection. In particular, \mathcal{P} is closed under intersection. Thus we have proved Theorem A in the context of universal trees more general than the trees $U(p)$ of the Introduction.

Let $\mathcal{P}^{\prime} \subseteq \mathcal{T}$ consist of all trees of the type $L^{n} T$ with $n \geqq 0$ and $T \in \mathcal{P}$. Thus \mathcal{P}^{\prime} consists of U and products $L^{n} K_{1} \cdots K_{m}$ where K_{1}, \ldots, K_{m} are stalks. When U_{1} is finite, i.e., when U contains only finitely many elements of level 1 , then $L=L^{1} \in \mathcal{P}$ and $\mathcal{P}^{\prime}=\mathcal{P}$. But when U_{1} is infinite, \mathcal{P}^{\prime} properly contains \mathcal{P}.

Theorem 4.4. \mathcal{P}^{\prime} is a subpseudolattice of \mathcal{T}, i.e., it is closed under intersection.
Proof. We have to show that $\left(L^{\ell} S\right) \cap\left(L^{n} T\right)$ lies in \mathcal{P}^{\prime} when S, T lie in \mathcal{P}. Say $\ell \leqq n$; then by the distributive law the above intersection is $L^{\ell}\left(S \cap L^{q} T\right)$ with $q=n-\ell \geqq 0$. We will show that $S \cap L^{q} T$ lies in \mathcal{P}. According to (1.4) we may write S as a product of factors $S(u) \in \mathcal{T}(u)\left(u \in U_{1}\right)$, and since S is a finite product of stalks, $S(u)=\{0\}$ for u outside a finite set $M \subseteq U_{1}$. Similarly T is a product of factors $T(u) \in \mathcal{T}(u)\left(u \in U_{1}\right)$, and $L=L^{1}$ may be considered a product (an infinite product when U_{1} is infinite) $\prod_{u \in U_{1}} L(u)$, where $L(u)$ is the unique stalk of level 1 in $\mathcal{T}(u)$. Then

$$
S \cap L^{q} T=\prod_{u \in M}\left(S(u) \cap L(u)^{q} T(u)\right)
$$

Each of the factors in the product lies in \mathcal{P} by the Corollary to Theorem 4.3, and therefore also the product.

Now L as well as stalks are lean, so that

$$
\mathcal{P} \subseteq \mathcal{P}^{\prime} \subseteq \mathcal{L} \subseteq \mathcal{T}
$$

An element

$$
\begin{equation*}
\underline{\underline{K}}=\ell K \oplus n K^{-} \tag{4.5}
\end{equation*}
$$

of \mathcal{K}_{0}, where K is a stalk of finite level $\lambda>0$ and where $\ell \geqq 1, \ell+n \geqq 2$, will be called a couple. When $\lambda>1, \underline{\underline{K}}$ is a sum of $\ell+n$ nonzero stalks, whereas for $\lambda=1$, $\underline{\underline{K}}=\ell K \oplus n K^{-}=\ell K$ has ℓ summands. In particular when $\ell=1, \underline{\underline{K}}=K$ will be called a degenerate couple; other couples are nondegenerate.

Say $K=K(t)$, so that K consists of $t=t_{\lambda} \rightarrow t_{\lambda-1} \rightarrow \cdots \rightarrow t_{1} \rightarrow t_{0}=\{0\}$. We have

$$
\tau_{\underline{\underline{K}}}(u)=\left\{\begin{array}{l}
0 \text { when } u \nsubseteq t \\
\ell \text { when } u=t, \\
\ell+n \text { when } u<t
\end{array}\right.
$$

and therefore

$$
\sigma_{\underline{\underline{K}}}(u)=\left\{\begin{array}{l}
(\ell+n) \lambda\left(u_{K}\right) \text { when } \lambda\left(u_{K}\right)<\lambda(t) \\
(\ell+n)(\lambda-1)+\ell \text { when } \lambda\left(u_{K}\right)=\lambda(t)
\end{array}\right.
$$

$\underline{\underline{K}}^{*}$ is the union of the fans

$$
F\left(t_{\nu},(\ell+n) \nu\right) \quad \text { with } \quad 0 \leqq \nu<\lambda
$$

and the fan

$$
F\left(t_{\lambda},(\ell+n)(\lambda-1)+\ell\right)
$$

Figure 2. $(p=5)$
5. Uniqueness of Factorization. In how far is the representation of a tree as a product of stalks unique? Put differently, in how far is the map $*$ from \mathcal{K} onto \mathcal{P} one-to-one? A partial answer is provided by the following

Proposition 5.1. Suppose U is of valence $\geqq p$, where the integer p is not necessarily a prime. Suppose K_{1}, \ldots, K_{m} and H_{1}, \ldots, H_{n} are nonzero stalks with

$$
\begin{equation*}
K_{1} \cdots K_{m}=H_{1} \cdots H_{n} \tag{5.1}
\end{equation*}
$$

Then unless $m \geqq p, n>p$ or $m>p, n \geqq p$, we have $m=n$ and $K_{i}=H_{i}$ $(i=1, \ldots, n)$ after suitable reordering. Put differently, we have $\underline{\underline{K}}=\underline{\underline{H}}$ with

$$
\begin{equation*}
\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}, \quad \underline{\underline{H}}=H_{1} \oplus \cdots \oplus H_{n} . \tag{5.2}
\end{equation*}
$$

In particular, products of fewer than p stalks have a unique factorization as a product of stalks. The bounds of the Proposition are best possible, as is seen from the following example. Let U be a tree of valence p (unique up to isomorphisms!). Let $t \in U_{1}$, so that $\lambda(t)=1$, and let t_{1}, \ldots, t_{p} be the elements of level 2 having $t_{i} \rightarrow t(i=1, \ldots, p)$. Then

$$
\begin{equation*}
K\left(t_{1}\right) \cdots K\left(t_{p}\right)=K(t)^{p+1} \tag{5.3}
\end{equation*}
$$

See Figure 2, where the underlying prime is $p=5$.
For both sides of (5.3) consist of $\{0\}$ and the vertices $u \geqq t$ with $\lambda(u) \leqq p+1$. Writing $\underline{\underline{K}}=K\left(t_{1}\right) \oplus \cdots \oplus K\left(t_{p}\right), \underline{\underline{H}}=(p+1) K(t)$, we have $\sigma_{\underline{\underline{K}}}(u)=\sigma_{\underline{\underline{H}}}(u)=0$ when $u \neq t$, and

$$
\sigma_{\underline{\underline{K}}}(u)=\left\{\begin{array}{l}
p \text { for } \quad u=t, \\
p+1 \quad \text { for } u>t,
\end{array} \quad \sigma_{\underline{\underline{H}}}(u)=p+1 \quad \text { for } u \geqq t\right.
$$

Proof of the Proposition. Let $\underline{\underline{K}}, \underline{\underline{H}}$ be given by (5.2). In view of Lemma 4.2, the relation (5.1) says that

$$
\begin{equation*}
\lambda(u) \leqq \sigma_{\underline{\underline{K}}}(u) \text { precisely when } \lambda(u) \leqq \sigma_{\underline{\underline{H}}}(u) \tag{5.4}
\end{equation*}
$$

We have to show that unless $m \geqq p, n>p$ or $m>p, n \geqq p$, we have identically

$$
\sigma_{\underline{\underline{K}}}(u)=\sigma_{\underline{\underline{H}}}(u) .
$$

If not, choose u of minimal level with $\sigma_{\underline{\underline{K}}}(u) \neq \sigma_{\underline{\underline{H}}}(u)$, say $\sigma_{\underline{\underline{K}}}(u)<\sigma_{\underline{\underline{H}}}(u)$. By (5.4) we have

$$
\begin{equation*}
\sigma_{\underline{\underline{K}}}(u)<\sigma_{\underline{\underline{H}}}(u)<\lambda(u) \tag{5.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda(u) \leqq \sigma_{\underline{\underline{K}}}(u)<\sigma_{\underline{\underline{H}}}(u) \tag{5.6}
\end{equation*}
$$

In the first case, $u \notin H_{1} \cup \cdots \cup H_{n}$, so that $\sigma_{\underline{\underline{H}}}\left(u^{-}\right)=\sigma_{\underline{\underline{H}}}(u)$, similarly $\sigma_{\underline{\underline{K}}}\left(u^{-}\right)=$ $\sigma_{\underline{\underline{K}}}(u)$, contradicting the minimality of u. In the second case, suppose at first that at least p stalks K_{i} contain u. Then $p \lambda(u) \leqq \sigma_{\underline{\underline{K}}}(u)<\sigma_{\underline{\underline{H}}}(u)$. On the other hand, $\sigma_{\underline{\underline{K}}}(u) \leqq m \lambda(u), \sigma_{\underline{\underline{H}}}(u) \leqq n \lambda(u)$, so that $m \geqq p, n>p$. We may therefore suppose that fewer than p stalks K_{i} contain u. Then there is a t with $t \rightarrow u$ which is constrained in no stalk K_{i}. Then every $s \geqq t$ has

$$
\sigma_{\underline{\underline{K}}}(s)=\sigma_{\underline{\underline{K}}}(u)<\sigma_{\underline{\underline{H}}}(u) .
$$

But $\sigma_{\underline{\underline{H}}}(u) \geqq \sigma_{\underline{\underline{K}}}(u)+1 \geqq \lambda(u)+1=\lambda(t)$ by (5.6). There is then an $s \geqq t$ with $\overline{\lambda(s)}=\sigma_{\underline{\underline{H}}}(u)$; and this s has $\sigma_{\underline{\underline{H}}}(s) \geqq \sigma_{\underline{\underline{H}}}(u)$. Thus $\sigma_{\underline{\underline{K}}}(s)<\lambda(s) \leqq \sigma_{\underline{\underline{H}}}(s)$, contradicting (5.4).

Now suppose that U has infinite valence. Then the map $*$ onto \mathcal{P} is injective, i.e., the presentation of a tree as a product of stalks (if possible at all) is unique. Also the presentation of elements of \mathcal{P}^{\prime} as $L^{\ell} K_{1} \cdots K_{m}$ is unique. For if $L^{\ell} K_{1} \cdots K_{m}=L^{g} H_{1} \cdots H_{n}$ and if, say $\ell \leqq g$, we may cancel by L^{ℓ}, so that $K_{1} \cdots K_{m}=L^{g-\ell} H_{1} \cdots H_{n}$. Here the left hand side has only finitely many elements of level 1 , hence so does the right hand side. Thus $\ell=g$ and $K_{1} \cdots K_{m}=H_{1} \cdots H_{n}$, so that again $m=n$ and $K_{i}=H_{i}(i=1, \ldots, n)$ after suitable ordering.
6. Poincaré Series. Let $T \subseteq U$ be a tree, and $\lambda>0$. We define $T(\lambda)$ to be the set of $u \in U$ such that $\alpha_{T}(u) \geqq \lambda$, but $\alpha_{T}(v) \geqq \lambda$ for no $v<u$. Then it is clear that the elements of $T(\lambda)$ are mutually incompatible. Since $\alpha_{T}\left(u^{-}\right)=\alpha_{T}(u)$ when $u \notin T$, it follows that $T(\lambda) \subseteq T$. When $t \in T_{\lambda}$, then because $\alpha_{T}(t) \geqq \lambda$, there is a $u \leqq t$ lying in $T(\lambda)$. But then $t \in F(u, \lambda)$; in fact $t \in F^{\prime}(u, \lambda)$ where $F^{\prime}(u, \lambda)$ consists of the "top" of $F(u, \lambda)$, i.e., its elements of level λ. Therefore

$$
\begin{equation*}
T_{\lambda}=\bigcup_{u \in T(\lambda)} F^{\prime}(u, \lambda) \tag{6.1}
\end{equation*}
$$

Since the elements of $T(\lambda)$ are incompatible, the union here is disjoint.
Suppose U is of finite valence p. Then $F^{\prime}(u, \lambda)$ has cardinality $p^{\lambda-\lambda(u)}$. Therefore the width of T at level λ, defined as the cardinality $\left|T_{\lambda}\right|$ of T_{λ}, has

$$
\begin{equation*}
\left|T_{\lambda}\right|=\sum_{u \in T(\lambda)} p^{\lambda-\lambda(u)} \tag{6.2}
\end{equation*}
$$

The Poincaré Series of T is the formal series

$$
\begin{equation*}
\mathfrak{P}_{T}(Z)=\sum_{\lambda=0}^{\infty}\left|T_{\lambda}\right| Z^{\lambda} \tag{6.3}
\end{equation*}
$$

More generally, suppose $T \subseteq U$ is a tree such that $T(\lambda)$ is finite for every λ. Inspired by (6.2), we define polynomials

$$
\begin{equation*}
P_{T \lambda}(z)=\sum_{u \in T(\lambda)} z^{\lambda-\lambda(u)} \quad(\lambda \geqq 0) \tag{6.4}
\end{equation*}
$$

and we define a General Poincaré Series

$$
\begin{equation*}
\mathfrak{P}_{T}(z, Z)=\sum_{\lambda=0}^{\infty} P_{T \lambda}(z) Z^{\lambda} \tag{6.5}
\end{equation*}
$$

S

T

Figure 3. $(p=3)$
this series lies in $\mathbb{Z}[z][[Z]]$. In the case when U is of finite valence p we have $\mathfrak{P}_{T}(Z)=\mathfrak{P}_{T}(p, Z)$. The example of Figure 3 with $p=3$ shows that it may happen that $\mathfrak{P}_{T}(Z)=\mathfrak{P}_{S}(Z)$ yet $\mathfrak{P}_{T}(z, Z) \neq \mathfrak{P}_{S}(z, Z)$, so that the General Poincaré Series encodes more information than the ordinary Poincaré Series.

Here $\mathfrak{P}_{S}(Z)=\mathfrak{P}_{T}(Z)=1+3 Z+3 Z^{2}$. But $S(1)=T(1)=\{0\}, S(2)=\left\{u_{2}\right\}$, $T(2)=\left\{w_{1}, w_{2}, w_{3}\right\}$, so that $\mathfrak{P}_{S}(z, Z)=1+z Z+z Z^{2}, \mathfrak{P}_{T}(z, Z)=1+z Z+3 Z^{2}$. Note that both S, T are products of stalks.

Theorem 6.1. Let $\underline{\underline{K}}$ be a stalk sum whose infinite stalks occur with multiplicities $c_{1}>0, \ldots, c_{\ell}>0$, and let C be the set of distinct numbers among c_{1}, \ldots, c_{ℓ}. Suppose

$$
\begin{equation*}
T=\underline{\underline{K}}^{*} L^{n} \tag{6.6}
\end{equation*}
$$

where $n \geqq 0$. Then the General Poincaré Series $\mathfrak{P}_{T}(z, Z)$ is rational, i.e., it lies in $\mathbb{Q}(z, Z)$, and its denominator divides

$$
\prod_{c \in C}\left(1-z^{c-1} Z^{c}\right)
$$

Therefore when U is of valence p, the Poincaré Series $\mathfrak{P}_{T}(Z)$ is a rational function whose denominator divides

$$
\prod_{c \in C}\left(1-p^{c-1} Z^{c}\right)
$$

Lemma 6.2. Suppose $T=T_{1} \cdots T_{\ell}$ and $S=T_{1} \cup \cdots \cup T_{\ell}$ where T_{1}, \ldots, T_{ℓ} are trees. Then

$$
\alpha_{T}(u)=\alpha_{T}\left(u_{S}\right)
$$

When $u \notin S$, or when $v \notin S$ for some $v \rightarrow u$, then

$$
\begin{equation*}
\alpha_{T}(u)=\sum_{i=1}^{\ell} \lambda\left(u_{T_{i}}\right) . \tag{6.7}
\end{equation*}
$$

Proof. Suppose $u \notin S$, so that $u \geqq v \rightarrow u_{S}$ with $v \notin S$. We have $u_{S} \in T$ and $\alpha_{T}\left(u_{S}\right) \geqq \sum_{i=1}^{\ell} \lambda\left(\left(u_{S}\right)_{T_{i}}\right)=\sum_{i=1}^{\ell} \lambda\left(u_{T_{i}}\right)$. On the other hand, when $t \geqq v$ we have $t \in T$ precisely when $\lambda(t) \leqq \sum_{i=1}^{\ell} \lambda\left(t_{T_{i}}\right)=\sum_{i=1}^{\ell} \lambda\left(u_{T_{i}}\right)$. Therefore $\alpha_{T}(u) \leqq$ $\alpha_{T}\left(u_{S}\right)$, and since the reversed inequality is trivial, our first assertion follows. Also (6.7) follows in this case.

When $u \in S$ but $v \rightarrow u$ with $v \notin S$, apply our arguments to v. We have $v_{S}=u$, therefore

$$
\alpha_{T}(u)=\alpha_{T}\left(v_{S}\right)=\sum_{i=1}^{\ell} \lambda\left(v_{T_{i}}\right)=\sum_{i=1}^{\ell} \lambda\left(u_{T_{i}}\right) .
$$

Lemma 6.3. Suppose $\underline{\underline{K}}$ is a sum of m stalks and T is given by (6.6). Then for every $u \in U$,

$$
\alpha_{T}(u) \leqq(\lambda(u)+1) m+n .
$$

Proof. Set $S=K_{1} \cup \cdots \cup K_{m} \cup L^{n}$ where K_{1}, \ldots, K_{m} are the summands of $\underline{\underline{K}}$. Since U is of valence $\geqq 2$, there is for every $u \in U$ a $u^{(1)} \rightarrow u$ such that $u^{(1)}$ lies in at most $m / 2$ of these stalks K_{1}, \ldots, K_{m}. There is a $u^{(2)} \rightarrow u^{(1)}$ lying in at most $m / 4$ of these stalks. Et cetera. Let ν be least such that $u^{(\nu)}$ lies in none of these m stalks. When u itself lies in none of the stalks, set $\nu=0, u^{(0)}=u$. Pick $w \geqq u^{(\nu)}$ with $\lambda(w)>n$. Then $w \notin S$, so that by (6.7),

$$
\alpha_{T}(w)=\sum_{i=1}^{m} \lambda\left(w_{K_{i}}\right)+\lambda\left(w_{L^{n}}\right) .
$$

Now at most $m / 2$ of the stalks K_{i} reach $u^{(1)}$, at most $m / 4$ reach $u^{(2)}$, and so on. Therefore

$$
\sum_{i=1}^{m} \lambda\left(w_{K_{i}}\right)<m \lambda(u)+(m / 2)+(m / 4)+\cdots=(\lambda(u)+1) m
$$

We obtain

$$
\alpha_{T}(u) \leqq \alpha_{T}(w)<(\lambda(u)+1) m+n .
$$

Proof of Theorem 6.1. Suppose

$$
\underline{\underline{K}}=c_{1} K_{1} \oplus \cdots \oplus c_{\ell} K_{\ell} \oplus d_{1} H_{1} \oplus \cdots \oplus d_{q} H_{q}
$$

where K_{1}, \ldots, K_{ℓ} are distinct infinite stalks and H_{1}, \ldots, H_{q} are distinct finite stalks. The total number of stalks counting multiplicities is $m=c_{1}+\cdots+c_{\ell}+d_{1}+$ $\cdots+d_{q}$. Choose λ_{1} so large that $\lambda_{1} \geqq \lambda\left(H_{i}\right)$ for $1 \leqq i \leqq q$ and $\lambda_{1} \geqq \lambda\left(K_{i} \cap K_{j}\right)$ for $1 \leqq i<j \leqq \ell$. Set

$$
\lambda_{2}=\left(\lambda_{1}+1\right) m+n .
$$

Now when $u \in T(\lambda)$ where $\lambda>\lambda_{2}$, then $\lambda(u)>\lambda_{1}$ by Lemma 6.3 , and u is contained in exactly one of K_{1}, \ldots, K_{ℓ}, but not in H_{1}, \ldots, H_{q} or L^{n}.

Let $u_{i, \mu}$ be the element of K_{i} of level μ where $\mu>\lambda_{1}$. Then since there is a $v \rightarrow u_{i, \mu}$ with v not in any of the K_{i}, the H_{i}, or L^{n}, there is a formula like (6.7) for $\alpha_{T}\left(u_{i, \mu}\right)$, and similarly for $u_{i, \mu+1}$. Since $u_{i, \mu+1}$ lies only on the summand K_{i} of $\underline{\underline{K}}$, and since this summand occurs with multiplicity c_{i}, we have $\alpha_{T}\left(u_{i, \mu+1}\right)-\alpha_{T}\left(u_{i, \mu}\right)=$ c_{i}. Therefore

$$
\alpha_{T}\left(u_{i, \mu}\right)=\mu c_{i}+g_{i} \quad\left(\mu>\lambda_{1}\right)
$$

where g_{i} is a nonnegative integer. Given $\lambda>\lambda_{2}$, we have $\alpha_{T}\left(u_{i, \mu}\right) \geqq \lambda$ precisely when $\mu c_{i}+g_{i} \geqq \lambda$, and the smallest μ with this property is $\mu(i, \lambda)=\left\lceil\left(\lambda-g_{i}\right) / c_{i}\right\rceil$
where, for any real number $x,\lceil x\rceil$ denotes the smallest integer greater than or equal to x. We may conclude that

$$
T(\lambda)=\left\{u_{1, \mu(1, \lambda)}, \ldots, u_{\ell, \mu(\ell, \lambda)}\right\} .
$$

$$
\begin{equation*}
P_{T \lambda}(z)=\sum_{i=1}^{\ell} z^{\lambda-\mu(i, \lambda)} \quad\left(\lambda>\lambda_{2}\right) . \tag{6.4}
\end{equation*}
$$

To finish the proof it will suffice to show that for each $i, 1 \leqq i \leqq \ell$, the series

$$
\sum_{\lambda>\lambda_{2}} z^{\lambda-\mu(i, \lambda)} Z^{\lambda}
$$

is rational with denominator $1-z^{c_{i}-1} Z^{c_{i}}$. We may as well do this with the sum over $\lambda>\lambda_{2}$ replaced by the sum over $\lambda>g_{i}$. Writing $\lambda=g_{i}+\rho+c_{i} \nu$ with $1 \leqq \rho \leqq c_{i}$ and $\nu \geqq 0$, we have $\mu(i, \lambda)=\nu+1$, and our sum becomes

$$
\begin{gathered}
\sum_{\rho=1}^{c_{i}} \sum_{\nu=0}^{\infty} z^{g_{i}+\rho+c_{i} \nu-\nu-1} Z^{g_{i}+\rho+c_{i} \nu} \\
=z^{g_{i}} Z^{g_{i}+1}\left(1+z Z+\cdots+(z Z)^{c_{i}-1}\right)\left(1-z^{c_{i}-1} Z^{c_{i}}\right)^{-1}
\end{gathered}
$$

Given a natural number q written as $q=\sum_{i=0}^{k} c_{i} p^{i}$ with $p>1$ and with digits c_{i} in $\{0,1, \ldots, p-1\}$, set

$$
\operatorname{dig}_{p}(q)=\sum_{i=0}^{k} c_{i}
$$

Proposition 6.4. When U is of finite valence $p, \underline{\underline{K}}$ is a stalk sum with m summands and T is the tree given by (6.6), then

$$
\operatorname{dig}_{p}\left|T_{\lambda}\right| \leqq m \quad(\lambda=0,1, \ldots)
$$

Proof. We have $T=S L^{n}$ with $S=\underline{\underline{K}}^{*}$. It is easily seen that $\alpha_{T}(u)=\alpha_{S}(u)+n$. Therefore by Lemma 6.2, $\alpha_{T}(u)=\overline{\alpha_{T}}\left(u^{-}\right)$unless $u \in K_{1} \cup \cdots \cup K_{m}$. Therefore $T(\lambda) \subseteq K_{1} \cup \cdots \cup K_{m}$, so that $|T(\lambda)| \leqq m$. So the sum in (6.2) has at most m summands. The assertion now follows from the fact that if a number $q=\sum_{i=0}^{k} c_{i} p^{i}$ with $c_{i} \geqq 0$, then $\operatorname{dig}_{p}(q) \leqq \sum_{i=0}^{k} c_{i}$.

For later use we will discuss an example. Suppose $0<a_{1}<\cdots<a_{m-1}$ are given integers. Let K_{m} be an infinite stalk and K_{i} for $1 \leqq i<m$ an infinite stalk with $\lambda\left(K_{i} \cap K_{m}\right)=a_{i}$. This is possible since U is of valence greater than 1. Set $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}$ and let T be the tree (6.6). When $u_{i, \mu} \in K_{i}$ of level $\mu>a_{m-1}+n$, then by Lemma 6.2,

$$
\begin{aligned}
\alpha_{T}\left(u_{i, \mu}\right) & =\sum_{j=1}^{m} \lambda\left(\left(u_{i, \mu}\right)_{K_{j}}\right)+\lambda\left(\left(u_{i, \mu}\right)_{L^{n}}\right) \\
& =a_{1}+\cdots+a_{i-1}+(m-i) a_{i}+\mu+n=\mu+b_{i}
\end{aligned}
$$

with $b_{i}=a_{1}+\cdots+a_{i-1}+(m-i) a_{i}+n$ (a term involving the non-existent a_{m} only appears for b_{m}). We have $b_{1}<\cdots<b_{m-1}=b_{m}$. Since each K_{i} occurs
with multiplicity $c_{i}=1$, the quantity $\mu(i, \lambda)$ of the proof of Theorem 6.1 has $\mu(i, \lambda)=\lambda-b_{i}$, so that $P_{\lambda}=P_{T \lambda}$ is given by

$$
\begin{equation*}
P_{\lambda}(z)=\sum_{i=1}^{m} z^{b_{i}} \tag{6.9}
\end{equation*}
$$

for large λ.
Now suppose that

$$
\begin{equation*}
0 \leqq n<a_{1}<\cdots<a_{m-1} \tag{6.10}
\end{equation*}
$$

It is then easily seen that $T(\lambda)=\{0\}$ when $\lambda \leqq n$, and $T(n+1)=\left\{u_{1}\right\}$, where u_{1} of level 1 is on $K_{1} \cap \cdots \cap K_{m}$. We used the fact that U is of valence >1. Therefore $P_{\lambda}=z^{\lambda}$ when $\lambda \leqq n$, but $P_{n+1}(z)=z^{n}$. Therefore the number n can be detected from the Poincaré series $\mathfrak{P}_{T}(z, Z)$, and then by (6.9), also b_{1}, \ldots, b_{m-1}, hence also a_{1}, \ldots, a_{m-1} can be detected. Put differently:

For different values of $n, a_{1}, \ldots, a_{m-1}$ with (6.10) we obtain different General Poincaré Series $\mathfrak{P}_{T}(z, Z)$. When U is of finite valence $p>1$, then in fact we obtain different Poincaré Series $\mathfrak{P}_{T}(Z)$.
7. Discriminants and Resultants. Let $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}$ be a stalk sum. Given such $\underline{\underline{K}}$, define its discriminant to be

$$
\delta(\underline{\underline{K}})=\sum_{\substack{1 \leq i, j \leq m \\ i \neq j}} \lambda\left(K_{i} \cap K_{j}\right)
$$

and given another stalk sum $\underline{\underline{H}}=H_{1} \oplus \cdots \oplus H_{n}$, define their resultant to be

$$
\rho(\underline{\underline{K}}, \underline{\underline{H}})=\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda\left(K_{i} \cap H_{j}\right)
$$

The discriminant is zero when $\underline{\underline{K}}=\underline{\underline{0}}$ or $m=1$, and the resultant is zero when $\underline{\underline{K}}=\underline{\underline{0}}$ or $\underline{\underline{H}}=\underline{\underline{0}}$. The discriminant is finite precisely when every infinite stalk appears in the stalk sum $\underline{\underline{K}}$ at most once, and the resultant is finite precisely when $\underline{\underline{K}}, \underline{\underline{H}}$ have no infinite stalk as a common summand. Note that the discriminant (when finite) is always even. We have

$$
\begin{gather*}
\delta(\underline{\underline{K}} \oplus \underline{\underline{H}})=\delta(\underline{\underline{K}})+\delta(\underline{\underline{H}})+2 \rho(\underline{\underline{K}}, \underline{\underline{H}}) \tag{7.1}\\
\rho\left(\underline{\underline{K}} \oplus \underline{\underline{K^{\prime}}}, \underline{\underline{H}}\right)=\rho(\underline{\underline{K}}, \underline{\underline{H}})+\rho\left(\underline{\underline{K^{\prime}}}, \underline{\underline{H}}\right) \tag{7.2}
\end{gather*}
$$

In the Introduction we defined isomorphisms of trees. Now two stalk sums $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}$ and $\underline{\underline{H}}=H_{1} \oplus \cdots \oplus H_{m}$ will be called isomorphic if after suitable ordering of the summands there is a bijection $\Psi: \bigcup_{i=1}^{m} K_{i} \rightarrow \bigcup_{i=1}^{m} H_{i}$ whose restriction to K_{i} is an isomorphism onto $H_{i}(i=1, \ldots, m)$. Clearly when the universal tree has some fixed valence and $\underline{\underline{K}}, \underline{\underline{H}}$ are isomorphic, we have an isomorphism of trees: $\underline{\underline{K}}^{*} \sim \underline{\underline{H}}^{*}$.

A stalk sum will be called a polynomial sum (the name being justified in section 11) if it is a sum of infinite stalks and of couples as defined in section 4. When $\underline{\underline{K}}, \underline{\underline{H}}$ are isomorphic and one is a polynomial sum, then so is the other.

Theorem 7.1. Given $m \geqq 1, \delta \geqq 1$, the number of isomorphism classes of polynomial sums with m nonzero summands and discriminant $\leqq \delta$ is

$$
\leqq c_{3}(m) \delta^{m-1}
$$

Except for the determination of $c_{3}(m)$ this bound is best possible.
Proof. Let

$$
\underline{\underline{K}}=H_{1} \oplus \cdots \oplus H_{p} \oplus J_{1} \oplus \cdots \oplus J_{q} \oplus \underline{\underline{K}}_{1} \oplus \cdots \oplus \underline{\underline{K}}_{k}
$$

be a polynomial sum where $H_{i}(1 \leqq i \leqq p)$ is an infinite stalk, $J_{i}(1 \leqq i \leqq q)$ is a stalk of level 1 (i.e., a degenerate couple) and $\underline{\underline{K}}_{i}(1 \leqq i \leqq k)$ is a nondegenerate couple, say $\underline{\underline{K}}_{i}=\ell_{i} K\left(a_{i}\right)+n_{i} K\left(a_{i}^{-}\right)$. Set

$$
H_{p+i}=J_{i}(1 \leqq i \leqq q), \quad H_{p+q+i}=K\left(a_{i}\right)(1 \leqq i \leqq k)
$$

The isomorphism class of $\underline{\underline{K}}$ depends only on p, q, k, on $\ell_{i}, n_{i}(1 \leqq i \leqq k)$ and on the isomorphism class of

$$
\underline{\underline{H}}=H_{1} \oplus \cdots \oplus H_{p} \oplus H_{p+1} \oplus \cdots \oplus H_{p+q} \oplus H_{p+q+1} \oplus \cdots \oplus H_{p+q+k}
$$

The isomorphism class of a single stalk H depends only on $\lambda(H)$. When H_{1}, \ldots, H_{i-1} are given, the isomorphism class of $H_{1} \oplus \cdots \oplus H_{i-1} \oplus H_{i}$ depends only on $\lambda\left(H_{i}\right)$ and on $H_{i} \cap\left(H_{1} \cup \cdots \cup H_{i-1}\right)$. This intersection is in fact a stalk of the type $H_{i} \cap H_{j_{i}}\left(1 \leqq j_{i} \leqq i-1\right)$ and is determined once we know j_{i} and the level $\lambda\left(H_{i} \cap H_{j_{i}}\right)$. Therefore the class of $\underline{\underline{H}}$ depends only on $j_{i}(2 \leqq i \leqq p+q+k)$, on

$$
\begin{equation*}
\lambda\left(H_{i} \cap H_{j_{i}}\right) \quad(2 \leqq i \leqq p+q+k) \tag{7.3}
\end{equation*}
$$

and on $\lambda\left(H_{p+q+i}\right)=\lambda\left(K\left(a_{i}\right)\right)(1 \leqq i \leqq k)$. This last level will be written as

$$
\begin{equation*}
\lambda\left(K\left(a_{i}\right) \cap K\left(a_{i}\right)\right) \quad \text { when } 1 \leqq i \leqq k \text { and } \ell_{i} \geqq 2 \tag{7.4}
\end{equation*}
$$

and as 1 plus

$$
\begin{equation*}
\lambda\left(K\left(a_{i}\right) \cap K\left(a_{i}^{-}\right)\right) \quad \text { when } 1 \leqq i \leqq k \text { and } \ell_{i}=1 \tag{7.5}
\end{equation*}
$$

When $\underline{\underline{K}}$ has m nonzero summands we have $p+q+2 k \leqq m$, since each $\underline{\underline{K}}_{i}$ has at least 2 summands. The number of choices for p, q, k, the $\ell_{i}, n_{i}(1 \leqq i \leqq \bar{k})$ and $j_{i}(2 \leqq i \leqq p+q+k)$ is under a bound $c_{4}(m)$. The quantities (7.3) and (7.4) (when $\ell_{i} \geqq 2$) and (7.5) (when $\ell_{i}=1$, so that $n_{i} \geqq 1$) are summands of $\delta(\underline{\underline{K}})$, hence are $\leqq \delta$. There are not more than $\delta+1$ choices for each of them. The number of quantities $(7.3),(7.4)$ and (7.5) is $(p+q+k-1)+k \leqq m-1$. Therefore the number of isomorphism classes is $\leqq c_{4}(m)(\delta+1)^{m-1} \leqq c_{3}(m) \delta^{m-1}$.

To show that our estimate is best possible, recall that the stalk sums $\underline{\underline{K}}$ constructed at the end of section 6 have distinct Poincaré series and therefore are non-isomorphic for different values of the parameters $0<a_{1}<\cdots<a_{m-1}$. We have

$$
\delta(\underline{\underline{K}})=2\left(a_{m-1}+2 a_{m-2}+\cdots+(m-1) a_{1}\right)
$$

For large δ, the number of possibilities for a_{1}, \ldots, a_{m-1} with $\delta(\underline{\underline{K}}) \leqq \delta$ is at least $c_{5}(m) \delta^{m-1}$.

We are going to finish this section with three lemmas which will be useful later on.

Lemma 7.2. Let $\underline{\underline{K}}, \underline{\underline{H}}$ be stalk sums. Then

$$
\begin{aligned}
\delta(\underline{\underline{K}}) & =\sum_{u \neq\{0\}} \tau_{\underline{\underline{K}}}(u)\left(\tau_{\underline{\underline{K}}}(u)-1\right), \\
\rho(\underline{\underline{K}}, \underline{\underline{H}}) & =\sum_{u \neq\{0\}} \tau_{\underline{\underline{K}}}(u) \tau_{\underline{\underline{H}}}(u) .
\end{aligned}
$$

Proof. When $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}$,

$$
\begin{aligned}
\delta(\underline{\underline{K}}) & =\sum_{i \neq j} \lambda\left(K_{i} \cap K_{j}\right)=\sum_{\substack{i \neq j}} \sum_{\substack{u \neq 0\} \\
u \in K_{i} \cap K_{j}}} 1 \\
& =\sum_{u \neq\{0\}} \sum_{\substack{i \neq j \\
u \in K_{i} \cap K_{j}}} 1=\sum_{u \neq\{0\}} \tau_{\underline{\underline{K}}}(u)\left(\tau_{\underline{\underline{K}}}(u)-1\right) .
\end{aligned}
$$

The second assertion is shown similarly.
Lemma 7.3. Let $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m} \in \mathcal{K}_{0}$. Then for every vertex u,

$$
\sigma_{\underline{\underline{K}}}(u)-\lambda(u) \leqq \frac{1}{2} \delta(\underline{\underline{K}})
$$

Proof. Consider the vertices $u_{K_{1}}, \ldots, u_{K_{m}}$ (following the definition of u_{T} in section $1)$. Set $\lambda_{j}=\lambda\left(u_{K_{j}}\right)(j=1, \ldots, m)$ and suppose that $\lambda_{1} \geqq \cdots \geqq \lambda_{m}$. We observe that

$$
\begin{gathered}
\sum_{\{0\}<t \leqq u} \tau_{\underline{\underline{K}}}(t)=\sum_{j=1}^{m} \sum_{\substack{\{0\}<t \leqq u \\
t \in K_{j}}} 1=\sum_{j=1}^{m} \lambda_{j}, \\
\sum_{\{0\}<t \leqq u} \tau_{\underline{\underline{K}}}^{2}(t)=\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{\substack{\{0\}<t \leqq u \\
t \in K_{i} \cap K_{j}}} 1=\sum_{i=1}^{m} \sum_{j=1}^{m} \min \left(\lambda_{i}, \lambda_{j}\right),
\end{gathered}
$$

so that by Lemma 7.2,

$$
\begin{aligned}
\delta(\underline{\underline{K}}) & \geqq \sum_{\{0\}<t \leqq u} \tau_{\underline{\underline{K}}}(t)\left(\tau_{\underline{\underline{K}}}(t)-1\right)=\sum_{i \neq j} \min \left(\lambda_{i}, \lambda_{j}\right) \\
& =2\left(\lambda_{2}+2 \lambda_{3}+\cdots+(m-1) \lambda_{m}\right) \geqq 2\left(\lambda_{2}+\cdots+\lambda_{m}\right)
\end{aligned}
$$

by our ordering of $\lambda_{2}, \ldots, \lambda_{m}$. On the other hand each $\lambda\left(u_{K_{i}}\right) \leqq \lambda(u)$, and therefore

$$
\sigma_{\underline{\underline{K}}}(u)-\lambda(u)=\sum_{i=1}^{m} \lambda\left(u_{K_{i}}\right)-\lambda(u) \leqq \lambda_{2}+\cdots+\lambda_{m} \leqq \frac{1}{2} \delta(\underline{\underline{K}}) .
$$

Lemma 7.4. Again let $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}$. Let u_{1}, \ldots, u_{ℓ} be mutually incompatible vertices of $K_{1} \cup \cdots \cup K_{m}$. Then

$$
\sum_{i=1}^{\ell}\left(\sigma_{\underline{\underline{K}}}\left(u_{i}\right)-\lambda\left(u_{i}\right)\right) \leqq \delta(\underline{\underline{K}})
$$

Proof. Since u_{i}, u_{j} with $i \neq j$ are incompatible, they cannot lie in the same stalk. We may therefore suppose without loss of generality that $u_{i} \in K_{i}(i=1, \ldots, \ell)$. We claim that

$$
\sigma_{\underline{\underline{K}}}\left(u_{i}\right)-\lambda\left(u_{i}\right) \leqq \sum_{j \neq i} \lambda\left(K_{i} \cap K_{j}\right) \quad(i=1, \ldots, \ell),
$$

and this will clearly imply the lemma. But

$$
\begin{aligned}
\sigma_{\underline{\underline{K}}}\left(u_{i}\right) & =\sum_{\{0\}<t \leqq u_{i}} \tau_{\underline{\underline{K}}}(t)=\sum_{\{0\}<t \leqq u_{i}} \sum_{K_{j} \ni t} 1 \\
& =\sum_{j=1}^{m} \sum_{\substack{\{0\}<t \leqq u_{i} \\
t \in K_{j}}} 1 \leqq \lambda\left(u_{i}\right)+\sum_{j \neq i} \lambda\left(K_{i} \cap K_{j}\right) .
\end{aligned}
$$

8. The Width. We called the cardinality $\left|T_{\lambda}\right|$ the width of T at level λ. The total width $w(T)$ is the maximum of $\left|T_{\lambda}\right|$ over $\lambda=0,1, \ldots$. These widths need not be finite.

Theorem 8.1. Let U be a universal tree of finite valence p, where p is not necessarily a prime. Let $\underline{\underline{K}}$ be a stalk sum with $m \geqq 1$ summands and with finite discriminant δ. Then

$$
\begin{equation*}
w\left(\underline{\underline{K}}^{*}\right) \leqq 2 p^{\delta / 2}+m-2 \tag{8.1}
\end{equation*}
$$

This estimate is best possible for every $p \geqq m$ and every even δ.
In the context of polynomials, the Theorem is due to Stewart [2, (38)]. In fact all the assertions of Stewart's Theorem 2 could be derived in the present context.

Proof. Set $T=\underline{\underline{K}}^{*}$ and $\sigma=\sigma_{\underline{\underline{K}}}$. Then by Lemma 4.1, $u \in T$ precisely if $\lambda(u) \leqq$ $\sigma(u)$. Similarly we have $u \in T$ precisely when $\lambda(u) \leqq \alpha_{T}(u)$. In complete analogy to our procedure in section 6 , we define $T T(\lambda)$ to be the set of $u \in U$ such that $\sigma(u) \geqq \lambda$ but $\sigma(v) \geqq \lambda$ for no $v<u$. In analogy to (6.1) we have

$$
\begin{equation*}
T_{\lambda}=\bigcup_{u \in T T(\lambda)} F^{\prime}(u, \lambda) \tag{8.2}
\end{equation*}
$$

where the union is disjoint. From this we obtain

$$
\begin{equation*}
\left|T_{\lambda}\right|=\sum_{u \in T T(\lambda)} p^{\lambda-\lambda(u)}, \tag{8.3}
\end{equation*}
$$

which is analogous to (6.2). Thus if $T T(\lambda)=\left\{u_{1}, \ldots, u_{\ell}\right\}$ and $\omega_{i}=\lambda-\lambda\left(u_{i}\right)$ $(i=1, \ldots, \ell)$, we have

$$
\begin{equation*}
\left|T_{\lambda}\right|=\sum_{i=1}^{\ell} p^{\omega_{i}} \tag{8.4}
\end{equation*}
$$

We observe that in view of $\omega_{i} \leqq \sigma\left(u_{i}\right)-\lambda\left(u_{i}\right)$,
(i) $\omega_{i} \leqq \delta / 2$ by Lemma 7.3 ,
(ii) $\sum_{i=1}^{\ell} \omega_{i} \leqq \delta$ by Lemma 7.4,
(iii) $\ell \leqq m$, since u_{1}, \ldots, u_{ℓ} are incompatible elements of $K_{1} \cup \cdots \cup K_{m}$.

Figure 4

Since $p^{\omega+1}+p^{\psi-1}>p^{\omega}+p^{\psi}$ when $\omega \geq \psi$, it is clear that if, say, $\omega_{1} \geqq \cdots \geqq \omega_{\ell}$, the maximum of the sum in (8.4) is taken when $\ell=m$ and $\omega_{1}=\omega_{2}=\delta / 2$ and $\omega_{3}=\cdots=\omega_{\ell}=0$, so that indeed $\left|T_{\lambda}\right| \leqq 2 p^{\delta / 2}+m-2$ for each λ, whence (8.1).

That (8.1) is best possible is seen from the example illustrated in Figure 4.
We have infinite stalks K_{1}, \ldots, K_{m} with $\lambda\left(K_{1} \cap K_{2}\right)=\delta / 2$ and $\lambda\left(K_{i} \cap K_{j}\right)=0$ when $i \neq j$ and $\{i, j\} \neq\{1,2\}$. For $\lambda=\delta+\nu$ the set $T T(\lambda)$ (with $T=K_{1} \cdots K_{m}$) is given by $T T(\lambda)=\left\{u_{1}, \ldots, u_{m}\right\}$, where u_{1}, u_{2} on K_{1}, K_{2} have level $\delta / 2+\nu$ while u_{3}, \ldots, u_{m} on K_{3}, \ldots, K_{m} have level $\delta+\nu$. Therefore $\omega_{1}=\omega_{2}=\delta / 2$ and $\omega_{3}=\cdots=\omega_{m}=0$.

A further theorem on widths will be given in section 15.

II. Polynomial Trees

9. Polynomial Trees in a Discrete Valuation Ring. The diagram of the Introduction could have been written as

$$
\{0\}=\mathbb{Z}_{p} / p^{0} \mathbb{Z}_{p} \stackrel{\Phi_{1}}{\longleftarrow} \mathbb{Z}_{p} / p \mathbb{Z}_{p} \stackrel{\Phi_{2}}{\leftarrow} \mathbb{Z}_{p} / p^{2} \mathbb{Z}_{p} \longleftarrow \cdots
$$

More generally, let R be a discrete valuation ring with maximal ideal \mathfrak{p}, and consider

$$
\{0\}=R / \mathfrak{p}^{0} R \stackrel{\Phi_{1}}{\leftrightarrows} R / \mathfrak{p} R \stackrel{\Phi_{2}}{\rightleftarrows} R / \mathfrak{p}^{2} R \longleftarrow \cdots
$$

where the Φ_{λ} are the natural homomorphisms. We obtain a tree $U=U(R)$ whose vertices are the elements of $R / \mathfrak{p}^{\lambda} R$ for $\lambda=0,1, \ldots$, and the directed edges are $u \rightarrow v$ where $\Phi_{\lambda}(u)=v$ for some λ. Given $x \in R$, we write x_{λ} for the image of x under the natural homomorphism $R \rightarrow R / \mathfrak{p}^{\lambda} R$.

When $f \in R[X]$ we define $T(f)$ to consist of elements x_{λ} where $x \in R, \lambda \geqq 0$ and $(f(x))_{\lambda}=0_{\lambda}$, i.e., $f(x) \equiv 0\left(\bmod \mathfrak{p}^{\lambda}\right)$. Then $T(f)$ is a subtree of $U(R)$. Again (2) holds, i.e.,

$$
\begin{equation*}
T(f g)=T(f) T(g) \tag{9.1}
\end{equation*}
$$

for polynomials f, g. Now if I is an ideal in $R[X]$, we let $T(I)$ be the intersection of the trees $T(f)$ with $f \in I$. Then $T(I)$ is again a tree. Clearly

$$
\begin{equation*}
T(I+J)=T(I) \cap T(J) \tag{9.2}
\end{equation*}
$$

On the other hand, if $I=\left(f_{1}\right)+\cdots+\left(f_{m}\right)$ (a sum of principal ideals) and $J=\left(g_{1}\right)+\cdots+\left(g_{\ell}\right)$, so that $I J=\sum_{i} \sum_{j}\left(f_{i}\right)\left(g_{j}\right)$, then

$$
\begin{aligned}
T(I J) & =\bigcap_{i} T\left(f_{i} g_{j}\right)=\bigcap_{i} \bigcap_{j} T\left(f_{i}\right) T\left(g_{j}\right) \\
& =\left(\bigcap_{i} T\left(f_{i}\right)\right)\left(\bigcap_{j} T\left(g_{j}\right)\right)=T(I) T(J)
\end{aligned}
$$

by repeated application of the distributive law (1.3). Thus

$$
\begin{equation*}
T(I J)=T(I) T(J) \tag{9.3}
\end{equation*}
$$

The ideals I of $R[X]$ form a pseudolattice \mathcal{J} under product (\cdot) and sum (+). In view of (9.2), (9.3), the map $I \rightarrow T(I)$ gives a homomorphism from \mathcal{J} into the pseudolattice \mathcal{T} of subtrees of $U(R)$, with \mathcal{T} having the binary operations of product (\cdot) and intersection (\cap).

We will be most interested in two types of discrete valuation rings R. The first is $R=\mathbb{Z}_{p}$, already discussed in the Introduction. The other is the power series ring $R=k[[\mathcal{X}]]$ where k is a field. In this case $\mathfrak{p}=(\mathcal{X})$ and the residue class field is k. When k is of finite cardinality q (a prime power), then $U(R)$ is of finite valence q. When k is infinite, $U(R)$ is of infinite valence. $R / \mathfrak{p}^{\lambda}$ consists of polynomials $t(\mathcal{X}) \in k[\mathcal{X}]$ modulo \mathfrak{p}^{λ}, hence is a vector space of dimension λ over k. Its elements are uniquely represented by polynomials of degree $<\lambda$. Given $f(X) \in R[X]=k[[\mathcal{X}]][X]$, say $f(X)=f(\mathcal{X}, X)$, the elements of $T(f)$ of level λ are represented by polynomials $t(\mathcal{X})$ of degree $<\lambda$ with

$$
f(\mathcal{X}, t(\mathcal{X})) \equiv 0\left(\bmod \mathcal{X}^{\lambda}\right) .
$$

10. A Generalized Theorem B. Let $|\cdot|$ be the absolute value on R given by $|x|=2^{-\operatorname{ord}(x)}$ where ord is the valuation on R. We will suppose from now on that R is complete under this absolute value, i.e., that every Cauchy sequence has a limit in R. The following theorem is a generalization of Theorem B.

Theorem 10.1. The set of trees $T(I)$ where I runs through the ideals of $R[X]$ is identical with \mathcal{P}^{\prime}, i.e., the set of trees consisting of U and of products $L^{n} K_{1} \cdots K_{m}$ where $n \geqq 0$ and K_{1}, \ldots, K_{m} are stalks.

In this section we will prove the easy half of this theorem, namely that U and products $L^{n} K_{1} \cdots K_{m}$ are of the type $T(I)$. To begin with, $U=T(0)$ and $L^{0}=$ $T(1)$ where 0,1 stand for the constant polynomials equal to 0,1 . By (9.3) it will now suffice to show that L and any stalk K is of the type $T(I)$. Now when π is a generator of the ideal \mathfrak{p}, then the constant polynomial $f(X)=\pi$ clearly has $T(\pi)=L$. Hence L is indeed of the type $T(I)$.

By our hypothesis that R be complete there is a $1-1$ correspondence between elements y of R and infinite stalks, such that y corresponds to the stalk K with vertices $y_{\lambda}\left(\lambda \in \mathbb{Z}_{\geqq 0}\right)$. The polynomial $f(X)=X-y$ has $(f(x))_{\lambda}=x_{\lambda}-y_{\lambda}=0$ in $R / \mathfrak{p}^{\lambda}$ precisely when $x_{\lambda}=y_{\lambda}$, and therefore $T(f)=K$. Thus every infinite stalk is of the type $T(I)$ with a principal ideal I. Every finite stalk K may be expressed
as $K=K_{1} \cap K_{2}$ where K_{1}, K_{2} are infinite stalks. (Here we used that $U(R)$ is of valence $\geqq 2$.) So if $K_{1}=T\left(f_{1}\right), K_{2}=T\left(f_{2}\right)$ and $I=\left(f_{1}\right)+\left(f_{2}\right)$, we have

$$
K=K_{1} \cap K_{2}=T\left(f_{1}\right) \cap T\left(f_{2}\right)=T(I)
$$

by (9.2).
11. Proof of Theorem B. We will prove Theorem 10.1. It remains for us to show that every nonzero ideal I has $T(I)$ of the type $L^{n} K_{1} \cdots K_{m}$. Since $T(I+J)=$ $T(I) \cap T(J)$ and since \mathcal{P}^{\prime} is closed under intersection by Theorem 4.4, it will suffice to show that $T(f)$ is of the type $L^{n} K_{1} \cdots K_{m}$ for every polynomial $f \neq 0$ in $R[X]$. Such a polynomial may be written as $f=\pi^{n} f_{0}$ with $n \geqq 0$ and f_{0} a primitive polynomial, i.e,. a polynomial whose coefficients are not all divisible by π. Since $T(\pi)=L$, we may concentrate on primitive polynomials.
Proposition 11.1. When f is a primitive polynomial, there is a polynomial sum $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}$ such that

$$
\begin{equation*}
T(f)=\underline{\underline{K}}^{*}=K_{1} \cdots K_{m} \tag{11.1}
\end{equation*}
$$

When R has the property that there are irreducible polynomials of arbitrary degree in $\bar{F}[X]$ where \bar{F} is the residue class field (e.g., when this field is finite, e.g., when $R=$ \mathbb{Z}_{p}), then conversely for every polynomial sum $\underline{\underline{K}}$ there is a primitive polynomial f with (11.1).

The concept of a polynomial sum had been introduced in section 4; our present proposition justifies the terminology. A primitive polynomial may be written as a product of primitive polynomials which are irreducible over the quotient field F of R. Hence it will be enough to establish
Proposition 11.2. When f is a primitive irreducible polynomial, then $T(f)$ is L^{0}, or an infinite stalk, or $\underline{\underline{K}}^{*}$ where $\underline{\underline{K}}$ is a couple.

Conversely, there are primitive irreducible polynomials f with $T(f)=L^{0}$ or $T(f)=K$ where K is a given infinite stalk. When R has the property enunciated in Proposition 11.1 and when $\underline{\underline{K}}$ is a couple, there are primitive irreducible polynomials f with $T(f)=\underline{\underline{K}}^{*}$.
Proof. A primitive polynomial f of degree zero is a constant not divisible by π, and then $T(f)=L^{0}$. When f is primitive and irreducible of degree $d>0$, then f factors as $c\left(X-\xi_{1}\right) \cdots\left(X-\xi_{d}\right)$ in its splitting field N. The absolute value || on F can uniquely be extended to N, and then $\left|\xi_{1}\right|=\cdots=\left|\xi_{d}\right|$ (see [1, Chapter XII, Proposition 2.5]).

Assume at first that this common absolute value is >1. Then since $|x| \leqq 1$ for $x \in R$, we have $\left|x-\xi_{i}\right|=\left|\xi_{i}\right|$ and $|f(x)|=|c|\left|\xi_{1}\right| \cdots\left|\xi_{d}\right|=\left|c^{\prime}\right|$, where c^{\prime} is the constant term of f. Since f is primitive, it may be deduced that $\left|c^{\prime}\right|=1$, so that $|f(x)|=1$ and $(f(x))_{\lambda} \neq 0_{\lambda}$ for $\lambda>0$. Therefore $T(f)=L^{0}$.

Next suppose that the common absolute value is $\leqq 1$. Let us first consider the case when f is of degree $d=1$. We have $f(X)=c(X-y)$ with $y \in R,|c|=1$. Then $T(f)=T(X-y)$ is the infinite stalk K with vertices y_{λ} where $\lambda \in \mathbb{Z}_{\geqq 0}$. Suppose, then, that $d>1$. Again we write $f(X)=c\left(X-\xi_{1}\right) \cdots\left(X-\xi_{d}\right)$, where ξ_{1}, \ldots, ξ_{d} lie in the splitting field N of f over F, with F the quotient field of R. We have $|c|=1$ by primitivity. Let F^{\prime} be the field $F^{\prime}=F(\xi)$ with $\xi=\xi_{1}$. Then $\left[F^{\prime}: F\right]=d=\underline{e} \underline{f}$, where \underline{e} is the ramification index and \underline{f} the degree of the residue class field extension.

Choose $y \in R$ with $|y-\xi|$ minimal - this is possible by the completeness of R. We have

$$
\begin{equation*}
|x-\xi| \geqq|y-\xi| \tag{11.2}
\end{equation*}
$$

for every $x \in R$. Say

$$
\begin{equation*}
|y-\xi|=2^{-h / \underline{e}} \tag{11.3}
\end{equation*}
$$

with h a nonnegative integer. Pick $\lambda \in \mathbb{Z}$ with

$$
\begin{equation*}
\lambda-1<h / \underline{e} \leqq \lambda \tag{11.4}
\end{equation*}
$$

and let K be the stalk $K=K\left(y_{\lambda}\right)$.
Again for $x \in R$, let x_{μ} be its image in R / \mathfrak{p}^{μ}. Let ν be largest integer with $x_{\nu}=y_{\nu}$; then $|x-y|=2^{-\nu}$. When $\nu<\lambda$, then $|x-y|>|y-\xi|$ and $|x-\xi|=2^{-\nu}$. Since the absolute value is the same for conjugates over F, we have $\left|x-\xi_{i}\right|=2^{-\nu}$ $(i=1, \ldots, d)$ and $|f(x)|=2^{-d \nu}$. Therefore $x_{\mu} \in T(f)$ precisely when $\mu \leqq \nu d$. Therefore when $0<\nu<\lambda$, the fan $F\left(y_{\nu}, d \nu\right) \subseteq T(f)$. When $\nu \geqq \lambda$, then $|x-y| \leqq$ $2^{-\lambda} \leqq 2^{-h / e}$; hence $|x-\xi| \leqq 2^{-h / e}$, so that $|x-\xi|=2^{-h / e}$ by (11.2). Therefore $|f(x)|=2^{-d h / \underline{e}}=2^{-h \underline{f}}$. Thus $x_{\mu} \in T(f)$ precisely when $\mu \leqq h \underline{f}$. In particular, the fan $F\left(y_{\lambda}, h \underline{f}\right) \subseteq T(f)$. It is easily checked that

$$
\begin{equation*}
h \underline{f}=(\lambda-1) d+\ell \quad \text { with } \quad 1 \leqq \ell \leqq d . \tag{11.5}
\end{equation*}
$$

We may conclude that $T(f)$ is the union of the fans

$$
F\left(y_{\nu}, d \nu\right) \quad(0 \leqq \nu<\lambda)
$$

and

$$
F\left(y_{\lambda},(\lambda-1) d+\ell\right) .
$$

When $\lambda=0$, then $h=0, \ell=d$ and $T(f)=L^{0}$. When $\lambda>0$, the discussion at the end of section 4 shows that $T(f)=\underline{\underline{K}}^{*}$, where $\underline{\underline{K}}$ is the couple $\underline{\underline{K}}=\ell K\left(y_{\lambda}\right)+n K\left(y_{\lambda}^{-}\right)$ with $n=d-\ell$. When $\lambda=\ell=1$, then $\underline{\underline{K}}=\overline{\bar{K}\left(y_{1}\right) \text { is degenerate, i.e., a single stalk }}$ of level 1 .

Note that when $h / \underline{e} \in \mathbb{Z}$, so that $\lambda=h / \underline{e}$, we have $h \underline{f}=\lambda d$; therefore $\ell=d$, and $T(f)$ is $K\left(y_{\lambda}\right)^{d}$. In general, we should ideally represent $T(f)$ as the d-th power of a stalk of level h / \underline{e}, but this is not possible when $h / \underline{e} \notin \mathbb{Z}$. However, $T(f)$ is $K\left(y_{\lambda}\right)^{\ell} K\left(y_{\lambda-1}\right)^{n}$, and here the "mean level" of the factors is

$$
d^{-1}(\ell \lambda+n(\lambda-1))=d^{-1}((\lambda-1) d+\ell)=d^{-1} h \underline{f}=h / \underline{e}
$$

by (11.5).
For the converse we may clearly restrict ourselves to the assertion on couples. Say $\underline{\underline{K}}=\ell K\left(y_{\lambda}\right)+n K\left(y_{\lambda}^{-}\right)$where $y \in R$. When $\underline{\underline{K}}$ is degenerate we set $n=1$, so that always $d=\ell+n \geqq 2$. Suppose at first that $n>0$. Set $\underline{e}=d, \underline{f}=1, h=(\lambda-1) d+\ell$, so that (11.4), (11.5) hold, and $h / \underline{e} \notin \mathbb{Z}$. Let $F^{\prime}=F\left(\pi^{\prime}\right)$ be the totally ramified extension of F with $\left(\pi^{\prime}\right)^{e}=\pi$. We have $F^{\prime}=F\left(\pi^{\prime h}+r \pi^{\prime h+1}\right.$) for suitable $r \in R$ (see the argument in [1, chapter VII, §6]). Then $\xi=\pi^{\prime h}+r \pi^{\prime h+1}+y$ has $|\xi-y|=2^{-h / e}$, and every $x \in R$ has $|x-y| \neq|\xi-y|$; therefore $|\xi-x|=|\xi-y-(x-y)| \geqq 2^{-h / e}$, so that (11.2), (11.3) hold. We take f to be the defining polynomial of ξ over F.

In the case when $n=0$, let $d=\ell$ and set $\underline{e}=1, \underline{f}=d, h=\lambda$, so that again (11.4), (11.5) hold. Let $\bar{g}(X)$ be a monic irreducible polynomial of degree d with coefficients in the residue class field \bar{F} of R - such a polynomial exists by hypothesis. \bar{g} lifts to an irreducible polynomial g in $R[X]$. Let $F^{\prime}=F(\eta)$ where η
is a root of g, so that $F^{\prime} \supset F$ is unramified and of degree d. Note that $|\eta|=1$ and set $\xi=\pi^{\lambda} \eta+y$, so that $|\xi-y|=\left|\pi^{\lambda} \eta\right|=2^{-\lambda}$. When $x \in R$, write $x-y=\pi^{\rho} \zeta$ with $|\zeta|=1$. Then $|\xi-x|=\left|\pi^{\lambda} \eta-\pi^{\rho} \zeta\right| \geqq 2^{-\lambda}$, since either $\lambda \neq \rho$, or $\lambda=\rho$ and $\pi^{\lambda} \eta-\pi^{\rho} \zeta=\pi^{\lambda}(\eta-\zeta)$ and $|\eta-\zeta|=1$, since η, ζ have different images in the residue class field $\overline{F(\eta)}$. Therefore (11.2), (11.3) hold. We take f to be the defining polynomial of ξ over F.

We have given a canonical procedure to associate with every primitive irreducible polynomial f a polynomial sum $\underline{\underline{K}} \underline{\underline{K}}(f)$ with $T(f)=\underline{\underline{K}}(f)^{*}$. Therefore we can associate in a canonical way a sum $\underline{\underline{K}}=\underline{\underline{K}}(f)$ with every primitive polynomial f in such a way that

$$
\begin{equation*}
\underline{\underline{K}}\left(f_{1} f_{2}\right)=\underline{\underline{K}}\left(f_{1}\right) \oplus \underline{\underline{K}}\left(f_{2}\right) \tag{11.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T(f)=\underline{\underline{K}}(f)^{*} \tag{11.7}
\end{equation*}
$$

by (9.1). The number m of summands of $\underline{\underline{K}}(f)$ has

$$
\begin{equation*}
m \leqq d \tag{11.8}
\end{equation*}
$$

where $d=\operatorname{deg} f$.
12. Discriminants and Resultants of Polynomials. Given a nonconstant polynomial $f \in R[X]$, let $D(f)$ be its discriminant when $\operatorname{deg} f>1$, and $D(f)=1$ when $\operatorname{deg} f=1$. Given nonconstant polynomials $f, g \in R[X]$, let $R(f, g)$ be their resultant. It is easily checked that for nonconstant polynomials f_{1}, f_{2}, g,

$$
D\left(f_{1} f_{2}\right)=D\left(f_{1}\right) D\left(f_{2}\right) R\left(f_{1}, f_{2}\right)^{2}, \quad R\left(f_{1} f_{2}, g\right)=R\left(f_{1}, g\right) R\left(f_{2}, g\right)
$$

Thus the quantities $\delta(f)=\operatorname{ord} D(f), \rho(f, g)=\operatorname{ord} R(f, g)$ have

$$
\begin{gather*}
\delta\left(f_{1} f_{2}\right)=\delta\left(f_{1}\right)+\delta\left(f_{2}\right)+2 \rho\left(f_{1}, f_{2}\right) \tag{12.1}\\
\rho\left(f_{1} f_{2}, g\right)=\rho\left(f_{1}, g\right)+\rho\left(f_{2}, g\right) \tag{12.2}
\end{gather*}
$$

where some of these may be $+\infty$.
Proposition 12.1. Let f, g in $R[X]$ be primitive and nonconstant. Then

$$
\begin{gather*}
\delta(\underline{\underline{K}}(f)) \leqq \delta(f), \tag{12.3}\\
\rho(\underline{\underline{K}}(f), \underline{\underline{K}}(g)) \leqq \rho(f, g) . \tag{12.4}
\end{gather*}
$$

Proof. In view of the relations (7.1), (7.2) for stalk sums and the corresponding relations (12.1), (12.2) for polynomials, and in view of (11.6), we may restrict ourselves to polynomials f, g which are primitive and irreducible (over the quotient field F of R).

We begin with (12.3). When f is of degree 1 , then $\underline{\underline{K}}(f)$ has at most one summand, so that $\delta(\underline{\underline{K}}(f))=0$ and (12.3) is true. When $\operatorname{deg} f>1$ and the roots of f have absolute value >1, then $\underline{\underline{K}}=\underline{\underline{0}}$ and again $\delta(\underline{\underline{K}}(f))=0$. We are left with the case when f is of degree $d>1$ and its roots ξ_{1}, \ldots, ξ_{d} have common absolute value $\leqq 1$. With suitable $y \in R$ we have (11.3), so that

$$
\begin{equation*}
\left|y-\xi_{i}\right|=2^{-h / \underline{e}} \quad(i=1, \ldots, d) \tag{12.5}
\end{equation*}
$$

Then $\underline{\underline{K}}(f)=\ell K\left(y_{\lambda}\right)+n K\left(y_{\lambda}^{-}\right)$with $\ell+n=d$. Therefore

$$
\begin{aligned}
\delta(\underline{\underline{K}}(f)) & =\ell(\ell-1) \lambda+n(n-1)(\lambda-1)+2 \ln (\lambda-1) \\
& =(d-1)((\lambda-1) d+\ell)-\ell(d-\ell) \\
& \leqq(d-1)((\lambda-1) d+\ell)=(d-1) h \underline{f}
\end{aligned}
$$

by (11.5). On the other hand, $\left|\xi_{i}-\xi_{j}\right| \leqq 2^{-h / e}$ by (12.5), and the leading coefficient of f has modulus 1 , so that

$$
\delta(f)=\operatorname{ord} D(f) \geqq d(d-1) h / \underline{e}=(d-1) h \underline{f} .
$$

Now (12.3) follows.
As for (12.4), write

$$
f(X)=c\left(X-\xi_{1}\right) \cdots\left(X-\xi_{d}\right), \quad g(X)=c^{\prime}\left(X-\eta_{1}\right) \cdots\left(X-\eta_{d^{\prime}}\right)
$$

in a suitable field extension. We note that $\underline{\underline{K}}(f)=\underline{\underline{0}}$ or $\underline{\underline{K}}(g)=\underline{\underline{0}}$ if the roots ξ_{i} of f or the roots η_{j} of g have absolute value >1. Then $\rho(\underline{\underline{K}}(f), \underline{\underline{K}}(g))=0$ and we are done. We suppose, then, that the roots of f as well as of g have absolute values $\leqq 1$. We assume initially that $d>1, d^{\prime}>1$. We have (12.5) and similarly $\left|y^{\prime}-\eta_{j}\right|=2^{-h^{\prime} / \underline{e}^{\prime}}\left(1 \leqq j \leqq d^{\prime}\right)$ for suitable y, y^{\prime} in R. Further, $\underline{\underline{K}}(f)=\ell K+n K^{-}$, $\underline{\underline{K}}(g)=\ell^{\prime} K^{\prime}+n^{\prime} K^{\prime-}$ with $K=K\left(y_{\lambda}\right), K^{\prime}=K\left(y_{\mu}^{\prime}\right)$ for suitable λ, μ.

Suppose at first that $K \cap K^{\prime}$ is properly contained in K as well as in K^{\prime}. Then $\lambda\left(K \cap K^{\prime}\right)=\lambda\left(K^{-} \cap K^{\prime}\right)=\lambda\left(K \cap K^{\prime-}\right)=\lambda\left(K^{-} \cap K^{\prime-}\right)=\nu$, say, where $\nu<$ $\min (\lambda, \mu)$. We have $\rho(\underline{\underline{K}}(f), \underline{\underline{K}}(g))=d d^{\prime} \nu$. On the other hand $\left|y-y^{\prime}\right|=2^{-\nu}$, and since $\nu \leqq \lambda-1<h / \underline{e}$ by (11.4), similarly $\nu<h^{\prime} / \underline{e}^{\prime}$, we have $\left|\xi_{i}-\eta_{j}\right|=\left|y-y^{\prime}\right|=2^{-\nu}$ ($1 \leqq i \leqq d, 1 \leqq j \leqq d^{\prime}$), so that $\rho(f, g)=d d^{\prime} \nu$, and (12.4) holds with equality.

We now suppose that $K \cap K^{\prime}$ is not properly contained in both K and K^{\prime}; say $K \cap K^{\prime}=K$, so that $K \subseteq K^{\prime}$; therefore $\lambda \leqq \mu$. We have $\lambda\left(K \cap K^{\prime}\right)=\lambda$, $\lambda\left(K \cap K^{\prime-}\right) \leqq \lambda$, and $\lambda\left(K^{-} \cap K^{\prime}\right)=\lambda\left(K^{-} \cap K^{\prime-}\right)=\lambda-1$; therefore

$$
\rho(\underline{\underline{K}}(f), \underline{\underline{K}}(g)) \leqq \ell d^{\prime} \lambda+n d^{\prime}(\lambda-1)=d^{\prime}(d \lambda-n) .
$$

When $\lambda<\mu$ we have $h / \underline{e} \leqq \lambda \leqq \mu-1<h^{\prime} / \underline{e}^{\prime}$, and when $\lambda=\mu$, so that $K=K^{\prime}$, we may suppose without loss of generality that $h / \underline{e} \leqq h^{\prime} / \underline{e}^{\prime}$. The infinite chains corresponding to y, y^{\prime} both contain K, and therefore $\left|y-y^{\prime}\right| \leqq 2^{-\lambda}$. Since $\left|y-\xi_{i}\right|=2^{-h / e},\left|y^{\prime}-\eta_{j}\right|=2^{-h^{\prime} / \underline{e}^{\prime}}$, we obtain $\left|\xi_{i}-\eta_{j}\right| \leqq 2^{-h / e}$, and therefore

$$
\rho(f, g) \geqq d d^{\prime} h / \underline{e}=d^{\prime} h \underline{f}=d^{\prime}(d \lambda-d+\ell)=d^{\prime}(d \lambda-n)
$$

by (11.5). So (12.4) follows.
We have assumed that $d>1, d^{\prime}>1$. But when, e.g., $d=1$, the construction of $\underline{\underline{K}}(f)$ follows the same pattern as before, if we set $\underline{e}=\underline{f}=1, \ell=1, n=0$ and $h=\lambda=\infty$. We leave the details to the reader.
13. Proof of Theorems \mathbf{C} and \mathbf{C}^{\prime}. For Theorem C we will again work in the more general framework of complete discrete valuation rings R. When $f(X)=$ $\pi^{n} f_{0}(X)$ with f_{0} primitive, we have $T(f)=L^{n} \underline{\underline{K}}^{*}\left(f_{0}\right)$. Here $\underline{\underline{K}}\left(f_{0}\right)$ has $m \leqq d=$ $\operatorname{deg} f$ summands by (11.8). We have $\delta\left(\underline{\underline{K}}\left(f_{0}\right)\right) \leqq \delta\left(f_{0}\right)$ by $\overline{(12.3)}$, and we have $\delta(f)=(2 d-2) n+\delta\left(f_{0}\right)$, so that $d \geqq 2$ yields

$$
n+\delta\left(\underline{\underline{K}}\left(f_{0}\right)\right) \leqq \delta(f)
$$

Given n, the number of isomorphism classes of trees $T\left(f_{0}\right)$ where f_{0} runs through primitive polynomials with $\delta\left(f_{0}\right) \leqq \delta$ is $\leqq c_{6}(d) \delta^{d-1}$ by Theorem 7.1 and (11.7). Taking the sum over $n \leqq \delta$, we obtain the bound $c_{1}(d) \delta^{d}$ of Theorem C.

When $n, a_{1}, \ldots, a_{d-1}$ satisfy (6.10) (but with d in place of m), the polynomial

$$
f(X)=\pi^{n}\left(X-\pi^{a_{1}}\right) \cdots\left(X-\pi^{a_{d-1}}\right) X
$$

has $T(f)=L^{n} \underline{\underline{K}}^{*}$ with $\underline{\underline{K}}$ a stalk sum as described in section 6. Here

$$
\begin{equation*}
\delta(f)=(2 d-2) n+2\left((d-1) a_{1}+(d-2) a_{2}+\cdots+a_{d-1}\right) . \tag{13.1}
\end{equation*}
$$

The number of d-tuples $n, a_{1}, \ldots, a_{d-1}$ with $0 \leqq n<a_{1}<\cdots<a_{d-1}$ and with the right hand side of (13.1) below δ is $\geqq c_{7}(d) \delta^{d}$ when δ is large. By what we have said in section 6, different d-tuples $n, a_{1}, \ldots, a_{d-1}$ give rise to different Poincaré series for f. Therefore as f ranges through polynomials of degree d (where $d \geqq 2$) and with $\delta(f) \leqq \delta$, we obtain at least $c_{7}(d) \delta^{d}$ different Poincaré series, and therefore at least that many nonisomorphic trees $T(f)$. This proves Theorem C.

We now turn to Theorem C^{\prime}. In section 7 we defined isomorphisms of polynomial sums. We allowed reorderings of the summands. Now given ordered m-tuples $\left(K_{1}, \ldots, K_{m}\right)$ of stalks, we will say $\left(K_{1}, \ldots, K_{m}\right)$ and $\left(H_{1}, \ldots, H_{m}\right)$ are isomorphic if there is a map $\Psi: \bigcup K_{i} \rightarrow \bigcup H_{i}$ whose restriction to K_{i} is an isomorphism $K_{i} \rightarrow H_{i}(i=1, \ldots, m)$. Each stalk sum with m summands gives rise to at most m ! ordered m-tuples, so that as a variation on Theorem 7.1 we see that there are $\leqq c_{8}(m) \delta^{m-1}$ isomorphism classes of ordered m-tuples of stalks of discriminant $\leqq \delta$.

Now let f be a polynomial of degree $d>0$ in $\mathbb{Z}[X]$, and write

$$
\begin{equation*}
f(X)=p^{n} f_{1}(X)^{e_{1}} \cdots f_{s}(X)^{e_{s}}, \tag{13.2}
\end{equation*}
$$

where f_{1}, \ldots, f_{s} are nonproportional polynomials which are irreducible over \mathbb{Q}, and whose coefficients lie in \mathbb{Z} but are not all divisible by p. Say $\underline{\underline{K}}\left(f_{i}\right)=K_{i 1} \oplus \cdots \oplus K_{i m_{i}}$. The number of possibilities for $s, e_{1}, \ldots, e_{s}, m_{1}, \ldots, m_{s}$ is under a bound $c_{9}(d)$. From now on we will consider those quantities fixed. Set

$$
g(X)=f_{1}(X) \cdots f_{s}(X)
$$

Then the height $H(g)$ of g, i.e., the maximum modulus of its coefficients, has $H(g) \leqq c_{10}(d) H(f) \leqq c_{10}(d) H$. The discriminant $D(g)$ is $\neq 0$, and has $|D(g)| \leqq$ $c_{11}(d) H^{2 d-2}$, so that its p-adic order $\delta(g) \leqq c_{12}(d)((\log H / \log p)+1)$. By Theorem 7.1, the number of isomorphism classes of stalk sums $\underline{\underline{K}}(g)=\underline{\underline{K}}\left(f_{1}\right) \oplus \cdots \oplus \underline{\underline{K}}\left(f_{s}\right)$ is

$$
\leqq c_{13}(d)\left((\log H / \log p)^{d-1}+1\right)
$$

By the variation on Theorem 7.1 given above, the number of isomorphism classes of ordered tuples

$$
\left(K_{11}, \ldots, K_{1 m_{1}}, \ldots, K_{s 1}, \ldots, K_{s m_{s}}\right)
$$

is still under this bound, provided $c_{13}(d)$ is replaced by a suitable larger constant. Given the class of this tuple, and given e_{1}, \ldots, e_{s}, the isomorphism class of

$$
\underline{\underline{K}}\left(f_{1}^{e_{1}} \cdots f_{s}^{e_{s}}\right)=\left(K_{11} \cdots K_{1 m_{1}}\right)^{e_{1}} \cdots\left(K_{s 1} \cdots K_{s m_{s}}\right)^{e_{s}}
$$

is determined. Since there are $\leqq(\log H / \log p)+1$ possibilities for the extra parameter n in (13.2), the upper bound (4) of Theorem C^{\prime} is established. That this bound is essentially best possible is seen by considering polynomials

$$
p^{n}\left(X-p^{a_{1}}\right) \cdots\left(X-p^{a_{d-1}}\right) X
$$

14. The Poincaré Series of f. Suppose our ring R has a residue class field of finite order p (a prime power!). For example, $R=\mathbb{Z}_{p}$ where p is a prime, or $R=k[[\mathcal{X}]]$ where k is a field of cardinality p. The Poincaré series of f is the Poincaré series of $T(f)$, and is

$$
\mathfrak{P}_{f}(Z)=\sum_{\lambda=0}^{\infty}\left|T(f)_{\lambda}\right| Z^{\lambda}
$$

By Theorems 6.1 and B , this series lies in $\mathbb{Q}(Z)$. As is well known by deep work of Igusa, and reproved by Denef, this is also true in the considerably more difficult case of polynomials in several variables.

Recall that $\left|T(f)_{\lambda}\right|$ is the number of solutions of $f(x) \equiv 0\left(\bmod \mathfrak{p}^{\lambda}\right)$. Proposition 6.4 yields

$$
\begin{equation*}
\operatorname{dig}_{p}\left|T(f)_{\lambda}\right| \leqq \operatorname{deg} f \tag{14.1}
\end{equation*}
$$

for nonconstant f. Theorem 8.1 gives

$$
\begin{equation*}
\left|T(f)_{\lambda}\right| \leqq 2 p^{\delta / 2}+d-2 \tag{14.2}
\end{equation*}
$$

where $\operatorname{deg} f=d>0$ and δ is the p-adic order of the discriminant of f.
The Poincaré series has a different interpretation when $R=k[[\mathcal{X}]]$ where k is infinite. Recall from (6.1):

$$
\begin{equation*}
T_{\lambda}=\bigcup_{u \in T(\lambda)} F^{\prime}(u, \lambda) \tag{14.3}
\end{equation*}
$$

Here u is a polynomial $u=u(\mathcal{X})\left(\bmod \mathcal{X}^{\lambda(u)}\right)$, and $F^{\prime}(u, \lambda)$ consists of polynomials $t(\mathcal{X})\left(\right.$ modulo $\left.\mathcal{X}^{\lambda}\right)$ having $t(\mathcal{X}) \equiv u(\mathcal{X})\left(\bmod \mathcal{X}^{\lambda(u)}\right)$. Therefore $F^{\prime}(u, \lambda)$ is a linear submanifold of U_{λ} of dimension $\lambda-\lambda(u)$. Since k is infinite, the decomposition of T_{λ} into a finite union of linear submanifolds is unique.
Theorem 14.1. Suppose $R=k[[\mathcal{X}]]$ where k is infinite, and suppose $f \in R[X]$. Then for each $\lambda, T(f)_{\lambda}$ is a finite union of linear submanifolds $M_{\lambda_{1}}, \ldots, M_{\lambda, n(\lambda)}$ of $U_{\lambda} . \operatorname{Set} P_{\lambda}(z)=\sum_{i=1}^{n(\lambda)} z^{c_{i}}$, where $c_{i}=\operatorname{dim} M_{\lambda_{i}}$, and set $\mathfrak{P}(z, Z)=\sum_{\lambda=0}^{\infty} P_{\lambda}(z) Z^{\lambda}$. Then $\mathfrak{P}(z, Z)$ lies in $\mathbb{Q}(z, Z)$.

The proof is obvious, since the $M_{\lambda_{i}}$ are the $F^{\prime}(u, \lambda)$ with $u \in T(f)(\lambda)$, and since by (6.4), (6.5), $\mathfrak{P}(z, Z)$ is the Poincaré series of $T(f)$, which is rational by Theorems 6.1 and B.
15. Width and Continued Fractions. Our main theorem here can be stated in the context of stalks:

Theorem 15.1. Let U be a universal tree of finite valence p, which need not be a prime. Let

$$
\begin{equation*}
T=K_{1} \cdots K_{m} \tag{15.1}
\end{equation*}
$$

be a product of $m \geqq 1$ stalks. Given $\lambda>0$, write λ / m as a regular continued fraction:

$$
\lambda / m=c_{0}+\frac{1}{c_{1}+} \begin{array}{ll}
& \\
& \ddots \\
& \\
& +1 / c_{n}
\end{array}
$$

with n odd. Then if $p \geqq m$, we have

$$
\begin{equation*}
\left|T_{\lambda}\right| \leqq c_{1} p^{\lambda-c_{0}-1}+c_{3} p^{\lambda-c_{0}-c_{2}-1}+\cdots+c_{n} p^{\lambda-c_{0}-c_{2}-\cdots-c_{n-1}-1} \tag{15.2}
\end{equation*}
$$

This bound is best possible for every $\lambda>0, m>0$ and $p \geqq m$. But we will show this only when p is a prime, in section 16 in the context of polynomial trees.

The cardinality $\left|T_{\lambda}\right|$ can only decrease if some factors in (15.1) are removed, and therefore the bound (15.2) remains valid when T is a product of $\leqq m$ stalks. Since for a polynomial f we have $m=m(\underline{\underline{K}}(f)) \leqq d=\operatorname{deg} f$, Theorem D follows.

Corollary. Define m_{1} by $\lambda=m c_{0}+m_{1}$, so that $\lambda / m=c_{0}+\left(m_{1} / m\right)$. Note that $1 \leqq m_{1} \leqq m$. Then

$$
\begin{equation*}
\left|T_{\lambda}\right| \leqq\left(m / m_{1}\right) p^{\lambda-c_{0}-1} \tag{15.3}
\end{equation*}
$$

In particular, $\left|T_{\lambda}\right| \leqq m p^{\lambda-c_{0}-1}$. This is the same bound as in Stewart [2, (44)] in the context of polynomial trees, since his exponent is $[\lambda(m-1) / m]=\lambda-c_{0}+$ $\left[-m_{1} / m\right]=\lambda-c_{0}-1$. Our Corollary yields the Corollary to Theorem D.

Deduction of the Corollary. Introduce the notation

$$
\left[a_{0}\right]=a_{0},\left[a_{0}, a_{1}, \ldots, a_{\ell}\right]=a_{0}+\frac{1}{a_{1}+} \begin{array}{ll}
& \\
& \ddots \\
& \\
& +1 / a_{\ell}
\end{array}
$$

for reals a_{j}, with a_{1}, a_{2}, \ldots positive. Our hypothesis then becomes

$$
\begin{equation*}
\lambda / m=\left[c_{0}, c_{1}, \ldots, c_{n}\right] \tag{15.4}
\end{equation*}
$$

Define $m_{0}, m_{1}, \ldots, m_{n}$ by $m_{0}=m, \lambda=m_{0} c_{0}+m_{1}$,

$$
\begin{equation*}
m_{i-2}=m_{i-1} c_{i-1}+m_{i} \quad(2 \leqq i \leqq n) \tag{15.5}
\end{equation*}
$$

Then each $m_{i} \in \mathbb{Z}$ and

$$
\begin{aligned}
\lambda / m & =\lambda / m_{0}=c_{0}+1 /\left(m_{0} / m_{1}\right)=\left[c_{0}, m_{0} / m_{1}\right]=\cdots \\
& =\left[c_{0}, \ldots, c_{i-1}, m_{i-1} / m_{i}\right] \\
& =\left[c_{0}, \ldots, c_{n-1}, m_{n-1} / m_{n}\right]
\end{aligned}
$$

for i in $1 \leqq i \leqq n$. Comparison with (15.4) gives

$$
\begin{equation*}
m_{i-1} / m_{i}=\left[c_{i}, \ldots, c_{n}\right] \quad(1 \leqq i \leqq n) \tag{15.6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
c_{i}=m_{i-1} / m_{i}-\frac{1}{\left[c_{i+1}, \ldots, c_{n}\right]}=\frac{\left(m_{i-1}-m_{i+1}\right)}{m_{i}} \quad(1 \leqq i \leqq n-1) \tag{15.7}
\end{equation*}
$$

but $c_{n}=m_{n-1} / m_{n}$.
We will show that for odd g in $1 \leqq g \leqq n$,

$$
\begin{equation*}
\left|T_{\lambda}\right| \leqq c_{1} p^{\lambda-c_{0}-1}+\cdots+c_{g-2} p^{\lambda-c_{0}-\cdots-c_{g-3}-1}+\left(m_{g-1} / m_{g}\right) p^{\lambda-c_{0}-\cdots-c_{g-1}-1} \tag{15.8}
\end{equation*}
$$

which for $g=1$ is to be interpreted as (15.3). When $g=n$, (15.8) is the same as (15.2), since $c_{n}=m_{n-1} / m_{n}$. To do induction down from g to $g-2$ (assuming
$g \geqq 3$) it will suffice to show that $\Delta_{g} \geqq 0$, where Δ_{g} is the difference of the right hand sides of (15.8) for $g-2$ and for g. But

$$
\begin{aligned}
& p^{-\lambda+c_{0}+\cdots+c_{g-3}+1} \Delta_{g}=\left(m_{g-3} / m_{g-2}\right)-c_{g-2}-\left(m_{g-1} / m_{g}\right) p^{-c_{g-1}} \\
& \geqq\left(m_{g-3} / m_{g-2}\right)-\left(m_{g-3}-m_{g-1}\right) / m_{g-2}-\left(m_{g-1} / m_{g}\right) p^{-1} \geqq 0
\end{aligned}
$$

by (15.7) and since $m_{g} p \geqq p \geqq m \geqq m_{g-2}$.
Proof of Theorem 15.1. Set $\underline{\underline{K}}=K_{1} \oplus \cdots \oplus K_{m}$. Let $T T(\lambda)$ be the set of section 8; say $T T(\lambda)=\left\{u_{1}, \ldots, u_{\ell}\right\}$. Then in particular, u_{1}, \ldots, u_{ℓ} are incompatible vertices of $K_{1} \cup \cdots \cup K_{m}$. We recall

$$
\begin{equation*}
\omega_{i}=\lambda-\lambda\left(u_{i}\right) \quad(i=1, \ldots, \ell) \tag{15.9}
\end{equation*}
$$

and formula (8.4):

$$
\begin{equation*}
\left|T_{\lambda}\right|=\sum_{i=1}^{\ell} p^{\omega_{i}} \tag{15.10}
\end{equation*}
$$

By relabeling the stalks of $\underline{\underline{K}}$ we may suppose that u_{i} lies precisely on the stalks $K_{i 1}, \ldots, K_{i q_{i}}$. The stalks $\overline{K_{i j}}\left(1 \leqq i \leqq \ell, 1 \leqq j \leqq q_{i}\right)$ are among the summands of $\underline{\underline{K}}$, and $K_{i j}, K_{i^{\prime}, j^{\prime}}$ for $i \neq i^{\prime}$ are distinct by the incompatibility of $u_{i}, u_{i^{\prime}}$. Therefore

$$
\begin{equation*}
q_{1}+\cdots+q_{\ell} \leqq m \tag{15.11}
\end{equation*}
$$

We may suppose that $q_{1} \geqq \cdots \geqq q_{\ell}$.
Let $m_{0}, m_{1}, \ldots, m_{n}$ be as above. Then $m=m_{0}>m_{1} \cdots>m_{n-1} \geqq m_{n}$, with $m_{n-1}=m_{n}$ precisely if $c_{n}=1$. In what follows, g, h will be odd integcrs. We have

$$
\begin{align*}
\lambda & =m_{0} c_{0}+m_{1}=\cdots \\
& =m_{0} c_{0}+m_{2} c_{2}+\cdots+m_{g-1} c_{g-1}+m_{g} \quad(1 \leqq g \leqq n), \tag{15.12}\\
m_{0} & =m_{1} c_{1}+m_{2}=\cdots \\
& =m_{1} c_{1}+m_{3} c_{3}+\cdots+m_{g} c_{g}+m_{g+1} \quad(1 \leqq g \leqq n) \tag{15.13}
\end{align*}
$$

where we set $m_{n+1}=0$. Define

$$
\begin{gather*}
e_{-1}=0, \quad e_{g}=c_{1}+c_{3}+\cdots+c_{g} \quad(1 \leqq g \leqq n) \tag{15.14}\\
f_{-2}=0, \quad f_{g-1}=c_{0}+c_{2}+\cdots+c_{g-1} \quad(1 \leqq g \leqq n) . \tag{15.15}
\end{gather*}
$$

For $1 \leqq g \leqq n$, let \mathcal{A}_{g} be the following assertion.
(a) The estimate (15.2) is true if $\ell<e_{g}$.
(b) The estimate (15.2) is true if $\ell \geqq e_{g}$ and if $q_{e_{g}}<m_{g}$ or $\lambda\left(u_{j}\right)>f_{g-1}+1$ for some j in $e_{g-2}<j \leqq e_{g}$.
(c) When $\ell \geqq e_{g}$, then

$$
\sum_{i=1}^{e_{g}} p^{\omega_{i}} \leqq c_{1} p^{\lambda-f_{0}-1}+\cdots+c_{g} p^{\lambda-f_{g-1}-1}
$$

Now $\mathcal{A}_{1}, \mathcal{A}_{3}, \ldots, \mathcal{A}_{n}$ imply (15.2) as follows. By (a) we may suppose that $\ell \geqq e_{n}$. By (b) we may suppose that $q_{e_{g}} \geqq m_{g}(1 \leqq g \leqq n)$, so that

$$
\begin{align*}
q_{1}+q_{2}+\cdots+q_{e_{g}} & \geqq e_{1} m_{1}+\left(e_{3}-e_{1}\right) m_{3}+\cdots+\left(e_{g}-e_{g-2}\right) m_{g} \\
& =c_{1} m_{1}+c_{3} m_{3}+\cdots+c_{g} m_{g} \tag{15.16}\\
& =m-m_{g+1}
\end{align*}
$$

by the ordering $q_{1} \geqq q_{2} \geqq \cdots$ and by (15.13). Applying this with $g=n$, recalling that $m_{n+1}=0$ and comparing with (15.11), we obtain $\ell=e_{n}$. Now (15.2) follows from (15.10) and part (c) of \mathcal{A}_{n}.

Before proceeding further we insert the following. For any real number x let $\lceil x\rceil$ denote the smallest integer greater than or equal to x.

Lemma 15.2. Given integers $m>0, \lambda, b$, set

$$
\varphi(\nu)=\min (\lambda-\nu, \nu(m-1)+b) .
$$

Set $\nu_{1}=\lceil(\lambda-b) / m\rceil$. Then for $\nu \in \mathbb{Z}$ we have $\varphi(\nu) \leqq \varphi\left(\nu_{1}\right)=\lambda-\nu_{1}$. When $\nu>\nu_{1}$ we have $\varphi(\nu) \leqq \lambda-\nu_{1}-1$.

Proof. The maximum of $\varphi(\nu)$ for $\nu \in \mathbb{R}$ is taken at $\nu=(\lambda-b) / m$, and the maximum for $\nu \in \mathbb{Z}$ is taken at ν_{1} or $\nu_{0}=[(\lambda-b) / m]$. Here $\varphi\left(\nu_{1}\right)=\lambda-\nu_{1}$, $\varphi\left(\nu_{0}\right)=\nu_{0}(m-1)+b$, and

$$
\begin{aligned}
\varphi\left(\nu_{1}\right)-\varphi\left(\nu_{0}\right) & =\lambda-b-m \nu_{0}+\nu_{0}-\nu_{1} \\
& =\lambda-b-m[(\lambda-b) / m]+[(\lambda-b) / m]-\lceil(\lambda-b) / m\rceil \\
& \geqq 0
\end{aligned}
$$

since $\lambda-b$ is an integer. Therefore the maximum of $\varphi(\nu)$ for $\nu \in \mathbb{Z}$ is taken at $\nu=\nu_{1}$, and is $\varphi\left(\nu_{1}\right)=\lambda-\nu_{1}$. When $\nu>\nu_{1}$, then $\varphi(\nu)=\lambda-\nu \leqq \lambda-\nu_{1}-1$.

We will now in turn prove $\mathcal{A}_{1}, \mathcal{A}_{3}, \ldots, \mathcal{A}_{n}$. We will prove \mathcal{A}_{g+2}, assuming that either $g=-1$ or that $1 \leqq g \leqq n-2$ and $\mathcal{A}_{1}, \mathcal{A}_{3}, \ldots, \mathcal{A}_{g}$ have been established. In the latter case we may suppose that $\ell \geqq e_{g}$ and that (15.16) holds. Then in view of (15.11),

$$
\begin{equation*}
q_{e_{g}+1}+\cdots+q_{\ell} \leqq m_{g+1} \tag{15.17}
\end{equation*}
$$

When $g=-1$ this is the same as (15.11).
Lemma 15.3. For $e_{g}<i \leqq \ell$ and ω_{i} given by (15.9),

$$
\omega_{i} \leqq \lambda-f_{g+1}-1-\left\lceil\left(m_{g+2}-q_{i}\right) / m_{g+1}\right\rceil
$$

Proof. Write $\tau=\tau_{\underline{\underline{K}}}, \sigma=\sigma_{\underline{\underline{K}}}$. Then

$$
\begin{equation*}
\sigma\left(u_{i}\right)=\sum_{\{0\}<t \leqq u_{i}} \tau(t)=\tau\left(u_{i}\right)+\sum_{h=-1}^{g} \Sigma_{h} \tag{15.18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Sigma_{h}=\sum_{\substack{\{0\}<t<u_{i} \\
f_{h-1}<\lambda(t) \leqq f_{h+1}}} \tau(t) \quad \text { when }-1 \leqq h \leqq g-2, \\
& \Sigma_{g}=\sum_{\substack{\{0\}<t<u_{i} \\
f_{g-1}<\lambda(t)}} \tau(t) .
\end{aligned}
$$

Suppose $h \leqq g$ and $\{0\}<t<u_{i}, f_{h-1}<\lambda(t)$. Now if $1 \leqq j \leqq e_{h}$ (only possible if $g \geqq h \geqq 1$), say $e_{r-2}<j \leqq e_{r}$ where $1 \leqq r \leqq h$ with r odd, then we may suppose by part (b) of \mathcal{A}_{r} that $\lambda\left(u_{j}\right) \leqq f_{r-1}+1 \leqq f_{h-1}+1 \leqq \lambda(t)$. Since $j \leqq e_{h} \leqq e_{g}<i$
and therefore u_{j}, u_{i} are incompatible, also u_{j}, t are incompatible, and the stalks $K_{j v}\left(1 \leqq v \leqq q_{j}\right)$ containing u_{j} do not contain t. Therefore when $f_{h-1}<\lambda(t)$,

$$
\begin{equation*}
\tau(t) \leqq m-\left(q_{1}+\cdots+q_{e_{h}}\right) \leqq m_{h+1} \tag{15.19}
\end{equation*}
$$

by (15.16), which is true by induction with g replaced by $h \leqq g$. Note that (15.19) is trivially true for $h=-1$. We may conclude that for $-1 \leqq h \leqq g-2$,

$$
\begin{equation*}
\Sigma_{h} \leqq\left(f_{h+1}-f_{h-1}\right) m_{h+1}=c_{h+1} m_{h+1} \tag{15.20}
\end{equation*}
$$

Now suppose that

$$
\begin{equation*}
f_{g-1} \leqq \lambda\left(u_{i}\right)-1 \tag{15.21}
\end{equation*}
$$

Then by (15.19),

$$
\Sigma_{g} \leqq\left(\lambda\left(u_{i}\right)-f_{g-1}-1\right) m_{g+1}
$$

Since $\tau\left(u_{i}\right)=q_{i},(15.18),(15.20)$ and (15.12) yield

$$
\begin{aligned}
\sigma\left(u_{i}\right) & \leqq q_{i}+c_{0} m_{0}+\cdots+c_{g-1} m_{g-1}+\left(\lambda\left(u_{i}\right)-f_{g-1}-1\right) m_{g+1} \\
& =q_{i}+\lambda-m_{g}+\left(\lambda\left(u_{i}\right)-f_{g-1}-1\right) m_{g+1}
\end{aligned}
$$

The vertices u_{i} had $\lambda \leqq \sigma\left(u_{i}\right)$ by the definition of $T T(\lambda)$ (see section 8), and therefore

$$
\omega_{i}=\lambda-\lambda\left(u_{i}\right)=\min \left(\lambda-\lambda\left(u_{i}\right), \lambda\left(u_{i}\right)\left(m_{g+1}-1\right)+b_{i}\right)
$$

with $b_{i}=q_{i}+\lambda-m_{g}-m_{g+1}\left(f_{g-1}+1\right)$. By Lemma 15.2, $\omega_{i} \leqq \lambda-\nu(i)$, where $\nu(i)=\left\lceil\left(\lambda-b_{i}\right) / m_{g+1}\right\rceil$. But

$$
\begin{aligned}
\lambda-b_{i} & =m_{g+1}\left(f_{g-1}+1\right)+m_{g}-q_{i} \\
& =m_{g+1}\left(f_{g-1}+1+c_{g+1}\right)+m_{g+2}-q_{i} \\
& =m_{g+1}\left(f_{g+1}+1\right)+m_{g+2}-q_{i}
\end{aligned}
$$

so that

$$
\begin{equation*}
\nu(i)=f_{g+1}+1+\left\lceil\left(m_{g+2}-q_{i}\right) / m_{g+1}\right\rceil \tag{15.22}
\end{equation*}
$$

and

$$
\omega_{i} \leqq \lambda-f_{g+1}-1-\left\lceil\left(m_{g+2}-q_{i}\right) / m_{g+1}\right\rceil
$$

as asserted in the Lemma. This holds when (15.21) is valid.
We will show that (15.21) is always valid, i.e., that $f_{g-1} \geqq \lambda\left(u_{i}\right)$ is impossible. For in that case $\Sigma_{g}=0$, and in view of (15.19),

$$
\begin{aligned}
\Sigma_{g-2} & =\sum_{\substack{\{0\}<t<u_{i} \\
f_{g-3}<\lambda(t) \leqq f_{g-1}}} \tau(t) \\
& \leqq\left(f_{g-1}-f_{g-3}\right) m_{g-1}=c_{g-1} m_{g-1},
\end{aligned}
$$

so that by (15.18), (15.20), (15.12),

$$
\begin{aligned}
\sigma\left(u_{i}\right) & \leqq q_{i}+c_{0} m_{0}+\cdots+c_{g-3} m_{g-3}+c_{g-1} m_{g-1} \\
& =q_{i}+\lambda-m_{g}
\end{aligned}
$$

By hypothesis $i>e_{g}$, so that $q_{i} \leqq m_{g+1}<m_{g}$ by (15.17), and therefore $\sigma\left(u_{i}\right)<$ λ, contradicting the fact that we had $\sigma\left(u_{i}\right) \geqq \lambda$. The proof of the lemma is complete.

When $e_{g}<i \leqq \ell$, we have $q_{i} \leq m_{g+1}$ from (15.17); therefore

$$
\left\lceil\left(m_{g+2}-q_{i}\right) / m_{g+1}\right\rceil=\left\{\begin{array}{l}
0 \text { when } q_{i} \geqq m_{g+2} \tag{15.23}\\
1 \text { when } q_{i}<m_{g+2}
\end{array}\right.
$$

Therefore by Lemma 15.3,

$$
\omega_{i} \leqq\left\{\begin{array}{l}
\lambda-f_{g+1}-1 \text { when } q_{i} \geqq m_{g+2} \\
\lambda-f_{g+1}-2 \text { when } q_{i}<m_{g+2}
\end{array}\right.
$$

Set $a=0$ if $q_{e_{g}}<m_{g+2}$; otherwise let a be largest integer with $e_{g}+a \leqq \ell$ and $q_{e_{g}+a} \geqq m_{g+2}$. By (15.17), a $m_{g+2} \leqq m_{g+1}$, so that $a \leqq m_{g+1} / m_{g+2}=$ [$\left.c_{g+2}, \ldots, c_{n}\right]$ by (15.6), and therefore

$$
\begin{equation*}
a \leqq c_{g+2} \tag{15.24}
\end{equation*}
$$

(Note that $n=g+2$ or $n \geqq g+4$.) We obtain

$$
\omega_{i} \leqq\left\{\begin{array}{l}
\lambda-f_{g+1}-1 \text { when } e_{g}<i \leqq e_{g}+a \\
\lambda-f_{g+1}-2 \text { when } e_{g}+a<i \leqq \ell
\end{array}\right.
$$

Using the last assertion of Lemma 15.2 we can modify Lemma 15.3 to get

$$
\omega_{i} \leqq \lambda-f_{g+1}-2
$$

also when $e_{g}<i \leqq e_{g}+a$ and $\lambda\left(u_{i}\right) \geqq \nu(i)+1$, which by (15.22), (15.23) is the same as $\lambda\left(u_{i}\right) \geqq f_{g+1}+2$.

By part (c) of \mathcal{A}_{g} (when $g \geqq 1$) we see that

$$
\begin{equation*}
\sum_{i=1}^{\ell} p^{\omega_{i}} \leqq \sum_{h=1}^{e_{g}} c_{h} p^{\lambda-f_{h-1}-1}+\sum_{i=e_{g}+1}^{\ell} p^{\omega_{i}} \tag{15.25}
\end{equation*}
$$

when $g=-1$ this is trivially true if we understand the first sum on the right hand side to be 0 . The second summand on the right hand side is

$$
\leqq(a-\varepsilon) p^{\lambda-f_{g+1}-1}+(\ell-a+\varepsilon) p^{\lambda-f_{g+1}-2}
$$

where we set $\varepsilon=1$ if $a>0$ and $\lambda\left(u_{i}\right) \geqq f_{g+1}+2$ for some i in $e_{g}<i \leqq e_{g}+a$, and $\varepsilon=0$ otherwise. Now when

$$
\begin{equation*}
a-\varepsilon<c_{g+2} \tag{15.26}
\end{equation*}
$$

the second summand is

$$
\begin{aligned}
& \leqq c_{g+2} p^{\lambda-f_{g+1}-1}-p^{\lambda-f_{g+1}-1}+\ell p^{\lambda-f_{g+1}-2} \\
& \leqq c_{g+2} p^{\lambda-f_{g+1}-1}
\end{aligned}
$$

since $p \geqq m \geqq \ell$, and then (15.2) follows from (15.10), (15.25).
When $\ell<e_{g+2}$, we have $e_{g}+a \leqq \ell<e_{g+2}$; therefore $a<c_{g+2}$, and (15.26) holds. This establishes part (a) of \mathcal{A}_{g+2}. When $\ell \geqq e_{g+2}$ and $q_{e_{g+2}}<m_{g+2}$, then $a<e_{g+2}-e_{g}=c_{g+2}$ and again (15.26) holds. When $\ell \geqq e_{g+2}$ and $a=c_{g+2}$ (note (15.24)!) and if $\lambda\left(u_{i}\right) \geqq f_{g+1}+2$ for some i in $e_{g}<i \leqq e_{g}+a=e_{g+2}$, then $\varepsilon>0$, whence (15.26) and (15.2) hold. This gives part (b) of assertion \mathcal{A}_{g+2}. Finally
$\omega_{i} \leqq \lambda-f_{g+1}-1$ for $i>e_{g}$, so that by the truth of part (c) of \mathcal{A}_{g} (or trivially when $g=-1$)

$$
\begin{aligned}
\sum_{i=1}^{e_{g+2}} p^{\omega_{i}} & \leqq \sum_{i=1}^{e_{g}} p^{\omega_{i}}+\sum_{i=e_{g}+1}^{e_{g+2}} p^{\omega_{i}} \\
& \leqq \sum_{h=1}^{g} c_{h} p^{\lambda-f_{h-1}-1}+c_{g+2} p^{\lambda-f_{g+1}-1}
\end{aligned}
$$

which is part (c) of \mathcal{A}_{g+2}.
16. Congruences with Many Solutions. We still have to prove that the bound (7) in Theorem D is best possible. We will retain the notations introduced in the preceding section. From (15.5) we infer that for odd $g, 1 \leqq g \leqq n-2$,

$$
\begin{equation*}
m_{g-1}=c_{g} m_{g}+m_{g+1}=\cdots=c_{g} m_{g}+c_{g+2} m_{g+2}+\cdots+c_{n-2} m_{n-2}+c_{n} m_{n} \tag{16.1}
\end{equation*}
$$

Set $a_{1}=0$ and, for odd g,

$$
\begin{aligned}
a_{g} & =c_{1} m_{1} f_{0}+c_{3} m_{3} f_{2}+\cdots+c_{g-2} m_{g-2} f_{g-3} \quad(3 \leqq g \leqq n), \\
b_{g} & =f_{g-1}\left(c_{g} m_{g}+c_{g+2} m_{g+2}+\cdots+c_{n} m_{n}\right)+m_{g} \quad(1 \leqq g \leqq n) .
\end{aligned}
$$

Lemma 16.1. $a_{g}+b_{g}=\lambda(1 \leqq g \leqq n)$.
Proof. By (15.13) with $g=n$,

$$
b_{g}=f_{g-1}\left(m-c_{1} m_{1}-\cdots-c_{g-2} m_{g-2}\right)+m_{g},
$$

with the interpretation that $b_{1}=f_{0} m+m_{1}$. Therefore $a_{1}+b_{1}=c_{0} m+m_{1}=\lambda$. When $g \geqq 3$, we note that $a_{g}-a_{g-2}=c_{g-2} m_{g-2} f_{g-3}$ and

$$
\begin{aligned}
b_{g}-b_{g-2}= & \left(f_{g-3}+c_{g-1}\right)\left(c_{g} m_{g}+\cdots+c_{n} m_{n}\right)+m_{g} \\
& -f_{g-3}\left(c_{g-2} m_{g-2}+\cdots+c_{n} m_{n}\right)-m_{g-2} \\
= & c_{g-1}\left(c_{g} m_{g}+\cdots+c_{n} m_{n}\right)-c_{g-2} m_{g-2} f_{g-3}+m_{g}-m_{g-2}
\end{aligned}
$$

so that

$$
a_{g}+b_{g}-a_{g-2}-b_{g-2}=c_{g-1} m_{g-1}-c_{g-1} m_{g-1}=0
$$

by (15.5), (16.1). The lemma follows by induction from $g-2$ to g.
To motivate what follows we wish to point out that the extremal case in the preceding section was when $\ell=e_{n}$ and when $\lambda\left(u_{j}\right)=f_{g-1}+1, q_{j}=m_{g}$ for $e_{g-2}<j \leqq e_{g}(g$ odd, $1 \leqq g \leqq n)$. It will be convenient to relabel the u_{j} as $u_{g i}$ with $1 \leqq g \leqq n$ and $1 \leqq i \leqq c_{g}=e_{g}-e_{g-2}$, so that $\lambda\left(u_{g i}\right)=f_{g-1}+1$, and m_{g} stalks of $\underline{\underline{K}}$ contain each $u_{g i}$.

We now begin our construction of a polynomial $f \in \mathbb{Z}[X]$. Pick $v_{1}<v_{3}<\cdots<$ v_{n} in $U(p)$ with $\lambda\left(v_{g}\right)=f_{g-1}$. Next, given g, pick $u_{g i}\left(1 \leqq i \leqq c_{g}\right)$ in $U(p)$ having $u_{g i}>v_{g}, \lambda\left(u_{g i}\right)=f_{g-1}+1=\lambda\left(v_{g}\right)+1$, and such that $u_{g 1}, \ldots, u_{g c_{g}}, v_{g+2}$ are mutually incompatible when $g \leqq n-2$, and just $u_{g_{1}}, \ldots, u_{g c_{g}}$ are incompatible when $g=n$. (See Figure 5.)

Since $c_{g}+1 \leqq m \leqq p$ when $g \leqq n-2$, and since $c_{n} \leqq p$ (with equality only when $n=1, c_{1}=p=m / m_{1}$, so that $m=p, m_{1}=1$), such a choice is possible. We claim that with this choice, any two vertices $u_{g i}, u_{h j}$ with $(g, i) \neq(h, j)$ are incompatible. This is clear when $g=h$, and if, say, $g<h$, then $u_{g i}, v_{g+2}$ are incompatible and $v_{g+2} \leqq v_{h}<u_{h j}$, so that indeed $u_{g i}, u_{h j}$ are incompatible. Given h, i with h odd,

Figure 5
$1 \leqq h \leqq n, 1 \leqq i \leqq c_{h}$, pick integers $x_{h i w} \in \mathbb{Z}\left(1 \leqq w \leqq m_{h}\right)$ lying in the residue class $u_{h i}\left(\bmod p^{f_{h-1}+1}\right)$. Set

$$
f(X)=\prod\left(X-x_{h i w}\right)
$$

where the product is over the set S of triples h, i, w with h odd, $1 \leqq h \leqq n$, $1 \leqq i \leqq c_{h}, 1 \leqq w \leqq m_{h}$. Then, by the case $g=n$ of (15.13),

$$
\operatorname{deg} f=\sum_{h=1}^{n} c_{h} m_{h}=m
$$

Lemma 16.2. Suppose $x \in \mathbb{Z}$ lies in the residue class $u_{g j}\left(\bmod p^{f_{g-1}+1}\right)$, where $1 \leqq g \leqq n, 1 \leqq j \leqq c_{g}$. Then

$$
\begin{equation*}
f(x) \equiv 0\left(\bmod p^{\lambda}\right) \tag{16.2}
\end{equation*}
$$

Proof. We claim that for $(h, i, w) \in S$ we have

$$
\operatorname{ord}\left(x-x_{h i w}\right) \geqq\left\{\begin{array}{l}
f_{h-1} \text { when } h<g \tag{16.3}\\
f_{g-1} \text { when } h \geqq g \\
f_{g-1}+1 \text { when }(h, i)=(g, j)
\end{array}\right.
$$

When $h<g$, we observe that $v_{h}<u_{h i}, v_{h}<v_{g}<u_{g j}$, so that (since $x \in$ $u_{g j}, x_{h i w} \in u_{h i}$, and since $\left.\lambda\left(v_{h}\right)=f_{h-1}\right)$ indeed ord $\left(x-x_{h i w}\right) \geqq f_{h-1}$. When $h \geqq g$, we similarly have $v_{g}<u_{g j}, v_{g} \leqq v_{h}<u_{h i}$, and therefore ord $\left(x-x_{h i w}\right) \geqq f_{g-1}$. Finally, when $(h, i)=(g, j)$, we have both $x, x_{\text {hiw }}$ in the class $u_{g i}\left(\bmod p^{f_{g-1}+1}\right)$, and (16.3) follows.

Let $S=S_{g}^{A} \cup S_{g}^{B}$, with S_{g}^{A}, S_{g}^{B} respectively consisting of triples (h, i, w) with $h<g$ and with $h \geqq g$. By (16.3)

$$
\text { ord } \prod_{S_{g}^{A}}\left(x-x_{h i w}\right) \geqq c_{1} m_{1} f_{0}+\cdots+c_{g-2} m_{g-2} f_{g-3}=a_{g}
$$

since for given h there are $c_{h} m_{h}$ choices for i, w. Similarly

$$
\text { ord } \prod_{S_{g}^{B}}\left(x-x_{h i w}\right) \geqq f_{g-1}\left(c_{g} m_{g}+\cdots+c_{n} m_{n}\right)+m_{g}=b_{g}
$$

We may conclude that ord $f(x) \geqq a_{g}+b_{g}=\lambda$, and (16.2) follows.
The number of $x\left(\bmod p^{\lambda}\right)$ which lie in the residue class $u_{g j}\left(\bmod p^{f_{g-1}+1}\right)$ is $p^{\lambda-f_{g-1}-1}$. Since the $u_{g j}$ are pairwise incompatible, we obtain distinct residue classes $x\left(\bmod p^{\lambda}\right)$ for distinct pairs g, j. We may infer that the number of solutions of (16.2) is

$$
\geqq \sum_{g=1}^{n} \sum_{j=1}^{c_{g}} p^{\lambda-f_{g-1}-1}=c_{1} p^{\lambda-f_{0}-1}+\cdots+c_{n} p^{\lambda-f_{n-1}-1}
$$

By taking $m=d$ we see that the bound (7) is in fact best possible.

References

1. S. Lang, Algebra, 2nd ed., Addison-Wesley, 1984. MR 86j:00003
2. C. L. Stewart, On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc. 4 (1991), 793-835. MR 92j:11032

Department of Mathematics, University of Colorado, Boulder, Colorado 80309
E-mail address: schmidt@euclid.Colorado.edu
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

E-mail address: cstewart@watserv1.uwaterloo.ca

[^0]: Received by the editors August 30, 1994.
 1991 Mathematics Subject Classification. Primary 11A12, 11S05.
 The first author was supported in part by NSF grant DMS-9108581.
 The second author was supported in part by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

