
On the

Schur index of Graded Representations

Peter Hoffman1

A more accurate but less informative title might have been: “On a paper
of Turull [T]”.

Below is some theory for studying representations with extra structure
(grading and Clifford algebra action) of groups with extra structure (sign
homomorphism and central involution) over general fields of characteristic
zero. We produce an invariant in the Brauer–Wall group which determines
a Schur index. That invariant, a case of which is closely related to an invari-
ant defined by Turull, is calculated here in a quite straightforward way for
the basic irreducible representations of the essential covers of the symmetric
groups. This method suggests a closed formula for the Brauer–Wall invariant
of the general irreducible for these covers, which we give at the end of the
paper.

Our motivation is twofold. In joint work with John Q. Huang, we are
attempting to understand the structure, over fields other than C and R, of
the induction algebras whose elements are virtual representations of essential
covers of the symmetric groups. To gauge the chances of success, it seemed
a good idea to recast, into our language, some ideas from Turull’s Annals
of Math paper [T]. Furthermore, the theory below is now in a form so as
to be readily applicable to other examples, such as the three families of
essential covers of the hyperoctahedral groups whose representations can be
described using PSH–algebras [B–H] [H–H2]. Secondly, it is likely that a
generalization of the work below to the case of gradings over the product of
more than one copy of Z/2 will eventually have applications, for example
to other covers of monomial groups. So the case of one copy is practice for
the general case. Such a development would involve using the Brauer–Wall
functor constructed from algebras graded by such a product of copies of Z/2.
Perhaps there is a third motive: to advertise the language used in [H1] (i.e.
the categories Zn) for working with projective representations of families of
classical groups.

1Supported by NSERC grant no. A4840
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In Sections 1, 2, and 3, we give general properties of the Brauer–Wall
invariant for objects in the categories Zn(G) defined in [H1]. This is inspired
by Turull’s paper. Some of it can be interpreted as generalizations of parts
of his work. Many proofs here are rather different. If one doesn’t regard
the theory in [H1; Sect.1,2,3] as part of these proofs, some turn out to
be shorter. In Section 4 is the motivating example: we use the periodicity
theorem, Zn(G) ! Zn+2(G), from the first section of [H1], to give transparent
definitions over general fields of characteristic zero for the smallest realizable
sums of the basic complex projective representations of the symmetric groups,
or at least for their alter egos in Zn±1(S̃n). When

√
2 ∈ F , this makes almost

trivial the calculation (as graded quaternion algebras) of their corresponding
endo–algebras. When

√
2 /∈ F , a bit more work is necessary. To treat

arbitrary irreducibles, the products used by Turull on representations and in
the Brauer–Wall group (both denoted ∨) are replaced by the natural tensor
product from [H1] for the categories Zn and the usual operation in the
Brauer–Wall group, respectively.

Note that the paper is written so as to be independent of the literature on
the Schur index, making the first two sections longer than strictly necessary.
Experts will need only to skim these two sections. Dependence on the theory
of central graded algebras involves only its most basic aspects, covered very
nicely by Lam [L; Ch.4, 5]. We have included a few necessary facts concerning
division graded algebras in and after 1.11. These appear in detail in [C–H].

I’m very grateful to the referee, who saved me from a couple of bad
errors, as well as making a lot of excellent suggestions. The latter included
several simplifications to formulae at the end of the paper, using a superior
knowledge of the Brauer group.

1. Endo–Algebras from Zn(G)

Fix a field F of characteristic 0. For n ≥ 0, denote as Zn(G) the category
(redefined below) from [H1], with C replaced by F . In the second section, we
shall use the notation ZF

n (G) usually, since several fields enter the discussion.
Objects of the form (G, z, σ), consisting of a finite group G, a central element
z of order 2, and a homomorphism σ : G → Z/2 sending z to 0, will be
denoted simply G. These objects occur in Sergeev [Se]. In [H–H1] the
representations of the Ŷ –product (see Section 3 below) of two such objects is
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determined; the treatment in [H1] is more straightforward. These ‘decorated
groups’ also occur in Stembridge [St], and the Ŷ –product in Turull [T]
(where it also is denoted ∨). For any such G, the objects of Zn(G) are tuples
V = (V, V ′, η1, · · · , ηn) such that (V, V ′) is a Z/2–graded representation of G
with z acting as −1, and the ηi are anti–commuting, gradation–reversing G–
linear involutions of (V, V ′). Morphisms in Zn(G) are gradation–preserving
G–maps which commute with the ηi. The associate of the object V , denoted
ρV , is obtained by interchanging V and V ′, and multiplying each η by −1.

It will be convenient also to consider the categories Z−n(G) for n > 0.
The only change from the above definition is to require each η2

i to be −1
rather than +1.

Definitions. Below we review definitions from pp. 76–77 of Lam [L]:
Graded algebra (abbreviated ‘GA’);
Graded centre, Ẑ, of a graded algebra;
CGA, central graded algebra;
SGA, simple graded algebra;
CSGA, central simple graded algebra.

We shall always think of a graded algebra as an ordered pair A = (A0, A1)
of F–vector spaces (plus multiplication maps sending Ai × Aj to Ai+j); that
is, we never bother with inhomogeneous elements. Thus Ẑ0(A) consists of
those elements in A0 which commute with everything in A0 ∪ A1, whereas
Ẑ1(A) consists of those elements in A1 which commute with everything in
A0 but anti–commute with everything in A1. A CGA is a GA with Ẑ1 = 0
and Ẑ0 = F . An SGA is one for which there is no pair (I0, I1) ⊂ (A0, A1)
for which I0 ⊕ I1 is a proper non–zero 2–sided ideal in the ungraded algebra
A0 ⊕ A1 . A CSGA has both properties.

Definition. For graded algebras A = (A0, A1) and B = (B0, B1),
define

A × B = (A0 × B0 , A1 × B1)

with coordinatewise operations.

Proposition 1.1. Ẑ(A × B ) = Ẑ(A) × Ẑ(B) .

Corollary 1.2. A × B is never a CGA.
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Definition. For W in Zn(G), let End∗W be the GA over F whose ith
component is Hom(W , ρiW), the set of maps in Zn(G) from W to ρiW ,
specializing the definition in [H1; Sect. 5] to the case H = {1, z}, and
ignoring the action of the trivial object {1, z}. The algebra multiplication is
composition, using the facts that ρ2 = id and that

Hom(ρV , ρW) ∼= Hom(V , W)

by a canonical isomorphism (essentially equality).

Proposition 1.3. For all W, the graded algebra End∗W is well de-
fined, isomorphic to End∗(ρW), and invariant under isomorphism (in fact,
Hom(—, —) is a functor).

Proposition 1.4. a) Given W1 and W2, assume that, for all irreducibles
Vi ⊂Wi, we have V1 -∼= V2 -∼= ρV1 . Then

End∗(W1 ⊕W2) ∼= End∗(W1) × End∗(W2)

as graded algebras.
b) On the other hand, assuming only V1 -∼= V2, it follows that

End0(W1 ⊕W2) ∼= End0(W1) × End0(W2)

as ‘just plain algebras’.
The proof is the same as in the classical (ungraded) case.

Proposition 1.5. If V is irreducible, then End0V is a division algebra
over F, and End∗V is a division graded algebra over F .

A division graded algebra is a GA, (D0, D1), in which each non–zero
element of D0 ∪ D1 is invertible. Note that the ungraded algebra D0 ⊕ D1

might not be a division algebra. See 1.11 ahead.
The proof of 1.5 is the same as the usual for the main part of Schur’s

lemma.

Note. In a division algebra (since the characteristic is not 2), x2 = −x2

clearly implies that x = 0. Thus Ẑ1(End∗V) = 0 for an irreducible V ; that
is, Ẑ(End∗V) = (Ẑ0(End∗V) , 0) There are field extensions

F ⊂ Ẑ0(End∗V) ⊂ Z(End0V) ,
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both inclusions being strict in general.

Definitions. We’ll say that an irreducible V has ample scalars if and
only if there is no proper field extension K of F and object U in ZK

n (G) such
that V is simply U with scalar multiplication by elements of K \ F ignored
(i.e. such that UF = V), and such that any automorphism of V is also an
automorphism of U . This is easily seen to be equivalent to requiring that
Z(End0V) = F as F–algebras.

We’ll say that an irreducible V has adequate scalars if and only if Ẑ0(End∗V)
coincides with F (as F–algebras), i.e. by the note above, if and only if End∗V
is a CGA. This is readily seen to be equivalent to the non–existence of any
proper field extension K of F and object U ∈ ZK

n (G) such that both UF = V
and any isomorphism V ∼= ρjV is also an isomorphism U ∼= ρjU . (See also
2.3 below.)

Clearly ample implies adequate. The converse doesn’t hold since there
are examples with F = R where End∗ is isomorphic to that grading of the
quaternions which has C in degree 0 and the span of {j, k} in degree 1. This
graded algebra would be denoted < −1,−1

R > in Lam’s notation for generalized
graded quaternion algebras. There is also a grading of the full matrix algebra
R2×2 which yields a division graded algebra with C in degree zero.

Corollary 1.6. If V is irreducible with ample scalars, then End0V is a
central division algebra over F . If V is irreducible with adequate scalars, then
End∗V is a central (division) graded algebra over F , hence a CSGA.

Proposition 1.7. a) If W has an irreducible summand without adequate
scalars, then End∗W is not a CGA.

b) If W has an irreducible summand without ample scalars, then End0W
is not a central algebra.

In a), this is because one can give a central element outside F by multi-
plying in all summands isomorphic to that irreducible V or its associate by
an element of Ẑ0(End∗V) \ F , and multiplying by zero on other summands
(if they exist, in which case the result follows alternatively from 1.4 and 1.2).
See also 1.16a) below. Part b) is proved in a similar way.

Proposition 1.8. If V is a special irreducible, then End∗V = (End0V , 0);
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that is, End1V = 0. Furthermore, such a V has ample scalars if and only if
it has adequate scalars.

This is clear by the easier part of Schur’s lemma, since an irreducible is
special precisely when it is not isomorphic to its own associate.

Proposition 1.9. a) If A is a central simple algebra over F , then the
graded algebra defined below is a CSGA :

(A(N,M)×(N,M))0 :=

(
AN×N 0

0 AM×M

)

;

(A(N,M)×(N,M))1 :=

(
0 AN×M

AM×N 0

)

.

b) More generally, for any ungraded algebra A, the graded centre of
A(N,M)×(N,M) is isomorphic to (Z(A), 0). Note however that the centre of
(A(N,M)×(N,M))0 is Z(A) only when NM = 0. If both N and M are non–
zero, one gets Z(A)× Z(A) .

The proof is a simple calculation using the corresponding fact concerning
(ungraded) matrix algebras.

Proposition 1.10. If V is a special irreducible, then

End∗[V⊕N ⊕ (ρV)⊕M ] ∼= (End0V)(N,M)×(N,M) ,

(and so it is a CSGA if V has adequate scalars, by 1.6 and 1.9a)).
The proof is straightforward from 1.8 (which is a special case).

Definition Given a division algebra D over F , a non–zero element d of
D, and an F–automorphism θ of D which fixes d, define D <

√
d; θ > to be

the GA which is (D, eD) as a graded F–module, and where multiplication is
determined by that of D, plus requiring that e2 = d and xe = eθ(x) for all
x ∈ D.

The following theorem is proved as Lemma 2 in [C–H].
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Theorem 1.11. a) For any such (D, d, θ), this defines a division graded
algebra. Its graded centre is given by :

Ẑ0(D <
√

d; θ >) = Z(D) ∩ (+1-eigenspace of θ) ,

of which Z(D) is an extension of degree at most 2; and

Ẑ1(D <
√

d; θ >) = 0 .

b) Any division graded algebra either has the form D <
√

d; θ > for some
such (D, d, θ), or else has the form (D, 0).

c) If D is a central division algebra over F, then D <
√

d; θ > is a central
division graded algebra, hence a CSGA.

d) Any central division graded algebra over F is isomorphic to exactly one of
the GA’s in the four possibilities below (see the table before 4.1 ahead for
the example F=R) :

i) (D, 0) for a central division algebra D over F ;

ii) D <
√

f ; id > for a central division algebra D over F and a non–zero
element f ∈ F , uniquely determined as an element of Ḟ /Ḟ 2;

iii) (C ⊗F F [
√

f ]) <
√

1; 1⊗ γ >, where:
C is a central division algebra over F , unique up to isomorphism;
f is a non–zero element in F which is not a square in C, uniquely deter-
mined as a (non–trivial) element of Ḟ /Ḟ 2; and
γ is the unique non–trivial F–automorphism of F [

√
f ];

iv) (D0, D1), depending on (D, f, s), where:
D is a central division algebra over F , uniquely determined up to isomor-
phism of (ungraded) algebras;
f is a non–zero element in F which is not a square in F, but is a square
in D, and where f is uniquely determined as a (non–trivial) element of
Ḟ /Ḟ 2;
s ∈ Z(D0), and (D0, D1) is a grading of D with s2 = f and D1 non–zero.

Remarks. The types in part d) are partially distinguishable by their
dimensions, which take the forms:

i) (m2, 0) ; ii) (m2, m2) ; iii) and iv) (2m2, 2m2) .
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The classes in the Brauer–Wall group of the division graded algebras, A, in
part d) are as follows.

i) [D ; 0 ; 1].
ii) [D ; 1 ; f ]. In this case, A0⊕A1 is not a central F–algebra, and is a

division algebra if and only if f /∈ Ḋ2.
iii) [C ; 0 ; f ] , with f /∈ Ċ2. In this case, A0⊕A1 is a central F–algebra,

and is not a division algebra. It is C2×2.
iv) [D ; 0 ; f ] , with f ∈ Ḋ2 \ Ḟ 2. Here, A0⊕A1 is a central F–algebra,

and is a division algebra.
It follows, as proved in Theorem 1 of [C–H], that every element of the
Brauer–Wall group is uniquely representable as a division graded algebra.

Proposition 1.12. If V is an irreducible, and V ∼= ρV, then

End∗V ∼= (End0V) <
√

d; θ >

for some non–zero d ∈ End0V and some θ fixing d. Furthermore,

Ẑ0(End∗V) ⊂ Z(End0V)

is an extension of degree at most 2, by 1.11a). If also V has adequate scalars,
then End∗V is a CSGA over F , by 1.6.

This is immediate from 1.5.

Definition. If A is a GA, let AN×N := (AN×N
0 , AN×N

1 ) .

Proposition 1.13. a) If A is a CSGA, then so is AN×N .
b) More generally, for any graded algebra A, the graded centre of AN×N

coincides with that of A; that is, Ẑ(AN×N) = (Ẑ0(A) · IN , Ẑ1(A) · IN).
This is again almost immediate from the corresponding fact for ungraded

matrix algebras.

Proposition 1.14. If V is an irreducible, and V ∼= ρV , then

End∗(V⊕N) ∼= (End∗V)N×N ,

(and so it is a CSGA if V has adequate scalars, by 1.6 and 1.13a)).
This is similar to 1.10.
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Gathering some of these bite–size snacks into a meal, we obtain:

Theorem 1.15. Let W be any object in Zn(G). Then:
a) End∗W is a CSGA if and only if there is an irreducible V with adequate
scalars, and integers N and M, non-negative (and at least one positive), such
that

W ∼= V⊕N ⊕ (ρV)⊕M ;

b) End0W is a central simple algebra if and only if there is an irreducible V
with ample scalars, and a positive integer N, such that

W ∼= V⊕N .

Proof. In a) the ‘if’ part is the conjunction of the bracketed phrases of
1.10 and 1.14. Conversely, if W did not satisfy the condition, then either 1.7
applies, or else W can be written as a direct sum as in 1.4, which completes
the proof, in view of 1.2. The proof of b) is similar.

Note. It follows from the proof that End∗W is a CSGA if and only if it
is a CGA; that is, no non–simple CGA occurs as End∗W .

Proposition 1.16. For all W , we have

a) Ẑ0(End∗W) is the product of the fields Ẑ0(End∗V), one for each ‘isomor-
phism up to associates’ class of irreducible, V, occurring in W; and

b) Z(End0W) is the product of the fields Z(End0V), one for each isomor-
phism class of irreducible, V, occurring in W .

By 1.4 and 1.1, it suffices to prove a) when W is ‘quasi–homogeneous’ i.e.
of the form V⊕N ⊕ (ρV)⊕M with V irreducible. For special V , use 1.10 and
1.9b). In the other case, use 1.14 and 1.13b). The proof of b) is similar.

Proposition 1.17. a)For any W ∈ Zn(G), the following two conditions
are equivalent :

i) Ẑ(End∗W) ∼= ( F d , 0 );

ii) We have W ∼= W1 ⊕ · · · ⊕Wd for non–zero Wi ∈ Zn(G) which:
(A) have all irreducible summands with adequate scalars; (B) contain

irreducibles from either only one isomorphism class or from two which
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are associates; and (C) do not contain any irreducible which occurs, or
whose associate occurs, in Wj for any j -= i.

b)For any W ∈ Zn(G), the following two are equivalent :

i)′ Z(End0W) ∼= F e.

ii)′ We have W ∼= W1 ⊕ · · · ⊕We for non–zero Wi ∈ Zn(G) which:
(A)′ have all irreducible summands with ample scalars; (B)′ contain

ir- reducibles from only one isomorphism class ; and (C)′ do not contain
any irreducible which occurs in Wj for any j -= i.

Proof. a) To deduce i) from ii), we may assume d = 1, by 1.4a). Then
it follows from half of 1.15a). Conversely, if W is written as a direct sum of
irreducibles which are then bundled together as specified in (B) and (C) (i.e.
as a direct sum of ‘quasi–homogeneous’ Wi ), then 1.16a) gives Ẑ0(End∗W)
as a product of fields (extensions of F ), one for each i. It follows from i)
that there must be “d” such fields, all isomorphic to F , which shows that the
number of Wi is correct, and that each satisfies (A), as required.

b) To deduce i)′ from ii)′, we may assume e = 1, by 1.4b). Then it follows
from half of 1.15b). Conversely, if W is written as a direct sum of irreducibles
which are then bundled together as specified in (B)′ and (C)′ (i.e. as a direct
sum of ‘isotypical’ or ‘homogeneous’ Wi ), then 1.16b) gives Z(End0W) as
a product of fields (extensions of F ). Since we are assuming i)′, there must
be “e” such fields, all isomorphic to F , which shows that the number of Wi

is correct, and that each satisfies (A)′, as required.

Remark. In the theory with gradings over (Z/2)c, there will be a
total of 2c adjectives weakly between the adjectives ‘adequate’ and ‘ample’
(including the case c = 0 !).

For n > 0 and δ = ±, we have the functor

κδ : Zδn(G) → Zδ(n−1)(G) ,

given by
(V, V ′, η1 · · · ηn) 0→ (V, V ′, η1 · · · ηn−1) .
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Given a non–zero element f ∈ F , recall the (central, yet ‘ungraded–
commutative’) division graded algebra F <

√
f ; id > (denoted F 〈

√
f〉 in

[L]), which is one–dimensional in each grading, with an element r in the
1–grading such that r2 = f .

Proposition 1.18. For any object V in Zδn(G), the map

(End∗V) ⊗̂ F 〈
√

δ〉 −→ End∗(κδV) ,

determined by
α⊗ 1 0→ α

and
α⊗ r 0→ αηn ,

is an isomorphism of GA’s over F .

Proof. Call the map Γ. It is elementary to see that Γ is a well defined
map of graded vector spaces. To check that it is a map of algebras, we note,
with exponents in Z/2, that rjrk = δjkrj+k, and similarly with ηn in place
of r. Then

Γ[(α⊗ rj)(β ⊗ rk)] and Γ(α⊗ rj)Γ(β ⊗ rk)

both work out to be
δjk(−1)j|β|αβηj+k

n .

To check surjectivity of Γ, given γ in its codomain, we have

Γ(α⊗ 1 + β ⊗ r) = γ ,

where

α =
1

2
(γ + (−1)|γ|δηnγηn) ,

and

β =
δ

2
(γηn + (−1)|γ|+1ηnγ) .

To check injectivity, suppose that

α⊗ 1 + β ⊗ r 0→ 0 = α + βηn ,
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with |β| = 1 + |α|. Then

0 = (−1)|α|δηn0ηn = (−1)|α|δ(ηnαηn + ηnβη2
n) = α + (−1)|α|ηnβ = α−βηn .

Thus α = 0 = β, as required.

The proof of the final result in this section is just sketched, since the
industrious reader will mostly need to consult the references. Each graded
algebra A has a ‘twin’ Ā, which coincides with A in all respects except that
its multiplication, ∗, is defined in terms of that, •, on A by

x ∗ y := (−1)|x||y|x • y .

Twinning preserves the subset of CGA’s (resp. SGA’s, CSGA’s). The inverse
of the class of A in the Brauer–Wall group is formed by using the class of
(Ā)opp, which equals (Aopp). The map determined by a ⊗ b 0→ b ⊗ a shows

that A⊗̂B is isomorphic to B ⊗̂ A.

Proposition 1.19. Suppose that V ∈ ZF
1 (G) corresponds to the FG–

module M , under the equivalence of categories between ZF
1 (G) and the cat-

egory of (ungraded) FG–modules in which z acts as −1. Then End∗V is
isomorphic as a GA to A(M), where A(M) is the graded algebra associated
to M by Turull [T].

Remark. Both definitions of these graded algebras seem perfectly nat-
ural. They don’t coincide up to isomorphism because we found it more
convenient to use the functor

ρ(V, V ′, η1, · · · , ηn) = (V ′, V, − η1, · · · , − ηn) ,

rather than the naturally isomorphic functor

ρ1([V, V ′, •], η1, · · · , ηn) = ([V ′, V, ∗], η1, · · · , ηn) ,

where the G–action, ∗, is defined in terms of the given action, •, by

g ∗ v := (−1)|g|g • v .

Sketch Proof. We may take

A(M)0 = EndFGM = EndFG(Mass) ,
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and
A(M)1 = HomFG(M , Mass) = HomFG( Mass , M) .

Here the associate, Mass, coincides with M in all respects except that its
G–action is ∗, as defined in the remark above.
Define a map of graded vector spaces,

Ω : (End0V , End1V) → (A(M)0 , A(M)1) ,

as follows. If V = (V, V ′, η), we may take M to be the +1–eigenspace of
η regarded as a linear operator on V ⊕ V ′. The latter inherits its G–action
from that on (V, V ′). For α ∈ End0V , think of α as an operator on V ⊕ V ′

and define Ω(α) to be the restriction of α to M . For β ∈ End1V , define Ω(β)
to be the restriction of β′ to M , where

β′(v) := (−1)|v|ηβ(v) .

In both gradings we have a bijection Ω, since we are using an equivalence of
categories [H1].
It remains only to check the behaviour with respect to the algebra multipli-
cations. If also γ ∈ End1V , then

Ωβ[Ωγ(v)] = (−1)|v|ηβ[(−1)|v|ηγ(v)] = −η2βγ(v) = −Ω(β ◦ γ)(v) .

In the three cases where at least one of the endomorphisms has grading 0,
the corresponding calculation is even easier and the sign doesn’t appear, as
required.

Continuation of Remark. For computations in Section 4, it will be
useful to have another algebra, End

∗V , defined using ρ1, rather than ρ:

End
0V := End0V = Hom(V , V) = Hom(ρ1V , ρ1V) ;

End
1V := Hom(V , ρ1V) = Hom(ρ1V , V) .

Then we have an isomorphism of algebras End∗V ∼= End
∗V via the map

(End0V , End1V) → (End
0V , End

1V)

which is the identity on the zero part, and takes α ∈ End1V to the mapping
[v 0→ (−1)|v|α(v)]. The proof is mechanical, as above.
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2. Top–Down and Bottom–Up Schur Index

Given a field extension F ⊂ L in characteristic 0, we’ll prove (mimicking
a character–free treatment of the ungraded theory) that the map

ZF
n (G) −→ ZL

n (G)

V 0−→ L⊗F V

has the following property: For each irreducible V over F ,

V 0−→
⊕

i

(V1,i ⊕ · · ·⊕ Vdi,i)
⊕mi ,

for some positive integers di and mi, and some distinct irreducibles Vj,i over
L, and such that each irreducible over L occurs as a Vj,i precisely once, as
we vary V. In particular, the induced map between the Grothendieck groups
of these categories is injective.

Proposition 2.1. If the extension F ⊂ L is finite, then the composition

ZF
n (G) → ZL

n (G) → ZF
n (G)

is multiplication by [L : F ]; that is, V 0→ V⊕[L:F ].

Note Whenever maps as above are written down without being more
specific, we mean either tensoring with the larger field, or restricting scalars
to the smaller (the latter only for finite extensions, of course).

The proof of 2.1 is the same as in the ungraded case: just pick any basis
for the field extension in order to write down the required subspaces.

Corollary 2.2. The map ZF
n (G) → ZL

n (G) is injective on iso-
morphism classes; more precisely, in the first paragraph of this section, each
irreducible over L can occur as a Vj,i for at most one V (since (Vj,i)F is
isomorphic to a direct sum of copies of V).

Given a field extension F ⊂ C, such that ZC
n (G) → Z C̄

n (G) is an isomor-
phism (C̄ being the algebraic closure of C), it is straightforward to see that
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there exist minimal S with F ⊂ S ⊂ C such that ZS
n (G) → Z S̄

n (G) is also an
isomorphism. The extension F ⊂ S is finite. Furthermore, ZS

n (G) → ZT
n (G)

is an isomorphism for any extension, T , of S, so ZS
n (G) is independent of F .

One can call such an S a Zn–splitting field for G over F . Now the statements
in the first paragraph above follow easily for general L from the case when L
is a splitting field over F . In the latter case, only one i is needed, as proved
and expanded in Theorem 2.6 below. In this case the integer mi = m is called
the Zn–Schur index. Below, the latter is related to the Brauer–Wall group, in
analogy to the Brauer group connection for ungraded representations. Later
we’ll see that, for two values of n, this becomes the ordinary Schur index
with respect to G and to Ker σ, respectively. By the 8–fold periodicity (see
the next two sections), there are six other cases in general. But if

√
−1 is in

F , these collapse to the above two cases, by 2–fold periodicity.

Now fix n and F , and fix also a splitting field S for Zn(G) over F . Given
an irreducible V ∈ ZF

n (G), there are intermediate fields A = A(V) and
M = M(V), unique up to F -isomorphism, for which V has ample scalars
in M and adequate scalars in A, respectively, i.e. for which the two sets of
four equivalent conditions in the next result hold, respectively. Existence
and uniqueness of A and M follow from conditions iii) and iii)′. These also
show that we may take A ⊂ M . By 1.12, this extension has degree 2 or 1.

Proposition 2.3. Let V be an irreducible in ZF
n (G).

a) The following are equivalent conditions on an intermediate field A (i.e.
F ⊂ A ⊂ S):

i) There exists a W ∈ ZA
n (G) with adequate scalars (in A) where WF

∼= V
and every map from V to ρjV is also a map from W to ρjW.

ii) There exists a W ∈ ZA
n (G) such that WF

∼= V, and any such W both
has adequate scalars (in A) and also has the property that every map from
V to ρjV is in fact a map from W to ρjW.

iii) The graded F–algebras Ẑ(End∗V) and (A , 0 ) are isomorphic.

iv) If d is the degree [A : F ], then A⊗F V ∼= W1⊕ · · ·⊕Wd for distinct
non–associated irreducibles Wi over A, each with adequate scalars (in A)
and satisfying the mapping property of W in i) and ii).
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b) Furthermore, the following are also equivalent conditions on an interme-
diate field M :

i)′ There exists a W ∈ ZM
n (G) with ample scalars (in M) where WF

∼= V
and every endomorphism of V is also an endomorphism of W.

ii)′ There exists a W ∈ ZM
n (G) such that WF

∼= V, and any such W both
has ample scalars (in M) and also has the property that every endomor-
phism of V is in fact an endomorphism of W.

iii)′ Z(End0V) ∼= M as an F–algebra.

iv)′ If e is the degree [M : F ], then M ⊗F V ∼= W1 ⊕ · · · ⊕We for
distinct irreducibles Wi over M , each with ample scalars (in M) and each
satisfying the assertion about endomorphisms in i)′ and ii)′.

Proof. The proof for b) is similar to, but easier than, that for a), so we’ll
give only the latter.

i) implies iii): An isomorphism WF → V gives an action of A on V ,
and so a map α : A → End0V of F–algebras. It maps into Z(End0V) by
the assumed map extendability for j = 0. Being a map between fields, α
is injective. It maps into Ẑ0(End∗V) by the assumed map extendability for
j = 1. It maps onto Ẑ0(End∗V), since otherwise the action on V could
be extended to the action of a proper extension of A so as to contradict
adequateness.

iii) implies iv): We have isomorphisms of F–algebras:

Ẑ[End∗AG(A⊗F V)] ∼= Ẑ[A⊗F End∗FG(V)]

∼= A⊗F Ẑ(End∗FGV) ∼= A⊗F (A, 0) ∼= (Ad, 0) .

Thus A ⊗F V ∼= W1 ⊕ · · · ⊕Wd, where each Wi is as specified in 1.17a)ii).
But then, using 2.1,

V⊕d ∼= (A⊗F V)F
∼=

⊕
(Wi)F .

Since V is irreducible and each Wi is non–zero, we must have (Wi)F
∼= V

for all i, and so Wi is irreducible. Thus the Wi form a collection of distinct
non–associated irreducibles with adequate scalars. The isomorphism between
Ẑ(End∗V) and (A, 0) immediately implies the required mapping property
of Wi.
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iv) implies i): We have, using 2.1,

⊕
(Wi)F

∼= (A⊗F V)F
∼= V⊕d,

so each (Wi)F
∼= V , just as above. It is immediate that A satisfies i) for

(Wi)F , and so it also satisfies i) for V .
Since ii) trivially implies i), it remains only to do the following.
iv) implies ii): By the proof that iv) implies i), it remains only to prove

that the Wi in iv) are the only possible W as in i) and ii). But to show
that such a W must occur in A ⊗F V , a non–zero ZA

n (G)–map from the
latter to the former is given by a⊗ v 0→ aθ(v) for any ZF

n (G)– isomorphism
θ : V →WF .

Corollary 2.4. If V is an irreducible in ZF
n (G), and has either adequate

or ample scalars in K (i.e. assume that K is one of the possibilities for A
or M), then F ⊂ K is a (finite) Galois extension, and

K ⊗F V ∼= W1 ⊕ · · ·⊕W[K:F ]

where the Wi are a complete set of distinct irreducibles which are mutually
conjugate via the Galois group Gal(K//F ).

Note. Given an automorphism θ of K, and W ∈ ZK
n (G), its conjugate

Wθ is defined to be the same as W in all respects except that the new scalar
multiplication, ∗, of K is defined in terms of the old one, •, by k∗w = θ(k)•w.

Proof. Two different Wi in iv) or iv)′ of 2.3 are given by two iso-
morphisms K → Z(End0V) or Ẑ0(End∗V) , respectively, of F–algebras.
These two isomorphisms differ by an element of Gal(K//F ). It follows that
Gal(K//F ) has at least (and so exactly) [K : F ] elements, and so the exten-
sion is normal, as required.

Proposition 2.5. Recall that S is a Zn–splitting field of G over F . Let
K be any intermediate field, and let W be an irreducible in ZK

n (G).

a) The following are equivalent:
i) W has adequate scalars (in K);
ii) S⊗KW has the form U⊕N ⊕ (ρU)⊕M for an irreducible U ∈ ZS

n (G);
iii) S ⊗K W has the form U⊕N or (U ⊕ ρU)⊕M for an irreducible
U ∈ ZS

n (G).
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b) So are the following:
iv) W has ample scalars (in K);
v) S ⊗K W has the form U⊕N for an irreducible U ∈ ZS

n (G).

Proof. As usual, we’ll give it only for a). Condition i) is equivalent
by definition to saying that Ẑ0(End∗KGW) = K. By 1.17 and since
everything over S has adequate scalars, condition ii) is equivalent to the
assertion Ẑ0[End∗SG(S ⊗K W)] = S. The proof of the equivalence of
i) and ii) is completed by observing that the latter centre is isomorphic
to S tensored over K into the former centre (as at the start of the proof
that iii) implies iv) in 2.3). To prove that ii) implies iii), consider the two
cases according to whether W is special or not. If it is, then we must have
NM = 0, since, if both N and M are non–zero, restricting scalars back to
K in the equation of ii) gives (by 2.1) that both UF and (ρU)F are direct
sums of copies of W . But since (ρU)F = ρ(UF ), this contradicts specialness
of W . On the other hand, if W ∼= ρW , then either U ∼= ρU in which case we
can obviously take either N or M to be 0, or else U is special, which implies
N = M by applying ρ to both sides of the equation of ii).

Theorem 2.6. For any G, n and F , denote, as above, by S a fixed
Zn–splitting field of G over F . Then the functor

ZF
n (G) −→ ZS

n (G)

V 0−→ S ⊗F V

is described as follows: for each irreducible V over F ,

V 0−→ (U1 ⊕ · · ·⊕ Ue)
⊕m ,

where the following hold.
i) The Ui are distinct irreducibles, and each irreducible in ZS

n (G) appears
exactly once as a Ui, as we vary V over all the irreducibles in ZF

n (G) .

ii) The integer e is the degree over F of any ample scalar field, M , of V.

iii) (BOTTOM UP) Given V, the integer m, the Schur index, is the index
over M of the central division algebra End0

MW (i.e. the square root of its
dimension over M) , where V has ample scalars in M , and W is any choice
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of an object in ZM
n (G) for which WF

∼= V. Equivalently, m is the index of
End0

FV over its centre (which is M). In terms of End∗ and the adequate
scalar field, A, of V, we have the following three cases which determine m:
for any Wi occurring in 2.3a)iv),

dimA(End∗Wi) =






(m2, 0) if V is special, so A = M and Ui -∼= ρUi ;
(m2, m2) if V ∼= ρVand Ui

∼= ρUi, so A = M ;
(2m2, 2m2) if V ∼= ρVand Ui -∼= ρUi, so [M : A] = 2 .

(The same case will occur for all indices i. Note that these are the dimensions
which occur in the remark after 1.11.)

iv) (TOP DOWN) Starting from an irreducible U in ZS
n (G), its Schur

index relative to F may be calculated by choosing an intermediate field K
between F and S and an object Wlarge in ZK

n (G) for which

S ⊗K (Wlarge) ∼= either U⊕N or (U ⊕ ρU)⊕P

for some integer N or P , and such that K has no proper subfield containing
F for which such a choice can be made. Then

(Wlarge)F
∼= V⊕r or (V ⊕ ρV)⊕p

for some r and/or p, where V is the unique irreducible summand in UF . The
trichotomy in part iii) becomes the following:

If U -∼= ρU and V -∼= ρV, then A = M = K is the only possibility for K,
and U⊕N is the only choice.

If U ∼= ρU , then V ∼= ρV, and A = M = K, and U⊕N is the only sensible
choice (but if N were even, one could pretend to make the other choice with
P = N/2).

If U -∼= ρU and V ∼= ρV, then [M : A] = 2. One can choose K to be either
A with the choice (U ⊕ ρU)⊕P , or to be M with the choice U⊕N .

In each case, the choices for Wlarge are direct sums of “ r” and/or “ 2p ”
copies of any one of the Wi in 2.3 iv) and/or iv)′.

If K is chosen to be A, then End∗K(Wlarge) is a CSGA over K. The Schur
index is calculated as in part iii), using the formulas in 1.9 to 1.13; that is,
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applying End∗ to Wi or Wlarge yields the same element in the Brauer–Wall
group, and this element determines m.

When the choice K = M is made, one can use instead the ungraded
algebra End0

K(Wlarge) in the Brauer group of K, as indicated in part iii).
The other irreducibles occurring along with U in the image of an irre-

ducible from ZF
n (G) are precisely those in the orbit of U under Gal(S//F ).

The subgroup leaving U invariant is Gal(S//M).

Remark. Besides being annoyed at a gargantuan theorem statement,
the reader may at this point be wondering why we bother at all with A and
End∗, since M and End0 do everything we need more simply. See however
Sections 3 and 4 ahead.

Proof. Given V , let K be either an ample scalar field M or an adequate
scalar field A inside S. Let

K ⊗F V ∼= W1 ⊕ · · ·⊕W[K:F ]

as in 2.4, and let

S ⊗K Wi
∼= either U⊕Ni

i or (Ui ⊕ ρUi)
⊕Pi

as in 2.5. If θ is an automorphism of K, we have

S ⊗K (Wθ) ∼= (S ⊗K W)φ

for any automorphism φ of S which extends θ: use the map s⊗w 0→ φ(s)⊗w.
It follows that all Ni and all Pi are equal (say, to m), and that U1, · · · ,U[K:F ]

are a complete set of conjugate irreducibles under the action of Gal(S//F ).
Furthermore

S ⊗F V ∼= S ⊗K (K ⊗F V) ∼= S ⊗K (
⊕

i

Wi) ∼= (
⊕

i

[Ui or Ui ⊕ ρUi])
⊕m.

In the case where we choose K = M , for each i,

Sm×m ∼= (End0
SG Ui)

m×m ∼= End0
SG(U⊕m

i )

∼= End0
SG(S ⊗K Wi) ∼= S ⊗K End0

KG(Wi) .
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Taking dimensions over K, we get

[S : K] m2 = [S : K] dimKEnd0
KG(Wi) ,

as required.
When one has K = A and works with End∗ rather than End0, the analogous
calculation goes as follows. The three cases are in the order given in the
theorem statement. In the third case, where e = 2d, the indices are chosen
so that

S ⊗A Wi
∼= (U2i−1 ⊕ U2i)

⊕m with U2i = ρU2i−1

for 1 ≤ i ≤ d :

dimAEnd∗AGWi = dimS(S ⊗A End∗AGWi) = dimSEnd∗SG(S ⊗A Wi)

=






dimSEnd∗SG(U⊕m
i ) = dimS[(End0

SGUi)(m,0)×(m,0)]
dimSEnd∗SG(U⊕m

i ) = dimS[(End∗SGUi)m×m]
dimSEnd∗SG[(U2i−1 ⊕ U2i)⊕m] = dimS[(End0

SGU2i−1)(m,m)×(m,m)]

=






dimS(S(m,0)×(m,0)) = (m2, 0) if V -∼= ρV and Ui -∼= ρUi ;
dimS[(S, S)m×m] = (m2, m2) if V ∼= ρV and Ui

∼= ρUi ;
dimS(S(m,m)×(m,m)) = (2m2, 2m2) if V ∼= ρV and Ui -∼= ρUi .

Together with 2.3, this proves all of i), ii) and iii), except to show that each
irreducible U in ZS

n (G) is a summand of S⊗F V for at least one (and therefore
exactly one) V . Given such a U , the map

S ⊗F (UF ) → U

s⊗ u 0→ su

is easily seen to be a map in ZS
n (G), and is clearly surjective. Thus U appears

as a summand in S ⊗F V for at least one irreducible summand V of UF , as
required.
It remains to prove iv). By what we just proved, a pair (K , Wlarge) certainly
exists: one takes K to be as in the first part of the proof, for the V in

21



the previous paragraph, and takes Wlarge to be W⊕r
i for any irreducible Wi

appearing in K ⊗F V and any r ≥ 1.
Conversely, given K and Wlarge as indicated in the statement of iv), the
latter must contain copies of only one irreducible, together possibly with its
associate, since S ⊗K Wlarge does. When the associate doesn’t occur (the
other case is similar), let Wlarge

∼= W⊕s for some irreducible W . Then

(WF )⊕s ∼= (Wlarge)F
∼= V⊕r.

Thus

(K ⊗F V)⊕r ∼= K ⊗F (V⊕r) ∼= K ⊗F (W⊕s
F ) ∼= [K ⊗F (WF )]⊕s

The argument as above shows that K ⊗F (WF ) contains a copy of W , and
therefore so does K ⊗F V . Also W has ample scalars since Wlarge does, and
so V has ample scalars in K. Thus K ⊗F V contains W exactly once, and
WF

∼= V (and r = s). So

End0
K(Wlarge) ∼= End0

K(W⊕s) ∼= (End0
KW)s×s.

By the proof of iii), End0
KW is a division algebra of dimension m2, as re-

quired. The remaining statements are clear from 2.4 and the fact stated
above about θ and φ.

Referring to the clauses in the previous theorem using A and End∗, we
can make the following definitions.

Definitions. Given F , n, and an irreducible V ∈ ZF
n (G), let A be an

adequate field of scalars for V inside some splitting field. Define

bwA(V) ∈ BW (A)

to be the class of End∗(W) for any W ∈ ZA
n (G) for which WF

∼= V . This is
a well defined element in the Brauer–Wall group because of 1.10, 1.14, and
1.15 (as well as 2.4, since conjugate representations over F evidently have
isomorphic End∗-algebras, so bwA(V) is independent of the choice of W).
Given a splitting field S for Zn(G) over F , and an irreducible U ∈ ZS

n (G),
let UF be a direct sum of copies of the irreducible V . Choose A, an adequate
field for V between F and S. Define

bw(U , F, A) := bwA(V) .
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Then, by the last theorem, bw(U , F, A) is the class of End∗(Wlarge) for any
choice of Wlarge in that theorem when K is chosen to be A, and it determines
the Schur index of U over F .
If U ′ ∈ ZT

n (G) is irreducible, where S ⊂ T , define

bw(U ′, F, A) := bw(U , F, A) ,

for the unique U ∈ ZS
n (G) for which U ′ ∼= T ⊗S U .

Note that this coincides with the previous definition when T is a split-
ting field, and in general is independent of which splitting field is chosen
intermediate between A and T .

3. Products, equivalences, inducing and restricting

Up to now, the need for End∗ as opposed to End0 has not been obvious.
The calculations in Section 4 should help to dissolve this impression. In
addition , behaviour with respect to the natural tensor product,

Za(G)× Zb(H) −→ Za+b(G Ŷ H)

(V ,W) 0−→ V ⊗W
defined in [H1; Sect. 2], is simpler using the graded algebra. Adjointness
properties of this tensor operation lead quickly to

Theorem 3.1. For all V and W as above, we have

End∗(V ⊗W) ∼= (End∗V) ⊗̂ (End∗W) ,

where the isomorphism, and the tensor product on the right, are for Z/2–
graded algebras.

Corollary. If End∗(Vj) is a CGA for each j, then End∗(V1 ⊗ V2 ⊗ · · ·)
is also a CGA.

Proof.This is immediate, by iterating 3.1, from the fact that a tensor
product of CGA’s is again a CGA.

Proof of 3.1. We have
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End∗(V ⊗W) = Hom∗(V ⊗W , V ⊗W)

∼= Hom∗[V , Hom∗(W , V ⊗W)]

∼= Hom∗[V , V ⊗Hom∗(W , W)]

∼= Hom∗(V , V) ⊗̂ Hom∗(W , W)

= End∗(V) ⊗̂ End∗(W) ,

as required, using adjointness [H1;5.3] once, and ‘co–adjointness’ [H1; end
of Section 5] twice, in that order. A mechanical check verifies that the iso-
morphism commutes with the algebra multiplications.

In the first section of [H1], the main result is a periodicity equivalence
ZC

n (G) ! ZC
n+2(G) for n ≥ 0. Examination of the proof shows that it holds

over any extension F of Q which contains
√
−1. More generally, John Q.

Huang in [QH1, QH2] has extended this to all n, and has proved an 8–fold
periodicity, ZF

n (G) ! ZF
n+8(G), which holds over all fields of characteristic 0.

(There is also an intermediate case, giving period 4 when −1 is a sum of two
squares in F . See also [H3] for the generalization to gradings over arbitrary
finite abelian groups.) The following is proved directly in the same manner
as 1.19.

Proposition 3.2. End∗ commutes with the periodicity equivalences.

There are also equivalences (over any field of characteristic zero) of Z1(G)
with the category of (ungraded) representations of G in which z acts neg-
atively; and, when σ -= 0, of Z0(G) with the category of (ungraded, z–
negative) representations of Ker σ. The behaviour of End∗ with respect to
the first of these is explained in 1.19. The interpretation of End0 in these
‘ungraded’ categories is obvious in both cases, and also of End1 once one
knows what the operation ρ amounts to. On G–modules, it is multiplication
by the sign representation. On Ker σ–modules, it is conjugation, using any
element not in Ker σ.

From this information, it is clear how to extract, from knowledge of End∗,
the usual Schur index of an ungraded representation which corresponds to
some given element in Zn(G) under iteration of the above category equiva-
lences.
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As with the well known facts concerning linear representations of Sn,
there is a ‘unitriangular connection’ between the family of irreducible com-
plex projective representations of Sn and An, and a certain family of induced
representations (where what is induced are products, as in the first paragraph
above, of basically Clifford modules—various versions of the latter are given
in the next section). Thus we’ll need the following result concerning End∗

of irreducibles which occur with multiplicity one in representations induced
from irreducibles on smaller groups (or, equivalently by reciprocity, the sim-
ilar statement with ‘restricted’ in place of ‘induced’ and ‘larger’ replacing
‘smaller’).

Remark. Assumption (∗) in 3.3 below holds in the application to the
double covers of the symmetric groups in the next section, as explained at
the end of this section. However it would be desirable to have a more general
result relating to Schur indices of induced representations. Note also that
(∗) would fail in these examples if ‘adequate’ were replaced by ‘ample’, for
example, when F = Q. This may be seen by noting that an irreducible
projective representation of the symmetric (resp. alternating) group doesn’t
necessarily have a rational (integer) valued character, but it does once its
associate (resp. conjugate) is added on.

Theorem 3.3. Let f : G′ → G be an injective map of objects (a
monomorphism preserving z and commuting with σ). Let T be an extension
of F containing Zn–splitting fields S and S ′ over F for G and G′ respectively.
Let U be an irreducible in ZT

n (G) and U ′ an irreducible in ZT
n (G′). Assume

that U ′ appears with multiplicity 1 in the restriction of U from G to G′, and
that U ′ is special if and only if U is, in which case ρU ′ does not appear in
that restriction. Assume also :

A(U ′, F ) = F = A(U , F ) (∗)

(That is, F itself is a choice—and so, the unique choice—for the adequate
scalar field for the irreducible occurring when either object is restricted to
F . This will then hold for all choices of S and S ′.) Then the Brauer-Wall
invariants agree: bw(U , F, F ) = bw(U ′, F, F ) . In particular, the Schur
indices over F of U and U ′ are equal.

Proof. By (∗), there is a unique irreducible W ′ ∈ ZF
n (G′) [respectively

W ∈ ZF
n (G)] corresponding to U ′ [resp. U ] as in 2.5a). Let W ′′ ∈ ZF

n (G′)
be the W ′–isotypical component of the restriction of W from G to G′. It is
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certainly non–zero, since U ′ occurs in the restriction of U from G to G′, and
since restriction to subgroups commutes with both tensoring up to a larger
field and with restricting scalars to a smaller field. Clearly W ′′ is invariant
under any element of End∗(W). Thus we have, by restriction, a map

Ω : End∗(W) → End∗(W ′′)

of GA’s, which is injective since the domain of Ω is a division graded algebra
and its codomain is non–zero.
Below we show that the domain and codomain of Ω have the same dimensions
in each grading, so that Ω is an isomorphism. This will complete the proof,
since these two isomorphic CSGA’s over F have classes in BW (F ) equal to
bw(U , F, F ) and bw(U ′, F, F ) .
Using the assumption concerning the multiplicities of U ′ and ρU ′ in the re-
striction of U from G to G′, it follows that if W ′′ maps under T⊗F (—) to
U ′⊕N [to (U ′ ⊕ ρU ′)⊕P respectively], then W maps to U⊕N [to (U ⊕ ρU)⊕P ,
respectively]. But the dimensions pair of End∗ over F of the first of these
agrees with the dimensions of End∗ over T of the second, and that for the
third agrees with the fourth. The second and fourth dimensions are equal,
as required.

The application of this theorem sketched below should logically be at the
end of the next and final section; but psychologically it seems better here.

In the next section, we calculate End∗ for certain ‘basic’ irreducibles
of symmetric group covers. It follows immediately from the constructed
modules in the next section that (∗) in 3.3 (i.e. that A = F ) holds with U or
U ′ equal to any of these basic objects. Then, by the corollary to 3.1, condition
(∗) holds with U ′ equal to any tensor product of such basic objects, say for
symmetric group covers indexed by k1, · · · , k'. This will be the U ′ in our
application. More specifically, we take k1, · · · , k' to be a strict partition, and
in 3.3 we take G as a cover of Sk1+···+k!

, and G′ as the cover of Sk1× · · ·×Sk!
,

using the Ŷ–product. Then we may take U equal to the special irreducible
indexed by the strict partition k1, · · · , k', and U ′ equal to the tensor product
above. Except for checking that (∗) holds for U , the other hypotheses of 3.3
are standard facts about these groups.
The proof of (∗) for U is by induction on the reverse of the usual lexicographic
order on the set of strict partitions of a given integer. The initial case follows
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from the constructions of the next section, as noted above. What we must
prove is that there is a non–zero object V , defined over F , which maps under
extension of scalars to a direct sum of copies of U and/or its associate ρU .
(So we might as well take F = Q.) It suffices to be able to write an equation
U1 = U ⊕ U2 for which this assertion holds for both U1 and U2. But this is
once again the “standard fact about these groups” above, taking U1 to be
the result of inducing the tensor product above, from the Ŷ–product cover
of Sk1 × · · ·× Sk!

, to the cover of Sk1+···+k!
. The truth of “this assertion” for

the leftover piece U2 is immediate from the inductive hypothesis.
Thus the Schur index over F for the general irreducible may be calculated
‘easily’, starting from that for the basic irreducible, as done by Turull [T].
Besides avoiding characters, we have: i) replaced his new binary operation ∨
in BW (F ) (which amounts to ‘translating the origin’) by the usual operation;
and ii) replaced his ∨–product of representations (which is a special case of
the product ⊗̃ in [H–H1; Ch.6]) by the tensor product of graded Clifford
representations. Explicitly, the bw–invariant for the irreducible indexed by
the strict partition above is the product in the Brauer–Wall group of the
invariants for each of the basic objects indexed by the parts of the partition.

4. Covers of the Symmetric Group

In this section we shall do three things. The first is to exhibit some
particularly simple objects (in categories Zn) which are ‘alter egos’ for the
basic irreducible projective representations of the symmetric and alternating
groups (i.e. the former map to the latter under iterations of the category
equivalences before and after 3.2). Then we calculate the Brauer–Wall in-
variant bw(U , F, F ) for all F , where U ranges over these basic elements in
ZC

n (G), with G being either of the essential double covers of the symmetric
group. There are eight relevant values of n by periodicity, despite the fact
that the period is two over C. For n ≡ 1 mod 8, these values agree with those
of Turull [T] (taking into account 1.19), although the method is different. For
n ≡ 0 mod 8, the values give invariants for the alternating groups, and an
alternative method to calculate their Schur indices. This provides a very
straightforward way to get the Brauer–Wall invariants which determine the
Schur indices of the basic irreducible projective characters of the symmetric
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and the alternating groups. Finally, the theory of the previous section then
gives the invariants for all the irreducibles. We write down a closed formula
for them at the end of the section.

Recall the groups S±1
k in [T]. These are double covers of the symmetric

groups, denoted S̃k and Ŝk in previous papers of this author. Note that
the generator ti projecting to the transposition (i i + 1) has square −ε,
not +ε in the group Sε

k. To avoid confusing ourselves, we shall redo the
notation, defining Sk,δ to be Turull’s S−δ

k (so that, in our notation, t2i acts as
−1 on Sk,−-modules, whereas t2i acts as +1 on Sk,+-modules). These double
covers of the symmetric group are such that the categories ZC

2r+1(Sk,±) are
all equivalent to the category of complex projective representations of Sk,
whereas changing 2r + 1 to 2r gives the projective representations for the
alternating group Ak. (There are a few exceptions for small values of k.)

Below we shall do three calculations—first over R, then over those F
with

√
2 ∈ F , and finally over F with

√
2 /∈ F . The first is redundant,

but gives a particularly transparent method to recover the real Schur index.
(This was first calculated by Schur [S] using manipulations with characters
and Q–functions. John Q. Huang [QH2] has given another, short proof
using the induction algebra. Of course it also follows by specializing Turull’s
results.) In each of the three cases, we first find an object defined over the
field in question in some category Zn, choosing n to make life easy. Then
we apply a functor κ a number of times to get into Z1 or 0, these categories
being equivalent to the (ungraded) module categories for the symmetric or
alternating group covers, respectively. Via 1.18 this immediately gives the
element in the Brauer–Wall group required to get the Schur index of the
corresponding basic projective representation of a symmetric or alternating
group.

Before starting, it may be helpful to note the following. There is a ‘ba-
sic’ triple of irreducible complex projective representations of Sk and Ak.
Asymptotically in k, these are by far the non-zero representations of smallest
dimension. Below we construct objects

Bk−1 , Ck ⊕ ρCk , Ck+1 , C ′
k+1

in Zk∓1. It is necessary to check that these are quasihomogeneous with
respect to one from the above basic triple under the category equivalences
mentioned before and after 3.2. (A character calculation here would be a last
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resort!) For all but the first few values of k, this follows from the smallness
of the dimension. (Now apply the principle of aesthetic continuation?)

Continue with a fixed base field F . Let C±
k be the Clifford algebra for

the standard (±1)–ive quadratic form on F k. Let B±
k−1 be the sub–Clifford

algebra for the restriction of the form to the subspace,

{ (a1, · · · , ak) :
∑

(∓1)jaj = 0 } ,

of codimension 1 in F k. When
√

2 ∈ F , we have embeddings

Sk,± −→ B±
k−1

tj 0→ (ej ± ej+1)/
√

2

where tj is the jth generator of the group, and ej is the jth standard basis
vector. Note that z maps to −1.

Now, given two GA’s A and B, let AMB denote the category of graded
(A, B)–bimodules (everything should be finite–dimensional over the ground
field). When

√
2 ∈ F , we then have an embedding of categories

Bδ
k−1
MCδ

l
−→ Zδl(Sk,δ)

by sending a module to itself as a graded vector space, with the action of
Sk,δ coming from the left action of Bk−1 via the above embedding, and the
map ηj being the right action of the jth standard basis element ej.

First take F = R (or, for fixed k, any field with enough square roots so
that Bk−1 has an orthonormal basis in its defining quadratic space. There is
a formula for such a basis in [H–H; A6.1]).Then

Bδ
k−1 ∈ Bδ

k−1
MBδ

k−1

∼= Bδ
k−1
MCδ

k−1
.

By the paragraph above, we may therefore regard Bδ
k−1 as an object in

Zδ(k−1)(Sk,δ) over either R or C. Over C, it is ‘the’ basic irreducible pro-
jective representation of the symmetric (resp. alternating) group for k even
(resp. k odd). (→For those who find the above dimension argument insuf-
ficient, refer to 4.1 and 4.2 below, noting that, e.g. when δ = 1, the object
Bk−1 is isomorphic to the

√
−1–eigenspace of (·ek)(·ek+1) acting on Ck via

the map taking x to

x(1 + e1e2 + e1e3 + · · ·+ e1ek−1 + (1 +
√

k)e1ek) . ←)
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Now it is clear that

bw(Bk−1) = class of (R, 0) = [1; 0; 1] ,

the identity element in BW (R), since a central algebra, regarded as a bimod-
ule over itself, has no interesting endomorphisms.

Thus, when δ = +1, the element κk−2
+ B+

k−1 ∈ Z1(Sk,+) is quasihomoge-
neous for the irreducible corresponding to the ungraded basic irreducible com-
plex projective representation(s) of Sk. Applying bw to it gives [1; 1; 1]k−2

by 1.18, since the class of F <
√

1 > is [1; 1; 1] ∈ BW (F ) for any F .
When δ = −1, we must apply κk

− and get [1; 1; − 1]k, since the class of
F <

√
−1 > is [1; 1; − 1] ∈ BW (F ) , and since we must get into Z1, not

Z−1. (See [H1, Sect. 1] for how to define

κ− : Zn → Zn+1

when n ≥ 0.)
For those who really like to see some blood and gore, we recall that

BW (R) is cyclic of order 8, generated by either [1; 1; 1] or [1; 1; −1], which
are inverses of each other. Explicitly, with f(n) = n(n−1)(n−2)(n−3)/4! ,

[1; 1; 1]n = [(−1,−1)f(n+1); n ; (−1)
n(n−1)

2 ]

and
[1; 1; − 1]n = [(−1,−1)f(n+2); n ; (−1)

n(n+1)
2 ] .

Substituting these into the last paragraph gives explicit formulae. These
agree with what Turull obtains, but don’t forget 1.19 and that his ε is −δ.
(Of course, over R, one may erase all the occurrences of 2 and of n, which is
our k, from the formulae in [T; 5.6 and repeated in 6.1].)

To recover Schur’s full result on the real Schur index, we apply the final
few paragraphs of the previous section. The pair of associated fundamental
objects indexed by a given strict partition λ are in Zδ(|λ|−lengthλ). One of
them is obtained by tensoring together the basic objects, Bk−1, one for each
part, k, of λ. Its bw–invariant is obtained by multiplying the invariants of
its components, so is still the identity element of the Brauer–Wall group.
Multiplying by a power of κδ to get into Z1, we get the invariant

[1 ; 1 ; δ]|λ|−lengthλ−δ .
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Below is a table listing all the elements, [1 ; 1 ; 1]n, of BW (R); the unique
graded division algebras representing them (see 1.11); their dimensions; and
the associated Schur indices. (Here H denotes the original quaternions of
Hamilton, giving the element (−1, − 1) in the Brauer group of R) :

n(mod8) [1 ; 1 ; 1]n div. gr. alg. in class dims m

0 [1 ; 0 ; 1] (R, 0) (1, 0) 1
1 [1 ; 1 ; 1] R <

√
1 > (1, 1) 1

2 [1 ; 0 ; − 1] R[
√
−1] <

√
1; c > (2, 2) 1

3 [(−1,−1); 1;−1] H <
√
−1 > (4, 4) 2

4 [(−1,−1); 0; 1] (H, 0) (4, 0) 2
5 [(−1,−1); 1; 1] H <

√
1 > (4, 4) 2

6 [(−1,−1); 0;−1] R[
√
−1] <

√
−1; c > (2, 2) 1

7 [1 ; 1 ; − 1] R <
√
−1 > (1, 1) 1

Thus m = 2 for the invariant of the object in Z1 above precisely when

|λ|− lengthλ− δ ≡ 3, 4, 5 (mod 8) .

This agrees with Schur’s table [S; p. 68]. (Note that the third row of Schur’s
table should have been labeled s′, not s. It refers to the groups Sk,+). Schur’s
table actually gives the more precise ‘signature’, i.e. the division of complex
characters into real, complex and quaternionic cases. That agrees, as it must,
with the zero part of the graded division algebras in our table above, taking
n = |λ|− lengthλ− δ.

Now assume that F is any field containing
√

2. There is a blindingly
obvious object Ck in Ck

MCk
. When

√
−1 ,

√
k ∈ F as well, by dropping

down to the subalgebra Bk−1 of Ck for the left action, we can pop up to the
superalgebra ( not the physicists’ use of that word!) Ck+1 of Ck for the right
action, as follows: Let the right action of the additional basis element ek+1

be given by

v · ek+1 :=
(−1)|v|√
−k

(
k∑

j=1

(∓1)jej) · v .
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Theorem 4.1. This makes Ck into an object in Bk−1
MCk+1

when
√

k and√
−1 are in F . When

√
2 also is, the corresponding object in Zδ(k+1)(Sk,δ) be-

comes ‘the’ basic irreducible projective representation of the symmetric (resp.
alternating) group for k even (resp. k odd) after tensoring with C.

Sketch Proof. For δ = +, this is a reformulation of [H1; Theorem
4.1]. The second assertion follows as well for all but a few values of k by the
dimension argument.

There is another obvious element, Ck+1 , in Bk−1
MCk+1

, this time over
any field, but only defining a graded representation of a symmetric group
cover over fields containing

√
2.

Theorem 4.2. When F contains
√
−1 ,

√
2 and

√
k, as an element of

Zδ(k+1)(Sk,δ), the module Cδ
k+1 is either C⊕2

k or Ck ⊕ ρCk. (In fact it is the
latter.) Furthermore, over any F with

√
2 ∈ F , the algebra End

∗
Cδ

k+1 is the
graded quaternion algebra < δ,δk

F >. (See the definition at the very end of
Section 1.)

Proof. The dimension argument, (→ or, for example when δ = +1, the
map from Ck to Ck+1 sending x to

x[ek+1(e1 + · · ·+ ek)−
√
−k] ←)

shows that Cδ
k embeds into Cδ

k+1 as objects in Zδ(k+1)(Sk,δ). The last assertion
of 4.2 combined with 1.15 shows that Ck+1 is ‘quasihomogeneous’, so, by a
dimension count, the two stated decompositions are the only possibilities.
(But one may easily find a second map which proves the assertion in brackets
in 4.2.)
To prove the last assertion, note that an element of End

∗
Ck+1 commutes

with the ηj, i.e. with right multiplication by ej, for 1 ≤ j ≤ k + 1. Thus it
commutes with right multiplication by every element of Ck+1. Therefore it
is left multiplication by some element of Ck+1. It ‘graded–commutes’ with
the action of the group generators of Sk,δ. They generate Bk−1 as an algebra.
Thus End

∗
Ck+1 can be identified with the graded centralizer of Bk−1 in

Ck+1. It is straightforward to determine the latter explicitly. Taking dk to
be

∑k
1(∓1)jej , a homogeneous basis is {1 , ek+1dk}∪{ek+1 , dk}. The latter
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two elements anti–commute and square to ±1 and ±k respectively, giving
the quaternion algebra, as stated. (Although a slightly tedious elementary
argument exists to show that the graded centralizer at issue is no bigger than
this, it’s probably easier to argue as follows: Since Ck+1 is only ‘twice as big’
as an irreducible over C, we know beforehand that the dimension will be 4.)

Thus End∗Ck+1
∼= < δ,δk

F >, whose class in the Brauer–Wall group is

[(δ, δk); 0 ; − k] = [(−k,−δk); 0 ; − k] .

To get from Zδ(k+1) to Zδ(k−1), apply κ2
δ ; i.e. multiply by [1; 1; δ]2, which

equals [(−1, δ); 0; − 1]. This yields

Θδ,k = [(−k, δk)(−1, δ); 0; k] .

Over R, we had the identity element here, so over any F containing
√

2 one
simply multiplies by Θ to get the bw invariants with respect to the various
Zn’s from the ones over R (strictly speaking, from the eight Brauer–Wall
elements in the second column of the previous table, which make sense over
any field). When n ≡ 1 (mod 8), this again agrees with Turull’s formulae,
this time simplified only to the extent of removing the 2’s.

Now assume that F is any field not containing
√

2. Let C ′
k+1 be the Clif-

ford algebra, but over F (
√

2). Regard it as an object in ZF
δ(k+1)(Sk,δ). As

such, it is clearly quasihomogeneous for the basic irreducible object (contain-
ing, over C, four irreducibles, counting repeats). We may calculate End

∗
C ′

k+1

as follows. The subalgebra B′′
k−1 of C ′

k+1 is defined to have 0–part B(0)
k−1 and

1–part
√

2B(1)
k−1, where the lack of a prime superscript on Bk−1 indicates that

we are defining the algebra part over F , not F (
√

2). It is clear that B′′
k−1 is

generated as an algebra by that subgroup of invertibles which is the image
of Sk,δ under the embedding we have been using. It is now immediate from
the definitions that End

∗
C ′

k+1 consists of those graded vector space maps,
α : C ′

k+1 → C ′
k+1, of degree 0 or 1, which satisfy the conditions:

i) α(xy) = α(x)y for all x and y in C ′
k+1 ; and

ii) α(wx) = (−1)|w||α|wα(x) for all x ∈ C ′
k+1 and w ∈ B′′

k−1.
Writing x = x′ +

√
2x′′ for x′ and x′′ in Ck+1, it is immediate from i) that

α(x) = c′x′ +
√

2c′′x′′
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for some c′ and c′′ of equal grading θ in C ′
k+1. Then ii) yields that both of

the elements c′ and c′′ commute with all b ∈ B(0)
k−1; whereas, for b ∈ B(1)

k−1, we
have c′b = (−1)θbc′′ and c′′b = (−1)θbc′.
Now writing c′ = c′0 +

√
2c′1 for c′j ∈ Ck+1, and similarly for c′′, it follows that

our required endo–algebra can be identified with the algebra of matrices
(

c′0
√

2c′′1√
2c′1 c′′0

)

in which all four entries are elements of the same grading, θ, in the centralizer
of B(0)

k−1 in Ck+1, and satisfy, for b ∈ B(1)
k−1, the equations c′jb = (−1)θbc′′j and

c′′j b = (−1)θbc′j.
To see the structure of this algebra, whose dimension we know beforehand
to be 16, let d = dk (defined in the proof of 4.2); e = ek+1 ; p = e1 · · · ek ;
yielding elements

D =

(
d 0
0 d

)

; E =

(
e 0
0 e

)

; P =

(
p 0
0 −p

)

; T =

(
0

√
2√

2 0

)

.

The set
{DδEεP πT τ : exponents in Z/2 }

is linearly independent, therefore a basis for the algebra over F . The gradings
of D, E, P, T are 1, 1, k, 0 respectively, and relations are

D2 = δk ; E2 = δ ; P 2 = (−1)
k(k−1)

2 δk ; T 2 = 2 ;

DE = −ED ; TP = −PT ; DT = TD ; TE = ET ;

EP = (−1)kPE ; DP = (−1)k+1PD .

It is immediate that our algebra is

Alg{E} ⊗̂ Alg{D, P, T} .

Furthermore,

Alg{E} ∼= F 〈
√

δ〉 whose class in BW (F ) is [1; 1; δ] .

When k is even, for suitable ψ,

Alg{D, P, T} ∼= Alg{P, T} 〈
√

δk ; ψ〉 ∼= (
(−1)

k(k−1)
2 δk, 2

F
) 〈
√

δk ; ψ〉 ,
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whose class in BW (F ) is [((−1)
k(k−1)

2 δk, 2) ; 1 ; 2δk] = [1; 1; 2δk] .

The last equality comes from the fact that (−1, 2) and (1, 2) are both the
identity element in the Brauer group.
When k is odd, for suitable φ,

Alg{D, P, T} ∼= Alg{P, T} ⊗̂Alg{D} ∼= Alg{T} 〈
√

(−1)k+1 ; φ〉 ⊗̂ F 〈
√

δk〉 ,

whose class in BW (F ) is [((−1)
k(k−1)

2 δk+1k, 2) ; 1 ; δk] = [(k, 2); 1; δk] .

This 2-piece ‘answer’ is then: 1) multiplied by [1; 1; δ] from Alg{E}
previous; 2) twinned; 3) multiplied by [1; 1; δ]2 to get from Zδ(k+1) to Zδ(k−1).
As a result, we get an ‘answer’ from which it follows directly that to get the
‘answer for fields not necessarily containing

√
2’, one multiplies ‘the answer

for fields containing
√

2 ’ (to be precise, the earlier result of multiplying Θδ,k

into a Brauer–Wall element from the previous table) by the element

[(k, 2) ; 0 ; 2] if k is even ,

and by the element

[(k, 2) ; 0 ; 1] if k is odd .

The case n ≡ 1(mod 8), after twinning again, reproduces Turull’s formula in
its full splendour.

A Brauer–Wall invariant not appearing explicitly in [T] is that related to
projective representations of the alternating group, and giving the Schur in-
dex for them. Since the category of ungraded negative modules for the kernel
of the parity, σ, (if the latter is non–zero) is equivalent to Z0 of the enriched
group, we simply need, in all the previous discussion, to apply the correct
power of κδ to the objects Bk−1 , Ck+1 , C ′

k+1 (over R , fields containing√
2 , fields not containing

√
2, respectively) to get into Z0 rather than Z1.

Then use the same power of [1 ; 1 ; δ] in the Brauer–Wall calculation.
It is possible to define a graded algebra B(N) for ungraded ker(σ)–modules
N , using self–maps in grading zero, and maps to the conjugate module in
grading one. This is the analogue of Turull’s A(M). The class of B(N) in
BW for the symmetric group covers is obtained as in the previous paragraph,

35



i.e. it agrees with the class of End∗ applied to the appropriate object in Z0,
up to ‘twinning’.

An advantage to our procedure of creeping up, in three stages, on the bw–
formula for the basic irreducible, is that the separate pieces of the formula
are easily multiplied together to produce a closed formula for the general
irreducible. Specifically, if λ is the strict partition

k1 > k2 > · · · > k' > 0 ,

with the number of even parts ki being “M”, then the bw–invariant of the
pair of irreducibles in Zδ(|λ|−')(S|λ|,δ) indexed by λ is calculated as follows:

∏

even ki

[(ki, 2); 0; 2] ·
∏

odd ki

[(ki, 2); 0; 1] ·
∏

i

Θδ, ki

= [1; 0; 2]M ·
∏

i

[(ki, 2); 0; 1] ·
∏

i

[(−ki, δki)(−1, δ); 0; ki]

(using that (2, 2) is the identity element)

= [1; 0; 2M ] · [
∏

i

(ki, 2); 0; 1] · [(−1, δ)' ·
∏

i

(−ki, δki) ·
∏

i<j

(ki, kj) ; 0 ;
∏

i

ki]

which multiplies out to be

[ (−1, δ)' ·
∏

i<j

(ki, kj) ·
∏

i

(−ki, δki)(ki, 2M+1) ; 0 ; 2M
∏

i

ki ] .

If the base field F is an extension of Q(
√
−1,

√
2), this simplifies to

[
∏

i<j

(ki, kj) ·
∏

i

(ki, ki) ; 0 ;
∏

i

ki ] .

Multiply by
[1 ; 1 ; δ]|λ|−'−δ

to get the bw–invariant of the corresponding element(s) in Z1(S|λ|,δ), which
match up with the irreducible projective representation(s) of S|λ|. Twinning
will produce the invariant which Turull describes using his ∨–product in the
Brauer–Wall group [T; 6.2]. Multiply by

[1 ; 1 ; δ]|λ|−'
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to get the bw–invariant of the corresponding element(s) in Z0(S|λ|,δ), which
match up with the irreducible projective representation(s) of A|λ|.
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