60 TICTD STUVA 1€25L

STIND OTIBH 12 AXISTI 9T 1T
anbTRWRYLBU IR TILPI008

Séuinalré DELANGE-PISOT~POITCU | | 5u1
(Thaorie dea nowbres) - |
19e annde, 1977/78, n° 5, 8 p. 24 octobre 1977

ON DIFFERENCE SETS OF SETS OF INTEGERS
by Cam Lo STEWART

1+ Introduction.

Lot NO denote the set of non-negative integerss Let A be a subset of N, , and

let d be any integere Put A~ d={a=-d3 ae€dld] and, for gonvenlence, denote
AnA-d by A[d] « We define the ordinary-difference set ©(A) of A, by

ola) = {d e N, 3 ALd) # £} »

Thus, the ordinary-difference set of 4 is the set of all non-negsative Integers
which can be written as the difference of two d€lements of A4 « Until recently very
1ittle was known sbout this set, and this contrasted with the situation, see [3] or
[5], for the sum set S(A) of A . S(A) is defined as the set of all non-negative
integers which can be written as the sum of two elements of A o In the last few
yesrs, however, seversl papers have eppeared on the subject of ordinary-difference
getgs In this survey, we shall review some of this work, and we shall elso discuss
some results which have been obtalned sbout the related infinite-difference and

denglty-difference geta.

Let |A] denote the mmber of elements of A « We define the infinite~difference
set Qm(.&) of A by

@m(ﬂ.) = {d. € NO 4 ‘A[d]‘ = m] .

Next let |4|  be the mmber of elements of A wuhich are less than X & The upper
dengity of A 1is given by 4 (&) = lim sup, ([M Jx) , and the lower density of
A by d (4) =1lim inf_ (|A| ]/:x:) o If 4 (A) d (A) ; then this 3imit value is
the density d{A) of A s We define the density-differema set %(.&) of A by

0y(8) = {d € Ny ; a~(a{d]) > O} «

In this article; we shall restrict our attention to sets A of positive upper
densitys One reason for doing this is that given any subset K of Ny oontaining
0, it is a straightforwerd task (see theorem 3 of [14]) to construct a set A
with d™(A) = 0 for which @ (4) = K « Thus we can't say anything non-trivial about
© (&) Xknowing only that d (A) 0 . Further, if d (&) = 0 , then O,(A) dis CEE R
ly seen to be empty. When d (A) is positive; however, structure is impaaed on
o(a) , © (&) and 64(A) , end the three types of difierence set then have several

conmon properties.

' We remark that interesting problems do arise concerning ©(A) when d(a) =0 s
RUZSA [9]; for exemple, has shown that, if A 1s an infinite set with da(a) =0,
then o, ([0@)] /]al) == s Supriaingly, this is in conbrast to the aitua:bion
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for the sum set S(A) . FREIMAN [3] resolved a conjecture of Erd¥s by proving that,
if A is an infinite set with d"(8) = 0, then

: |s(a)]

1) lim sup_ A 2 3

and further that there exists sots A as sbove for which the inequality in (1) is
actually an eguality. "

2. The structure of difference getse.

o T e o o e

™ would be desirsble to characterise those sets which are difference gets of sets
of integers. No simple characterisation 1s known for any of the three types of dif=-
ference set. It is known, however, that, if we iterate the operation of forming the
ordinsry~difference set of a set of positive upper density thal we eventuslly obtaln
. the set of all multiples of a fixed number. Put o (A) = @) , and |
a)k(ﬁ) = @(@k'l ()) , for k=2, 3, eso The following result ls due to STEWART and
TIFDEMAN [15]

THEOREM L. » Let A have Eositive upper dengity ¢ o Ihen, there exists an intew
ger k,with Lgkge  , such thet D'(A) = {§k}, , for all integers T,
with > 2[ (log ¢ )/1log 2] «

We would conjecture that theorem 1 applies with the lower bound for r sharpensd
to r > [ (log g"l)/log 2] + 1 and with the operation of forming the ordinary-
difference set replaced by any one of the three operations of forming e difference
gets The exsmple of the set of integers

A = {2 ; >0 and a=0 or 1 (mod h)} ,

with h = 6, say, shows that the lower bound for = cannot be replaced by
[ (Log eﬂl)/log 2] for any of the three types of difference sele

According to RUZSA [9], ERDOS and SERKE)'ZY proved that, if d(A) is positive, then
®(A) does not have arbitrarily large gaps. In other words, if the elements of ®(A)
are ordered acec:-rding to size, then the difference between consecutive terms ils
bounded. RUZSA [10], by refining work of STEWART and TIJDEVAN [14], obtained the fol-
lowing improvement of this result.

THEOREM 2. =~ Let A have positive upper density ¢ » Then, there exlst r inte~
gers Ky 5 eee kr such that

Ui, @) + k) 2y, with T g A

L

This result is best possible as the example A ={a; a3 0 and a =0 (mod g

shows, since in this case O (4 ﬂ) = A, , and plalnly 4 shifts of 0, (A ﬂ) are ne-
cegsary to cover all of Ny e While the number of shifts of @, () required to co-
ver N. is bounded in terms of ¢ , 1t 1s not the case that the maxj ijl is

0
neceggarily bounded in terms of ¢ « For let At conglgt of the integers of the form
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3nb + 1, for 1 =1, eee b end n=0, 1, 2, « In this case, ﬁDO(A) 1ls
the get of non-negabive intagers' of the form 3nt & i, for i= Oy see 4-b and, |
n=0, 1, 2, ers , and s0 contains infinitely many gaps of lenght + « Thus

meX, ijl > [t/2] + On the other hand, d(ﬁ._b) = e = 1/3
Plainly, we have @(A) - @m(ﬂ) = @0(3) , and it 1s an immediate consequence ol
theorem 2 that, if & (4) = ¢ , then
o], o]
(2) a_(8,(8)) 3 [™0™

Thus, all three difference sets of A have lower densgity abt least the upper den--
sity of A o The following theorem, see [15], is often useful for translating ree
sults about one type of difference set of that of another.

THEOREM 3+ - Glven a set A < Ny , theve exists a set Ba Ny , with d_(B) »a (&)
such that ®(B) ¢ 6y(4) » -

The sbove results suggest thet difference sets possess a great desl of regularity.
Theorems 1 and 2 might lead one to suppose that, if a"(A) is positive, O(A)
containg en infinite arithmetical progressione. The next theorem, vhich is a coOnsee
quence of theorem 6 of [14], shows that this is not the casce

THEOREM 4. - Lot & be any countable set of infinite setsg of _Eos.itive integers,

and let o be any number between 0 and 1 « There oxlats a set A , with denslity
oy for which

|0(a) n B,
lin sup, TR < 2 , for every E € &
X

On teking & to be the set of all infinite srithmeticsl progressions end o o
be any number between O and 1/2 , we find that there exists a set L of denglty
o whose difference set contains no infinite srithmetical progressione

3, The union and intersection of difference sels.
Wwwﬁwm’mw

Neither the union nor the intersection of two ordinary-difference sets need be an
ordinary-difference set. For example, on putting

LA={aj 230 and a=0 (wdi0)} v {7}

and
B=(bj b»0 end b=7 (md10)} v {0},

-~

we reedily check that ®{(4) n ®(B) = 4 , end that there ig no set © , with ®(C)=A.
Similarly, on putting -

thi

a>0 and a=0 (mod 10)} vV {2]

e
i
=
p
e L

end

il

B={bj b>»0 and b
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we see that there ig no set C , with ©(C) =0(A) v ®(B) .+ This is not the case
vith infinite~difference sets as the next theorem (see [[14]) showse Let D denote
the collection of all infinite~difference sets asgoclated with sets of positive upw
per density.

THEOREM 5. - D is a filter of the set of all subsets of NO ®

D is not an ultrafilter gsince there exist disjoint sets possessing arbitrarily
large gaps whose union is ND s and by theorem 2, the infinite~difference set of
pogitive upper density has only bounded gapse 3ince D 1s a filver both the union
and the intersection of two infinite~difference sets associated with sets of positie
ve upper density is asgaein an infinite-~difference set agssocigbed with a set of positi-
ve upper density. Further, if A has positive upper dengity, and if B ¢ NO and

@m(ﬂ-) ¢ B, then there exists a set C of positive upper density, with @m(c) =B .
Neither the collection of ordinary-difference sets nor thabt of density-dliference

sets has the above superset property. Let B denote the non-negative even integers.
We have ®(E) = @O(E) = B o Plalnly Eu {1} dis not the ordinary-difference set
of any set. Similarly, see [15], there is no set A such thal @O(A) = BEu {1} .

Both the union and the intersection, see [15], of two density-difference sets ls
sgain a dengsity-difference set. It 18 a consequence of the next theorem, see [15],
that the intersection of any two difference sets associated with sets of pogitive
upper dengity must itself have a large positive upper density.

THEOREM 6o -~ If A and B are subsets of N, , then there exigbs a get C g N,
such that @O(c) —.:.-ﬁDO(A) 0 ﬁDO(B) and such that a~(c[d]) > da~(a[d]).d"(B[d]) , for

iahiionl iy

eﬁ'ery d € NO .

On teking d = 0 in theorem 6 and recalling (2), we see that
1_(0,(8) 0, (B) » [(d@) " EN™T™ .

This inequality, which is best possible, see [14], has also been proved by RUZ54

{107,

4o Lacunary sequences.

In the next two sections, we shall discuss the following problem. For what sequen-
ceg of positive integers K does there exist a get of positive upper dénsity having
no terms of K in its ordinsry-difference set ? In this section, we shall discuss
s condition on the rate of growth of X which ensures the existence of a suitable
get A o If X = [kj};’ﬂ ig lawunary, then A exists. More precisely, if, for some
positive integer h , we have lim inf §omes (kj-u-h/k;j) > 1 , then there exists a set
A , with positive upper densgity for which k;j dOM) , for =1, 2, ese This
condition is oriticel, see theorem 8 of [14], since, if X 1is an increasing sequens
oe of positive integers satisfying lim infj—m((kj-l-h/ k;]) = 1 , for every positive
integer h , then there exists an incressing sequence of positive lntegers
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= [ej}j_l , with (ej 1/ej) 3+1/k) , for =1, 2, see such tha‘b for
every set A4 of positive upper density, tne ordinary-difference set of A contains
terme of B o The following theorem, sece [14], puts the above condition in a more

quantitative form.

THEOREM 7e =~ Let k, , Koy ses be a sequence of pogitive integerse. 1f, for a
positive integer h and for real mumbers ¢, , sev 5 G lLarger then 2 , we have

(o1 net/ % snas) > %1 0
for 1=1, see,h and J =0, 1, 2, cee, then there exists a set A , ha-

ving a dengity, with
-2

C
W 2Ty =) -

for which kj;é@(ﬁ.) g fOr =1, 2, oo

R

Obsgerve that if (k;l-l'ﬁ/k) >a>l, for j=1,2, e, and g is an integer
with g > (log 3)/log o , then (k gz/ j) >3, for j=1, 2, ees , and we may
apply theorem 7, with h = g4 , and G, = Oy = eee B G = 3 to obtain the condition

mentioned previously.

Let, for example, K, 4 X, , eee, be the sequence of factorials 11 , 21 5 eee
It follows from theorem 7, on choosing h =2, o, = 6 and o, = 12, that there
exigts a set A with density abt least 2/11 which does not have a factorial as

the difference of two termse.

The proof of theorem 7 prooeeds in two stages., First, by means of a construction

of nested intervals, a real number 6, is i‘ound, for i=1, ese y, b, sablsfying
—- 2

(3) ”kjh-i-i Bin > m

for =0, 1,4 2, eee 3 Here |lxj| denotes the digtance from x to the nearest

integere Secondly, by means of an averaging argument and Weyl's criterion for uri-
form distribution (see [14]) an sppropriate set A4 ig shown to exigte & has the

form
fn 3 }‘15{11913 <Ny * 8y (mod 1), f{};[‘ 1= 1, ees g b},

and {x} denotes the fractional part of x . We then have

O(A) « {n 5 ||noy]] <&y » for 1=1, eoey h} ,

and, by our choise of 64 5 recall (3), kj' g Ol) , for J=1,4 2, see, as
requireds As an alternative second stage, we can define A, = {nj 0 (ne;} < g4} »
for 1 =1, see o h o In this case, d(4;) > gy , and O ) < {03 |nesll < &) s
end we may deduce from theorems 3 and 6 that there exists a set B with

d_(B) > g eee 8, » with 3{B) < nh @(Ai) o hpart from the faoct that B might

not have a densgity, this gives mother proof of theorem 7.
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TRDOS and  SARKOZY [ 2] have proved a similar result to theorem 7. They showed
that, if (kj-}-l/kj) >A>1, for J=1, 2, s, then there exists a set A&
with | |

-{ (o Lo 1)
(4) d (A) > 24 (( g 3/ g ﬂ)"' ) ,

for which ki £ 0(a) , and k, £ 3(8) , for =1, 2, eee We remark that a slight
modification of the proof of *bheorem 7 ollows one to conclude, with the game assumpe
tions on K as in the statement of theorem 7, that there exists a set B, with
C, = 2

d (B) :v;rFli:l ('AT'(%—-—U y
for which k ¢ O(B) , and k ¢ 3(B) , for J=1, 2, «ss Thig Improves the low
wer bound g:wen by (4)+ We constmct a set A as before by means of Weyl's crite=
rion and an aversging argument, but with g; replaced by gi/ 2 « We then have
Q(8) > g, eoo g, 27, and (&) < {n3 |nogl| <gy/2, for =1, eee, B} ¢ On
putting B = ®(A) , we see that both ©®(B) and S(B) are contained in
(3 |yl <@ s for 1=1, cs,h}, md, by (), 4.0) T, (g/2) as
required.

5. Sets which intersgect difference sets.

mwwmmﬁ

Theorem 7 gives a sufficient condition on K for the existence of a set A of
positive upper density having no terms of K in its ordinary-difference set. Clear=
1y, this condition is not a necesgsary one since we may teke K %o be the odd inte=
gers and A to be the even integers. Indeed more generally, if K is any set with
no terms divisible by some fixed integer q , then there exists a set Aq of po~
gitive upper density with @(ﬁq) NnK = ﬁ s we just tske

={n; n>0 and n= O(modﬁEL)}

There are several interesting sets K which are not dealt with by theorem 7 or
the sbove congruence condition. For instence, we canput K =P+ 1, P =1 or the
set of squares ; here P denotes the set of prime numbers. darkOzY [11], [123, [13]
has shown, by means of the Hardy-Littlewood circle method, that, for all three of
the gbove sets, &4) n K £ whenever A has positive upper density. In fact,
he has proved that thers exist posltive constents o, and o, guch that if

Mlx > e, x{log log log :x:)3 log log log log X .
(Log log x)
then there are two elements of A less than x whoge difference 1s a prime minus

one, and, if
14| o x(log log :x:)z/B .
x 7 "2 1
(log x)

then there are two alements of A less than x whose difference 1s the square of
a positive integer., FURSTENBERG [4], using ergodic theory, has also shown that, if
K 1is the set of pogitive squeres, then @O(&) n K # § whenever d"(4) is positive.
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Let K be a set of pogitive integers, and define Kq , for every positive inte

K,={kek; k=0 (mod q)} ,

and let [ki, q]?-_-l be the sequence formed by ordering the elements of Kq 80CO P
ding to eize. KAMAE and MENDES FRANCE, see example 3 and theoren 2 of [7], using
techniques from Fourier analysls, have proved that, if the gsequence {ki, q B}Ll is
uniformly distributed modulo 1 , for every positive integer ¢q and every irratlional
number § , then O(A) n K # § , for every set A of positive upper dongity. The
sbove criterion is very useful. For let P(x) be a pelynomial of degree abt least 2
with integer coefficients and leading coefficient positive, and let & be a positive
irrationsl number. The sequence [P(n) B}Ll gnd, since P(x) has degree st least
2 , the sequences {P(n+ h)g - P(n)e} , » Bh=1, 2, «ee, are e de mod 1 {see
theopem 3e2, ps 27 of [8]). Therefore the sequence (Pgn + r)e)i_sl is ue de mod 1,
for every positive integer q and non-negative integer T (gee theorem 21, pe 238
of [8])e Since the leading coefficient of P(x) 1s positive the sequence formed by
ordering the elements of the set {P(gn + r)o §n >0 and P(gqn + r) > 0] accor=

ding to size is also ue de mod 1 o Purthermors, since the set

I{q: (P(n); n>0, P(n) >0 and P(n) = 0 (mod q)}

is the unlon of finltely many sebs of the form {P(qn + 1) $n>0 and P{gn + r) >0}
the sequence (ki q e};‘_l formed from I{t:1 48 ue Be mod 1 , for every lrrational 6
. =

whenever Kq is non-empty. Note that since the leading coefficient of P(x) is po-
sitive if there exists an integer m with gq | P(m) , then there exist infinitely
many such integers and thus Kq is non-empty. We may now gpply the congruence cone
dition mentioned at the start of this section in conjunction with the criterion of
KAMAE and MENDES FRANGE to deduce the following theorem. e remark thaet the result 1s
obvious for polynomiels of degree 1 .

THEOREM 8. - Let. P(x) = 8, X & N xm_]' + eee + 8, X+ 84 be g nonwconstant po-

1E0misl with integer coefficients and with &, Eositive. Put
K= {P(n) 5 n and P(n) positive integers} .

Then K n ©(4) # § , for every set A of positive upper density if, and only if, for
every integer g , there exists an integer m such that q | Plw) o

Thus, if P(x) 1is a monic polynomisl with an inmteger root, then the set
K=({P(n)3 n>0 and ?(n) > 0} has the property that X n ©(s) # p , for every
set A of positive upper density whence, in particular, the set K of k~th powers
has the intersection property whenever k i1s a pogitive integer. There also exist
reductible polynomials which do not have an integer root and yet whioh have the abo-
ve intersection property. For instance, the polynomial (xz - 8) (:}{2 w b) (x2 - gb) ,
where a , b and ab are integers which are not squeres, has a linear factor mo-
dule q , for every positive integer q , since a, b and ab ocamnnob all be quam
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dratic non-residues modulo q » On the other hand, if P(x) is an irreducible poly-

nomial of degree at leatt 2 , then there are sets A of pogitive upper density who-
se intersection with the associated set K is empty since in this casc, by a theo- |
rem of Frobenius, see theorem 9 of [6], there is a prime mmber q for which P(x)
doea not have a lineer factor modulo ¢ .

Lastiy, we remark that theorem 3 shows that ©(&) mey be replaced by QO(A) in
the statement of theorem 8.
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