ON A THEOREM OF KRONECKER AND A

RELATED QUESTION DF LEHMER
by C.L. $tewart

§1. Kronecker's theorem.

Let f(x)} = anx"+an_lx"']+.,.+alx+aﬂ be 8 polynomial with integer

coefflcients of degree n =z 1 and assume that a_ # 0. We define HMN{f),
the measure of the polynomial f(x), to be

n
M{f) = |an] IH} max{l,[uil},

where o, ,...,0  are the roots of f(x). If & Is an algebraic number
then we define M(a)} to be equal to M(f} where f is the minima) poly-
nomial of o, Equivalentiy, we have

M{a) = I max{l,lulv}

v

whera the product Is teken over all the valustions I of the fleld 0Ofc).
We remark that H(f]fz} - H{fIJH(FE} for any two polynemlals f, and f,
and that M{aB) < M{a)M{B) for any two algebraic numbers o and 8.
Further we note that If ¢ 15 a non-zerc algebraic number which 1s not a
unit then M{a) = 2,

In 1857 Kronecker [8] proved that If « s a non-zero algebralc
integer with HM(x)} =1 then o Is a root of unlty., The converse plainly
hotds, Kronecker observed that Fnrfany positive Integer k, ak is an
algebraic integer of degree at most n all of whose conjugates are bounded
by 1 1In absolute value. Thurafnra ak Is the root of a polynomial
fk{x] - :-r."Eﬂl £'|+...+n£ with 1 s £ 5 n and i'll 1 (f)__s}n:a the
a, are elementary symmetric functlions of numbers having absolute value

at most I.: Clearly there ara only finltely many such polynomials and

therefore for two distinct Integers r and s we have o = «* whence.

¥ The valuations are assumed to be normallzed in the standard way.



a oo and o 1[5 a root of unity as required.

Several different proofs of Kronecker's theorem have been given,
For example, on noting that the powers of o atl tie in the unit disc we
can find, by means of the pigeon-hole principle, two distinct Integers r
and s for which |ur-m5| < 2" The con jugates of ol ue® satisfy
Imir-mISI £2 for | = l;...,n and thus the norm of a'-o® is less
than 1 in absolute value, whence it [s zero. Once again we conclude
that o = o and therefore that o« Is a root of unity,

Interestingly enough the theorem of Kronecker is implicit In
Dirichlet's proof, published in 1846 (5], of the Dirichlet unit theorem.

Dirichlet does not make this point explleit however,

§2. Lehmer's question,

In 1933 bW, Lehmer {see p. 476 of [9]) asked the following
question. s it true that for every positive number £ there exists a
polynomial f(x}, with Integer coefficients, satisfylng 1 < M(f} < 147
|f the answer to Lehmer's question is no then Kronecker's theorem can

be considerably strengthened, for then there exists a positive number €4

such that If & 1s any non-zero algaebralc number with M{a) < I+E:EI then

¢ 1s @ root of unity, Lehmer asked the above guestion in connexion wlth

a method for finding large prime numbers. He considerad the Integers

Nk
Ay = N o{a, -t} for k= 1,2,...,

.l



where ui,uz,...,un are the roots of an irreducible polynomial. The
prime factors of ﬂk satisfy certain congruence conditions. For example,

if k 1is a prime then all prime divisors p of A which do not divide

k
A. or the discriminant of Q{u) have the pﬁuperty that one of

}
2 3 cop '}

{p,p".p” - is congruent to | (med k). If Iﬂk| is not too

large with respect to k then the above congruence condition considerably
restricts the possible prime factors of ﬂk and because of this allows

one to factor ﬁk. The rate of growth of |4, | [Is approximately {H(u])k

k
whence Lehmer's Enterest in smali values of M{a). As an example he takes

N3, G0, and G, to be the roots of xa—x~1, so that Mo} = 1,32471795...,
and he finds that EIZ? = 3 233 514 251 032 733 1s a prime number.
The smallest value of M(f) larger than 1 which Lehmer found

was associated with the polynomial

10,9 7 6 5 4 3

fﬂ(x] x xR =X eK T e =X =X xR,

In this case H[fﬂ} = Q. = 1.17628081.,. where @, !s the largest real

root of Fn(x). ﬂﬂ is a Salem number, a real algebralc Integer larger

than 1 having one conjugate on the unit circle and all other
conjugates, apart from itself, on or inside the unit

cirele. It Is an open questlon whether the set of Salem numbers (s dense
In [1,) although 1t Is suspected that they are not dense. Thls would
follow from a negative answer to the questlon of Lehmer. On the basis of
a computer search Boyd [4] has even conjectured that O s the smallest
Salem number. In the general case no polynomial f{x} with 1 < M(f) <o

D
has been found to date. We remark, however, that no extensive search



has been made, In fact to make an exhaustive computer search for the

smallest values assumed by M(f} when f runs through the polynomials

with relatively low degree, less than 25 say, appears to be a quite

difficult task, This is because, at least with the present arguments,

the number of petynomials to be tested grows exponentially with the degree.
The problem of determining the set of values taken by M(f) when f

runs through .the set of all polynomlais with integer coefficients has arisen

in ergodic theory. D.A, Lind {10} has recently proved that the

set QF possible values for the entropy of a continucus algebraic auto-

morphism of a separable compact group is a countable subset of (0,0 if

the answer to Lehmer's question is no, while If the answer is yes 1t Is

all of [0,@]. Lind shows that the only type of group automorphism having

a small positive entropy Is an ergodic group automorphism, § say, of a

torus, |If the torus has finlte dimension d then $ Induces a ratlonal

vector space isomorphism T of Qd, here Q TIs the set of ratfonal

numbers  (sees pp. 213=215 of [10]}). The characteristic polynomial f(x)

assoclated with T has Integer coefficlents and the entropy of § s

glven by the logarithm of M{f), whence the connexlon with Lehmer's

questlion,

83 Smyth's theorem,

Lehmer's question has been answered in the negatlve when the
polynomials f are assumed to be non=reclprocal, A reciprocal polynomial

f{x) of degree n Is a polynomial satlsfying f(x) = x"f(x']}. The



cyclotomic polynomials, with the exception of x-1, are reciprocal. In
1971 C.J. Smyth [15] proved that if f(x) 1is a polynomial with integer
coefficients which does not have 0 or 1 as a root and which is not

reciprocal, then M{f} 2 Eﬂ where ED is the real root of HB-x-l and

hence 1s  1.32471795,.. .

One immediate consequence of Smyth's theorem is that B. Is the

0
smallest Plsot-Vljayaraghavan number. A P.V. number 1s a real algebraic
Integer larger than [ all of whose copjugates, apart from itself, lie
strictly within the unit circle. |t was shown by Salem {11] In 1984 that
there exists a smallest P.V. number and In the same year Slegel [14] vroved
that Bﬂ Is the smallest, fhe proofs of Salem, Siegel and Smyth follow
the same general pattern. To T1lustrate this pattern we shall prove a
weaker version of Smyth's result to the effect that if f{z) 1is a non-
reciprocat polynomial with Tnteger coefficients which does not have 0 or
| as a root then M{f) > /5/2.
Accordingly, we assume that M(f) < 2 and, since H{f1F2] = H{fI)H{Fz}
and the measure of a polynomial is always at least 1, that flz) Is
Irreduciblie, Lat Gpaeeestt  be the roots of £(z) and put
F(2) w znf{zhlﬁ. Since f(z) 1s not reciprocal, the quotlent F(z)/r(z)

iIs not constant and we may expand it in a power series as

flz) _ k. 4 |
(1) = agta 2 e,y L . {0 < k < £<.,.),

where the EI'E are non-zero Integers. Note that both the leading
coefflclent and the constant coefficlent of f{z) have absolute value |

sInce H(f] < 2; thus |aﬂ| = 1.  Furthermore, f(z) has no roots o on



the unit clrcle for §f o0t = 1, where & denotes the complex conjugate
of a, then ¢l }G(ﬁ] = | for all embeddings ¢ of Qf{a) into the
complex numbers; hence if o is any root of f(z) then m_I is also a
root of f{z}, and therefore either (2} 1Is reciprocal or o =1 con~

trary to our assumptions. Thus we have f{z2)/{r(z)) = g(z)/{h{z)) where

z=0
| 2
{2} glz) = luﬂ|{| HT‘EL}JE} - c+c]z+czz s SR
J
and
' I~&,z 2
(3) iz} = T (—d) = dad z4d,z+...
|mjtbi 270 e

On compating the serfes (1), (2) and (3) we find that a d+ad = ¢ . We

have [aﬁ! =1 and, since &  Is a non-zero Integer, |a | 2 1 whence

{4) max{[d |,]e [} = |d]/2.

Both g(z) and h(z) are holomorphic Tn a neighbourhood containing the

unit disc, Thus, by Parseval's ldentity,
2m
1 i9, 2 2 2 2
o [u lo{e "} [“dé = fc| +{c,] G CTT RIS

and therefors, since g(z) has absolute value 1 on the unit clrcle,

[ckiz < 1-ic|z‘ Stmllarly, we flnd that ]dk|2 5 I-|d|2. From (4} and
the observatlion that lc| = |d] = H{f}"l we conclude that M{f}z v5/2
as required, Smyth obtained his best possible result by a more reflned

use of Parseval's ldentlty than that glven above,



Schinzel [12] has used Smyth's theorem for his work concerning

the number of irreduclble factors of a polynomial. 1In particular, he has

n

proved that any trinomial f{x) = a x

m
+amx +g has at most

O
[Ing{an2+am2+auz)]filng Bﬂ+ﬂ(]}) Irreduclble non-cyclotomlc factors.

§4 Recent advances concerning Lehmer®s question.

Lehmer's question in the general case remains open despite some
progress in the last few years. In 1971 Blanksby and Montgomery [3]

improved considerably upon previous estimates [2], [13] by showing that

if Fi(x) Is a polynomial of deqree n wlth
(5) M(f) < 1+(52n log Enlni,

then M{f) =1, Let Oy pees be the roots of f(x} and assume that

f{x) 1s irreducible. They show that If {5} holds then, for some positive

Integer k,
n
(6) m o] < 1.
| jup

Thus the uJ's are roots of unity since the above product 1s an Integer

and hence 0. Put iﬂj = log{ujf|ujl) for | = 1,...,n, The product in

{6) grows approximately as H(f)k and is small only when thare are terms
_kﬂj which are ciose to 0 module 2w, One way of findlng an integer k
stich that the kﬁj's are all close to 0 modulo 2m, and thus such that
(6) holds for M(f) sufficiently small, is to use the pigeon-hole principle.

Ideally one would [Tke to choose k to be small, However, the pfgeon=-hole



principle is too crude in thls context and |t only leads to a proof that
there exists a positive nuﬁber ¢ such that if M{f) < I+¢ " then

M(f) = 1. The more efficient approach of Blanksby and Montgomery depends
upon an averaglng argument. They consider the function

n
ng],-‘-axn} = = jzl log | pj exp{Znixj]~l|,

where ﬂt,...,nn are appropriately chosen positive numbers less than 1.
By using the non-negativity of the Fejér kernel applied to coefficients of

terms in the Fourier expansions of functlons of the form

K

k
kzl {I m] g(k}ﬂ],.-.,k.ﬂn)p

they deduce that for some small pﬁsltlva integer Kk, g(kﬂ],...,kﬂn} s
so large that (6) holds, Their method of proof Is related to work of
Turén concerning estimates for power sums; see [F6] for an i1lustration
of this 1ink.

fn 1977 the author found & new method of attacking Lehmer's
Gguestlion based upon [deas from the theory of transcendental numbers. We
proved, [17]: 1f o Is a non-zero algebralc Integer of dagree n, at
jeast 2, and HM{a) < I+{10hn log n}‘] then o 1Is a root of unity. While
the constant is less precise, the dependence on n In the above inequality
s the same as that glven by Blanksby and Montgomery. We construct an

exponential palynomial g{2) of the form,

P
( ) 'IBI K L
g{z) = & Yy 1 s
km] dw]



where the integers Fysoensty and the real number & are chosen so that
| 1m{10g urk]-ﬂ| is smalt for k = 1,...,K; here im{x} denotes the
imaginary part of x and log x denotes the princlipal value of the
logarithm of x. Further, the ak,d are integers, not all of which are
zeru,.with smal] absolute vaiue, They are chosen, by means of a modifled
version of Siegel’'s lemma concerning integer solutions of systems of
lirear equetions, so that g{u) =0 for the first U poslitive Integers.
By construction g{z) grows slowly as a function of =z, This fact,
combined with the zeros gf{z) has, allows one to show, using the maximum
modulus princlple, the norm ineguality and the estimate for M(x), that
gf{u) =0 for all positlve integers u. it then follows directly that
@ s & root of ﬁnlty as required.
This approach was taken up by Dobrowolski [7] recently (see also

{6]). He proved there exists a positive number ¢ such that if o is

a non-zero algebraic Integer of degree n, (> 2), and

3

Iugn«j

Min) < 1 + c[]ﬂ?ng .

then @ is a root of unity. Dobrowolski's theorem is the most precise
response glven to date to Lehmer's questlon, Let ¢ = m],....un be the
conjugates of o and let f(x) be the {rreducible polynomial associated

with «. Dobrowolski employs the following congruence relation: for any

prime number p,

"),

n
(7) 1H1 [Fle,P)] 2 0 (mod p
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He constructs a pelynomial g(x) which is divisible by a high power of
f{x) and yet which has coefficients which are small in absolute value.

Thuits

alx) = £(x) h(x) = agta, x+. . . ta

where the Iai]'s are small and h{x) Is a polynomlal with integer
coefflcients. To effect this construction he appeals to a verslon of
Slegel's lemma. Dobrowolski uses the fact that the !ﬂ;|'5 are small to
show that g(u;p} is also small for several prime numbers p. He then
empioys {7) and the norm inequality to deduce that g{x) 1is zeroc at the
points uip for 1 = 1,...,n and for at least §-+ 1 prime numbers p,
Since g(x) 'has degree N, we have uip = ujq where p and g are
prime numbers; if p ¥ q then o Iis a root of unity as required, other-
wise the result follows by inductlon on the degree of o. In the next

section we shall give a short proof which illustrates Dobrowoliskl'!s

argument.

§5 The set of values of M(f).

An interesting questlon which [s more general than the question
asked by Lehmer is the fnllnwing. what is the structure of the set
Rw {M(f) | f{x) a polynomial with integer coefficlents}? For example,
Is there a smallest element of R\{1}? What does the set of limit points
of R look tike? |If the answer to Lehmer's question 1s yes then It iIs

easy to see that R Is dense In [1,»), (f the answer is no, as | suspect,
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then the structure of R is likely to be more complicated,

in letters to the author both Boyd and Smyth have remarked that

R contalns scme quite small 1imit polnts., Put fn{x} - xzn-xzn_l—xn-x+l

for n=1,2,... . They showed that Iim H{Fn} = 1,285... . Boyd has
oo

found an even smaller limit point of R. He has shown that if

- + -
fn{x} e HZHszn ]+xn Iﬂxn+x" I--:—;+l then 1im H{fn] w 1.255,,, . Let
[0

L{f) denote the sum of the absolute values of the coefficients of f{x).
I f {fn{x)}:nl is a sequence of irreduclble polynomials with measure

targer than 1 satisfvying lim H{fn} = |1, then 1lim L(f )} =, for, as
(1200 P n

we remarked with M. Mighotte and M, Waldschmidt, if fi{x) 1is an irredu~
cible polynomial then efther H(f) =1 or H(f} > I+{EL(f}}-I. Let
u],‘..,un be the roots of f({x}. We observe that If uip fs & root of
f{x) for some prime number p then elther @, =0 or a, Isa root
of unity. In both cases M{f) = 1, Otherwise we have, from (7), that

n
pn 5 EIII I f(mip}|, for any prime number p.

ft 1s easlly seen that

no
IHE | f(ulp}i s L{f)"M(e)"P,

whence
p s L{FIM(EIP,

By means of Bertrand 's postulate we choose p to be between 2L(f)} and
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4L{f} so that

2 < mee)tLf)

Putting M{f) = l+x and notlng that log(l+x) < x for x>0 we

see that x > (log 2}/{L(f)) as reguired.

§6 An elliptic analogue of Lehmer's question.

let £ be an elllptic curve expressed in Welerstrass normal form,

ve - ﬂx3-gzx-g3,

where g, and g; are algebraic numbers with 923 o 2?932, The set of
algebraic points of E togather with the point &t Infinlty on E form an
addftive group E{A), An algebralc point P = (2,8} of E 1Is s point
whose coordinates o and B are algebraic numbers, We define a height
function for the algebraic points of E which 1s analogous to M{a) for
algebraic numEers a;  we put

H{P} = E max{}, [al ,[8[ },
where the product Is taken over all normalized valuatlons v of the field
Qx,B). Also, we define the helght of the polnt at infinlty oi E to be
l. We then define the more tractable Tate height, ﬁ{F), by

an

ﬁ(PJ w 1Tm {H{ZHP}}ZH .
fyoo

2
The Tate helght has the property that ﬁ{mF} = {ﬁ{P}}m for all positive
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integers m., Further, the set of algebraic points of E wlth bounded
Tate height whose coordinates have bounded degree ls finfte. Therefore,
ﬁ{F} =1 1if and only if P 1Is a point of flnite.nrder in E(A}. This Is
the analogue of Kronecker's theorem for algebralc numbers., Polnts of
finite order in E{A) correspond to roots of unkty in the algebraic
pumbers. |

D. Masser and a student of his, M. Anderson, have investigated
the elllptic analogue of Lehmer's question: s there a poslitive number
€, depending only on 9, and 93 such that ﬁ[P} > 1+g, for every
point P of E{A) which is not a point of finlte order? A simple
counting argument shows, see [}], that {f P {5 a point of Inflnlte

- order In E(A) whose coordinates generate a field of degree n oaver the

rationals then

2
A “n

where ¢ Is a positive number which depends only on 9y and 93. By

means of a proof, apparently slmllar to [17], which uses techniques from
transcendence theory, Anderson [1] has cbtained a considerable Improvement

on the above estimate In the case that E has complex multipiication. He has
proved that In thls case If P (s a polnt of Infinite order In E{A) and

if the coordinates of # generate a field of degree n over the rationals

t hen
ﬁ(F] > 1+c{n log 2n1'3,

where ¢ s a posltive number which depends only on E.
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