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1. Introduction

Let S = {p1, . . . , pr} be a finite set of prime numbers with r ≥ 2 and

let (ni)
∞
i=1 be the increasing sequence of positive integers composed of the

primes from S. In 1973 [10] and 1974 [11] Tijdeman proved that there exist

positive numbers c1, c2 and c3, effectively computable in terms of S, such

that for ni ≥ c3

(1)
ni

(log ni)c1
< ni+1 − ni <

ni
(log ni)c2

.

Tijdeman [10] also resolved a question of Wintner by proving that there exist

infinite sets of primes S for which the associated sequence (ni)
∞
i=1 satisfies

lim
i→∞

ni+1 − ni =∞,

see also [5].

In this note we shall study the distribution of the numbers formed when

we take S to be a finite set of multiplicatively independent algebraic numbers

of absolute value larger than 1 instead of a finite set of primes. Our first

result corresponds to the lower bound in (1) and shows that such numbers

are not close to each other.

Theorem 1. Let α1, . . . , αr be multiplicatively independent algebraic num-

bers with |αi| > 1 for i = 1, . . . , r. Put

T = {αh11 · · ·αhrr | hi ≥ 0 for i = 1, . . . , r}.

There exists a positive number c, which is effectively computable in terms of

α1, . . . , αr, such that if t and t′ are in T with |t| ≥ 3 then

|t− t′| > |t|/(log |t|)c.

Theorem 1 follows directly from lower bounds for linear forms in the

logarithms of algebraic numbers, see [1, 2, 3, 6, 7].
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We next obtain generalizations of the upper bound in (1). We consider

two cases. For the first case we restrict our attention to sets of real algebraic

numbers.

Theorem 2. Let α1 and α2 be multiplicatively independent real algebraic

numbers. Suppose αi > 1 for i = 1, 2 and put

T = {αh11 αh22 | hi ≥ 0 for i = 1, 2}.

There exists a positive number c1, which is effectively computable in terms

of α1 and α2, such that for any real number x with x ≥ 3 there exists an

element t of T with

|x− t| < x/(log x)c1 .

For the proof of Theorem 2 we modify the argument given by Tijdeman

in [11].

Finally we consider the case when the elements of T are not all real.

Theorem 3. Let α1, α2 and α3 be multiplicatively independent algebraic

numbers with |αi| > 1 for i = 1, 2, 3. Suppose that α1 and α2 are positive

real numbers and that α3/|α3| is not a root of unity. Put

T = {αh11 αh22 αh33 | hi ≥ 0 for i = 1, 2, 3}.

There exists a positive number c2, which is effectively computable in terms

of α1, α2 and α3, such that for any complex number z with |z| ≥ 3 there

exists an element t of T with

|z − t| < |z|/(log |z|)c2 .

Observe that if α1 and α2 are real numbers and α3/|α3| is a root of unity

then there is a positive number c4 and complex numbers z of arbitrarily

large modulus for which

|z − t| > c4|z|

for all elements t in T.

With Min Sha and Igor Shparlinski [8] we have applied both (1) and

Theorem 3 in order to study the distribution of multiplicatively dependent

vectors of algebraic numbers.

2. Linear forms in the logarithms of algebraic numbers

For any algebraic number α the height of α is the maximum of the

absolute values of the relatively prime integer coefficients of the minimal

polynomial of α. Let α1, . . . , αn be algebraic numbers of heights at most
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A1, . . . , An respectively. Let b1, . . . , bn be non-zero integers of absolute value

at most B with B ≥ 2. Put

Λ = b1 logα1 + · · ·+ bn logαn

and

d = [Q(α1, . . . , αn) : Q].

Baker [1, 2] and Feldman [3] proved the following result.

Lemma 4. There is a positive number c, which depends on A1, . . . , An, n

and d, such that if Λ 6= 0 then

|Λ| > B−c.

For a sharp explicit dependence of c in Lemma 4 on the parameters

A1, . . . , An, n and d, see Matveev [6, 7].

3. Proof of Theorem 1

Let c1, c2, . . . be positive numbers which are effectively computable in

terms of α1, . . . , αr. Let t be in T with |t| ≥ 3. Then

t = αh11 · · ·αhrr

with hi ≥ 0 for i = 1, . . . , r. Suppose t′ is in T with t′ 6= t. We have

t′ = αj11 · · ·αjrr

with ji ≥ 0 for i = 1, . . . , r.

Then

|t− t′| = |t|
∣∣∣αj1−h11 · · ·αjr−hrr − 1

∣∣∣ .
Since t 6= t′ we may apply Lemma 4, as in Theorem A of [9], to give

(2) |t− t′| > |t|B−c1 ,

where

B = max(4, |j1 − h1|, . . . , |jr − hr|).

We may suppose that |t′| ≤ 2|t| since otherwise the result holds and thus

(3) B < c2 log |t|.

Our result now follows from (2) and (3) since |t| ≥ 3.
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4. A preliminary result for the proof of Theorem 2

Let α1 and α2 be multiplicatively independent real algebraic numbers

with αi > 1 for i = 1, 2. Let `0/k0, `1/k1, . . . be the sequence of convergents

to logα1/ logα2. Our next result gives a bound on the growth of the ki’s.

The proof depends upon Lemma 4 and is due to Tijdeman [11] when α1

and α2 are distinct primes.

Lemma 5. There exists a positive number c, which is effectively computable

in terms of α1 and α2, such that

kj+1 < kcj

for j = 2, 3, . . . .

Proof. Replacing log p/ log q by logα1/ logα2 in the proof of the Lemma in

[11] and noting that kj ≥ 2 for j ≥ 2 we obtain the result. �

5. Proof of Theorem 2

Let c1, c2, . . . denote positive numbers which are effectively computable

in terms of α1 and α2. Let x be a real number with x ≥ 3 and let t be the

largest element of T with t ≤ x. Then
x

max(α1, α2)
≤ t

and so

(4)
1

2
log x < log t,

for x > c1.

We have

t = αh11 α
h2
2

with h1 and h2 non-negative integers. We may assume, without loss of gen-

erality, that

αh11 ≥ t1/2

and so

(5) h1 ≥
1

2 logα1

log t.

Let `0
k0
, `1
k1
, . . . be the sequence of convergents from the continued fraction

expansion of logα1/ logα2. Recall that the convergents with even index are

smaller that logα1/ logα2 and those with odd index are larger. Choose j to

be the largest odd integer for which

(6) kj ≤ h1;
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certainly k1 ≤ h1 for x > c2. Then kj+2 exceeds h1 and by (4) and (5)

kj+2 >
1

4 logα1

log x

for x > c3. By Lemma 5, kj+2 < kc4j+1 and so

kj+1 >

(
1

4 logα1

log x

)1/c4

hence

(7) kj+1 > (log x)c5

for x > c6.

Put

t′ = α
h1−kj
1 α

h2+`j
2

and note that by (6) t′ is in T. Further since t < t′ we have x < t′. By

Theorem 167 and Theorem 171 of [4],

0 <
`j
kj
− logα1

logα2

<
1

kjkj+1

and so

(8) log(t′/t) <
logα2

kj+1

.

It follows from (7) and (8) that log(t′/t) < 1
4

hence

(9) log(t′/t) = log(1 + (t′ − t)/t) > t′ − t
2t

and thus, by (8) and (9),

(10) t′ − t < (2 logα2)t

kj+1

,

for x > c6. Recall (7) and that t ≤ x < t′. We see from (10) that

x− t < c7
x

(log x)c8
<

x

(log x)c9

for x > c10. Note that this suffices to prove Theorem 2 since

x− t ≤ x− 1 ≤ x(
1 + 1

x−1

) ≤ x

(log x)c11

for 3 ≤ x ≤ c10.



6 C.L. STEWART

6. Preliminaries for the proof of Theorem 3

For any non-zero complex number z let Im(z) denote the imaginary part

of z, let Arg(z) denote the argument of z chosen so that 0 ≤ Arg(z) < 2π

and let log z denote the principal branch of the logarithm so that 0 ≤
Im(log z) < 2π.

Let ν be a real number with 0 ≤ ν < 2π and let α be an algebraic number

with |α| > 1 for which α/|α| is not a root of unity. For each positive integer

k let bk be the smallest positive integer for which∣∣Arg(αbk)− ν
∣∣ ≤ 2π

k
.

Lemma 6. There exists a positive number c, which is effectively computable

in terms of α, such that

bk < kc

for k ≥ 2.

Proof. Suppose k ≥ 2. By Dirichlet’s box principle there exists an integer

rk with 1 ≤ rk ≤ k and an integer mk so that∣∣∣∣rk log
α

|α|
−mk2πi

∣∣∣∣ ≤ 2π

k
.

Notice that we have 0 ≤ mk ≤ rk.

Let c1, c2 . . . denote positive numbers which are effectively computable

in terms of α. By Lemma 4∣∣∣∣rk log
α

|α|
− 2mk log(−1)

∣∣∣∣ ≥ 1

(2rk)c1
≥ 1

kc2
.

If

0 <
1

i

(
rk log

α

|α|
−mk2πi

)
≤ 2π

k
then there exists an integer qk with 1 ≤ qk ≤ 2πkc2 for which∣∣∣∣qk (rk log

α

|α|
− 2mk log(−1)

)
− νi

∣∣∣∣ ≤ 2π

k
.

On the other hand if rk log α
|α| − 2mk log(−1) is of the form yi with −2π

k
≤

y < 0 then there exists an integer qk with 1 ≤ qk ≤ 2πkc2 for which∣∣∣∣2πi+ qk

(
rk log

α

|α|
− 2mk log(−1)

)
− νi

∣∣∣∣ ≤ 2π

k
.

Therefore, since

log(
α

|α|
)qkrk = iArg(αqkrk)

and since k ≥ 2,

bk ≤ qkrk ≤ 2πk1+c2 < kc3

as required. �
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7. Proof of Theorem 3

Let z be a complex number with |z| ≥ 3 and put ν = Arg(z). Let

b1, b2, . . . be defined as in §6 with α replaced by α3. Let c1, c2, . . . denote

positive numbers which are effectively computable in terms of α1, α2 and

α3. It suffices, as in the proof of Theorem 2, to establish our result for

|z| > c1. In particular we may suppose that |z| exceeds max(9, |α3|2b2). We

now choose k so that

(11) |α3|2bk ≤ |z| < |α3|2bk+1 ;

since |z| exceeds |α3|2b2 and since the sequence (bi)
∞
i=1 is non-decreasing k is

well defined. By the definition of bk we have

|Arg(αbk3 )− Arg(z)| ≤ 2π

k
.

Further

(12) 3 ≤ |z|1/2 ≤ |z|/|α3|bk < |z|.

We now choose non-negative integers j1 and j2 such that

(13)

∣∣∣∣αj11 αj22 − |z|
|α3|bk

∣∣∣∣ < |z|/|α3|bk
(log |z|)c2

which is possible by (12) and Theorem 2. Put

t = αj11 α
j2
2 α

bk
3 .

Notice that by (13)

(14) ||z| − |t|| < |z|
(log |z|)c2

.

In addition, since Arg(t) = Arg(αbk3 ),

(15) |Arg(z)− Arg(t)| ≤ 2π

k
.

On the other hand, by (11),

log |z| < 2bk+1 log |α3|

and so by Lemma 6

(16) log |z| < kc3

since k ≥ 2. Thus by (15) and (16)

(17) |Arg(z)− Arg(t)| < 2π

(log |z|)c4
.

Our result now follows from (14) and (17).
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