# SETS GENERATED BY FINITE SETS OF ALGEBRAIC NUMBERS 

C.L. STEWART<br>For Professor Robert Tijdeman on the occasion of his seventy-fifth birthday.

## 1. Introduction

Let $S=\left\{p_{1}, \ldots, p_{r}\right\}$ be a finite set of prime numbers with $r \geq 2$ and let $\left(n_{i}\right)_{i=1}^{\infty}$ be the increasing sequence of positive integers composed of the primes from $S$. In 1973 [10] and 1974 [11] Tijdeman proved that there exist positive numbers $c_{1}, c_{2}$ and $c_{3}$, effectively computable in terms of $S$, such that for $n_{i} \geq c_{3}$

$$
\begin{equation*}
\frac{n_{i}}{\left(\log n_{i}\right)^{c_{1}}}<n_{i+1}-n_{i}<\frac{n_{i}}{\left(\log n_{i}\right)^{c_{2}}} . \tag{1}
\end{equation*}
$$

Tijdeman [10] also resolved a question of Wintner by proving that there exist infinite sets of primes $S$ for which the associated sequence $\left(n_{i}\right)_{i=1}^{\infty}$ satisfies

$$
\lim _{i \rightarrow \infty} n_{i+1}-n_{i}=\infty,
$$

see also [5].
In this note we shall study the distribution of the numbers formed when we take $S$ to be a finite set of multiplicatively independent algebraic numbers of absolute value larger than 1 instead of a finite set of primes. Our first result corresponds to the lower bound in (1) and shows that such numbers are not close to each other.

Theorem 1. Let $\alpha_{1}, \ldots, \alpha_{r}$ be multiplicatively independent algebraic numbers with $\left|\alpha_{i}\right|>1$ for $i=1, \ldots$, r. Put

$$
T=\left\{\alpha_{1}^{h_{1}} \cdots \alpha_{r}^{h_{r}} \mid h_{i} \geq 0 \quad \text { for } \quad i=1, \ldots, r\right\} .
$$

There exists a positive number $c$, which is effectively computable in terms of $\alpha_{1}, \ldots, \alpha_{r}$, such that if $t$ and $t^{\prime}$ are in $T$ with $|t| \geq 3$ then

$$
\left|t-t^{\prime}\right|>|t| /(\log |t|)^{c}
$$

Theorem 1 follows directly from lower bounds for linear forms in the logarithms of algebraic numbers, see $[1,2,3,6,7]$.

[^0]We next obtain generalizations of the upper bound in (1). We consider two cases. For the first case we restrict our attention to sets of real algebraic numbers.

Theorem 2. Let $\alpha_{1}$ and $\alpha_{2}$ be multiplicatively independent real algebraic numbers. Suppose $\alpha_{i}>1$ for $i=1,2$ and put

$$
T=\left\{\alpha_{1}^{h_{1}} \alpha_{2}^{h_{2}} \mid h_{i} \geq 0 \quad \text { for } \quad i=1,2\right\}
$$

There exists a positive number $c_{1}$, which is effectively computable in terms of $\alpha_{1}$ and $\alpha_{2}$, such that for any real number $x$ with $x \geq 3$ there exists an element $t$ of $T$ with

$$
|x-t|<x /(\log x)^{c_{1}} .
$$

For the proof of Theorem 2 we modify the argument given by Tijdeman in [11].

Finally we consider the case when the elements of $T$ are not all real.
Theorem 3. Let $\alpha_{1}, \alpha_{2}$ and $\alpha_{3}$ be multiplicatively independent algebraic numbers with $\left|\alpha_{i}\right|>1$ for $i=1,2,3$. Suppose that $\alpha_{1}$ and $\alpha_{2}$ are positive real numbers and that $\alpha_{3} /\left|\alpha_{3}\right|$ is not a root of unity. Put

$$
T=\left\{\alpha_{1}^{h_{1}} \alpha_{2}^{h_{2}} \alpha_{3}^{h_{3}} \mid h_{i} \geq 0 \quad \text { for } \quad i=1,2,3\right\}
$$

There exists a positive number $c_{2}$, which is effectively computable in terms of $\alpha_{1}, \alpha_{2}$ and $\alpha_{3}$, such that for any complex number $z$ with $|z| \geq 3$ there exists an element $t$ of $T$ with

$$
|z-t|<|z| /(\log |z|)^{c_{2}}
$$

Observe that if $\alpha_{1}$ and $\alpha_{2}$ are real numbers and $\alpha_{3} /\left|\alpha_{3}\right|$ is a root of unity then there is a positive number $c_{4}$ and complex numbers $z$ of arbitrarily large modulus for which

$$
|z-t|>c_{4}|z|
$$

for all elements $t$ in $T$.
With Min Sha and Igor Shparlinski [8] we have applied both (1) and Theorem 3 in order to study the distribution of multiplicatively dependent vectors of algebraic numbers.

## 2. Linear forms in the logarithms of algebraic numbers

For any algebraic number $\alpha$ the height of $\alpha$ is the maximum of the absolute values of the relatively prime integer coefficients of the minimal polynomial of $\alpha$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be algebraic numbers of heights at most
$A_{1}, \ldots, A_{n}$ respectively. Let $b_{1}, \ldots, b_{n}$ be non-zero integers of absolute value at most $B$ with $B \geq 2$. Put

$$
\Lambda=b_{1} \log \alpha_{1}+\cdots+b_{n} \log \alpha_{n}
$$

and

$$
d=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right): \mathbb{Q}\right] .
$$

Baker [1, 2] and Feldman [3] proved the following result.
Lemma 4. There is a positive number $c$, which depends on $A_{1}, \ldots, A_{n}, n$ and $d$, such that if $\Lambda \neq 0$ then

$$
|\Lambda|>B^{-c}
$$

For a sharp explicit dependence of $c$ in Lemma 4 on the parameters $A_{1}, \ldots, A_{n}, n$ and $d$, see Matveev $[6,7]$.

## 3. Proof of Theorem 1

Let $c_{1}, c_{2}, \ldots$ be positive numbers which are effectively computable in terms of $\alpha_{1}, \ldots, \alpha_{r}$. Let $t$ be in $T$ with $|t| \geq 3$. Then

$$
t=\alpha_{1}^{h_{1}} \cdots \alpha_{r}^{h_{r}}
$$

with $h_{i} \geq 0$ for $i=1, \ldots, r$. Suppose $t^{\prime}$ is in $T$ with $t^{\prime} \neq t$. We have

$$
t^{\prime}=\alpha_{1}^{j_{1}} \cdots \alpha_{r}^{j_{r}}
$$

with $j_{i} \geq 0$ for $i=1, \ldots, r$.
Then

$$
\left|t-t^{\prime}\right|=|t|\left|\alpha_{1}^{j_{1}-h_{1}} \cdots \alpha_{r}^{j_{r}-h_{r}}-1\right| .
$$

Since $t \neq t^{\prime}$ we may apply Lemma 4 , as in Theorem A of [9], to give

$$
\begin{equation*}
\left|t-t^{\prime}\right|>|t| B^{-c_{1}} \tag{2}
\end{equation*}
$$

where

$$
B=\max \left(4,\left|j_{1}-h_{1}\right|, \ldots,\left|j_{r}-h_{r}\right|\right)
$$

We may suppose that $\left|t^{\prime}\right| \leq 2|t|$ since otherwise the result holds and thus

$$
\begin{equation*}
B<c_{2} \log |t| \tag{3}
\end{equation*}
$$

Our result now follows from (2) and (3) since $|t| \geq 3$.

## 4. A preliminary result for the proof of Theorem 2

Let $\alpha_{1}$ and $\alpha_{2}$ be multiplicatively independent real algebraic numbers with $\alpha_{i}>1$ for $i=1,2$. Let $\ell_{0} / k_{0}, \ell_{1} / k_{1}, \ldots$ be the sequence of convergents to $\log \alpha_{1} / \log \alpha_{2}$. Our next result gives a bound on the growth of the $k_{i}$ 's. The proof depends upon Lemma 4 and is due to Tijdeman [11] when $\alpha_{1}$ and $\alpha_{2}$ are distinct primes.

Lemma 5. There exists a positive number $c$, which is effectively computable in terms of $\alpha_{1}$ and $\alpha_{2}$, such that

$$
k_{j+1}<k_{j}^{c}
$$

for $j=2,3, \ldots$.
Proof. Replacing $\log p / \log q$ by $\log \alpha_{1} / \log \alpha_{2}$ in the proof of the Lemma in [11] and noting that $k_{j} \geq 2$ for $j \geq 2$ we obtain the result.

## 5. Proof of Theorem 2

Let $c_{1}, c_{2}, \ldots$ denote positive numbers which are effectively computable in terms of $\alpha_{1}$ and $\alpha_{2}$. Let $x$ be a real number with $x \geq 3$ and let $t$ be the largest element of $T$ with $t \leq x$. Then

$$
\frac{x}{\max \left(\alpha_{1}, \alpha_{2}\right)} \leq t
$$

and so

$$
\begin{equation*}
\frac{1}{2} \log x<\log t \tag{4}
\end{equation*}
$$

for $x>c_{1}$.
We have

$$
t=\alpha_{1}^{h_{1}} \alpha_{2}^{h_{2}}
$$

with $h_{1}$ and $h_{2}$ non-negative integers. We may assume, without loss of generality, that

$$
\alpha_{1}^{h_{1}} \geq t^{1 / 2}
$$

and so

$$
\begin{equation*}
h_{1} \geq \frac{1}{2 \log \alpha_{1}} \log t \tag{5}
\end{equation*}
$$

Let $\frac{\ell_{0}}{k_{0}}, \frac{\ell_{1}}{k_{1}}, \ldots$ be the sequence of convergents from the continued fraction expansion of $\log \alpha_{1} / \log \alpha_{2}$. Recall that the convergents with even index are smaller that $\log \alpha_{1} / \log \alpha_{2}$ and those with odd index are larger. Choose $j$ to be the largest odd integer for which

$$
\begin{equation*}
k_{j} \leq h_{1} \tag{6}
\end{equation*}
$$

certainly $k_{1} \leq h_{1}$ for $x>c_{2}$. Then $k_{j+2}$ exceeds $h_{1}$ and by (4) and (5)

$$
k_{j+2}>\frac{1}{4 \log \alpha_{1}} \log x
$$

for $x>c_{3}$. By Lemma $5, k_{j+2}<k_{j+1}^{c_{4}}$ and so

$$
k_{j+1}>\left(\frac{1}{4 \log \alpha_{1}} \log x\right)^{1 / c_{4}}
$$

hence

$$
\begin{equation*}
k_{j+1}>(\log x)^{c_{5}} \tag{7}
\end{equation*}
$$

for $x>c_{6}$.
Put

$$
t^{\prime}=\alpha_{1}^{h_{1}-k_{j}} \alpha_{2}^{h_{2}+\ell_{j}}
$$

and note that by (6) $t^{\prime}$ is in $T$. Further since $t<t^{\prime}$ we have $x<t^{\prime}$. By Theorem 167 and Theorem 171 of [4],

$$
0<\frac{\ell_{j}}{k_{j}}-\frac{\log \alpha_{1}}{\log \alpha_{2}}<\frac{1}{k_{j} k_{j+1}}
$$

and so

$$
\begin{equation*}
\log \left(t^{\prime} / t\right)<\frac{\log \alpha_{2}}{k_{j+1}} \tag{8}
\end{equation*}
$$

It follows from (7) and (8) that $\log \left(t^{\prime} / t\right)<\frac{1}{4}$ hence

$$
\begin{equation*}
\log \left(t^{\prime} / t\right)=\log \left(1+\left(t^{\prime}-t\right) / t\right)>\frac{t^{\prime}-t}{2 t} \tag{9}
\end{equation*}
$$

and thus, by (8) and (9),

$$
\begin{equation*}
t^{\prime}-t<\frac{\left(2 \log \alpha_{2}\right) t}{k_{j+1}} \tag{10}
\end{equation*}
$$

for $x>c_{6}$. Recall (7) and that $t \leq x<t^{\prime}$. We see from (10) that

$$
x-t<c_{7} \frac{x}{(\log x)^{c_{8}}}<\frac{x}{(\log x)^{c_{9}}}
$$

for $x>c_{10}$. Note that this suffices to prove Theorem 2 since

$$
x-t \leq x-1 \leq \frac{x}{\left(1+\frac{1}{x-1}\right)} \leq \frac{x}{(\log x)^{c_{11}}}
$$

for $3 \leq x \leq c_{10}$.

## 6. Preliminaries for the proof of Theorem 3

For any non-zero complex number $z$ let $\operatorname{Im}(z)$ denote the imaginary part of $z$, let $\operatorname{Arg}(z)$ denote the argument of $z$ chosen so that $0 \leq \operatorname{Arg}(z)<2 \pi$ and let $\log z$ denote the principal branch of the logarithm so that $0 \leq$ $\operatorname{Im}(\log z)<2 \pi$.

Let $\nu$ be a real number with $0 \leq \nu<2 \pi$ and let $\alpha$ be an algebraic number with $|\alpha|>1$ for which $\alpha /|\alpha|$ is not a root of unity. For each positive integer $k$ let $b_{k}$ be the smallest positive integer for which

$$
\left|\operatorname{Arg}\left(\alpha^{b_{k}}\right)-\nu\right| \leq \frac{2 \pi}{k}
$$

Lemma 6. There exists a positive number $c$, which is effectively computable in terms of $\alpha$, such that

$$
b_{k}<k^{c}
$$

for $k \geq 2$.
Proof. Suppose $k \geq 2$. By Dirichlet's box principle there exists an integer $r_{k}$ with $1 \leq r_{k} \leq k$ and an integer $m_{k}$ so that

$$
\left|r_{k} \log \frac{\alpha}{|\alpha|}-m_{k} 2 \pi i\right| \leq \frac{2 \pi}{k} .
$$

Notice that we have $0 \leq m_{k} \leq r_{k}$.
Let $c_{1}, c_{2} \ldots$ denote positive numbers which are effectively computable in terms of $\alpha$. By Lemma 4

$$
\left|r_{k} \log \frac{\alpha}{|\alpha|}-2 m_{k} \log (-1)\right| \geq \frac{1}{\left(2 r_{k}\right)^{c_{1}}} \geq \frac{1}{k^{c_{2}}}
$$

If

$$
0<\frac{1}{i}\left(r_{k} \log \frac{\alpha}{|\alpha|}-m_{k} 2 \pi i\right) \leq \frac{2 \pi}{k}
$$

then there exists an integer $q_{k}$ with $1 \leq q_{k} \leq 2 \pi k^{c_{2}}$ for which

$$
\left|q_{k}\left(r_{k} \log \frac{\alpha}{|\alpha|}-2 m_{k} \log (-1)\right)-\nu i\right| \leq \frac{2 \pi}{k} .
$$

On the other hand if $r_{k} \log \frac{\alpha}{|\alpha|}-2 m_{k} \log (-1)$ is of the form $y i$ with $-\frac{2 \pi}{k} \leq$ $y<0$ then there exists an integer $q_{k}$ with $1 \leq q_{k} \leq 2 \pi k^{c_{2}}$ for which

$$
\left|2 \pi i+q_{k}\left(r_{k} \log \frac{\alpha}{|\alpha|}-2 m_{k} \log (-1)\right)-\nu i\right| \leq \frac{2 \pi}{k} .
$$

Therefore, since

$$
\log \left(\frac{\alpha}{|\alpha|}\right)^{q_{k} r_{k}}=i \operatorname{Arg}\left(\alpha^{q_{k} r_{k}}\right)
$$

and since $k \geq 2$,

$$
b_{k} \leq q_{k} r_{k} \leq 2 \pi k^{1+c_{2}}<k^{c_{3}}
$$

as required.

## 7. Proof of Theorem 3

Let $z$ be a complex number with $|z| \geq 3$ and put $\nu=\operatorname{Arg}(z)$. Let $b_{1}, b_{2}, \ldots$ be defined as in $\S 6$ with $\alpha$ replaced by $\alpha_{3}$. Let $c_{1}, c_{2}, \ldots$ denote positive numbers which are effectively computable in terms of $\alpha_{1}, \alpha_{2}$ and $\alpha_{3}$. It suffices, as in the proof of Theorem 2, to establish our result for $|z|>c_{1}$. In particular we may suppose that $|z|$ exceeds $\max \left(9,\left|\alpha_{3}\right|^{2 b_{2}}\right)$. We now choose $k$ so that

$$
\begin{equation*}
\left|\alpha_{3}\right|^{2 b_{k}} \leq|z|<\left|\alpha_{3}\right|^{2 b_{k+1}} ; \tag{11}
\end{equation*}
$$

since $|z|$ exceeds $\left|\alpha_{3}\right|^{2 b_{2}}$ and since the sequence $\left(b_{i}\right)_{i=1}^{\infty}$ is non-decreasing $k$ is well defined. By the definition of $b_{k}$ we have

$$
\left|\operatorname{Arg}\left(\alpha_{3}^{b_{k}}\right)-\operatorname{Arg}(z)\right| \leq \frac{2 \pi}{k}
$$

Further

$$
\begin{equation*}
3 \leq|z|^{1 / 2} \leq|z| /\left|\alpha_{3}\right|^{b_{k}}<|z| . \tag{12}
\end{equation*}
$$

We now choose non-negative integers $j_{1}$ and $j_{2}$ such that

$$
\begin{equation*}
\left|\alpha_{1}^{j_{1}} \alpha_{2}^{j_{2}}-\frac{|z|}{\left|\alpha_{3}\right|^{b_{k}}}\right|<\frac{|z| /\left|\alpha_{3}\right|^{b_{k}}}{(\log |z|)^{c_{2}}} \tag{13}
\end{equation*}
$$

which is possible by (12) and Theorem 2. Put

$$
t=\alpha_{1}^{j_{1}} \alpha_{2}^{j_{2}} \alpha_{3}^{b_{k}}
$$

Notice that by (13)

$$
\begin{equation*}
\| z|-|t||<\frac{|z|}{(\log |z|)^{c_{2}}} \tag{14}
\end{equation*}
$$

In addition, since $\operatorname{Arg}(t)=\operatorname{Arg}\left(\alpha_{3}^{b_{k}}\right)$,

$$
\begin{equation*}
|\operatorname{Arg}(z)-\operatorname{Arg}(t)| \leq \frac{2 \pi}{k} \tag{15}
\end{equation*}
$$

On the other hand, by (11),

$$
\log |z|<2 b_{k+1} \log \left|\alpha_{3}\right|
$$

and so by Lemma 6

$$
\begin{equation*}
\log |z|<k^{c_{3}} \tag{16}
\end{equation*}
$$

since $k \geq 2$. Thus by (15) and (16)

$$
\begin{equation*}
|\operatorname{Arg}(z)-\operatorname{Arg}(t)|<\frac{2 \pi}{(\log |z|)^{c_{4}}} \tag{17}
\end{equation*}
$$

Our result now follows from (14) and (17).

## 8. Acknowledgements

This research was supported in part by the Canada Research Chairs Program and by grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

## References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms, Acta Arith. 21 (1972), 117-129.
[2] A. Baker, The theory of linear forms in logarithms, in: Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 1-27.
[3] N.I. Feldman, Improved estimate for a linear form of the logarithms of algebraic numbers, Mat. Sb. (N.S.) 77 (1968), 432-436. Transl. Math. U.S.S.R. Sbornik 6 (1968), 393-406.
[4] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th ed., Oxford University Press, 1979.
[5] J. Kim and C.L. Stewart, Well spaced integers generated by an infinite set of primes, Proc. A.M.S. 143 (2015), 915-923.
[6] E.M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), 81-136, (English) Izv. Math. 62 (1998), 723772.
[7] E.M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180, (English) Izv. Math. 64 (2000), 1217-1269.
[8] M. Sha, I. Shparlinski and C.L. Stewart, On the distribution of multiplicatively dependent vectors, to appear.
[9] T.N. Shorey, A.J. van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to Diophantine equations, in: Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 59-77.
[10] R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), 319-330.
[11] R. Tijdeman, On the maximal distance between integers composed of small primes, Compositio Math. 28 (1974), 159-162.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

E-mail address: cstewart@uwaterloo.ca


[^0]:    2010 Mathematics Subject Classification. Primary 11N80; Secondary 11J86.
    Key words and phrases. $S$ units, linear forms in logarithms.

