LINEAR FORMS IN LOGARITHMS AND DIOPHANTINE EQUATIONS
C.L. STEWART

Notes taken by D. Wolczuk

A complex number « is said to be algebraic if it is the root of a non-zero polynomial with
integer coefficients. A complex number which is not algebraic is said to be transcendental.
Recall: The degree of an algebraic numbers is the degree of its minimal polynomial.

In 1844, Liouville proved,

Theorem 1. Let o be an algebraic number of degree d > 1. There is a positive number C
which is effectively computable in terms of «, such that
C(a)

gt ’

P
q

>

o —

forp,q € Z, q > 0.

Proof:
Suppose that f(z) = agz? + -+ + a1z + ag € Z[x] is the minimal polynomial of a.

Note that if « is not real, then we can take C'(«v) to be the absolute value of the imaginary
part of a.

Suppose a € R. Then for p/q € Q,

1f(p/a) = 1/q"

since f(p/q) # 0 since f is the minimal polynomial of o and d > 1.
By the mean value theorem, 3 a real number 6, with 6 between « and p/q such that

1/¢" < |f(p/a)l = |f(e) = f(p/a)| = | — p/all f'(0)]. (1)

but f'(z) = dagz®* + --- 4+ a;. Observe that if |a — p/q| > 1, we can take C'(a) to be any
positive number less than 1. Thus we may assume that |a — p/q| < 1. Therefore

LFO)] < (dlag(Jal + 1)+ +Jaa]) = (Cla) ™"

The result now follows from (1). O

Liouville proved the existence of transcendental numbers such as

0=> 10"
n=1

by using Thrm 1. For example, put py/q = >F_, 107 thus ¢, = 10* and p, = 10 .
F_,107™. Obeserve that

> 2 2
10— pe/qi| = 107 < - . (2)
n:;i-l 10k+1)! q11§+1

Suppose that 6 was algebraic of degree d. Note that d > 1, since 6 is not a rational number.
Then by Thrm 1, 3C(a) > 0 s.t. |o — pr/qx] > C()/ql. But this and (2) imply ¢f ™'~ <
2/C(a) but ¢ft' =% — 0o as k — 00 s0 « is not algebraic.

In 1873, Hermite proved that e is transcendental.

1



2 LINEAR FORMS IN LOGARITHMS AND DIOPHANTINE EQUATIONS C.L. STEWART

In 1874, Cantor proved that the transcendental numbers are dense in R by making use of
the fact that the algebraic numbers are countable.

In 1882, Lindemann proved that 7 is transcendental.

The Hermite-Lindemann theorem states that if 3 € C, 3 # 0 then one at least of {3, e} is
transcendental.

Consider {7i,e™} = {mi, —1} since i is algebraic, it follows that 7 is transcendental.

Lindemann stated and Weierstrass proved in 1885:

If #1,...,[3, are algebraic numbers which are linearly independent over Q then e, ...  efn
are algebraically independent.

In 1900, Hilbert proposed as the 7th of his problems:

If o is algebraic and o # 0,1 and 3 is algebraic and irrational, prove that o is transcen-
dental. This was proved by Gelfond and Schneider independentaly in 1934.

In 1967, Baker proved that if ay, ... ,«, are algebraic numbers different from 0 and 1 and
By, ..., B, are algebraic numbers for which 1, 3, ... , 3, are linearly independent over Q then

is transcendental. He also proved that e ozf '...aP is transcendental for all nonzero algebraic
numbers Gy, ..., Bn, a1,. .., Qp.
Quantitative Results? One can ask for a measure of how small the quantity

|/60+/61 logal + +/6nlogan _1Ogan+1|

when «,,1 is an algebraic number.

For our applications we are interested in the degenerate case when (y = 0, and f3;’s are
integers.

We still get bounds from Baker’s argument. Put

A=bloga; + -+ b,loga, (3)

where b; € Z, 1 =1,... ,n.

One can prove that A = 0 or |A| is bounded away from 0 in terms of the size of the |b;|'s, n,
the degree of the «;’s and the heights of the «;’s.

For any algebraic number «, we define the height of a, denoted by H(«), by

H(a) = max{laql, [ag-l,-- - [aol}

where f(z) = agz® + - - - a1z + ap is the minimal polyomial of a.

H(«) is known as the naive height.

Aim: If A # 0, then |A] is not too small in terms of by, ... by, aq,... , Q.

Suppose, in (3) that the logs are always the principal branch. Put d = [Q(aq, ... ,a,) : Q).
Suppose that A; = max(H(«a;),e) for i =1,... ,n and that B = max(|by],. .., |bn], €).

Theorem 2. (1993, Baker and Wustholz) If A # 0, then
|A| > exp(—(16nd)*™ -log A; - - -log A,, - log B).

Proposition 3. Suppse that « is an algebraic number, o # 0 with minimal polynomial f(x) =
adxd + -4 ag then
H(«
la| < He) + 1.
|adl
Proof:
If || <1, the result is immediate. So suppose that |a| > 1.
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We have f(a) =0 and so

g = — g1 — Agoa L — -+ — g4,

Hence
lagl|a| < (|ag—1] + |ag_s||a™| + -+ |ag||a™@F])

<HA 4ol -+ o™

O

Remark. Note that since a~! has minimal polynomial z?f(1/z), we see from Prop 3 that

H -1
la| > <— + 1) :
|aol

Let by, ..., b, € Z with absolute value at most B > 2 and let ay, . .. , o, be nonzero algebraic
numbers with heights at most A.

Proposition 4. If A # 0 then |A] > (3A)~ B

Proof:
Let a; denote the leading coefficient in the minimal polynomial of o;; when b; > 0, and let a;
denote the leading coefficient of the minimal polynomial of («;)~' when b; < 0.

Then we put

b
w = a‘lll ayz”‘(al{l O{Z” — 1)
b b
_ a\lll . ,alrlzn\(aill il _a;n\bnl —1)

where €, = b;/|b;| fori=1,... n.
|bi|  €ilbi

Notice that w is an algebraic integer of degree at most d as a; "'a;"""' is an algebraic integer.

This is because aqo is a root of y® + ag_ 1y + - + aoag_l.
Let o be an embedding of Q(«y, ... ,a;,) in C which fixes Q. Each conjugate o(w) of w is
of the form
O‘(w) = a'lbl‘ e a‘yf”ll(o-(ail)lbll e U(a;”l)lbn‘ _ 1)
By Prop 3, |a;o(a;")| < 2A and so
o) < 2(24)". (1)
If w=0and A # 0 then A is a multiple of 277 and the result holds.
Suppose w # 0, then | Ny g(w)| > 1.
Thus, by (1),
1
w| > —————— > (2. (24)"B) 74+
fwl 2 [Toialo(w) = (224
;From the inequality |e* — 1| < |z|el*| for all z € C, and on setting z = A, we see that
ol - abr — 1] < |l

If |A| > 1/2 we're done, so we may assume |A| < 1/2, hence e® < 2. Thus |a}* - abr — 1] <
2|A]. Recall that
" -alrl(adr - aly = 1)) = (2(24)"7)
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and so
1 1
Al >
M2 T T apeAy )
1
> A —ndB
— Zd(QA)"Bd > (3 )
since nB > 2. O

We can rewrite Prop 4 as if A # 0 then |A| > exp(—nd(log3A)B).

Suppose further that A > e then 34 < A? and so |A| > exp(—3nd(log A)B).

Compare this with Thrm 2. Notice that Thrm 2 gives a better lower bound for the modulus
of A, |A], when 3nd(log A)B > (16nd)****log A; - - -log A,, - log B.

WLOG, we may assume that A = A,, so o, has largest height. Thus Thrm 2 improves on
Prop 4 when

oz B > (16nd)* ™ log A, - - -log A,_;.

We get nontrivial information from Thrm 2 when the b;’s are large relative ton, d, Ay, ... , A,_1.
Basically, Thrm 2 tells us that products of large powers of algebraic numbers can’t be too close
together.

Simpler situation: Suppse aq,...,a, € Q, nonzero and let by,... b, € Z, nonzero. Put
B; = |bj|, B = max; |b;|, A; = max(H (a;),1) and A = by logay + - - - + b, log a,,.
Conjecture. (Lang + Waldschmidt) Let € > 0. 3C(¢) > 0 such that if A # 0, then

(C(e)"B
(By -+ B,A2. .. A2)l+e’

Al >

Notice if we take € = 1/2 then
(C(e)"
|A| > Br(l+e) A2n(l+e)
The rationale behind the conjecture:
Let S be the set of linear combinations of the loga;’s of the form b, loga; + - - - + b, loga,
where |b;| < B; and H(a;) < Aj for j=1,... ,n.
S has cardinality at most

(2B; +1)--- (2B, + 1)(2A; +1)?--- (24, + 1)~
The numbers in S are contained in the interval
[—nBlog A, nBlog A].

If the numbers are uniformly distributed in the interval we would expect that the distance to
0 from the smallest nonzero element of S in absolute value is about
2nBlog A

(2B +1)--- (2B, + 1)(2A; + 1)2--- (24, + 1)’

This motivates their conjecture.

Suppose that aq,... ,a, are positive integers of at most A and suppose that by, ..., b, are
postive integers of size at most B. Fix ay,...,a, and suppose that logay,... ,loga, are
linearly independent over Q.

Then the set T' of linear combinations by loga; + --- + b, loga, has cardinality at least
(B —1)" (due to linear independence). They all lie in the interval [D, Bnlog A]. Thus there

is a nonzero difference of two elements of R of the form b;loga; + - - - b, log a,, where V)| < B

nBlog A
(B=1)™ "

> exp(—3n(log C(e)™!) + log B + log A).

for j =1,...,n of size at most
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Thus, in general, the term log B which occurs in the lower bound for |A| as in Thrm 2 can’t
be improved. Similarly, it can be shown that we need a factor of log A also.

Suppose that A = bylogay + -+ + b, loga,, = 0 with aq,... ,a, algebraic numbers and
by, ... ,b, nonzero integers. Suppose that no subset of n— 1 elements from {log oy, ... ,log o, }
is Q-lineraly dependent. Then, up to 41, there is a unique nonzero n-tuple of coprime integers
(k1, ..., k,) such that

kilogag + ...+ k,loga,, = 0.

Claim: We can bound the |k;|’s from above in terms of n,d and Ay, ..., A, (A; = H(w)).

Let o be an algebraic number with minimal polynomial f(z) = agz® + -+ a1z + ag so
H(a) = max;(|a;]).

Suppose that over C, f(z) = aq(z — ay) - - (x — aq) so wlog a = a.

We put M(a) = |ag| TIL, max(1,|ay]). M(a) is known as the Mahler measure of o and it is
a more natural height function for o than H(«).

Jensen’s Forumla. Let f be an analytic function in region containing the closed ball centered

at the origin of radius » > 0. Suppose that aq, ... ,«, are the zeros of f in the ball repeated
with multiplicity. If f(0) # 0 then

B n 1 27 i
log |(0)] = = S loglr/aul + 5 [ log £ (re)las

Proposition 5. (Landau) Let o be an algebraic number of degree d. Then
M(a) < (d+1)"V2H(a).
Proof:

Let f(z) = aqz?+- - -+aiz+ag be the minimal polynomial of o over Q. Note that by Parseval’s
equality

1 21 .
%/0 1f(e)|2d0 = a2 + - - + a?.
On the other hand,
|£(e?)] = laalle” — an] -+ -] — aal.
Apply Jensen’s Formula with » = 1 and let a1, ..., a, be the roots of f of modulus at most
1. Then
1 L2 i0
log |ag| = —log ———+=— [ log| f(c")|d6
lag - -ap| 2w Jo
SO ol
log " = [ log] f(e")]db.
o8 T = o [ log ")

Note that f(z) = aq(z —aq) -+ (z — @) s0 |agay - - | = |ag|. Thus

|aol d
|Oé1 . _0‘ o | = |Cld||0én+1 e |ad| = |ad| H max(l, |az|) = M(a)
n i=1
Thus
1 27 )
log M(a) = o [~ 1og |f(e)|df
21 Jo
i 1 27
M(a) = exp (5= [ loglf(e)ldo)
21 Jo
hence

M(a)* = exp <% /027r log |f(ei9)|2d6’) :
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By the arithmetic geometric mean inequality for functions, Thrm 184 of Inequalities by Polya,
Hardy and Littlewood,

exp (5 [1oal(e)Pan) < o [T 1re) s
2m Jo

— 27 Jo
hence
M(a)? <ad+---+a2 < (d+1)H(a)?
as required. 0
Theorem 6. Let aq, ... ,a, be nonzero algebraic numbers and suppose that log aq, ... ,logay,
are linearly dependent over Q. Suppose that A; = maX(M(aj),e@,e) for j =1,....n
where d = [Q(ay,...,a,) @ Q|. Then there exist integers ti,... ,t, not all zero for which

tilogayg +-- -+ ty,logay, =0 with
(11(n — 1)d®)"'log A; - - -log A,
lOgAZ

|t:| <

fori=1,... n.

For the proof of Thrm 6, we need some ideas from the geometry of numbers.

A set S in R™ is said to symmetric about the orgin 0 = (0, ... ,0) if whenever T € S, then
—TES.

S is said to be convex if whenever Z,7 € S and X is a real number with 0 < A < 1 then
AT+ (1—-MNges.

The volume of a set S in R” is the Riemann integral of the characteristic function of the
set, when it is integrable. It can be shown that every bounded convex set in R™ has a volume.

An integer point T = (z1,...,2,) in R™ is a vector with z; € Z fori =1,... ,n.

Theorem 7. (Minkowski, 1896) Let A be a set in R™ which is convez, bounded, symmetric
about the origin and has volume M(A).
If M(A) > 2" then A contains an integer point different from the origin.

Proof:
Let A,, be the set of rational points in A all of whose coordinates have denominator m, so
Ap={(8,... . Ye A|t;eZ,i=1,... ,n}.

m’

Let |A,,| denote the cardinality of m. Then

lim —‘Am| = M(A).

m—oo

For m sufficiently large

|An] > (2m)".
Thus there are two distinct points @ = (2,..., %) and b= (&,... ) € 4, with a; = bj(

mod 2m) fori =1,... n.
Then £(a — b) is an integer point (claim) which isn’t 0.

aand b € A, hence in A. —b € A since A is symmetric about 0. sa+1(—b) =1(@—b) € A
since A is convex.
And the result follows. O

Remarks concerning Minkowski’s Convex Body Thrm.
(1) 2™ is sharp. Consider the set A in R™ given by

A={x1,... 2,) €R"| |z;] < 1}.
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Note that u(A) = 2™ but the only integer point in A is the origin.
(2) Note that in the conclusion of Minkowski’s Convex Body Thrm we can claim the existence
of 2 non-zero points in the set since if g is in the set then so is —g by symmetry.

Theorem 7°. (Minkowski’s Linear Forms Thrm) Let B?(ﬁij) be an n x n matrix

with real entries and non-zero determinant. Let ¢y, ... ,c, be positive real numbers
with ¢;---¢, > |det B|. Then there exists a non-zero integer point z = (zi,...,z,)
such that
|Baz1 + -+ Bintn| < ¢ fori=1,... n—1
and
Briz1 + -+ Bann| < .
Proof:

Write L;(z) = Bax1 + -+ + fBintn < ¢ fori = 1,...,n—1 and put Li(z) = %Lz(g) for
i =1,...,n. Thus we wish to solve

|Li(z)] <1lfori=1,... ,n—1

and |, (2)] < 1.

The determinant of the matrix determined by Lj(z) fori=1,... ,nis % < 1. Therefore,
WLOG we may suppose that ¢; = --- = ¢, =1 and that |det B| < 1.

For each € > 0 define A, to be the subset of z € R for which |L;(z)| < 1fori=1,... ,n—1
and |L,(z)| <1+e.

Note that A, is symmetric about the origin 0 and is bounded. Further A, is convex since if
z and y are in A, and A € R with 0 < A < 1 then

ILi(hz) + (1= Ng)| < ALi(z)| + (1 - V| Li(y)|

A+1—-X=1 fori=1,... ,n—1
AMl+e)+(1-=N(1+e€=1+€ fori=n

Since p(Ae) = (1 +¢€) - 2" > 2™ and so by Minkowski’s Convex Body Thrm there is a non-zero
integer point z_in A..

Consider A, for k = 1,2,... and note that A; 2 Ay, 2 A;/3 D --- . We obtain a sequence
Zy of non-zero integer points in Ay, for £ =1,2,... . Since A; is bounded and contains only
finitely many integer points there must be one point y of the form z, Ik for infinitely many k.

Note that then |L;(y)| <1fori=1,... ,n—1and |L_n(g)| <1 O

Suppose that « is an algebraic number with M (a) < 1. Note that if f(z) = aqz? + -+ + ay
is the minimal polynomial of «, then, since M () = aq 1%, max(1,|oy|) where ay, ... , aq are
the roots of f, we see that |ag| = 1. Therefore if M(«) <1 then « is an algebraic integer. Let
o = Q1 SO ag, ... ,qq are the conjugates of a.

Note that |af| < 1fori=1,... ,dand k = 1,2,... . The elementary symmetric polynomials
in the variables z1,...,7q4 are bounded in absolute value by 2¢ when evaluated at points
(y1,...,yq) with |y;| < 1, fori = 1,...,d. Thus when (y,...,yq) = (a,... o) they are
integers of size at most 27. In particular, o* is the root of a non-zero polynomial with integer
coefficients of absolute value at most 2%, hence of a finite set of non-zero polynomials. Therefore
a* = ol for some k, 1 € Z*. Thus either & = 0 or « is a root of unity.

This was first proved by Kronecker in 1857.

S ={M(«)| « algebraic }.
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Countable, is it dense?

In 1933, Lehmer asked if for each ¢ > 0 there exists an algebraic number « for which
1< M(a)<l+e.

The smallest value of M («) larger than 1 which he found was M (ag) = 1.17628081 - - - where
ap is a root of 2% + 2% — 27 — 2% — 2% — 23 + 2 + 1. This is an example of an Salem number.
One root inside the circle, one outside the circle and the rest on the unit circle. No smaller
example has been found.

Pisot numbers: Algebraic integers « all of whose conjugates, apart from o > 1 lie strictly
inside the unit circle. Let a = aq,...,aq be the conjugates of a Pisot number . Then for
each k € Z*, of +--- + ok is an integer. Thus if we let ||z|| denote the distance from z to the
nearest integer for any x € R then

Jimy o] = o
Open Question: If § € R with § > 1 and lim_, ||0*|| = 0, is # a Pisot number (P.V. number,
Pisot-Vijayaraghavan number)?

There is a smallest Pisot number.
In 1979, Dobrowolski proved that if « is an algebraic number of degree d > 3 and « is not

3
a root of unity then M(«a) > 1+ ﬁ (loig)gd) .

Theorem 8. Let d € Z*1 and let « be an algebraic number of degree at most d, which is not a
root of unity. Then

log M (a) > Iz

We first need:

Proposition 9. Let p be a prime number and let f € Zlxy,... ,xx). Then there exists g €
Zlxy, ..., xy) such that

fb, oo o)y = floy, ... 2p)? = pglae, ..., xp).
Proof:
Put z = (x1,... ,xx) and 2P = (2f,... ,;2%). Observe that if f(z) is a monomial, say f(z) =
a(xlf_-- -2}, then N ' ' N -
f@") = f@) = (a—ad)ay" - 2" = pg(z),
where g(z) = %xim o x}? € Zlxy, ..., x;] since p| a — aP by Fermat’s little theorem.
Suppose now that the result holds for fi(z) and fo(z). Thus fi(z?) — fi(2)? = pgi(x) and
f2(z?) = faz)P = pga(z), with g1, 92 € Z[z1, ..., x]. Then - N -
(fr+ f2)@) = ([ + f2)(@)° = fil2”) + fo(2) = (fi + f2)"(2)
= f1(@)" + pgi(z) + fo(2)" + pg2(z) — (f1 + f2)"(2)

But
p_ P D\ p—1 p p—1 p
(fi+ /o) —f1+<1> 1 fot +<p—1>f1 2 T /2
Thus
(4 1) = 4 2P = o) + o) + 2 (D) e (7 ) =)
p YZAVZ

€ Zlxy, ...,z

since p | (?) for1<j<p-1.
The result now follows by induction on the number of monomials of f. O
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Proposition 10. Let « be a non-zero algebraic number. Suppose that h and | are distinct
positive integers for which o and o' are conjugates. Then o is a root of unity.

Proof:
Let a = oy, ... ,aq be the conjugates of a and put k = Q(ay, ... ,aq). Since a” and o are
conjugates there is an element ¢ of Gal(k/Q) for which

o) =al.

We claim that forn =1,2,...
a"(a"") = a!”.
True for n = 1. Suppose true for 1 < k < n. Then
o (M) = a(0™ (")) = a((a")")
= o((a")" = ()" =",
The claim follows by induction.
Since the Galois group is finite there is finite there is ¢ € Z* such that o' is the identity.

t t t t . . . .
Then ot(a) = o' so a" = a!". Since « is non-zero « is a root of unity. U
Given an algebraic number a with conjugates a = a, ... , ag over Q we define the house of o,
denoted |a|, by
la] = max{|aq],...,|ad}

Theorem 11. (Dobrowolski, 1978) If o is a non-zero algebraic integer of degree d which is
not a root of unity then

o] > 1 .

o + 4ed?
Proof:
Let @ = ay,...,aq be the conjugates of a over Q. Let fi,(zy,...,2q4) = 2 + -+ + 2 for
h=1,2,... . Put S, = falaq,...,aq) for h = 1,2,... . Note that Sj, is an integer for

h =1,2... since it is fixed under elements of the Galois group of the splitting field over Q.
Let p be a prime number. By Fermat’s little thrm,

P=S, (modp)forh=1,2,...
On the other hand, by Prop 9,
Shp — Sh =pg(au, ... ,aq) where g € Z[zy ... ,x4).

Note that Sy, and S}, are in Q so g(ay, ... ,aq) is in Q. Since ay, ... , a4 are algebraic integers
and g € Z[xy, ..., 24, g, ... ,aq) € Z. Thus
Shp = SY (mod p).
Therefore
Shp = Sp (mod p), for h=1,2,...
For each h € Z*
—h

|Su| = |af + -+ al| < d]a] .
Suppose that W <1+ ﬁ. By Bertrand’s Postulate there is a prime p with 2ed < p < 4ed.
For 1 < h <d,

h
1Su] < d (1 + 4%12) < e80T < ge.
e
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and

hp
lshplsd(1+ > < de* PRI TE) < de.

Therefore, for 1 < h <d,

4ed?

‘Shp — Sh‘ < 2ed < p-
Thus, since Sy, =S, (mod p),

Shp:SthI"h:1,...,d.

But the Newton Sums, for h = 1,... ,d determine the elementary symmetric polynomials in
Z1,...,xq and so the minimal polynomials of a and of o are the same. Thus a and o are
conjugates and so by Prop 10, « is a root of unity. O

Let ¢, k € RT with k& > ¢. Consider the function

f(t)zlog(lel)—i for t > 0.

ct kt’
1 1 1
/
)= — 4 —
() 1+éct2+k5t2
and so f'(t) > 0 for —cj% +1>0

1 1
e
i.e. when 7 >k —cso when ¢ < . Futher f'(t) <0 for t > . In addition log(1+ %) —
is positive for t sufficiently large.
Take k£ = 11 and ¢ = 4e. Then

so when + >

=788---.

| (1+ 1)> 1 for t >
8 det) ~ 11t NN T 11— e

Thus, for d > 3,

1
log (1 .
81+ 1.8) > i

Since

1 1
l 1+ — 022732 - > — = 0227272 - - - .
og<+166)>0 73 >44 022727
Therefore for d > 2, € Z

| |
log <1 + 4ed2> “ e (1)
Proof:

(Theorem 8 continued) If v is not an algebraic integer and f(x) = agz®+- - -+ag is the minimal
polynomail of a then |a4| > 2 and so M («) > 2 hence log M («a) > log 2 and the result holds.

Thus we may suppose « is an algebraic integer. Note that the result holds if d = 1, so
suppose d > 2. Then, by Thrm 11,

— 1
log M(av) > 1 >1 1
og M) > loga > log (14 ;)

and, since d > 2, by (1)
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Further remarks on heights.

Definition. Let K be a field and let | | : K — R. We say that | | is a valuation on K if
1) Va € K,|a| >0 and |a| =0 iff a = 0.
2) Va,b € K, |ab| = |a||b|.
3) Va,b e K, |a+b| <|a| +b].
Examples:
1) The ordinary absolute value on C.
2) Let K be any field. The map
1 ifa#0
lal = {

0 ifa=0

is known as the trivial valuation on K.
3) Let p be a prime and let K = Q. For any non-zero rational a/b we can define the p-adic
order of a/b denoted by ord,(a/b), by ord,(a/b) = ord, a — ord, b where the p-adic order of an
integer is the exact power of p which divides it. i.e. ord;(100) = 2.

We now define | |, on Q by

|a/b| _ p—ordp(a/b) if a/b ?é 0 .
) if a/b=0

One can check that | |, is a valuation. It is called the p-adic valuation on Q.
4) Let k be any field and let T' be a transcendental element over k. Put K = k(T'). Let X be

a real number with 0 < A < 1. Let p(T) be an irreducible element in K. Then every non-zero

LED)

o (T) where 5 € Z, f and ¢ are coprime with

element a of K can be written in the form p(T)’
p. Define | | on K by

la] = Noifa#0
o ifa=0"

| | is a valuation on K.
Definition. A valuation | | on a field on K is said to be non-Archimedean if Va,b € K,

|a + b| < max(|al, [0]).

The last 3 examples are non-Archimedean. For example | |, on Q is non-Arch. since if a/b =
p®ay /by with (ar,p) = (by,p) = 1 and ¢/d = pPe,/dy with (c1,p) = (di,p) = 1 then |a/b|, =
p~, |c/d|, = p~P. WLOG let o = min(a, 3)

o 01dy + p by

b bidy

= p®], - lardy +pﬁ_a01b1|p

o a1 5 C1
i _l_ i
p by p d,

= p~*ardy + p"“e1bal,

<p *=la/bl,

< max(|a/blp, [¢/d]p).
Definition. Let | | and | |; be vaulations on a field K. We say that they are equivalent if
there is a positive number ~ such that |a| = |a|] for all a € K.
We can define a metric and hence a topology on K by defining d : K X K — R by

d(a,b) = |a —0|.



12 LINEAR FORMS IN LOGARITHMS AND DIOPHANTINE EQUATIONS C.L. STEWART

Equivalent valuations induce the same topology. The trivial valuation induces the discrete
topology.

Ostrowski proved that every non-trivial valuation on Q is equivalent to either the ordinary
absolute value or to a p-adic valuation for some prime p. Let us denote | | on Q by | |,.. and
we put S(Q) = {pso,p a prime in Z}. By the Unique Factorization Thrm for Z, hence for Q,
we have for o € Q,

1 ifa#0

Il \anz{o T (1

veS(Q)

(1) is known as the product formula. Note that (1) holds because we chose | |, from its
equivalence class appropriately.

Let K be a finite extension of Q. Then K = Q(«) for some algebraic number «. Let
a=aqy,...,qaq be the conjugates of a.

Let K be a finite extension of Q and let Ok denote the ring of algebraic integers of K.
Each prime p in Z is such that the ideal (p) in Ok splits into a product of prime ideals

(p) = pi' -+ pi* here py,...,p, are distinct prime ideals. e; is known as the ramification of p;
for i = 1,... ,t. Further if we put [Ox/p; : Z/p] = f;, the residue class degree of p;, then
erfi+-+efi = [K : Q. If K isa Galois extension of Q thene; = -+ =¢; and f; = -+ = f,.

Since K is a finite extension of Q there is an § € K such that K = Q(f). Suppose
that (1,..., 34 be the conjugates of § over Q. Then the Q-isomorphisms ¢ of K into C

are determined once we knwon o(f3). Let o;(8) = §; for i = 1,...,d. We may suppose
that 5y,..., 03, are real and that 3,,41,..., 3y +2r, are not real and that 3,,+; = B, 4,4 for
t=1,...,ry. Note that o, y,,4i =01 for e =1,... ,ry. We say that oy,...,0,,4,, are the

infinite primes of K and that the prime ideals of Ok are the finite primes. Let S(K) denote
the union of the finite and the inifinite primes.

We now define a valuation v on K for each prime in S(K). Let « € K. If v = p € S(K)
then we put

|04‘ _ NK/Q(p)—wp(a)/d if 7£ 0
! 0 ifa=0

where w, () is the order of p in the canonical decomposition of the fractional ideal (a) as a
product of prime ideals.
Further if v = 0 € S(K) we put

o lo(a)|9?  ifa#0
aly = .
0 ifa=0
where
)1 ifoed{oy,... 00}
T2 itoc {00415+ s Oryira
Once again it is possible to check that the product formula holds:
1 _{1 it o # 0
vES(K) 0 ifa=0

Note that v € S(K) means the v for each prime in S(K).
We now introduce a new height function h(a) on K. For a € K we put

h(o) = [] max(1,]al,).

veS(K)
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If L is a finite extension of K then for o € K
I[[ max(1,|al) = J[ max(l,|al,),
veS(L) vES(K)

so h is defined on the set of all algebraic numbers. The definition of A does not depend on the
field containing «.

What is the link with M («)? Suppose that « is an algebraic number of degree d over Q and
minimal polynomial f(z) = ag2? +---ag = dy[1L,(z — ;). Put K = Q(a) then

h(a) = M(a)Y<.

As before suppose that oy, ..., ., are the real conjugates of @ and that o, ,,... , & 1o, are
the conjugates which are not real and that «,,4+; = a5, 1r,+:. Then

T1 r1+7r2
H (max(1, |a|,) = H max(1, \ai(a)|1/d) H max(1, \ai(a)|2/d)
v=0€S(K) =1 1=ri41

SO

[ max(1,|al,)? =[] max(1, |a)).

v=0€S(K) i=1
It can be shown that

[T max(1,]a) = T max(1, Nig(p) )

pES(K) pES(K)
= ]I max(1, p~ /@) = |ay|.
pES(K)
Thus
h(a)? = H max(1, |a|?) - H max(1, |a|9)
v=peS(k) v=0€S(k)
= M(a).

We can now verify the following : For « an algebraic number and k € Z™,
h(a®)y= T[] max(1,]a",)= [[ max(1,|al,)" = h(a)".
vES(Q(av)) vES(Q(a))

Recall that if « is a non-zero algebraic number with minimal polynomial f(x) of degree d
then g(z) = 2% f(2) is the minimal polynomial of a~*. But

2m ) 2w .
M(a) = exp (/ log |f(ew)|d9> = exp (/ log |g(629)|d9> = M(a™).
0 0
Thus h(a) = h(a™!) for a # 0. Therefore h(a*) = h(a)*! for all k € Z.

Further if «, § are algebraic numbers then

h(af) = H max(1, |af|,)

vES(Q(a,8))

< JI (max(1,of,))(max(1, [5].))

veS(Q(e,B))

= [I (max(1,]el,)) J] (max(1,|8}.))
veS(Q(a,3)) veS(Q(a,3))

= h(a)h(5)
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Theorem 6°.

Let a4, ... ,a, be non-zero algebraic numbers which are multiplicatively dependent.
Suppose that A; = max(h(«a;),e) for i = 1,... ,n and that A; < Ay < --- < A,. Let
d=[Q(ay,...,a,): Q]. There exists integers t,,... ,t,, not all zero, with o} ---al» =1

and for k=1,... )n
t] < (11(n —1)d*)"log Ay - - -log A,

Proof:
For each m € Z* let ¢(m) denote Euler’s phi function so ¢(m) = m[],|,,(1 — 1/p). Notice
that

o(m)* =m? [ (1~ 1/p) =m (L) .

plm Hp\m(;,;%l)z

Further

T (;25) < oI oty <on
plm plm plm
Therefore ¢(m)? > m/2. Thus if ¢(m) = d we wee that m < 2d>.

First suppose that n = 1. Then oy is a root of unity. Since d = [Q(ay) : Q] we see that
 is a m-th root of unity with m < 2d?. In particular o' = 1 with |t;] < 2d? and the result
follows.

Next suppose that n > 1 and we may suppose wlog that no subset of n — 1 elements from

{ai,...,a,} is multiplicatively dependent. Therefore there is a unique n-tuple of relatively
prime integers (ki, ..., k,) with ki > 0 for which of* ---af» = 1. Let j € Z with 1 < j <n
for which |k;j| > |k;| fori=1,...,n

Put ¢; = (11(n — 1)d®log A;) ™! for i # j

and ¢; = (11(n — 1)d®)"log A; - - -log A,/ log A;.
Observe that ¢ ---¢, = 1.
Consider the system of inequalities:

l’i—k—zﬂfj SCZ' forizl,...,n,i;éj (1)
J
2] < ¢ (2)
Notice that the associated matrix
L
L&
k;j
B = :
1
ke
W 1

has determinant 1.
By Minkowski’s Linear Forms Theorem (7°), there exists a non-zero integer point (by, ... , b,)
which satisfies (1) and (2).

Put a = o} ---al». We claim that « is a root of unity. We have

. kib .
akj — alJ 1 .. .aﬁjbn
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Since af' ---af» = 1 we have

Thus

SO

Therefore

Thus

Accordingly,

Hence log M () <

11d2°

ki _ _kjbi—kib; kibp—knb;
a]_al ...anj’” "J'

h(akj) _ h(aiﬂjbl—klbj . O{frljbn—k)nbj)

h(a)mﬂ < h(alykﬂn—kWH...h(aﬁ>0,_.h(an>Wﬂm—kn@\
< h(al)cl\kﬂ Ce h(Oéj)O . h(an)cn\kﬂ

h(a) < h(an)® -+ hlay 1) haja) 7+ - - - h(a)™.

log(M(a)Y?) < log(h(a)) < zn: cilog h(ay)

i=1,i#j
< Z c;log A;.

i=1,i#]

1 < 1
(n—Dad® = &

1 n

—log M(a) < >

d i=tints 11
1

is at most d we see that « is an m-th root of unity with m < 2d2.
Therefore o™ = of'™ ... %™ = 1. Further by (2),

lbym| < ¢;-2d* = 2d*(11(n — 1)d*)* 'log A, - - -log A,/ log A;

< (11(n —1)d*)"log Ay - - -log A,

Furthermore, since |k;| > |k;| for i =1,... ,n, and

ki
|@_EMSQ

J

we see that, for i =1,... ,n, 1 # 7,

3

Since m < 2d? we see that

Note if a'fl ~-afn =1 then kilogay + -+ + ky,loga, = 0 for some choice of branches of the

logarithms.

In 1970, Senge and Strauss proved that if a,b € Z larger than 1 with (loga)/logb irrational
then the number of integers n for which the sum of the digits of n in base a plus the sum of the

|bym| < 3d%c; < (11(n — 1)d*)"log Ay - - -log A,,.

15

Therefore, by Theorem 8, « is a root of unity. Since the degree of «

O

digits of n in base b lies below a fixed bound is finite. The proof was not effective in the sense

that given a bound one could not determine the finite set of integers n. We can overcome this

difficulty using Theorems 3 and 6’.
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Let a,3 € Z with 0 < a < a and 0 < 8 < b. Denote the number of digits in the base a
expansion of n which are different from « by L, .(n). Similarly denote the number of digits
in the base b expansion of n which are different from 8 by Lg(n). Put

Laﬂy@b(n) = La,a(n) + L@b(n).
Note that the sum of the digits of n in base a and base b is bounded from below by Lg 4.04(n).
Note that for all n € Z with n > 1 we have
Loapp(n) < cilogn,
where c; is a positive constant. Further on average,
Lo app(n) < c.logn, for co > 0.
To fix ideas 33 =2°4+1=3%+2-3. So Ly203(33) = 4. The sum of the digits is this case is 5.
Similarily 63 =25 + 24+ 235422424+ 1=2-5242-5+3. So L1225(63) = 1.
Note the condition that %52 is irrational is necessary. For suppose that 189 — * so that

logb logb
a® =b". Then for each integer k € Z* Lo 405(a®*) = 2 since n = a** and n = b,

Theorem 12. (Stewart) Let a,b € Z a,b > 1 with loga/logb irrational and let o and 3 be
integers with 0 < o < a and 0 < 3 < b. Then there is a positive number C', which is effectively
computable in terms of a and b, such that if n € Z with n > 25 then

log logn
Lo, > —1.

ase(n) logloglogn + C
Proof:
Suppose that n > a + b and consider the expansions

n=aa™ + adm +axa™ + - +aa™,
where 0 < ay <aand —a<ag; <a—afori=2,...,r and
b, — 1
n=bb" + ﬁ;;—l S bob®2 - bl
where 0 < by <band -3 <b; <b—pfori=2,...,t. Further m; > my > --->m, >0 and
L >l>...>1>0.
We put
0 = ¢, loglogn, (1)

where ¢ is a positive number which is effectively computable in terms of ¢ and b and ¢; > 4.
We shall assume that n > ¢ > 25, where ¢, ¢3, ... denote positive number which are effectively
computable in terms of a and b and may be determined independently of ¢;.

Define k to be the integer satisfying

logn
~ 4loga < )
and put
0, =(1,60], O, = (9,92], ., B = (Qk_l,Hk].
If each of the intervals ©1, ... , O, contains at least one term either of the form m; — m, with
2 < s <ror of the form {; —; with 2 < j < then
Lma,@b(n) Z r+t— 2 Z k. (3)
By (2),

(k+1)log6 > loglogn — log(4loga).
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SO
. loglogn log(4log a) 1
log 0 log 0
Thus by (1)
log logn

> —log(41 -1
log log logn + log ¢q og(4loga)

Since Ly 4,85 > 0 our result now follows from (3) and (4) in this case.

C.L. STEWART 17

(4)

Therefore we may assume that there is an integer s with 1 < s < k for which the interval
©, contains no term of the form m; —m, or of the form /; — ;. Define integers p and ¢ by the

inequalities
my —my < 0°~! and m; — M1 > 0% (5)
and
Lh—1, <0 Pand Iy — I, > 0%, (6)
with the convention that m,,; = 0 and [;;; = 0. Then
b-—1(a—Dn=(b—-1)(a—1)a;a™ + (b — 1)aa™ + (b —1)(a — 1)aga™?
+-+(b-1(a—1)a.a™ —(b— 1)
= Aja™ + Ay,
where
Ai=0b-1D(a—1aa™ ™" +(b—-1Daa™ ™ +---+(b—1)(a—1)a,
and
Ay = (b—1)(a—1)ap,, a""** +---+(b—1)(a—1)a,a™ — (b—1)a.
Note that
0< A <(b—1)(a—1)a™ ™% + (b—1)Qam,—m,
SO
0< A <2(0b—1)(a—1)a™™* (7)
Further
0< |4y < (b—1)(a—1Da™ " +|(b—1)a
SO
0 < |4 <2(b—1)(a—1)a™*+T! (8)
Similarily
(b—1)(a — 1)n = Byb" + By,
where B; and B, are integers with
0< By <2(b—1)(a— 1)prt (9)
0 < |Bo| <2(b—1)(a — 1)blarr ! (10)
We have
1= Apa™r + Ay _ Ajam (1+ Afﬁnp)
Bibs+ By Bible (1+3%)"
If x and y are real numbers with absolute values at most 1/2 then
max(iii%) <1+ 4max(|z], [y]). (11)
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Notice that
Ao _ 2= 1)(a— Dt

Ayam = (b—1)(a — 1)a™

2a—7711+mp+1+1‘

By (6),
my —mpyq > 0° >0 = ¢y loglogn

and thus for n sufficiently large

[Aof _ 1
Alamp - 2
Similarly
[Bo| _ 1
Blblq - 2
We put
Alamp
R =
Blblq

i From (11) we conclude that
[Az| 1By

1 <max(R,R™") <1 +4max(7 =, o)
1amp 10"

SO
max(R, R7) < 14 8max(a~ ™ et p=h 1 4+ 1).
Since log(1 + z) < x for x > 0 we have
|log R| < 8abmax(a~™ ™+t p7it — ] ).

Thus if log R # 0 then by (5) and (6),

log |log R| < ¢35 — c46°. (12)

On the other hand 4
|log R| = |log§1 +myloga — I logh),

and we can apply Prop 3 to give a lower bound for |log R|. We put n =3, d =1 and oy, as, a3
to be %, a and b respectively. Note that m, and [, are at most logn/log2 and that the height

of % is at most the maximum of |A;| and |B;|. Thus, by Prop 3, if log R # 0 then
| log R| > exp(—cs log(4 max(|Ay], |Bi1])) loglogn)
so, by (7) and 9)
log |log R| > —c¢g max(1,my —my, 1 — 1) loglogn.
Suppose that log R = 0, hence that

A
logﬁjtmploga—lqlogbzo. (13)
By Theorem 6’, there exists x1, xs, x5 € Z not all zero with
A
I110g§1+zgloga+xglogb20 (14)
1

and with
max(|x1], |za|, |z3]) < cglog(max(|Ay|, |Bi],e).
By (5) and (7),
IOg Al S 01093_1
and by (6) and (9),
IOg Bl S 01198_1
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Therefore
|2o| < 190" < e

and so, by (2),

for n sufficiently large.
By (5) my —m, < 67t so m, > my — 6°~1. Since my > ;‘ffg"a and since #*~! < 9F! < i‘ffg"a
for n sufficiently large we see that

logn logn  logn

"y 2loga  4loga 4loga’
In particular m, > |zs|.
Recall that (14) and note that if x; = 0 then loga/logb is rational. Thus we may suppose
that z; # 0. Eliminating logg—i from (13) and (14) we find that (z;m, — z2)loga + (23 —
x1ly) logb) = 0. Since m,, > |x3| we see that z1m, — x2 # 0 hence loga/logb is rational. [

Let p be a prime with p > 3 and let 1 = n; < ny < --- be the sequence of positive integers
which are composed of primes size at most p.
In 1898, Stormer proved that

liminf(n; 1 — n;) > 2.

In 1908, Thue proved that

hm (n,qu - n,) = OQ.
In 1965, Erdos used a result of Mahler to prove the following. Let € > 0 then there exists a
positive number N(p, €), such that if n; > N(p, €), then

€

N1 — Ny > n}_ .
In 1973, Tijdeman used estimates for linear forms in logarithms to prove:

Theorem 13. Let p be a prime and let 1 = ny < ny < --- be the sequence of positive integers
all of whose prime factors are at most p. There exists a positive number C', which is effectively
computable in terms of p, such that if n; > 3 then
Nigr —n; > n;/(logn;)C.
Proof:
Let py,...,pr be the primes of size at most p. Consider the prime decompositions of n; and
n;yq for some 7, say
Nig1 = py* -+ -ppF with a; € N
and
n; = pbt - pb¥ with b; € N

Then
N1

= (a1 — by)logpr + - - + (ax — by) log py,

0 # log

and by Thrm 2 with £k =n,d =1, and a1, ... ,ax given by pq, ..., pr respectively. Note that

log n;
%;iéﬂ(aj —b;)]) <log(nit1)/log2 <1+ Tog 2
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since n;1q < 2n,;. Further observe that k > 2 since if k£ = 1 the result is immediate. Therefore,

by Theorem 2,
i1 ek
> exp(—k"logp; - - -log py log log n;),

log '

7
where ¢ is a positive number. Note that

c1klog k+kloglogp

k¥ logpy - - -log py, < etFlosR(

logp)f < e
< e2klogk gince p < k2

and by the prime number theorem
eCleogk < 6631).

Therefore 1
i1

> —3%Ploglogn,) = ———.
0 exp( oglogn;) (og )&

Since log(1 + z) < x for x > 0,

log

n; Tis1 — Ny
log L = log(1 4+ nip 1 — niny) < A S
n; ny;
Therefore
S
Nijg1 — Ny > ——————.
i+1 7 (log ni)e 3P

O

Theorem 14. (Tijdeman) Let p and q be distinct primes and let 1 = ny < ny < --- be
the sequence of positive integers whose only prime factors are p and q. There exists positive
numbers ¢ and N which are effectively computable in terms of p and q, such that if n; > N,
then

1
(logn,)e
Before we prove Thrm 14, we need some basic facts from Diophantine approximation.

For any real number o we define an associated sequence («g.aq, - -+ ) where we put oy = «
and

Niy1 — Ny <

1

A1 — [Oék—ﬂ
provided that aj_1 — [ag_1] # 0; here [z] denotes the greatest integer < z for x € R.
Next put a, = [oy] for k=0,1,2,... . Then

ap = ,fork=1,2,...,

1

1
a +
o

a = ag +

Pe _ 1
We put qk o + a1+~'+$

to a. The finite continued fraction is denote by [ag, a1, . . .
We’ll now show that for n =2,3, ...

for k=0,1,2,... with (pg,qx) = 1. fl’—: is said to be a convergent
7ak]-

Pn = AnPp—1 + Pn—2 and ¢, = ApGn_1 + ¢n—2 (1)
Note that pg = ap and gy = 1 and p; = apa; + 1 and ¢ = a;. We have
P2 _ ap(aras + 1) + ag
q2 ayaz + 1

Observe that py = ag(ajaz+1)+as and ¢o = ajas+1. Further p, = as(ajap+1)+ag = az(p1+po)
and ¢u = asq1 + qo- Thus (1) holds for n = 2. Suppose (1) holds for n < k —1 > 2 and we'll
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prove by induction that (1) holds for n = k. Define a sequence of rationals z—% forj=0,1,2,...
J

with p and ¢; coprime integers with ¢ > 0 given by

P;
q—z = [al,. .. ,aj+1].

By the recuurence relations given by (1) for n < k — 1 we find that

Pho1 = GkPj_o + Dy_3

and
Qo1 = OeQp_g + Go_s-

But

. 1 q/._

j ‘T# Pj—

‘13;1
SO
pj = aop_y +¢;_; and g; = pj;_,. (2)

Thus, on taking 7 = k, we find that

Pr = aopk—l + q;c—l and q = p;g—r

In particular,

Pr = ao(arpl_s + Pp_3) + (arGp_s + ji_s)
= ay(ao + P_s + Ghs) + (@0Py_3 + @ji_3)
and so by (2)
Dk = QkPk—1 T Dk—2-
Similarly
Gk = Ph—1 = QkPh_o + Ph_3 = Qi1 + Qe

The result now follows by induction.

Recall, a = [ag, aq, ... ,ar, agr1] and 1/ag; < 1/ag4 and so
p_o < ZE < “ e < 0% < PR < p_3 < ZA.
do q2 qs q1

In particular « lies between p,,/q, and p,11/Gas1 for n =0,1,2,. ...
Proposition 15. p,¢ui1 — @uPni1 = (—1)" forn=10,1,2,....
Proof:

Notice that the result holds for n = 0 since pg = ag, ¢o = 1, p1 = aga; + 1, ¢ = a; hence
Poqi — gop1 = apar — apar +1 = —1
Suppose its true for 0,... ,n — 1. Then
Pndn+1 — GnPn+1 = (_1)n+1 = pn(“ﬂ—kl(]n + Qn—l) - Qn(an-i-lpn +pn—l)
= PnGn-1 — GnPn-1
= (_1)(pn—1QTL - Qn—lpn) - (_1)

and the result follows by induction. O

n+1
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By Prop 15,
Px  Pk+1  PkGk+1 — QkPk+1 (—1)k+1
— - = Qk+1 = ——— -
qr qk+1 4k qr4k+1
Since « lies between p,, /g, and p,11/qns1 for n =0,1,2,... we conclude that
1 1
lo— 22 < <=

dn gndn+1 qu
It is not difficult to show that if | — p/q| < # then p/q = p,/q, for some n with n > 0.

Lemma 16. (Tijdeman) Let p and q be distinct primes let Z—g, Z—i, -+« be the sequence of con-

vergents to }g%. There exists a positive number ¢ which is effectively computable in terms of

of p and q such that
kjy1 < kjlogg, forj=0,1,2,....

Proof:
We may suppose that j > 2 and so k; > 2. Since Hg% — Z—j| < kjkljﬂ. Hence
log ¢
|k;logp — hjlogq| < .
1

By Thrm 2 with oy = p, as = ¢, d = 1 we find that
lky log p — hy log q| > exp(—cy log(max(|h, [&;)))
where c1, co, ... denote positive numbers which are effectively computable in terms of p and q.

: logp _ hj 1 ) .
Since [{EL i | < 5,7 we see that |h;| < c2|k;| hence

|k;logp — hjlogq| > exp(—c3logk;) =

Thus . |
0gq
[
i kil
hence
]{Zj+1 < ]{ZJCS log q.
O
Proof:
Theorem 14
Put n; = n = p“q". we may suppose that
Pt > Vn,
hence
logn
u > . 1
> Slonp (1)
Let Z—g, %, -+ be the sequence of convergents to }ggz’ . Choose j so that
]fj <u< ]{Zj+1.

We may suppose that N is sufficiently large so that n > 3 and 7 > 2. We shall distinguish two
cases according to whether hi i bigger or smaller than 152

kj logq"

h,

Case 1 2 > iogp.
j ogq
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Put n/ = p**ig"*t"i. Note that n’ € Z and n’ > n since Z—J > }ziz. Thus n’ > n;. 1. We have
J
h; lo 1
Ty _ 08P _

]fj lqu kjkj—l—l ’

and so
log ¢
hjlogq — kjlogp < P
Therefore
/ h; 1
log <ﬁ> = log <q7> < o84
n pv Kjv1
we have kj 1 > u > ;‘ffg"p and so
! 21 1
0 < log (ﬁ) _ 2logplogq @)
n logn

For n sufficiently large in terms of p and ¢

! 21 1 1
n logn 2

Since, for |z| < 1,
¢
log(l4+2) = — —+2 ...
og(l+z)==x 2+3

Further, for 0 < z < %, we have

2
log(1+2) >z — % =x(1—x/2) > x/2.

o () <t (1 £ 0) - L (1)

for n sufficiently large. By (2)

Thus

! 41 1 41 1
n_, _4logplogg ., 4logploggn
n logn logn
Let ¢, ¢, -+ denote positive constancts which are effectively compuatable in terms of p and
q. Thus
/ c1in
n <n-+4 , for n > ¢s.
logn

: /
Since n;; < n’,

C1ny
Nip1 < n; + , for n; > cs.

logn;
h; log p
Case 2 72 < 22
j ogq

hj_1 logp ! ou—ki_q vthi_ : / /
Hence k;,l > Togq- Put n’ = p*"i-1¢"T"-1. Again note n’ € Z and n’ > n;y;. We have

hj_1logq —k;_1logp _ hj1 _ log p
kj—1logq ki—1 loggq

hi_

< —_— =

—
>

.
—_

. <
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Therefore,
log <Q/> = log <7logkq,h“>
n pri-t
= hj_1logq — kj_1logp
kj_1logq
kj_1k;
Accordingly

We find from Lemma 16, that
1
koo \e
]{Zj > (1]—+1> .
0gq
By (1) we have u > llgiz and, since k;i1 > u, we see that
/
1
log (2) o logg
n ( logn )E
2logplogq

_ (logg)"*/¢(2logp)"/c )
(logn)'/e

/ 1 /
log<l> >—<£—1>.
n 2\ n
Comparing this estimate with the upper bound (3), we find that
n' < n+ (2(logq) 42 logp)l/CL

Jun

Thus, for n sufficiently large,

(logn)/e’
Since n’ > n; 11 we see that
Cc3Mn;
N1 < n; + 37, for n; > cyq
(logn;)/e
Thus in cases 1 and 2,
C51;
N1 = N; + 57, for n; > cq.
(logn;)cs
Therefore
N1 > n; + ———, for n; > cy.

BACKGROUND FROM ALGEBRAIC NUMBER THEORY

Let K be a finite extension of Q. Thus there exists some irreducible polynomial f(€ Q[z])
such that K is Q[z]/fQ[z]. Suppose that f(z) = 2" + a, 12" ' + -+ + ag and that f factors
over Cas f(x) = (r—ay) -+ (x—ay). By the Primitive Element Theorem there exists a 6 such
that K = Q(0). There are n field embeddings of K into C, that is, n isomorphisms of K into

C which are the identity on Q. They are given by # — «; for © = 1,... ,n and so determine
n conjugate fields Q(aq),...,Q(,) in C, non necessarily distinct). Let aq,...,q,, be real
numbers and let o, 41,... ,q, be complex numbers which are not real. We may suppose that

Q45 = Oy, 4roti for i = 1, e, Tl
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Note that n = r{ + 2rs.
The ring of algebriac integers of K, denoted Oy, consists of the elements of K which are
roots of monic polynomials with integer coefficients. Ok is a Dedekind domain.

Definition. An integral domain O is a Dedekind domain if:
1) O is a Noetherian ring.

2) O is integrally closed in its field of fractions.

3) All non-zero prime ideals are maximal ideals.

If O is a Dedekind domain then there is unique factorization of ideals into prime ideals up to
reordering. Note that we do not always have unique factorization of elements of O into prime
elements in Ok.

Let K be an extension of Q of degree n with ring of algebraic integers Ox. Then there
exists a set {wy,...,w,} of elements from Ok such that every element of Ok has a unique
representation as an integral linear combination of wy, ... ,w,. We call {wy,... ,w,} an integral
basis for Ox. Any two integral bases for Ok (for K) are related by a matrix with determinant
+1.

Definition. The discriminant D of K is
D = (det(o(w;)))?,

where o1, ... ,0, are the embeddings of K in C and {wy,... ,w,} is an integral basis. Note
that D is a non-zero integer.

Consider the set S of non-zero ideals in Ox. We define a relation ~ on S by saying that
a ~ b, for ideals a, b € S, if there exists non-zero elements «, 5 in Ok such that [a]a = [5]b; here
[a] denote the principal ideal generated by « in Ok and similarly for [3]. ~ is an equivalence
relation on S and if a ~ [1] then «a is principal.

We can define a multiplication on the equivalence classes of S by taking multiplication of
representatives. This determines a finite abelian group called the ideal class group of K. The
order of the group is called the class number and is denoted by h. Thus if a is an ideal of O
then a” ~ [1].

Let K be a finite extension of Q. The group of units U(K) of Ok is the set of invertable
elements in O. It forms an abelian group under multiplication. Plainly the roots of unity of
K are in U(K).

In 1846, Dirichlet proved that U(K) is isomorphic to

u(K) x 7',

where p(K) is a finite torsion group, where r = 1 +7r3 — 1 and where K has r; real embeddings
in C and 2R, non-real embeddings. Let oy,...,0,, be the real embeddings of K in C and
suppose that o, +1,...,0. 49, are the complex emebbedings and that o,,+; = T, 1,1, for
1= 1, .., T

By Dirichlet’s result there exists units uy, ... , u, such that every element z in U(K') can be
written in the form

X =(¢-ult---ulr where by,... b, €Z,( aroot of unity.

The set {uq,...,u,} is said to be a fundamental system of units. While the fundamental
system of units need not be unique it is possible to attach a volume to the system which is
independent of the choice of system. We make use of the logarithmic map L : K* — R"*+!
given by

L(a) = (logloi(a)l,... ,log|ov, ()], 210g |y 11 ()], . ., 210g|or, 1 (@)])-

L is an abelian group homomorphism.
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For any o € K we let Ng/g(a) denote the norm of o and we put

r1+272

NK/Q(Q): H oi(a).

i=1

Note that the norm is multiplicative, in other words, N/ g(aB) = Nk/o(o) Nk /o(3). We see
that if x € U(K) then Ng/g(x) = £1. In particular, if o € U(K) then L(«a) lies in the r
dimensional subspace of R™*! given by

H:{(Ilfl,...,ZL’T)|[L’1_|_..._‘_:L,T:0}.

Thus L : U(K) — H. The image of U(K) under L is a lattice in H and the kernel of L is just
the set of roots of unity of K. The volume of a fundamental region for the lattice is called the
regulator Ry of K.

Let {uy,...,u,} be a fundamental system of units. We have

Ri = det |6, log|oi(u;)|iz1,. v/ /j=1,... s

where

5 1 if1<i<n
)2 ifr < '

In 1981, Zimmert, sharpening work of Remak, proved that Rx > .056 . In 1918, Landau
proved that there is positive number C', which depends on d = [K : Q), such that

log(hR) < C|D|"*(log |D|)4~*.

Since the class number h of K is always at least 1 this yields an upper bound for R in terms
of the discriminant D and the degree d of K over Q.

Let I be an ideal in Ox. The norm of I, denoted N(I), is the cardinality of Ox/Z. It can
be shown that if o in Ok and [a] denotes the principal ideal of Ok generated by « then

N([e]) = [Ng/g(a)l.

Dedekind introduced a generalization of the Riemann zeta function ((s). Let [K : Q] < oc.
He defined (k(s) for Re(s) > 1 by

1
)= AT/ T\s'
where the sum is taken over all non-zero ideals of Ox. This converges uniformly on compact
subsets to an analytic function for Re(s) > 1. Further (g(s) = ((s). It can be shown that (x(s)
can be analytically continued to all of C with the exception of a simple pole at s = 1. Further
there is a functional equation which relates (x(s) with (x(1 — s). The Generalized Riemann
Hypothesis (GRH) is that the only zeros of (x(s) with 0 < Re(s) < 1 have Re(s) = 1/2.
There is an Euler product representation for Re(s) > 1 given by

T )

where the product is taken over all prime ideals p of Ox.
Let w(K') denote the number of roots of unity in K. Then

lim(s — 1)Gxe(s) = %
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THUE EQUATIONS

Let F(z,y) = apz™ + ap_12" 1y + - - - + agy™ be a binary form with integer coefficients, and
suppose n > 3. Let m be a non-zero integer. Suppose that F' has non-zero discriminant. The
equation

F(x,y) =m (4)

is known as a Thue equation. Thue proved in 1909 that if a, # 0 and F(z,1) is irreducible
then (4) has only finitely many solutions in integers x and y.

Eg 2® — 2y = 6. — Thue - only finitely many. In fact (2,1) is the only solution.

By contrast 22 — 2y% = 1 has infinitely many solutions in integers = and .

Let K be a finite extension of Q. It is possible to choose a fundamental system of units
{uq, ... ,u,} such that

max  |log|u”|| < CR,

I<isr1<<r

where R is the regulator of K and C' is a number which depends on [K : Q).

Theorem 17. Let F' be an irreducible binary form with integer coefficients and degree n > 3.
Let m be a non-zero integer. There exists a positive number C', which is effectively computable
in terms of F', such that all solutions in integers x andy of the Diophantine equation F(z,y) =
m satisfy

max{|x|7 |y|} < |2m|010glog|4m\.

Proof:
Let ¢y, cs,... denote positive numbers which are effectively computable in terms of F'. Let
F(x,y) = apa™ + -+ + ayzy™ ' + agy™. By considering " 'F(z,y) = a” 'm and letting

n

a’ 'F(x,y) = f(X,y) with X = a,x we see that we may suppose without loss of generality
a, = 1.

Next let F(x,y) = (x — aWy) - (z — a™y) be the factorization of F over C. Suppose, as
usual, that @, ... o) are real and that o'+ = q(r+r2+i) for ¢ = 1,... 7y, hence that
n=ry + 2ro.

Suppose that x and y are integers for which F'(x,y) = m, and put

Y =z —aWy, fori=1,...,n.
Then
B - 80| = |m].
Put K = Q(aW) and let ngl), ...,nM be a fundamental system of units for which

max |log|n](-i)| | < c1Rg.
1<i<lr
1<5<r
Every point p in R” is within ¢, of the lattice generated by the vectors
(log |n§i)|, o dogn®)) fori=1,...
Take
p = (log(lm|=*|8W)), ..., log(|m[~/"|6"])).
Then we can find integers by, ... , b, such that
by log |1 + b log | + - + by log "] + log(|m| ™" 59| < ez,

fori=1,...,r. Now put, for j=1,... ,n,
V) = GO () (1)
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Observe that, for j =1,...,r, _
[log [m|™/" |y | < ca.
Since |y +)| = |y4r2F9)| for § = 1,... | r we see that

[log [m| =" |y] | < ¢

holds for j = 1,... ,n except for j = n when r; = n or for j =r; + 75 and 7 = r; + 2ry when
T <n. But |7(1).ry(n)| — |/6(1)..ﬁ(n)| =m and SO

> log [m[~/" |y = .

j=1
Therefore
|log(|m| V" 7U)| < ¢5 for j =1,...n. (2)

Note that since 3 is an algebraic integer so is y7) for j = 1,... ,n. Further the height H(y\%))
is at most ¢4|m| since the coefficients in the minimal polynomial are elementary symmetric
polynomials in the 4’s, hence are at most c4|m| in absolute value.

Consider now the equations obtained from (1) by taking logarithms:
. , €)
bulog || + -+ b, log [1| = log | 4

30|’
for y=1,...,r. By Cramer’s Rule, fori =1,... ,r:
1 (1)
log [n"| -+ log|3m| -+ log|n®)]
det
log ™) oot log |22 ... log|n®
) og |n| 0g | 5 og [n;"| 3
g 1
log || --- log |n{)]
det : :
log ;| -+ log "]
0g 1™ 0g |7y
Our aim is to bound |b;| in terms of m hence to bound |z|,|y| in terms of m. Let B =
max(|b],...,|b:|) and suppose that |b;| = B. Notice that A, the determinant in the denomi-
nator, satisfies
A=R-27".
Expanding the determinant in the numerator of (3) along the i-th column we see that
©)
1r1§1ja§>§ log W > c5B.
Let the maximum occur for j = J. Then
—1/n (J) |B(J)| —1/ny(J)
| log [m|™" log | 3"7] | = |log ] + log [m|="" "))
> C5B — C3.
Since 327, log [m|~*/"|3W] = 0 it follows that for some [ with 1 <1 <n
—c;B
] ~1/njgy « B B2
on(fm|/7[30)) < A%

In particular,
B0] < | mere. (1)
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Since |1 -+ 3| = |m]|, there exists an integer k with k # [ such that
‘6(k)| > ‘m|1/nC7_1/(n_1)€CGB/(n_1). (5)

Let j be an integer with 1 < j < n and with j # k and j # [. Note that j exists since n > 3.
We have the identity

(a(k) — a(l))ﬂ(j) — (a(j) — a(l))ﬂ(k) = (a(k) — a(j))ﬁ(l).
Note
(a® — oD (z —ally) — (o) — aW)(z — (aPy) = (a® — aD)(z — aVy).
Coef of y:
—(a® — oM@ 4 (0D — aD)a® = —(aBa® — D))
= —(a® — al))a®
Divide by (a®) — aW)pk)40) /y(F) o get

BIAB) ) — a0 4B 4®) _ 46) FOA®
FDEE T 0® — o0 A0 a® — o0 GE~G)

(k)\ (k)
() () -
m nr

a) — q® k)

Gl = L0 — a0 40

where

and

N a®) — @\ gO~®)
~ 0™ a0 ) 3050
(k)

_ N
Put o; = 0 Thus
by by —1
alt-cogro s =1+ A

Thus taking the principal branch of the logarithm

A
log(alfl ce a?r-ar—_&l) = log (1 + )
oy

SO

A
bylogay + -« - - + bra,, — log gy — by log(—1) = log (1 + - )
r+1

geee

introduced this factor since we have taken the principal branch of the logarithm. Put A =
bylogay + -+ -+ b log . — log o o1 — bryolog(—1). Since A # 0 we see that A # 0. Put

A, 11 = max(H(ap41),€).
Put K = Q(a®™, o), al). Notice that d = [K : Q] < n®. By Thrm 2,
|A| > exp(—cglog A, 41 log(r + 1)B). (6)
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() —a® N\ —
Put ("‘)1 = %, ("‘)2 = ’}/(k), @3 = (’}/(])> 1, so that Ay = @1@2@3. Then

H(Oér_H) = (@ @2@3) 2dM(@1@2@3)

< (2h010,05))? < (2(h(©1)(8,)(63))*
< (2M(©1)M(02)M(03)~ 1)1
< (24°?H(©1)H(02)H(05"))" by prop 5
< (erm?).
Therefore
log A1 < cslog2|m|.
;From (6)
log |A] > —co(log 2|m|) log B
But

Al =

A a®) — o\ g
o 10 20 = s (14 (=) ) |-

Notice that, by (4) and (5),
a®) — 0\ g0
| (am a0 ) 5@)

[ log(1 + 2)| < 2[]

—c11 B

< cppe

Further we have

for |z| < 1/2. Thus there exists a c;5 such that B < ¢15 or cjpe™ 8 < 1/2 and so B < ¢ or

|A| < 20106_611B

hence
log |A| < log(2.10) — ¢11B.
Therefore B < ¢35 or

log |A] < —c14B.
Thus, by (7),

B

e B < 15 log 2|m)|
hence
B < ¢i6log 2|m|loglog(4|m|).
But now
a® B _ 43
T T

and

)= ﬁ(l) — 33

a® — )"

whence

max(|z|, |y|) < ez max(|31],|3@)).
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We have
|ﬂ(i)| = h(i) (U:EZ))—bl . (nﬁi)>_br|
< c1gm|t/mecroB
< 618|m|1/neczo log(2|m|) log log(4|m|)
< (2]l tostoetm)
O
Comments:

(1) A sharper version of Theorem 2 allows us to conclude that
max(|z[, ly[) < (2m|)“;

where C' is effectively computable in terms of F'.
(2) It is possible to extend the theorem to treat the following situation. Let [K : Q] < oo.
For any 0 € K let

6] = max |o(6)|

where the max is taken over all embeddings o of K into C which fix Q. Let F' € Ox[x,y] be
a binary form with non-zero discriminant and degree at least 3, let u € Ox with u # 0. Then
there exists a positive number ¢ which is effectively computable in terms of F' and u such that
if z and y are in O and F(z,y) = p then max(|z|, |y|) < ¢. The proof is essentially the same
as that of Thrm 17.

What other Diophantine equations can we treat?

Let m € Z with m > 2 and f € Z[x]. Subject to some hypotheses we can study the equations

y" = f(z). (8)

If m = 2, (8) is known as a hyperelliptic equation and for m > 2 we have a superelliptic
equation. We will proceed with the case m > 3, f € Z[z], monic, with 2 simple roots.
Let d = [K : Q] < co. There is a fundamental system of units 7y, ... ,n, in O such that

)
(1) max |logln"|| <cR,

where R is the regulator and c is a positive number which is effectively computable in terms
of d.
Given such a system, every unit 7 in U(K) can be expressed as

(I1)  n=nnb-nb with by,... b, € Z,

and [n/| < ¢; where ¢y depends on d and R.
Let a € Ok with

Nicjgla)] < M.

Then there exists a positive number c3, which is effectively computable in terms of d, R and
M, such that there is a unit € in Oy for which

(I11)  Jeal < es.
Let a be an ideal of Ox. There exists an ideal b in O with

(IV)  N@®) <D

such that ab is a principal ideal.
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Theorem 18. Let f € Z[x] be a monic polynomial with at least 2 simple roots. Let m € 7Z
with m > 3. Then there exists a positive number ¢, which is effectively computable in terms of
f and m, such that if x,y € Z for which y™ = f(z) then

max(|z], [y|) < c.
For the proof we need the following result.

Lemma 19. Let m € Z with m > 2, f € Z[z] be a monic polynomial with at least 1 simple
root o, and let K be the splitting field of f over Q. Suppose that x,y € Z for which y™ =
f(x). There exists a positive number ¢, which is effectively computable in terms of m, f and

v, 0,0 € O with v¢ # 0, such that
v
r—a)=|-=]0,
=) <¢>

with L
max(P], [9]) < c.
Proof:
Let f(z) = (r — a)(x — ag) - - - (x — av,); here ag, ..., a, need not be distinct, but a # a; for
1=2,...,n. Let ¢1, ¢y, ... denote positive numbers which are effectively computable in terms
of f and m.
Let 1y, ... ,n, be a fundamental system of units satisfying I. Put

A = @[a — ),

so A is a non-zero ideal of Ox.
Let z,y € Z for which y™ = f(z). If x = a we may take v = ¢ = 1, § = 0 and the result
holds, so we may assume that x # a. We have

" =z —aflx —as] - [z — o) (1)
as an equation of ideals. Let o be a prime ideal which divides [x — a]. Let [y, ..., denote
the exact power of p which divides [z — a], [z — as],... [z — ] respectively. Let [; =
max(ly,...,l).

First suppose that j = 1 so that [; = [;. Then
Pillr—a]l—[z—ai] =[a—a fori=2,... n.
Therefore
Gt | A

By (1) i1 +---4+1, =0 (mod m). Put i1 = a (mod m) with 0 < a < m — 1. Then either
a=0ora<(m—1)Iy+--+1,).
Next suppose j > 2. Then
o' | [v — o] = [o — ay] s0 ¢ | [ — ],

hence p' | A.
In both cases I; = a (mod m) where a is bounded from above by the power of o which
divides A™~L. In particular, there exists ideals a,b € Ox with

[z — o] = ab™ (2)
where a| A™™1. By IV there exist ideals a1, b, € Ox with aa; and bb; principal and with
max(N(a1), N(b1)) < c1.
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Put aa; = [1] and bby = [§1], with 71,01 € Ok. Then, from (2),

a1 b7 [z — o = aay (bby)™
SO

arby* [z — o] = [n][&]™. (3)
Note that a,b]" is principal, say equal to [¢1] with ¢; € Ox. Observe that

N([¢1]) = N(ar)N(b)™ < ca.
Further, since a | A™™1,
N([n]) = N(@)N(a1) < N(A)"'N(a1) < es.

By I11 we can find associates (equivalent up to multiplication by a unit) v, and ¢, of v; and
¢1 such that
max(|Ya|, [da]) < c4.

x—a-e( )5{“,

for some unit € € Ox. By I and II we can find units €1, e5 € Ok such that

Therefore, by (3)

€= €16y

r—oa= <E;Z2> ( 251) )

and we put v = €y, ¢ = ¢y and § = e30;. We have |edy| < ¢ and [py < ¢4 so the result
follows. O

with [e;| < ¢5. Therefore

Proof of Theorem 18 Suppose that z and y are integers for which y™ = f(x). Let ¢q,co, ...
denote positive constants that are effectively computable in terms of of m and f. Let f(z) =
(x —a1)(x — ag) -+ - (x — ay) With ag and g simple roots of f. Put K = Q(ay,...,q,) so K
is the splitting field of f. By Lemma 19, there exist vy, ¥2, @1, ¢2, 01,02 in Ok with v1¢1 # 0
and y2¢2 # 0 such that

:E—ai:( >5mfor2—12 (4)
b;
with
max([nl, [7al, 1], [92]) < &1 (5)
Therefore
-t (2)e (2
Accordingly

V19207 — 120105" = P12z — ).
We view this as a Thue equation
9(x,y) = p
in Ok with g(x,y) = 11022™ — Y201y™ and p = ¢1¢Pa(e — ). Since ¢ # 0 and Yo7 # 0
and m > 3 we have by a generalization of Thrm 17 to algebraic number fields that
max ([0, |d2]) < ¢z (6)

By (4), (5), and (6) we see that || < ¢q and so |y| < ¢5. O



34 LINEAR FORMS IN LOGARITHMS AND DIOPHANTINE EQUATIONS C.L. STEWART

The hyperelliptic equation y* = f(z) in integers = and y with f € Z[z] a monic polynomial
and at least 3 simple zeros has the property
max(|z], [y]) <,

where c¢ is effectively computable in terms of f. The proof depends upon a reduction of the
problem to a Thue equation in Ok for a finite extension K of Q.

Bounds for linear forms in logarithms.

Lemma 20. Let L and K4, ..., K, be integers with 0 < K1 < Ky < --- < Ky < L. Let € be

a set of at least L non-zero complex numbers. There exist ay, ... ,a, € € such that
det | (a® 0
( )2—1,... n %
Jj=1,...,n
Proof:
By induction on n. True for n = 1. Suppose true for n — 1. Then there exists a,... ,a,_1 € £
such that
A = det (af(j) # 0.
i=1,..n—1
7j=1,...,n—1
Consider the polynomial P(z) defined by
a{ﬁ afil ZI{1
CL{(2 (1531 ZK2
P(z) =det | . . :
CL{(” (Ifﬁl ZK"
— AZ + e
Notice that aq,... ,a,_1 are roots of P(z) so

P(z) = (z —a) - (2 = an1)Q(2)

for Q(z) € Clz] with deg @ = K,, — (n — 1). Since Card (£ —{ay,... ,ap_1}) > L—(n—1) >
K, — (n —1). Therefore there is an element a,, € €\ {ai, ... ,a,-1} which is not a root of Q.
Therefore P(a,) # 0 and the result follows by induction. O

Proposition 21. Let ay, a9, 8 € C with ayag # 0. Let K, L, Ry, Ry, 51,5 € Z* and P €
Clx,y] be a non-zero polynomial with degree at most K — 1 in x and degree at most L — 1 in
y. Pt R=R;+ Ry — 1 and S = S + Sy — 1. Suppose that

Card {afa5 | 0<r < R;,0<s< S} > 1L
and that
Card {r+s8|0<r<Ry,0<s<S}>(K—-1)L.
Then for some r and s with 0 <r < R and 0 < s < S we have
P(r+ s@,ajasz) # 0.

Proof:
Note that we may assume WLOG that P(x,0) # 0 since otherwise P(z,y) = Pi(z,y)y" for
t € Z" and since ajay # 0 we could replace P by Py.
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Suppose that
P(r+sp,ajay) =0 (1)
for0<r< Rand 0 <s<S. Let us write
P(r,y) = Z Qi(x)yKi
i=1
with0=K) < Ky <--- <K, <L Put £ ={aja5|0<7r < R;,0<s < S;}. By assumption
Card (£) > L and so by Lemma 20 there exists a subset £ of
{(r,s)|0<r < R;,0<s< 5}

of cardinality n such that

B = det (((a{ag)kl)ll ) # 0.

(T’,S)E,’C
We now consider the polynomial P, ;(z,y) for each pair (r,s) in £ given by
Prs(z,y) = P(x + 1+ sf, afasy)

SO
n

Pr,s(Ia y) = Z QZ(ZE +7r 4+ sﬁ)(aqag)lﬂy[(i (2)
i=1
We now define the polynomial A(x) by
Alw) = det ((w + 7+ s8)(aja3)™) ) |
i=1,...,n

If Qi(x) =bx™ + -+ with b; #0 fori=1,... ,n then
A(z) =by -+ b, Bx™ Tt 4.
with by - - - b, B # 0. In particular,

degA(x)=my+---+m, <n(K—-1) <LK -1). (3)
We may view (2) as a system of n linear equations in the variables 7y, ... , Z, where Z; = y
for i = 1,...,n. Then, by Cramer’s Rule there exist polynomials S, (x) € Clx] for each
(r,s) € L such that
Alx) = Z1A(x) = Y Prs(@,9)Ss(2). (4)
(r,s)eL

Note that by (1) for each (r,s) € L,
P, s(ro + 808, a°as’) = P(rg + sof + 1 + s, af T 0ayt™)
= P((ro+7)+ (so+ s)8,a;°a3™) =0
for 0 < rg < Ry and 0 < 59 < Sy. Therefore by (4)
A(ro + so8) =0
for 0 <7y < Ry and 0 < sy < S3. By assumption
Card {ro+ so8] 0 <1y < R2,0 <59 < S} > (K —1)L.

Therefore deg A(z) > (K — 1)L contradicting (3). O
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In 1844, Catalan conjectured that the only two consecutive positive integers which are pure
powers are 8 and 9. In particular, he conjectured that the only solution of

2" -yt =1 (5)

in integers x,y, m,n with z,y,m,n > lis given by r =n =3,y =m = 2.
Recently Mihailescu proved that Catalan’s conjecture is correct. In 1976, Tijdeman had
reduced the problem to a finite computation.

Theorem 22. (Tijdeman) There exists a positive effectively computable number ¢ such that if
x,y,m,n > 1 are integers satisfying (5) then max(x,y, m,n) < c.

Proof:
Let ¢q, co, ... be positive effectively computable numbers. We may assume WLOG that m and
n are primes p and ¢ and we can consider the equivallent equation to (5) given by

o’ -yl =, (1)

with p > ¢ and =,y > 1 and € from {—1, 1}.

Initial Assumption: min(p, ¢, x,y) > c1.

Therefore we may suppose that p and g are odd. Note by (1) ged(z,y) = 1. Further since
p > q, we see that x < y. Notice from (1) that

P=ylte=(y+eo)(yt " —eyt 2 +eyt ™ — o fh),
Let d = ged(y + €,y7 ! — eyd™2 4+ €2y?™3 — ... + €771). Then
= ety 0 = (-0 (D)t 9 et o

SO

y = (=97 _ <€11> (—e)i™! + <g> ()" 2(y+e)++(y+et (2)

Thus % = q+ (y + e) - t for some integer t. Therefore d|g and so either d =1 or d = ¢. If

d = q then by (2) and the fact that ¢ is odd we see that ¢ divides % and ¢* [ % Therefore
there is an integer ¢ with § € {—1,0} such that, for some s € Z*,

y+e=qs" (3)
Similarly
P — €
I=aP —e=(x—¢ ( )
y (@) (——
and so there exists a v € {0, —1} and a positive integer r such that
x—e=piri (4)

Note that r,s > 1 and if v = —1 then p| r and similarly if § = —1 then ¢| s. Thus

p'rd > 297  and ¢°sP > 2P71
Now by (1),(3) and (4) we have

(7 + € — (5" — ) = e (5)
¢From (1), (3) and (4),

PpPl > (P 4 1)P +1 > 2P + 1> y? > (¢°sP — 1)1 >
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and similarly

q P49 P q q P q p ’["pq
2969 > (P + 1)1+ 1>y +1>2P > (p'rf —1)P > 2
Thus, since p > q > ¢y,
Spq S 2p+qqqrpq S 4pqq7apq
hence
s < 4%q%r <2r (6)
Further we have
/rapq S 2p+qpp817q S (4p)p8pq
hence
r< (4p)is (7)
We shall first prove that ¢ is much smaller than p. It follows from (3) and (4) that
max((z — )T, (y — 1)9) < 2P = y? 4+ ¢ < min((z + 1)?, (y + 1)9). (8)
Therefore
pIPraP — qéqqu — (at _ e)p _ (y + e)q 7& 0.
Plainly p7r? > 2971, Either 2771 > 12p? or 12p? > 297! in which case
log12 +3logp > (¢ — 1) log2
hence
q < calogp. (9)
Assume now that 297! > 12p? so in particular p¥r? > 12p3.
Now x — € = p7'r? so
p’yxrq N 1’ - pvqu’ (10)
¥ —y?=e€so
q 1
% -1 = (11)
and y + € = ¢°sP so
1
T (12

Since |log(1 + z)| < 2|z for |z| < § we have from (10), (11) and (12) and the fact that p > ¢
and —1 < ~,0 <0, that
x
log (1 + <p“fr‘1 — 1))

lplogx — plog(p'r?)| < 2p*r~4 (13)

)

lqlogy — qlog(q’s”)| < 2¢'°s7P < 2¢%s™¢ < 2p*sTY

2

p’Yrq

<

x
log —
p“/rq

hence

and that

2
Iplogx — qlogy| = < s < 2pr—1 (14)

and finally that
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and so by (7)
lqlogy — qlog(q’s”)| < 8p’r . (15)

Therefore by (13), (14), and (15)

[plog(p'r?) — qlog(q’s")| < 12p°r ™
Put A; = plog(p'r?) — qlog(qésp) .

Ay = plogp” — qlog ¢® + pqlog (g) ,
We have
Al <1257 (16)

We may employ Thrm 2 with ay =p, ap = ¢, a3 =%, d = 1 and n = 3 to conclude that since
Ay =p, Ay = q < pand As = 2r (since s < 2r),

|A1] > exp(—cs(log p)* logr). (17)
Comparing (16) with (17) we find that
e < 12pPreslos’r < pealog’s (18)
Hence
q < cqlog® p. (19)

It follows from (3), (1) and (8) that

(1719 + ) — s = o — (y + ) £ 0 (20
we have by (14) and (15) that

[plogz — qlog(¢’s”)| < 2277 + 2¢°s77.
Further since 27 = y? + € and y + € = ¢°s?,

2P >yl — 1> 28y > 2qy > sP.

Thus

[plog(p'r! + €) — qlog(q’s”)| < 4¢*s™"
SO
< 4¢*s77P.

Y q
‘—qélogq + plog (p T q+ 6)
s
Put Ay = —¢gdlogq + plog (%) and then
|As| < 4¢°s7P. (21)

We now apply Thrm 2 with A; = ¢ < p, Ay < 5ps? and B < p to give a lower bound for |A,].
Since (20), Ay # 0 we have

|As| > exp(—cg log? plog(5ps?)). (22)
On comparing (21) and (22) we find that
P < 4q2(5p8q)celog2p
and since by (19), ¢ < ¢5log® p,
sP < s logsp’
hence
p < crlog’p
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and so p < cg. Therefore, by (19), ¢ < cq.

We may now suppose that p and ¢ are fixed and so by Thrm 18 x and y are bounded. The
result now follows subject to our initial assumption that x,y, m and n exceed c;.

To be Continued O

The initial assumption can be dealt with by appleaing to two results due to Shorey +
Tijdeman. Let P > 2 and let S be the set of integers composed of primes < P.

Theorem 23. Let 7 > 1 and let P > 2. The exists a positive number C with is effectively
computabale in terms of T and P.such that all solutions of the equation ax™ — by™ = b* in
integers a,b,x and k from S and m,n and y with x,y,m,n > 1 and with ged(az™, k) < T
satisfy

max(|al, [0], |k|, z, y, m,n) < C.

Theorem 24. Let 7 > 1 and let m € Z with m > 1 and let p > 2. There exists a positive
number co which is effectively computable in terms of 7,p and m, such that all solutions of the
equation

ax™ —by" =k

in a,b and k from S and integers x,y and n with n,|z|, |y| > 1, mn >4 and ged(ax™, k) < T
satisfy

max(|a\, ‘b|7 |k|7 |LU‘, ‘y‘un) < C'0-

Returning to the proof of Thrm 22. note that if 2P — y? = € with = fixed then we may take
P to be the greatest prime factor of x and apply Thrm 23 to conclude that (z,y,p,q) < c11
and similarly if y is fixed. If p is fixed apply Thrm 24 and similarly if ¢ is fixed.

One of the key tools in the proofs of Thrm 23 and Thrm 24 is a p-adic verstion of Thrm 2.

Let a, ... ,a, be non-zero algebraic numbers of naive heights A, ... , A, respectively. Put
K =Q(o,...,a,) and d = [K : Q]. Let p be a prime ideal of Ok lying above the rational
prime p. For any fractional ideal A of K, let ord, A denote the power of p dividing A.

In 1977, van der Poorten proved:

Theorem 25. Let p be a prime ideal of Ok lying above the rational prime p. There exist
effectively computable positive numbers ¢ and cq such that

d
ord,, abtoabh -1 < (cnd)c‘mp— log A; - - -log A, log® B,
logp
for all rational integers by, ... , b, of absolute value at most B(> 2) for which ol cabn £ 1,

There were some mistakes in van der Poorten’s argument but they were fixed by Yu in 19809.

It is possible to use Thrm 25 to treat generalizations of the Thue equation. For any n € Z let
P(n) denote the greatest prime factor of n with the convention that P(0) = P(1) = P(—1) = 1.
In 1977 Shorey, van der Poorten, Tijdeman and Schinzel proved the following result.

Theorem 26. Let f be a binary form with integer coefficients, non-zero discriminant and
degree at least 3. There exists a positive number C which is effectively computable in terms of
f such that if x and y are coprime integers with f(x,y) # 0 then

P(f(x,y)) > Cloglog z,

where z = max(|z|, |y|, 3).
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Notice that this implies the finiteness of Thue equation f(x,y) = m. Let pi,...,ps be
primes. The equation
fley) =pit 02

in integers x and y and non-negative integers z1, ... , zs is known as a Thue-Mahler equation.
By Thrm 26 it has only finitely many solutions.

Let ay, ae be non-zero algebraic numbers. Let d = [Q(aq, as) : Q]. Let logay be a branch
of the logarithm evaluated at a; and let log as be a branch of the logarithm evaluated at as.
Let by, b; be non-zero integers and put

A = by log aq + by log as.

Put A; = max(h(a;)?, el°8%l ¢) for i = 1,2. We now prove a result due to Mignotte and
Waldschmidt, later established by Laurent by a different method.

Theorem 27. There exists a positive number C, which is effectively computable in terms of
d, such that if A # 0 then

|A| > exp(—C'log A, log A; log® B')

where

, |1 |2
B = .
Hax <3’ log A, * log A,

Proof:
We may assume WLOG that b; > 0, by < 0 and that oy and ay have absolute value at least
1. Replacing by by —by we can write

A= b2 10g0é2 — bl logal

with by and by positive.
Let K >3, L > 2, Ry, Ry, 51,53 be positive integers. Put N = KL, R = R; + R, — 1 and
S =5+ 59 — 1. If the conditions
Card {aja3 | 0<r < R;,0<s< S} >L (1)
Card {bor +b1s|0<r < Ry,0<s< S} >(K—-1)L (2)

hold then the K'L x RS matrix (make a choice for the indexing of the rows and columns)

((rb2 + sb1> o l5>
L Q Qg

is of maximal rank N. For if not there exist ¢;; € C, not all zero, for £ = 0,... ,K — 1,
l=0,...,L —1 such that the sum of ¢;; times the k,[-th column vector is the zero vector.
Equivalently the polynomial P(x,y) defined by

x
P(z,y) = Z Ck,l <k>yl
0<k<K
0<I<L
of degree at most K — 1 in z and degree at most L — 1 in y is zero for x = rby 4+ sb; with
0<r <Ry, 0<s<8 and y=aja; with 0 <r < Ry, 0 < s < S, which contradicts Prop
21.
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Suppose then that (1) and (2) hold. Then we can extract an N x N minor, from the N x
RS matrix, with non-zero determinant A. Thus

b b\ e Ls
A = det ((Tﬂ 2 Z % 1>a’f i oy ) (3)
¢ 1<i<N

1<G<N

where (k1,01), ..., (kn,ly) is some ordering of the set {(0,0), (0,1),...,(0,L—1),(1,0),(1,1),
,(K—=1,L—1)} and (ry,s1),..., (7, Sp) is an ordering of the (r, s)’s chosen to make the
minor of maximal rank.
Strategy: we now compare estimates for |A|.
Notice that

Put
K—1 KR
b=((R—1)by+ (S —1)by) (Hk;') .

Expand the determinant in (3). We see that there are N! terms of the form Faf'as? where

E is a product of binomail coefficients of the form (’"bZZSbl), E, is a sum of [;r;’s and FEj is a

sum of [;s;’s. Plainly 0 < £y < NLR and 0 < E, < NLS. Further since (z) =7 z! P < o
forx e ZT,0<k<u,

(Rby + stz 1 ki

E<
H k;!
hence
N(K-1)/2
5 < g (1o + 5b) .
= K—1
IT (kDL
k=1
Thus

h(A) < N'E*h(oy )N B h(ag) VS
< NNbKN/2h(a1)NLRh(a2)NLS.

Observe that A € Q(ay, o). Then

[I(c(A) = % with u,v € Z, (u,v) =1

where the product is take in over all embeddings o of Q(ay, az) in C which fix Q. We have
|U| < h(A) and 0 # [], |U( ) |v|
Further |[o(A)| < h(A)d’ where d’ = [Q(A) : Q]. Therefore
1
[V Toia lo(A)]

Al >

hence

DK N logb

log |A] > —DNlog N — — DLN(Rlogh(ay) 4 Slogh(ay)). (4)
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We now remark that

K-1 e
b < (Rby + Sby) < I k’Hf)

k=1

< (Rby + Sby) exp (ﬁ kz__: (k— K)log k)

Note that
K—1
Z klogk<2log2+310g3+/ x log xdx
k=1
- 1
<210g2+3log3—|—/ <xlog9§+§x> dz
3
1
<210g2+3log3—|—§x2logat]§<_l
1
<210g2+310g3+§(K—1)210g(K—1)—glogB
1
< 5(K —1)%log(K — 1)
and ol
K—1\""
Zlogk log(K —1)!>log( )
k=1 €
Thus
b < (Rbs + Sby) < 2 (1(K 1) log(K — 1) — K(K — 1)1 <K_1)>)
hS 2 1) €Xp K2 K 5 0g 08 o

< (Rby + Sby) e

< (Rby + Sby) <( >log —1)—210g(K—1)+2)
< log(K

_ log(K —1)
— 42
)
SO
b< Rby 4 Sby 02 < Rby + Sby 4
K-1 K
We now introduce A’. We put

A’:A~max( IA15 LS) Al LR)

SN ()
Let p denote a real number larger than 1.

Lemma 28. If |A'| < p~N*Y/2 then
KNlogp KNlogb
2 + 2

log |A] < —N? logg + Nlog N +

Proof:
We may suppose, WLOG, that b |log a;| < by|log aa|. We have

A= bg loga2 — bl 10g0é1.

Thus
b

1
b2 b2 0g aq.

log ag =

+ pLRN|log oy | 4+ pLSN|log asl.
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A
Put g = Z—; Thus logay = % + Blog ay, hence ay = afeg. By the multilinearity of the
determinant,

b L
A = det (k; (1 =+ 5;0) Kol o J)
1<i<N

1<Gj<N
Notice that

Now we put

AliSj

by _
where 6, ; = “——=. Thus

by (elisalAl/b2 1)

il < LS‘A‘dA\LS/bQ :

For x € R, ¥ — 1 < ze®, hence
szSIA\ eLSIA|/b2

0] < L5|A|6\A|L5/b2 =1L
Therefore i
b ‘ T S
A = det (k (rj + 5;8)F 0y T (14 0, ))
1<i<N
1<j<N
Accordingly the determinant A can be expressed as
A=Y (M)NHIA, (1)
IC{1,...,N}
and
¢i(z1) - bi(zn) Iel
Ar = det
! ¢ <@i,1¢i(21) s OiNGi(zn) ) )T ¢ 1
k;
where ¢;(2) = l]’% kol 2 =14 s;8 for 1 <4, j < N. We now define for each I C {1,... N}

2
the function ® I( ) given by

_ ¢i(rz) - oi(xzy) Iel
Pr(x) = det <@i,1¢¢(5521) @LN@(I%)) {] ¢1

Notice that ®;(1) = A;. We claim that ®;(x) has a zero multiplicity % where v = |I|. To
see this we expand each ¢; with ¢ € I as a Taylor series at the origin, say
z) = Z DinZ".
n>0
We now plug the above Taylor series into the expression for the determinant and expand to
get

2" e 2 Irel

@i ngél (gpz it ) det <@i,1¢i(95,2’1) @i,N¢i(I2n)> {I ¢ 1
where the summation indicies run independendently from 0 to co. Observe that if n, = n,, for
v, € I, # 1 then the corresponding term in the sum is zero since two rows in the associated
determinant are the same. Therefore we can restrict our attention to terms in the sum for

which nq,...,n, are all distinct. Hence for which ny +---4+n, <0+14+---+v—1= %
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V2—I/

Thus ®;(x) has a zero of order =

at 0. By the maximum modulus principle applied to the
vy
analytic function ®;(x)/x =2 we find that

= max |D/(x)|.
|lz|=p

)

|Ar] = [®,(1)] =

v2—v

We deduce from (1) that

2
|A| <2V max p~ V=D (N=2) =5 ax max |Dy(x)].
0<p<N T |a=p

Observe that

Ogrll/lgllN<(N—§)(N—p)+ 5 )—OgllenNN —NV—§N—|—?
The min occurs at v = N so is

N2_N2_E+E:M.

2 2 2
Therefore
|A] < 2N p~NIN=1)/2 mlaxlmlax|(1>1(x)| (2)
z|=p
Futher
N (b (R + SB))k al
|D/(z)| < N! <H (b2 = b)) ) exp (Z Li(R+ SpB)|x|| logozi|> (3)
i=1 i n=1

and since (] log ;| < |logas],
[@1(2)] < NI(|2]b) "2 exp(|2| LRN log|en | + |2|LSN|log as|).
For N > 6, 2V N! < N¥ 5o from 2) and (3),

Nzlogp+Nlogp (K—l)Nlogp+(K—1)Nlogb

< —
log|A| < 5 5 + Nlog N + 5 5
+ pLRN|log a;| + pLSN|log as|,
as required. Lemma 28 Follows. U

We now compare our upper bound for log |A|, obtained under the assumption that
|A'| < p=NF2, with the lower bound (4). We find that

—2dlog N — 2dK logb — 2dLRlog h(ay) — 2dLSlog h(ay) <
—Nlogp+logp+2logN + (K —1)logp + (K — 1)logb+ 2pLR|log ay| + 2pLS|log as|.
So

Nlogp <(2d+1)log N + 3dK logbh+ K log p+ 2LR(p|log a1| 4+ dlog h(ay))
+ 2LS(p|log as| + dlog h(aw)).
Therefore, from the definition of log A; and log As,
Nlogp < (2d+1)log N + 3dK logb+ Klogp+2L(p+ 1)(Rlog A; + Slog As).  (4)
Put B = max(log p, d(7 + log B')) and take
K =[c?Blog Aylog Ay], L =[B], Ry =[BlogA,]
Sy =[BlogA;], Rs=[cBlogAs|, Ss=[cBlogA]
where c is a real number with ¢ > 1 to be choosen later.
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Notice that Ry > L and S; > L hence if a7 and ay are not both roots of unity then condition
(1) holds. The result follows easily if alpha; and s are both roots of unity so we may suppose
(1) holds. Our argument now splits into two cases.

Case 1. The set {rby +sb; | 0 <7 < Ry,0 < s < Sy} has RySs elements. Then

RSy > ¢*B?log Ay log Ay > (K — 1)L,

and so condition (1) and (2) apply. Now by (5), dlogb < B and so the right hand side of (4)
is at most

2(d + 1) log(c*B*log Ay log Ay) + 3c¢2B?log A1 log Ay + ¢*log pBlog A log Ay
+2(p + B(2(1 4 2c)Blog Ay log As) < 4c*12¢(p + 1) + 2¢*) B*log A; log A,
< 6¢(c + 4p)B*log A; log A, (5)
On the other hand |
Nlogp=KLlogp > 502 log pB%log A; log As,.

Take p = c. Then comparing the lower bound with (5), using (4), we find that $¢*log ¢ < 30¢?

which is false for ¢ > €. Thus our assumption that |A’| < p~™*2 is false hence |A’| >

exp((—N + 1) logc), and so
1
[A] > exp((=N + 5) log ) max (/MBS (LS by), e MERIU (LR [by)) .
We may assume that |A| < (LS)™! and |A| < (LR)™! since otherwise the results holds. Then
1+log L+ VR +logS < B?log A; log A; hence
|A| > exp(—N2logc).

Since N = KL < 2¢®2Blog A; log A, and our results follows.

Case 2. The set {rby + sb;| 0 < r < Ry,0 < s < Sy} has fewer than RyS, elements.
Then there exist integers r and s with |[r| < R — 1 and |s| < S — 1 for which rby + sb; = 0.
Accordingly,

b b
|A| = |by log ay + by log ag| = 71|rloga1 + b—zrloga2|
1

b
= —|rlogag — slogas|.
,
Now by Prop 4 and the fact that for « algebraic of degree d,
H(a) > 2%h(a),
our result follows. O

Lemma 29. Let N,Q,by,...,b, be integers with N > (Q > 0. There exists a r € Z" with
[%] <r < N and integers pq, ... ,p, such that

b; — rps| < rQ7Y™ + % fori=1,...,n.
Proof:
Consider the system of linear inequalities
|$0‘ <Q
and
|:£0ﬁ —zi|l<Q Y fori=1,... ,n.

N
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By Minkowski’s Linear Forms Theorem, Thrm 7’ there exists a non-zero vector
(Po, P1s - - - s Pn) € Z™! such that |Py| < Q and

b; .
Poyy — Di <Q Y"fori=1,...,n
Multiplying (po, ... ,pn) by —1 if necessary, we may suppose that 0 < py < @. Note that
po # 0 hence 0 < pg < Q.

Let r be the nearest integer to N/py. Since N > @ > py > 0 we have N > r > [N/Q).
Further for 1 <i <n,

b —rpi| = |r —pi|+|(——71
b=l = | (B -0)+ (3 - 7) 77
1 [bi]
<rQ7Vm =
2(r—3)
O
Estimate for linear forms in n logarithms from Thrm 27 and Lemma 29 :
Let aq,...,0n, apy1 be non-zero algebraic numbers. We put K = Q(aq,...,q,41) and
d=[K:Q]. Welet by, ... ,b, be non-zero integers. Let log ay, ... ,loga, 1 be determinations

of the logarithm of aq, ..., a, 1 respectively. Let A{,..., A,,1 be numbers for which
log A; > max(dlog h(a;)|logay|,1) fori=1,... ,n+1
and put
B = max(|b1],...,|ba])-
Put
A=blogas + -+ b, logay, + log o, 1.

Using an idea of Bombieri, two mathematicians Bilu and Bugeaud, proved from Lemma 29
and Thrm 27.

Theorem 30. Let € > 0. Suppose that 0 < |A| < e=“B. There exists a positive number C,
which is effectively computable in terms of € and Ay, ..., Ay, such that B < C'log A, 41.

Note: This gives enough to prove Thrm 17 on Thue equations.

Idea of proof.

Replace |A| by rloga + log~y where

loga = pilogag + -+ + pylog oy,
and
logy = (b1 —rp1)logag + -+ + (by — 7pn) log v, + log a1
We apply Thrm 27 and choose p; as in Lemma 29. In particular take
N = Q[max(BY2Q? log An+1Q1+%]

and then choose () so that B > N > () > 1 appropriately to get a contradiction.



