
LINEAR FORMS IN LOGARITHMS AND DIOPHANTINE EQUATIONS
C.L. STEWART

Notes taken by D. Wolczuk

A complex number α is said to be algebraic if it is the root of a non-zero polynomial with
integer coefficients. A complex number which is not algebraic is said to be transcendental.
Recall: The degree of an algebraic numbers is the degree of its minimal polynomial.

In 1844, Liouville proved,

Theorem 1. Let α be an algebraic number of degree d > 1. There is a positive number C

which is effectively computable in terms of α, such that
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for p, q ∈ Z, q > 0.

Proof:
Suppose that f(x) = adx

d + · · ·+ a1x+ a0 ∈ Z[x] is the minimal polynomial of α.
Note that if α is not real, then we can take C(α) to be the absolute value of the imaginary

part of α.
Suppose α ∈ R. Then for p/q ∈ Q,

|f(p/q)| ≥ 1/qd

since f(p/q) 6= 0 since f is the minimal polynomial of α and d > 1.
By the mean value theorem, ∃ a real number θ, with θ between α and p/q such that

1/qd ≤ |f(p/q)| = |f(α) − f(p/q)| = |α− p/q||f ′(θ)|. (1)

but f ′(x) = dadx
d−1 + · · · + a1. Observe that if |α − p/q| > 1, we can take C(α) to be any

positive number less than 1. Thus we may assume that |α− p/q| ≤ 1. Therefore

|f ′(θ)| ≤ (d|ad|(|α|+ 1)d−1 + · · ·+ |a1|) = (C(α))−1.

The result now follows from (1). �

Liouville proved the existence of transcendental numbers such as

θ =
∞
∑

n=1

10−n!

by using Thrm 1. For example, put pk/qk =
∑k
n=1 10−n! thus qk = 10k! and pk = 10k! ·

∑k
n=1 10−n!. Obeserve that

|θ − pk/qk| =
∞
∑

n=k+1

10−n! <
2

10(k+1)!
=

2

qk+1
k

. (2)

Suppose that θ was algebraic of degree d. Note that d > 1, since θ is not a rational number.
Then by Thrm 1, ∃C(α) > 0 s.t. |α − pk/qk| > C(α)/qdk. But this and (2) imply qk+1−d

k <
2/C(α) but qk+1−d

k → ∞ as k → ∞ so α is not algebraic.
In 1873, Hermite proved that e is transcendental.
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In 1874, Cantor proved that the transcendental numbers are dense in R by making use of
the fact that the algebraic numbers are countable.

In 1882, Lindemann proved that π is transcendental.
The Hermite-Lindemann theorem states that if β ∈ C, β 6= 0 then one at least of {β, eβ} is

transcendental.
Consider {πi, eπi} = {πi,−1} since i is algebraic, it follows that π is transcendental.
Lindemann stated and Weierstrass proved in 1885:
If β1, . . . , βn are algebraic numbers which are linearly independent over Q then eβ1, . . . , eβn

are algebraically independent.
In 1900, Hilbert proposed as the 7th of his problems:
If α is algebraic and α 6= 0, 1 and β is algebraic and irrational, prove that αβ is transcen-

dental. This was proved by Gelfond and Schneider independentaly in 1934.
In 1967, Baker proved that if α1, . . . , αn are algebraic numbers different from 0 and 1 and

β1, . . . , βn are algebraic numbers for which 1, β1, . . . , βn are linearly independent over Q then

αβ1
1 · · ·αβn

n

is transcendental. He also proved that eβ0αβ1
1 · · ·αβn

n is transcendental for all nonzero algebraic
numbers β0, . . . , βn, α1, . . . , αn.

Quantitative Results? One can ask for a measure of how small the quantity

|β0 + β1 logα1 + · · · + βn logαn − logαn+1|
when αn+1 is an algebraic number.

For our applications we are interested in the degenerate case when β0 = 0, and βi’s are
integers.

We still get bounds from Baker’s argument. Put

Λ = b1 logα1 + · · · + bn logαn (3)

where bi ∈ Z, i = 1, . . . , n.
One can prove that Λ = 0 or |Λ| is bounded away from 0 in terms of the size of the |bi|′s, n,

the degree of the αi’s and the heights of the αi’s.
For any algebraic number α, we define the height of α, denoted by H(α), by

H(α) = max{|ad|, |ad−1|, · · · , |a0|}
where f(x) = adx

d + · · ·a1x+ a0 is the minimal polyomial of α.
H(α) is known as the naive height.
Aim: If Λ 6= 0, then |Λ| is not too small in terms of b1, . . . , bn, α1, . . . , αn.
Suppose, in (3) that the logs are always the principal branch. Put d = [Q(α1, . . . , αn) : Q].

Suppose that Ai = max(H(αi), e) for i = 1, . . . , n and that B = max(|b1|, . . . , |bn|, e).

Theorem 2. (1993, Baker and Wustholz) If Λ 6= 0, then

|Λ| > exp(−(16nd)2n+4 · logA1 · · · logAn · logB).

Proposition 3. Suppse that α is an algebraic number, α 6= 0 with minimal polynomial f(x) =

adx
d + · · ·+ a0 then

|α| < H(α)

|ad|
+ 1.

Proof:
If |α| ≤ 1, the result is immediate. So suppose that |α| > 1.
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We have f(α) = 0 and so

adα = −ad−1 − ad−2α
−1 − · · · − a0α

−d+1.

Hence

|ad||α| ≤ (|ad−1| + |ad−2||α−1| + · · ·+ |a0||α−d+1|)
≤ H(1 + |α|−1 + · · ·+ |α|−d+1)

< H

(

1

1 − |α|−1

)

|α| − 1 <
H

|ad|
�

Remark. Note that since α−1 has minimal polynomial xdf(1/x), we see from Prop 3 that

|α| >
(

H

|a0|
+ 1

)−1

.

Let b1, . . . , bn ∈ Z with absolute value at most B ≥ 2 and let α1, . . . , αn be nonzero algebraic
numbers with heights at most A.

Proposition 4. If Λ 6= 0 then |Λ| > (3A)−dnB

Proof:
Let aj denote the leading coefficient in the minimal polynomial of αj when bj ≥ 0, and let aj
denote the leading coefficient of the minimal polynomial of (αj)

−1 when bj < 0.
Then we put

w = a
|b1|
1 · · ·a|bn|n (αb11 · · ·αbnn − 1)

= a
|b1|
1 · · ·a|bn|n (α

ǫ1|b1|
1 · · ·αǫn|bn|n − 1)

where ǫi = bi/|bi| for i = 1, . . . , n.

Notice that w is an algebraic integer of degree at most d as a
|bi|
i α

ǫi|bi|
i is an algebraic integer.

This is because adα is a root of yd + ad−1y
d−1 + · · ·+ a0a

d−1
d .

Let σ be an embedding of Q(α1, . . . , αn) in C which fixes Q. Each conjugate σ(w) of w is
of the form

σ(w) = a
|b1|
1 · · ·a|bn|n (σ(αǫ11 )|b1| · · ·σ(αǫnn )|bn| − 1).

By Prop 3, |aiσ(αǫii )| < 2A and so

|σ(w)| < 2(2A)Bn. (1)

If w = 0 and Λ 6= 0 then Λ is a multiple of 2πi and the result holds.
Suppose w 6= 0, then |Nk/Q(w)| ≥ 1.
Thus, by (1),

|w| ≥ 1
∏

σ 6=id |σ(w)| ≥ (2 · (2A)nB)−d+1.

¿From the inequality |ez − 1| ≤ |z|e|z| for all z ∈ C, and on setting z = Λ, we see that

|αb11 · · ·αbnn − 1| ≤ |Λ|e|Λ|.

If |Λ| ≥ 1/2 we’re done, so we may assume |Λ| < 1/2, hence e|Λ| < 2. Thus |αb11 · · ·αbnn − 1| ≤
2|Λ|. Recall that

|a|b1|1 · · ·a|bn|n (αb11 · · ·αbnn − 1)| ≥ (2(2A)nB)−d+1
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and so

|Λ| ≥ 1

a
|b1|
1 · · ·a|bn|n

1

2(2(2A)nB)d−1

≥ 1

2d(2A)nBd
> (3A)−ndB

since nB ≥ 2. �

We can rewrite Prop 4 as if Λ 6= 0 then |Λ| > exp(−nd(log 3A)B).
Suppose further that A ≥ e then 3A < A3 and so |Λ| > exp(−3nd(logA)B).
Compare this with Thrm 2. Notice that Thrm 2 gives a better lower bound for the modulus

of Λ, |Λ|, when 3nd(logA)B > (16nd)2n+4 logA1 · · · logAn · logB.
WLOG, we may assume that A = An, so αn has largest height. Thus Thrm 2 improves on

Prop 4 when
B

logB
> (16nd)2n+4 logA1 · · · logAn−1.

We get nontrivial information from Thrm 2 when the bi’s are large relative to n, d, A1, . . . , An−1.
Basically, Thrm 2 tells us that products of large powers of algebraic numbers can’t be too close
together.

Simpler situation: Suppse a1, . . . , an ∈ Q, nonzero and let b1, . . . , bn ∈ Z, nonzero. Put
Bj = |bj|, B = maxj |bj|, Aj = max(H(aj), 1) and Λ = b1 log a1 + · · ·+ bn log an.

Conjecture. (Lang + Waldschmidt) Let ǫ > 0. ∃C(ǫ) > 0 such that if Λ 6= 0, then

|Λ| > (C(ǫ))nB

(B1 · · ·BnA2
1 · · ·A2

n)
1+ǫ

.

Notice if we take ǫ = 1/2 then

|Λ| > (C(ǫ))n

Bn(1+ǫ)A2n(1+ǫ)
> exp(−3n(logC(ǫ)−1) + logB + logA).

The rationale behind the conjecture:
Let S be the set of linear combinations of the log ai’s of the form b1 log a1 + · · · + bn log an

where |bj| ≤ Bj and H(aj) ≤ Aj for j = 1, . . . , n.
S has cardinality at most

(2B1 + 1) · · · (2Bn + 1)(2A1 + 1)2 · · · (2An + 1)2.

The numbers in S are contained in the interval

[−nB logA, nB logA].

If the numbers are uniformly distributed in the interval we would expect that the distance to
0 from the smallest nonzero element of S in absolute value is about

2nB logA

(2B1 + 1) · · · (2Bn + 1)(2A1 + 1)2 · · · (2An + 1)2
.

This motivates their conjecture.
Suppose that a1, . . . , an are positive integers of at most A and suppose that b1, . . . , bn are

postive integers of size at most B. Fix a1, . . . , an and suppose that log a1, . . . , log an are
linearly independent over Q.

Then the set T of linear combinations b1 log a1 + · · · + bn log an has cardinality at least
(B − 1)n (due to linear independence). They all lie in the interval [D,Bn logA]. Thus there
is a nonzero difference of two elements of R of the form b′i log a1 + · · · b′n log an where |b′j| ≤ B

for j = 1, . . . , n of size at most nB logA
(B−1)n .
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Thus, in general, the term logB which occurs in the lower bound for |Λ| as in Thrm 2 can’t
be improved. Similarly, it can be shown that we need a factor of logA also.

Suppose that Λ = b1 logα1 + · · · + bn logαn = 0 with α1, . . . , αn algebraic numbers and
b1, . . . , bn nonzero integers. Suppose that no subset of n−1 elements from {logα1, . . . , logαn}
is Q-lineraly dependent. Then, up to ±1, there is a unique nonzero n-tuple of coprime integers
(k1, . . . , kn) such that

k1 logα1 + . . .+ kn logαn = 0.

Claim: We can bound the |ki|’s from above in terms of n, d and A1, . . . , An (Ai = H(αi)).
Let α be an algebraic number with minimal polynomial f(x) = adx

d + · · ·a1x + a0 so
H(α) = maxi(|ai|).

Suppose that over C, f(x) = ad(x− α1) · · · (x− αd) so wlog α = α1.
We put M(α) = |ad|

∏d
i=1 max(1, |αi|). M(α) is known as the Mahler measure of α and it is

a more natural height function for α than H(α).
Jensen’s Forumla. Let f be an analytic function in region containing the closed ball centered

at the origin of radius r > 0. Suppose that α1, . . . , αn are the zeros of f in the ball repeated
with multiplicity. If f(0) 6= 0 then

log |f(0)| = −
n
∑

i=1

log |r/αi| +
1

2π

∫ 2π

0
log |f(reiθ)|dθ.

Proposition 5. (Landau) Let α be an algebraic number of degree d. Then

M(α) ≤ (d+ 1)1/2H(α).

Proof:
Let f(z) = adz

d+· · ·+a1z+a0 be the minimal polynomial of α over Q. Note that by Parseval’s
equality

1

2π

∫ 2π

0
|f(eiθ)|2dθ = a2

0 + · · · + a2
d.

On the other hand,
|f(eiθ)| = |ad||eiθ − α1| · · · |eiθ − αd|.

Apply Jensen’s Formula with r = 1 and let α1, . . . , αn be the roots of f of modulus at most
1. Then

log |a0| = − log
1

|α1 · · ·αn|
+

1

2π

∫ 2π

0
log |f(eiθ)|dθ

so

log
|a0|

|α1 · · ·αn|
=

1

2π

∫ 2π

0
log |f(eiθ)|dθ.

Note that f(z) = ad(z − α1) · · · (z − αd) so |adα1 · · ·αd| = |a0|. Thus

|a0|
|α1 · · ·αn|

= |ad||αn+1 · · · |αd| = |ad|
d
∏

i=1

max(1, |αi|) = M(α).

Thus

logM(α) =
1

2π

∫ 2π

0
log |f(eiθ)|dθ

so

M(α) = exp
(

1

2π

∫ 2π

0
log |f(eiθ)|dθ

)

hence

M(α)2 = exp
(

1

2π

∫ 2π

0
log |f(eiθ)|2dθ

)

.
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By the arithmetic geometric mean inequality for functions, Thrm 184 of Inequalities by Polya,
Hardy and Littlewood,

exp
(

1

2π

∫ 2π

0
log |f(eiθ)|2dθ

)

≤ 1

2π

∫ 2π

0
|f(eiθ)|2dθ

hence
M(α)2 ≤ a2

0 + · · ·+ a2
d ≤ (d+ 1)H(α)2,

as required. �

Theorem 6. Let α1, . . . , αn be nonzero algebraic numbers and suppose that logα1, . . . , logαn

are linearly dependent over Q. Suppose that Aj = max(M(αj), e
| log αj |

d , e) for j = 1, . . . , n

where d = [Q(α1, . . . , αn) : Q]. Then there exist integers t1, . . . , tn not all zero for which
t1 logα1 + · · · + tn logαn = 0 with

|ti| ≤
(11(n− 1)d3)n−1 logA1 · · · logAn

logAi

for i = 1, . . . , n.

For the proof of Thrm 6, we need some ideas from the geometry of numbers.
A set S in Rn is said to symmetric about the orgin 0 = (0, . . . , 0) if whenever x ∈ S, then

−x ∈ S.
S is said to be convex if whenever x, y ∈ S and λ is a real number with 0 ≤ λ ≤ 1 then

λx+ (1 − λ)y ∈ S.
The volume of a set S in Rn is the Riemann integral of the characteristic function of the

set, when it is integrable. It can be shown that every bounded convex set in Rn has a volume.
An integer point x = (x1, . . . , xn) in Rn is a vector with xi ∈ Z for i = 1, . . . , n.

Theorem 7. (Minkowski, 1896) Let A be a set in Rn which is convex, bounded, symmetric
about the origin and has volume M(A).

If M(A) > 2n then A contains an integer point different from the origin.

Proof:
Let Am be the set of rational points in A all of whose coordinates have denominator m, so
Am = {( t1

m
, . . . , tn

m
) ∈ A | ti ∈ Z, i = 1, . . . , n}.

Let |Am| denote the cardinality of m. Then

lim
m→∞

|Am|
mn

= M(A).

For m sufficiently large
|Am| > (2m)n.

Thus there are two distinct points a = (a1
m
, . . . , an

m
) and b = ( b1

m
, . . . , bn

m
) ∈ Am with ai ≡ bi(

mod 2m) for i = 1, . . . , n.
Then 1

2
(a− b) is an integer point (claim) which isn’t 0.

a and b ∈ Am hence in A. −b ∈ A since A is symmetric about 0. 1
2
a+ 1

2
(−b) = 1

2
(a− b) ∈ A

since A is convex.
And the result follows. �

Remarks concerning Minkowski’s Convex Body Thrm.
(1) 2n is sharp. Consider the set A in Rn given by

A = {x1, . . . , xn) ∈ Rn | |xi| < 1}.
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Note that µ(A) = 2n but the only integer point in A is the origin.
(2) Note that in the conclusion of Minkowski’s Convex Body Thrm we can claim the existence
of 2 non-zero points in the set since if g is in the set then so is −g by symmetry.

Theorem 7’. (Minkowski’s Linear Forms Thrm) Let B = (βij) be an n x n matrix

with real entries and non-zero determinant. Let c1, . . . , cn be positive real numbers
with c1 · · · cn ≥ | detB|. Then there exists a non-zero integer point x = (x1, . . . , xn)

such that

|βi1x1 + · · ·+ βinxn| < ci for i = 1, . . . , n− 1

and

|βn1x1 + · · · + βnnxn| ≤ cn.

Proof:
Write Li(x) = βi1x1 + · · · + βinxn < ci for i = 1, . . . , n − 1 and put L′

i(x) = 1
ci
Li(x) for

i = 1, . . . , n. Thus we wish to solve

|L′
i(x)| < 1 for i = 1, . . . , n− 1

and |L′
n(x)| ≤ 1.

The determinant of the matrix determined by L′
i(x) for i = 1, . . . , n is detB

c1···cn
≤ 1. Therefore,

WLOG we may suppose that c1 = · · · = cn = 1 and that | detB| ≤ 1.
For each ǫ > 0 define Aǫ to be the subset of x ∈ Rn for which |Li(x)| < 1 for i = 1, . . . , n−1

and |Ln(x)| < 1 + ǫ.
Note that Aǫ is symmetric about the origin 0 and is bounded. Further Aǫ is convex since if

x and y are in Aǫ and λ ∈ R with 0 ≤ λ ≤ 1 then

|Li(λx) + (1 − λ)y)| ≤ λ|Li(x)| + (1 − λ)|Li(y)|

<







λ+ 1 − λ = 1 for i = 1, . . . , n− 1

λ(1 + ǫ) + (1 − λ)(1 + ǫ) = 1 + ǫ for i = n

Since µ(Aǫ) = (1 + ǫ) · 2n > 2n and so by Minkowski’s Convex Body Thrm there is a non-zero
integer point x

ǫ
in Aǫ.

Consider A1/k for k = 1, 2, . . . and note that A1 ⊇ A1/2 ⊇ A1/3 ⊃ · · · . We obtain a sequence
x

1/k
of non-zero integer points in A1/k for k = 1, 2, . . . . Since A1 is bounded and contains only

finitely many integer points there must be one point y of the form x
1/k

for infinitely many k.

Note that then |Li(y)| < 1 for i = 1, . . . , n− 1 and |Ln(y)| ≤ 1. �

Suppose that α is an algebraic number with M(α) ≤ 1. Note that if f(x) = adx
d + · · · + a0

is the minimal polynomial of α, then, since M(α) = ad
∏d
i=1 max(1, |αi|) where α1, . . . , αd are

the roots of f , we see that |ad| = 1. Therefore if M(α) ≤ 1 then α is an algebraic integer. Let
α = α1 so α1, . . . , αd are the conjugates of α.

Note that |αki | ≤ 1 for i = 1, . . . , d and k = 1, 2, . . . . The elementary symmetric polynomials
in the variables x1, . . . , xd are bounded in absolute value by 2d when evaluated at points
(y1, . . . , yd) with |yi| ≤ 1, for i = 1, . . . , d. Thus when (y1, . . . , yd) = (αk1, . . . , α

k
d) they are

integers of size at most 2d. In particular, αk is the root of a non-zero polynomial with integer
coefficients of absolute value at most 2d, hence of a finite set of non-zero polynomials. Therefore
αk = αl for some k, l ∈ Z+. Thus either α = 0 or α is a root of unity.

This was first proved by Kronecker in 1857.

S = {M(α) | α algebraic }.
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Countable, is it dense?
In 1933, Lehmer asked if for each ǫ > 0 there exists an algebraic number α for which

1 < M(α) < 1 + ǫ.
The smallest value of M(α) larger than 1 which he found was M(α0) = 1.17628081 · · · where

α0 is a root of x10 + x9 − x7 − x6 − x5 − x3 + x+ 1. This is an example of an Salem number.
One root inside the circle, one outside the circle and the rest on the unit circle. No smaller
example has been found.

Pisot numbers: Algebraic integers α all of whose conjugates, apart from α > 1 lie strictly
inside the unit circle. Let α = α1, . . . , αd be the conjugates of a Pisot number α. Then for
each k ∈ Z+, αk1 + · · ·+ αkd is an integer. Thus if we let ‖x‖ denote the distance from x to the
nearest integer for any x ∈ R then

lim
k→∞

‖αk1‖ = 0.

Open Question: If θ ∈ R with θ > 1 and limk→∞ ‖θk‖ = 0, is θ a Pisot number (P.V. number,
Pisot-Vijayaraghavan number)?

There is a smallest Pisot number.
In 1979, Dobrowolski proved that if α is an algebraic number of degree d ≥ 3 and α is not

a root of unity then M(α) > 1 + 1
1200

(

log log d
log d

)3
.

Theorem 8. Let d ∈ Z+ and let α be an algebraic number of degree at most d, which is not a

root of unity. Then

logM(α) >
1

11d2
.

We first need:

Proposition 9. Let p be a prime number and let f ∈ Z[x1, . . . , xk]. Then there exists g ∈
Z[x1, . . . , xk] such that

f(xp1, . . . , x
p
k) − f(x1, . . . , xk)

p = pg(x1, . . . , xk).

Proof:
Put x = (x1, . . . , xk) and xp = (xp1, . . . , x

p
k). Observe that if f(x) is a monomial, say f(x) =

a(xi11 · · ·xikk ), then
f(xp) − f(x)p = (a− ap)xi1p1 · · ·xikpk = pg(x),

where g(x) = a−ap

p
xi1p1 · · ·xikpk ∈ Z[x1, . . . , xk] since p | a− ap by Fermat’s little theorem.

Suppose now that the result holds for f1(x) and f2(x). Thus f1(x
p) − f1(x)

p = pg1(x) and
f2(x

p) − f2(x)
p = pg2(x), with g1, g2 ∈ Z[x1, . . . , xk]. Then

(f1 + f2)(x
p) − (f1 + f2)(x)

p = f1(x
p) + f2(x

p) − (f1 + f2)
p(x)

= f1(x)
p + pg1(x) + f2(x)

p + pg2(x) − (f1 + f2)
p(x)

But

(f1 + f2)
p = f p1 +

(

p

1

)

f p−1
1 f2 + · · · +

(

p

p− 1

)

f1f
p−1
2 + f p2 .

Thus

(f1 + f2)(x
p) − (f1 + f2)(x)

p = p(g1(x) + g2(x) +
1

p

(

p

1

)

f p−1
1 f2 + · · · + 1

p

(

p

p− 1

)

f1f2p− 1)

∈ Z[x1, . . . , xk]

since p |
(

p
j

)

for 1 ≤ j ≤ p− 1.

The result now follows by induction on the number of monomials of f . �
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Proposition 10. Let α be a non-zero algebraic number. Suppose that h and l are distinct

positive integers for which αh and αl are conjugates. Then α is a root of unity.

Proof:
Let α = α1, . . . , αd be the conjugates of α and put k = Q(α1, . . . , αd). Since αh and αl are
conjugates there is an element σ of Gal(k/Q) for which

σ(αh) = αl.

We claim that for n = 1, 2, . . .

σn(αh
n

) = αl
n

.

True for n = 1. Suppose true for 1 ≤ k ≤ n. Then

σn+1(αh
n+1

) = σ(σn(αh
n

)h) = σ((αl
n

)h)

= σ((αh))l
n

= (αl)l
n

= αl
n+1

.

The claim follows by induction.
Since the Galois group is finite there is finite there is t ∈ Z+ such that σt is the identity.

Then σt(αh
t

) = αl
t

so αh
t

= αl
t

. Since α is non-zero α is a root of unity. �

Given an algebraic number α with conjugates α = α1, . . . , αd over Q we define the house of α,
denoted |α|, by

|α| = max{|α1|, . . . , |αd|}.

Theorem 11. (Dobrowolski, 1978) If α is a non-zero algebraic integer of degree d which is

not a root of unity then

|α| > 1 +
1

4ed2
.

Proof:
Let α = α1, . . . , αd be the conjugates of α over Q. Let fh(x1, . . . , xd) = xh1 + · · · + xhd for
h = 1, 2, . . . . Put Sh = fh(α1, . . . , αd) for h = 1, 2, . . . . Note that Sh is an integer for
h = 1, 2 . . . since it is fixed under elements of the Galois group of the splitting field over Q.
Let p be a prime number. By Fermat’s little thrm,

Sph ≡ Sh (mod p) for h = 1, 2, . . .

On the other hand, by Prop 9,

Shp − Sph = pg(α1, . . . , αd) where g ∈ Z[x1 . . . , xd].

Note that Shp and Sph are in Q so g(α1, . . . , αd) is in Q. Since α1, . . . , αd are algebraic integers
and g ∈ Z[x1, . . . , xd], g(α1, . . . , αd) ∈ Z. Thus

Shp ≡ Sph (mod p).

Therefore

Shp ≡ Sh (mod p), for h = 1, 2, . . .

For each h ∈ Z+

|Sh| = |αh1 + · · · + αhd | ≤ d|α|h.
Suppose that |α| ≤ 1 + 1

4ed2
. By Bertrand’s Postulate there is a prime p with 2ed < p < 4ed.

For 1 ≤ h ≤ d,

|Sh| ≤ d
(

1 +
1

4ed2

)h

≤ ded log(1+ 1
4ed2 ) ≤ de.
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and

|Shp| ≤ d
(

1 +
1

4ed2

)hp

≤ de4ed
2 log(1+ 1

4ed2 ) ≤ de.

Therefore, for 1 ≤ h ≤ d,

|Shp − Sh| ≤ 2ed < p.

Thus, since Shp ≡ Sh (mod p),

Shp = Sh for h = 1, . . . , d.

But the Newton Sums, for h = 1, . . . , d determine the elementary symmetric polynomials in
x1, . . . , xd and so the minimal polynomials of α and of αp are the same. Thus α and αp are
conjugates and so by Prop 10, α is a root of unity. �

Let c, k ∈ R+ with k > c. Consider the function

f(t) = log
(

1 +
1

ct

)

− 1

kt
, for t > 0.

f ′(t) = − 1

1 + 1
ct

1

ct2
+

1

kt2

and so f ′(t) > 0 for − 1
c+ 1

t

+ 1
k
> 0

so when 1
k
> 1

c+ 1
t

i.e. when 1
t
> k− c so when t < 1

k−c
. Futher f ′(t) < 0 for t > 1

k−c
. In addition log(1 + 1

ct
)− 1

kt

is positive for t sufficiently large.
Take k = 11 and c = 4e. Then

log
(

1 +
1

4et

)

>
1

11t
for t >

1

11 − 4e
= 7.88 · · · .

Thus, for d ≥ 3,

log
(

1 +
1

4ed2

)

>
1

11d2
.

Since

log
(

1 +
1

16e

)

> .022732 · · · > 1

44
= .0227272 · · · .

Therefore for d ≥ 2, ∈ Z

log
(

1 +
1

4ed2

)

>
1

11d2
. (1)

Proof:
(Theorem 8 continued) If α is not an algebraic integer and f(x) = adx

d+· · ·+a0 is the minimal
polynomail of α then |ad| ≥ 2 and so M(α) ≥ 2 hence logM(α) ≥ log 2 and the result holds.

Thus we may suppose α is an algebraic integer. Note that the result holds if d = 1, so
suppose d ≥ 2. Then, by Thrm 11,

logM(α) ≥ log |α| ≥ log
(

1 +
1

4ed2

)

and, since d ≥ 2, by (1)

logM(α) >
1

11d2
.

�
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Further remarks on heights.

Definition. Let K be a field and let | | : K → R. We say that | | is a valuation on K if
1) ∀a ∈ K, |a| ≥ 0 and |a| = 0 iff a = 0.
2) ∀a, b ∈ K, |ab| = |a||b|.
3) ∀a, b ∈ K, |a+ b| ≤ |a| + |b|.
Examples:
1) The ordinary absolute value on C.
2) Let K be any field. The map

|a| =







1 if a 6= 0

0 if a = 0

is known as the trivial valuation on K.
3) Let p be a prime and let K = Q. For any non-zero rational a/b we can define the p-adic
order of a/b denoted by ordp(a/b), by ordp(a/b) = ordp a− ordp b where the p-adic order of an
integer is the exact power of p which divides it. i.e. ord5(100) = 2.

We now define | |p on Q by

|a/b|p =







p− ordp(a/b) if a/b 6= 0

0 if a/b = 0
.

One can check that | |p is a valuation. It is called the p-adic valuation on Q.
4) Let k be any field and let T be a transcendental element over k. Put K = k(T ). Let λ be
a real number with 0 < λ < 1. Let p(T ) be an irreducible element in K. Then every non-zero

element a of K can be written in the form p(T )j f(T )
g(T )

where j ∈ Z, f and g are coprime with

p. Define | | on K by

|a| =







λj if a 6= 0

0 if a = 0
.

| | is a valuation on K.

Definition. A valuation | | on a field on K is said to be non-Archimedean if ∀a, b ∈ K,

|a+ b| ≤ max(|a|, |b|).
The last 3 examples are non-Archimedean. For example | |p on Q is non-Arch. since if a/b =
pαa1/b1 with (a1, p) = (b1, p) = 1 and c/d = pβc1/d1 with (c1, p) = (d1, p) = 1 then |a/b|p =
p−α, |c/d|p = p−β. WLOG let α = min(α, β)

∣

∣

∣

∣

pα
a1

b1
+ pβ

c1
d1

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

pα
a1d1 + pβ−αc1b1

b1d1

∣

∣

∣

∣

∣

= |pα|p · |a1d1 + pβ−αc1b1|p
= p−α|a1d1 + pβ−αc1b1|p
≤ p−α = |a/b|p
≤ max(|a/b|p, |c/d|p).

Definition. Let | | and | |1 be vaulations on a field K. We say that they are equivalent if
there is a positive number γ such that |a| = |a|γ1 for all a ∈ K.

We can define a metric and hence a topology on K by defining d : KX K → R by

d(a, b) = |a− b|.
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Equivalent valuations induce the same topology. The trivial valuation induces the discrete
topology.

Ostrowski proved that every non-trivial valuation on Q is equivalent to either the ordinary
absolute value or to a p-adic valuation for some prime p. Let us denote | | on Q by | |p∞ and
we put S(Q) = {p∞, p a prime in Z}. By the Unique Factorization Thrm for Z, hence for Q,
we have for α ∈ Q,

∏

v∈S(Q)

|α|v =







1 if α 6= 0

0 if α = 0
(1)

(1) is known as the product formula. Note that (1) holds because we chose | |p from its
equivalence class appropriately.

Let K be a finite extension of Q. Then K = Q(α) for some algebraic number α. Let
α = α1, . . . , αd be the conjugates of α.

Let K be a finite extension of Q and let OK denote the ring of algebraic integers of K.
Each prime p in Z is such that the ideal (p) in OK splits into a product of prime ideals
(p) = pe11 · · · pet

t here p1, . . . , pt are distinct prime ideals. ei is known as the ramification of pi
for i = 1, . . . , t. Further if we put [OK/pi : Z/p] = fi, the residue class degree of pi, then
e1f1 + · · ·+etft = [K : Q]. If K is a Galois extension of Q then e1 = · · · = et and f1 = · · · = ft.

Since K is a finite extension of Q there is an β ∈ K such that K = Q(β). Suppose
that β1, . . . , βd be the conjugates of β over Q. Then the Q-isomorphisms σ of K into C

are determined once we knwon σ(β). Let σi(β) = βi for i = 1, . . . , d. We may suppose
that β1, . . . , βr1 are real and that βr1+1, . . . , βr1+2r2 are not real and that βr1+i = βr1+r2+i for
i = 1, . . . , r2. Note that σr1+r2+i = σr1+i for i = 1, . . . , r2. We say that σ1, . . . , σr1+r2 are the
infinite primes of K and that the prime ideals of OK are the finite primes. Let S(K) denote
the union of the finite and the inifinite primes.

We now define a valuation v on K for each prime in S(K). Let α ∈ K. If v = p ∈ S(K)
then we put

|α|v =







NK/Q(p)−ωp(α)/d if α 6= 0

0 if α = 0

where ωp(α) is the order of p in the canonical decomposition of the fractional ideal (α) as a
product of prime ideals.

Further if v = σ ∈ S(K) we put

|α|v =







|σ(α)|g/d if α 6= 0

0 if α = 0

where

g =







1 if σ ∈ {σ1, . . . , σr1}
2 if σ ∈ {σr1+1, . . . , σr1+r2}

Once again it is possible to check that the product formula holds:

∏

v∈S(K)

=







1 if α 6= 0

0 if α = 0
.

Note that v ∈ S(K) means the v for each prime in S(K).
We now introduce a new height function h(α) on K. For α ∈ K we put

h(α) =
∏

v∈S(K)

max(1, |α|v).
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If L is a finite extension of K then for α ∈ K
∏

v∈S(L)

max(1, |α|v) =
∏

v∈S(K)

max(1, |α|v),

so h is defined on the set of all algebraic numbers. The definition of h does not depend on the
field containing α.

What is the link with M(α)? Suppose that α is an algebraic number of degree d over Q and
minimal polynomial f(x) = adx

d + · · ·a0 = dd
∏d
i=1(x− αi). Put K = Q(α) then

h(α) = M(α)1/d.

As before suppose that α1, . . . , αr1 are the real conjugates of α and that αr1+1 , . . . , αr1+2r2 are
the conjugates which are not real and that αr1+i = αr1+r2+i. Then

∏

v=σ∈S(K)

(max(1, |α|v) =
r1
∏

i=1

max(1, |σi(α)|1/d)
r1+r2
∏

i=r1+1

max(1, |σi(α)|2/d)

so
∏

v=σ∈S(K)

max(1, |α|v)d =
d
∏

i=1

max(1, |αi|).

It can be shown that
∏

p∈S(K)

max(1, |α|dv) =
∏

p∈S(k)

max(1, NK/Q(p)−ωp(α))

=
∏

p∈S(K)

max(1, p−fωp(α)) = |ad|.

Thus

h(α)d =
∏

v=p∈S(k)

max(1, |α|dv) ·
∏

v=σ∈S(k)

max(1, |α|dv)

= M(α).

We can now verify the following : For α an algebraic number and k ∈ Z+,

h(αk) =
∏

v∈S(Q(α))

max(1, |αk|v) =
∏

v∈S(Q(α))

max(1, |α|v)k = h(α)k.

Recall that if α is a non-zero algebraic number with minimal polynomial f(x) of degree d
then g(x) = xdf( 1

x
) is the minimal polynomial of α−1. But

M(α) = exp
(∫ 2π

0
log |f(eiθ)|dθ

)

= exp
(∫ 2π

0
log |g(eiθ)|dθ

)

= M(α−1).

Thus h(α) = h(α−1) for α 6= 0. Therefore h(αk) = h(α)|k| for all k ∈ Z.
Further if α, β are algebraic numbers then

h(αβ) =
∏

v∈S(Q(α,β))

max(1, |αβ|v)

≤
∏

v∈S(Q(α,β))

(max(1, |α|v))(max(1, |β|v))

=
∏

v∈S(Q(α,β))

(max(1, |α|v))
∏

v∈S(Q(α,β))

(max(1, |β|v))

= h(α)h(β)
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Theorem 6’.

Let α1, . . . , αn be non-zero algebraic numbers which are multiplicatively dependent.
Suppose that Ai = max(h(αi), e) for i = 1, . . . , n and that A1 ≤ A2 ≤ · · · ≤ An. Let

d = [Q(α1, . . . , αn) : Q]. There exists integers t1, . . . , tn, not all zero, with αt11 · · ·αtnn = 1
and for k = 1, . . . , n

|tk| ≤ (11(n− 1)d3)n logA2 · · · logAn

Proof:
For each m ∈ Z+ let φ(m) denote Euler’s phi function so φ(m) = m

∏

p | m(1 − 1/p). Notice
that

φ(m)2 = m2
∏

p | m

(1 − 1/p)2 = m





m
∏

p | m( p
p−1

)2



 .

Further
∏

p | m

(

p

p− 1

)2

≤
∏

p | m

p
∏

p | m

p

(p− 1)2
≤ 2m

Therefore φ(m)2 ≥ m/2. Thus if φ(m) = d we wee that m ≤ 2d2.
First suppose that n = 1. Then α1 is a root of unity. Since d = [Q(α1) : Q] we see that

α1 is a m-th root of unity with m ≤ 2d2. In particular αt11 = 1 with |t1| ≤ 2d2 and the result
follows.

Next suppose that n > 1 and we may suppose wlog that no subset of n − 1 elements from
{α1, . . . , αn} is multiplicatively dependent. Therefore there is a unique n-tuple of relatively
prime integers (k1, . . . , kn) with k1 > 0 for which αk11 · · ·αkn

n = 1. Let j ∈ Z with 1 ≤ j ≤ n
for which |kj| ≥ |ki| for i = 1, . . . , n.

Put ci = (11(n− 1)d3 logAi)
−1 for i 6= j

and cj = (11(n− 1)d3)n−1 logA1 · · · logAn/ logAj .
Observe that c1 · · · cn = 1.
Consider the system of inequalities:

∣

∣

∣

∣

∣

xi −
ki
kj
xj

∣

∣

∣

∣

∣

≤ ci for i = 1, . . . , n, i 6= j (1)

|xj | ≤ cj (2)

Notice that the associated matrix

B =



























1 −k1
kj

1 −k2
kj

. . .
...
1
...

. . .
−kn

kj
1



























has determinant 1.
By Minkowski’s Linear Forms Theorem (7’), there exists a non-zero integer point (b1, . . . , bn)

which satisfies (1) and (2).
Put α = αb11 · · ·αbnn . We claim that α is a root of unity. We have

αkj = α
kjb1
1 · · ·αkjbn

n
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Since αk11 · · ·αkn
n = 1 we have

αkj = α
kjb1−k1bj
1 · · ·αkjbn−knbj

n .

Thus

h(αkj) = h(α
kjb1−k1bj
1 · · ·αkjbn−knbj

n )

so

h(α)|kj | ≤ h(α1)
|kjb1−k1bj | · · ·h(αj)0 · · ·h(αn)|kjbn−knbj |

≤ h(α1)
c1|kj | · · ·h(αj)0 · · ·h(αn)cn|kj |

Therefore

h(α) ≤ h(α1)
c1 · · ·h(αj−1)

cj−1h(αj+1)
cj+1 · · ·h(αn)cn.

Thus

log(M(α)1/d) ≤ log(h(α)) ≤
n
∑

i=1,i6=j

ci log h(αi)

≤
n
∑

i=1,i6=j

ci logAi.

Accordingly,
1

d
logM(α) ≤

n
∑

i=1,i6=j

1

11(n− 1)d3
≤ 1

11d3
.

Hence logM(α) ≤ 1
11d2

. Therefore, by Theorem 8, α is a root of unity. Since the degree of α
is at most d we see that α is an m-th root of unity with m ≤ 2d2.

Therefore αm = αb1m1 · · ·αbnmn = 1. Further by (2),

|bjm| ≤ cj · 2d2 = 2d2(11(n− 1)d3)n−1 logA1 · · · logAn/ logAj

≤ (11(n− 1)d3)n logA2 · · · logAn

Furthermore, since |kj| ≥ |ki| for i = 1, . . . , n, and

|bi −
ki
kj
bj | ≤ ci

we see that, for i = 1, . . . , n, i 6= j,

|bi| ≤ ci + |bj| ≤ 1 + |bj| ≤ 1 + cj ≤
3

2
cj.

Since m ≤ 2d2 we see that

|bim| ≤ 3d2cj ≤ (11(n− 1)d3)n logA2 · · · logAn.

�

Note if αk11 · · ·αkn
n = 1 then k1 logα1 + · · · + kn logαn = 0 for some choice of branches of the

logarithms.
In 1970, Senge and Strauss proved that if a, b ∈ Z larger than 1 with (log a)/ log b irrational

then the number of integers n for which the sum of the digits of n in base a plus the sum of the
digits of n in base b lies below a fixed bound is finite. The proof was not effective in the sense
that given a bound one could not determine the finite set of integers n. We can overcome this
difficulty using Theorems 3 and 6’.
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Let α, β ∈ Z with 0 ≤ α < a and 0 ≤ β < b. Denote the number of digits in the base a
expansion of n which are different from α by Lα,a(n). Similarly denote the number of digits
in the base b expansion of n which are different from β by Lβ,b(n). Put

Lα,a,β,b(n) = Lα,a(n) + Lβ,b(n).

Note that the sum of the digits of n in base a and base b is bounded from below by L0,a,0,b(n).
Note that for all n ∈ Z with n > 1 we have

Lα,a,β,b(n) < c1 logn,

where c1 is a positive constant. Further on average,

Lα,a,β,b(n) < cc log n, for c2 > 0.

To fix ideas 33 = 25 + 1 = 33 + 2 · 3. So L0,2,0,3(33) = 4. The sum of the digits is this case is 5.
Similarily 63 = 25 + 24 + 23 + 22 + 2 + 1 = 2 · 52 + 2 · 5 + 3. So L1,2,2,5(63) = 1.

Note the condition that log a
log b

is irrational is necessary. For suppose that log a
log b

= r
s

so that

as = br. Then for each integer k ∈ Z+ L0,a,0,b(a
sk) = 2 since n = ask and n = brk.

Theorem 12. (Stewart) Let a, b ∈ Z a, b > 1 with log a/ log b irrational and let α and β be

integers with 0 ≤ α < a and 0 ≤ β < b. Then there is a positive number C, which is effectively
computable in terms of a and b, such that if n ∈ Z with n > 25 then

Lα,a,β,b(n) >
log logn

log log logn+ C
− 1.

Proof:
Suppose that n > a + b and consider the expansions

n = a1a
m1 + α

am1 − 1

a− 1
+ a2a

m2 + · · ·+ ara
mr ,

where 0 ≤ a1 < a and −α ≤ ai < a− α for i = 2, . . . , r and

n = b1b
l1 + β

bl1 − 1

b− 1
+ b2b

l2 + · · ·+ btb
lt ,

where 0 ≤ b1 < b and −β ≤ bi < b− β for i = 2, . . . , t. Further m1 > m2 > · · · > mr ≥ 0 and
l1 > l2 > . . . > lt ≥ 0.

We put

θ = c1 log log n, (1)

where c1 is a positive number which is effectively computable in terms of a and b and c1 > 4.
We shall assume that n > c2 ≥ 25, where c2, c3, . . . denote positive number which are effectively
computable in terms of a and b and may be determined independently of c1.

Define k to be the integer satisfying

θk ≤ logn

4 log a
< θk+1 (2)

and put
Θ1 = (1, θ], Θ2 = (θ, θ2], . . . , Θk = (θk−1, θ

k].

If each of the intervals Θ1, . . . ,Θk contains at least one term either of the form m1 −ms with
2 ≤ s ≤ r or of the form l1 − lj with 2 ≤ j ≤ t then

Lα,a,β,b(n) ≥ r + t− 2 ≥ k. (3)

By (2),
(k + 1) log θ > log log n− log(4 log a).
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so

k >
log logn

log θ
− log(4 log a)

log θ
− 1.

Thus by (1)

k >
log logn

log log logn + log c1
− log(4 log a) − 1. (4)

Since Lα,a,β,b ≥ 0 our result now follows from (3) and (4) in this case.
Therefore we may assume that there is an integer s with 1 ≤ s ≤ k for which the interval

Θs contains no term of the form m1 −mi or of the form l1 − lj . Define integers p and q by the
inequalities

m1 −mp ≤ θs−1 and m1 −mp+1 > θs, (5)

and

l1 − lq ≤ θs−1 and l1 − lq+1 > θs, (6)

with the convention that mr+1 = 0 and lt+1 = 0. Then

(b− 1)(a− 1)n = (b− 1)(a− 1)a1a
m1 + (b− 1)αam1 + (b− 1)(a− 1)a2a

m2

+ · · ·+ (b− 1)(a− 1)ara
mr − (b− 1)α

= A1a
mp + A2,

where
A1 = (b− 1)(a− 1)a1a

m1−mp + (b− 1)αam1−mp + · · · + (b− 1)(a− 1)ap
and

A2 = (b− 1)(a− 1)amp+1a
mp+1 + · · ·+ (b− 1)(a− 1)ara

mr − (b− 1)α.

Note that
0 < A1 < (b− 1)(a− 1)am1−mp+1 + (b− 1)αam1−mp

so

0 < A1 < 2(b− 1)(a− 1)am1−mp+1. (7)

Further
0 ≤ |A2| < (b− 1)(a− 1)amp+1+1 + |(b− 1)α|

so

0 ≤ |A2| < 2(b− 1)(a− 1)amp+1+1 (8)

Similarily
(b− 1)(a− 1)n = B1b

lq +B2,

where B1 and B2 are integers with

0 < B1 < 2(b− 1)(a− 1)bl1−lq+1. (9)

0 ≤ |B2| < 2(b− 1)(a− 1)blq+1+1 (10)

We have

1 =
A1a

mp + A2

B1blq +B2

=
A1a

mp

B1blq

(1 + A2

A1a
mp )

(1 + B2

B1b
lq )

.

If x and y are real numbers with absolute values at most 1/2 then

max

(

1 + x

1 + y
,
1 + y

1 + x

)

≤ 1 + 4 max(|x|, |y|). (11)
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Notice that
|A2|
A1amp

≤ 2(b− 1)(a− 1)amp+1+1

(b− 1)(a− 1)am1
≤ 2a−m1+mp+1+1.

By (6),
m1 −mp+1 ≥ θs ≥ θ = c1 log log n

and thus for n sufficiently large
|A2|
A1amp

≤ 1

2
.

Similarly
|B2|
B1blq

≤ 1

2
.

We put

R =
A1a

mp

B1blq
.

¿From (11) we conclude that

1 ≤ max(R,R−1) ≤ 1 + 4 max(
|A2|
A1amp

,
|B2|
B1blq

)

so
max(R,R−1) ≤ 1 + 8 max(a−m1+mp+1+1, b−l1 − lq+1 + 1).

Since log(1 + x) < x for x > 0 we have

| logR| < 8abmax(a−m1+mp+1, b−l1 − lq+1).

Thus if logR 6= 0 then by (5) and (6),

log | logR| < c3 − c4θ
s. (12)

On the other hand

| logR| = | log
A1

B1

+mp log a− lq log b|,

and we can apply Prop 3 to give a lower bound for | logR|. We put n = 3, d = 1 and α1, α2, α3

to be A1

B1
, a and b respectively. Note that mp and lq are at most logn/ log 2 and that the height

of A1

B1
is at most the maximum of |A1| and |B1|. Thus, by Prop 3, if logR 6= 0 then

| logR| ≥ exp(−c5 log(4 max(|A1|, |B1|)) log logn)

so, by (7) and 9)
log | logR| ≥ −c6 max(1, m1 −mp, l1 − l1) log log n.

Suppose that logR = 0, hence that

log
A1

B1
+mp log a− lq log b = 0. (13)

By Theorem 6’, there exists x1, x2, x3 ∈ Z not all zero with

x1 log
A1

B1
+ x2 log a+ x3 log b = 0 (14)

and with
max(|x1|, |x2|, |x3|) ≤ c9 log(max(|A1|, |B1|, e).

By (5) and (7),
logA1 ≤ c10θ

s−1

and by (6) and (9),
logB1 ≤ c11θ

s−1
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Therefore

|x2| ≤ c12θ
s−1 ≤ c12θ

k−1

and so, by (2),

|x2| <
log n

4 log a
,

for n sufficiently large.
By (5) m1 −mp ≤ θs−1 so mp ≥ m1 − θs−1. Since m1 ≥ logn

2 log a
and since θs−1 ≤ θk−1 < logn

4 log a

for n sufficiently large we see that

mp >
log n

2 log a
− logn

4 log a
=

log n

4 log a
.

In particular mp > |x2|.
Recall that (14) and note that if x1 = 0 then log a/ log b is rational. Thus we may suppose

that x1 6= 0. Eliminating log A1

B1
from (13) and (14) we find that (x1mp − x2) log a + (x3 −

x1lq) log b) = 0. Since mp > |x2| we see that x1mp − x2 6= 0 hence log a/ log b is rational. �

Let p be a prime with p ≥ 3 and let 1 = n1 < n2 < · · · be the sequence of positive integers
which are composed of primes size at most p.

In 1898, Stormer proved that

lim inf
i→∞

(ni+1 − ni) > 2.

In 1908, Thue proved that

lim
i→∞

(ni+1 − ni) = ∞.

In 1965, Erdos used a result of Mahler to prove the following. Let ǫ > 0 then there exists a
positive number N(p, ǫ), such that if ni > N(p, ǫ), then

ni+1 − ni > n1−ǫ
i .

In 1973, Tijdeman used estimates for linear forms in logarithms to prove:

Theorem 13. Let p be a prime and let 1 = n1 < n2 < · · · be the sequence of positive integers

all of whose prime factors are at most p. There exists a positive number C, which is effectively
computable in terms of p, such that if ni ≥ 3 then

ni+1 − ni > ni/(logni)
C .

Proof:
Let p1, . . . , pk be the primes of size at most p. Consider the prime decompositions of ni and
ni+1 for some i, say

ni+1 = pa11 · · · pak

k with aj ∈ N

and

ni = pb11 · · · pbkk with bj ∈ N

Then

0 6= log
ni+1

ni
= (a1 − b1) log p1 + · · ·+ (ak − bk) log pk

and by Thrm 2 with k = n, d = 1, and α1, . . . , αk given by p1, . . . , pk respectively. Note that

max
1≤j≤k

(|(aj − bj)|) ≤ log(ni+1)/ log 2 ≤ 1 +
log ni
log 2
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since ni+1 ≤ 2ni. Further observe that k ≥ 2 since if k = 1 the result is immediate. Therefore,
by Theorem 2,

log
ni+1

ni
> exp(−kc1k log p1 · · · log pk log log ni),

where c1 is a positive number. Note that

kc1k log p1 · · · log pk < ec1k log k(log p)k < ec1k log k+k log log p

< ec2k log k since p < k2

and by the prime number theorem
ec2k log k < ec3p.

Therefore

log
ni+1

ni
> exp(−3c3p log log ni) =

1

(logni)e
c3p .

Since log(1 + x) < x for x > 0,

log
ni+1

ni
= log(1 + ni+1 − nini) <

ni+1 − ni
ni

.

Therefore
ni+1 − ni >

ni
(logni)e

c3p .

�

Theorem 14. (Tijdeman) Let p and q be distinct primes and let 1 = n1 < n2 < · · · be

the sequence of positive integers whose only prime factors are p and q. There exists positive
numbers c and N which are effectively computable in terms of p and q, such that if ni ≥ N ,

then

ni+1 − ni <
ni

(log ni)c
.

Before we prove Thrm 14, we need some basic facts from Diophantine approximation.
For any real number α we define an associated sequence (α0.α1, · · · ) where we put α0 = α

and

αk =
1

αk−1 − [αk−1]
, for k = 1, 2, . . . ,

provided that αk−1 − [αk−1] 6= 0; here [x] denotes the greatest integer ≤ x for x ∈ R.
Next put ak = [αk] for k = 0, 1, 2, . . . . Then

α = a0 +
1

a1 + 1
··· 1

αk

We put pk

qk
= a0 + 1

a1+···+ 1
ak

for k = 0, 1, 2, . . . with (pk, qk) = 1. pk

qk
is said to be a convergent

to α. The finite continued fraction is denote by [a0, a1, . . . , ak].
We’ll now show that for n = 2, 3, . . .

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2 (1)

Note that p0 = a0 and q0 = 1 and p1 = a0a1 + 1 and q1 = a1. We have

p2

q2
=
a0(a1a2 + 1) + a2

a1a2 + 1

Observe that p2 = a0(a1a2+1)+a2 and q2 = a1a2+1. Further p2 = a2(a1a0+1)+a0 = a2(p1+p0)
and q2 = a2q1 + q0. Thus (1) holds for n = 2. Suppose (1) holds for n ≤ k − 1 ≥ 2 and we’ll
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prove by induction that (1) holds for n = k. Define a sequence of rationals
p′j
q′
j

for j = 0, 1, 2, . . .

with p′j and q′j coprime integers with q′j > 0 given by

p′j
q′j

= [a1, . . . , aj+1].

By the recuurence relations given by (1) for n ≤ k − 1 we find that

p′k−1 = akp
′
k−2 + p′k−3

and

q′k−1 = akq
′
k−2 + q′k−3.

But
pj
qj

= a0 +
1

p′j−1

q′
j−1

= a0 +
q′j−1

p′j−1

so

pj = a0p
′
j−1 + q′j−1 and qj = p′j−1. (2)

Thus, on taking j = k, we find that

pk = a0p
′
k−1 + q′k−1 and qk = p′k−1.

In particular,

pk = a0(akp
′
k−2 + p′k−3) + (akq

′
k−2 + q′k−3)

= ak(a0 + p′k−2 + q′k−2) + (a0p
′
k−3 + q′k−3)

and so by (2)

pk = akpk−1 + pk−2.

Similarly

qk = p′k−1 = akp
′
k−2 + p′k−3 = akqk−1 + qk−2.

The result now follows by induction.
Recall, α = [a0, a1, . . . , ak, αk+1] and 1/αk+1 ≤ 1/ak+1 and so

p0

q0
<
p2

q2
< · · · < α < · · · < p3

q3
<
p1

q1
.

In particular α lies between pn/qn and pn+1/qn+1 for n = 0, 1, 2, . . . .

Proposition 15. pnqn+1 − qnpn+1 = (−1)n+1 for n = 0, 1, 2, . . . .

Proof:
Notice that the result holds for n = 0 since p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1 hence
p0q1 − q0p1 = a0a1 − a0a1 + 1 = −1.

Suppose its true for 0, . . . , n− 1. Then

pnqn+1 − qnpn+1 = (−1)n+1 = pn(an+1qn + qn−1) − qn(an+1pn + pn−1)

= pnqn−1 − qnpn−1

= (−1)(pn−1qn − qn−1pn) = (−1)n+1

and the result follows by induction. �
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By Prop 15,
pk
qk

− pk+1

qk+1
=
pkqk+1 − qkpk+1

qk
qk+1 =

(−1)k+1

qkqk+1
.

Since α lies between pn/qn and pn+1/qn+1 for n = 0, 1, 2, . . . we conclude that

|α− pn
qn

| ≤ 1

qnqn+1

<
1

q2
n

.

It is not difficult to show that if |α− p/q| < 1
2q2

then p/q = pn/qn for some n with n ≥ 0.

Lemma 16. (Tijdeman) Let p and q be distinct primes let h0

k0
, h1

k1
, · · · be the sequence of con-

vergents to log p
log q

. There exists a positive number c which is effectively computable in terms of
of p and q such that

kj+1 < kcj log q, for j = 0, 1, 2, . . . .

Proof:
We may suppose that j ≥ 2 and so kj ≥ 2. Since | log p

log q
− hj

kj
| < 1

kjkj+1
. Hence

|kj log p− hj log q| < log q

kj+1

.

By Thrm 2 with α1 = p, α2 = q, d = 1 we find that

|kj log p− hj log q| > exp(−c1 log(max(|hj|, |kj|))
where c1, c2, . . . denote positive numbers which are effectively computable in terms of p and q.

Since | log p
log q

− hj

kj
| < 1

kjkj+1
we see that |hj| < c2|kj| hence

|kj log p− hj log q| > exp(−c3 log kj) =
1

kj
c3
.

Thus
1

kc3j
<

log q

kj + 1

hence

kj+1 < kc3j log q.

�

Proof:
Theorem 14

Put ni = n = puqv. we may suppose that

pu ≥
√
n,

hence

u ≥ logn

2 log p
. (1)

Let h0

k0
, h1

k1
, · · · be the sequence of convergents to log p

log q
. Choose j so that

kj ≤ u < kj+1.

We may suppose that N is sufficiently large so that n ≥ 3 and j ≥ 2. We shall distinguish two
cases according to whether

hj

kj
is bigger or smaller than log p

log q
.

Case 1
hj

kj
> log p

log q
.
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Put n′ = pu−kjqv+hj . Note that n′ ∈ Z and n′ > n since
hj

kj
> log p

log q
. Thus n′ ≥ ni+1. We have

hj
kj

− log p

log q
<

1

kjkj+1

,

and so

hj log q − kj log p <
log q

kj + 1
.

Therefore

log

(

n′

n

)

= log

(

qhj

pkj

)

<
log q

kj+1
.

we have kj+1 > u ≥ logn
2 log p

and so

0 < log

(

n′

n

)

<
2 log p log q

logn
. (2)

For n sufficiently large in terms of p and q

0 <
n′

n
− 1 < exp

(

2 log p log q

logn

)

− 1 <
1

2
.

Since, for |x| < 1,

log(1 + x) = x− x2

2
+
x3

3
− · · · .

Further, for 0 < x < 1
2
, we have

log(1 + x) > x− x2

2
= x(1 − x/2) > x/2.

Thus

log

(

n′

n

)

= log

(

1 + (
n′

n
− 1)

)

>
1

2

(

n′

n
− 1

)

,

for n sufficiently large. By (2)

n′

n
− 1 <

4 log p log q

log n
so n′ < n+

4 log p log qn

logn

Let c1, c2, · · · denote positive constancts which are effectively compuatable in terms of p and
q. Thus

n′ < n+
c1n

log n
, for n > c2.

Since ni+1 ≤ n′,

ni+1 < ni +
c1ni
logni

, for ni > c2.

Case 2 hj

kj
< log p

log q
.

Hence
hj−1

kj−1
> log p

log q
. Put n′ = pu−kj−1qv+hj−1 . Again note n′ ∈ Z and n′ ≥ ni+1. We have

hj−1 log q − kj−1 log p

kj−1 log q
=
hj−1

kj−1
− log p

log q

<
hj−1

kj−1
− hj
kj

=
1

kj−1kj
.
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Therefore,

log

(

n′

n

)

= log

(

log qhj−1

pkj−1

)

= hj−1 log q − kj−1 log p

<
kj−1 log q

kj−1kj
.

Accordingly

log

(

n′

n

)

<
log q

kj
.

We find from Lemma 16, that

kj >

(

kj+1

log q

)
1
c

.

By (1) we have u ≥ logn
log p

and, since kj+1 > u, we see that

log

(

n′

n

)

<
log q

(

logn
2 log p log q

) 1
c

=
(log q)1+1/c(2 log p)1/c

(logn)1/c
(3)

Thus, for n sufficiently large,

log

(

n′

n

)

>
1

2

(

n′

n
− 1

)

.

Comparing this estimate with the upper bound (3), we find that

n′ < n+ (2(log q)1+1/c(2 log p)1/c n

(log n)1/c
.

Since n′ ≥ ni+1 we see that

ni+1 ≤ ni +
c3ni

(log ni)1/c
, for ni > c4

Thus in cases 1 and 2,

ni+1 ≥ ni +
c5ni

(logni)c6
, for ni > c7.

Therefore
ni+1 ≥ ni +

ni
(logni)c8

, for ni > c9.

�

Background from Algebraic Number Theory

Let K be a finite extension of Q. Thus there exists some irreducible polynomial f(∈ Q[x])
such that K is Q[x]/fQ[x]. Suppose that f(x) = xn + an−1x

n−1 + · · ·+ a0 and that f factors
over C as f(x) = (x−α1) · · · (x−αn). By the Primitive Element Theorem there exists a θ such
that K = Q(θ). There are n field embeddings of K into C, that is, n isomorphisms of K into
C which are the identity on Q. They are given by θ → αi for i = 1, . . . , n and so determine
n conjugate fields Q(α1), . . . ,Q(αn) in C, non necessarily distinct). Let α1, . . . , αr1 be real
numbers and let αr1+1, . . . , αn be complex numbers which are not real. We may suppose that

αri+i = αri+r2+i for i = 1, . . . , r2.
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Note that n = r1 + 2r2.
The ring of algebriac integers of K, denoted OK, consists of the elements of K which are

roots of monic polynomials with integer coefficients. OK is a Dedekind domain.

Definition. An integral domain O is a Dedekind domain if:
1) O is a Noetherian ring.
2) O is integrally closed in its field of fractions.
3) All non-zero prime ideals are maximal ideals.

If O is a Dedekind domain then there is unique factorization of ideals into prime ideals up to
reordering. Note that we do not always have unique factorization of elements of OK into prime
elements in OK.

Let K be an extension of Q of degree n with ring of algebraic integers OK. Then there
exists a set {ω1, . . . , ωn} of elements from OK such that every element of OK has a unique
representation as an integral linear combination of ω1, . . . , ωn. We call {ω1, . . . , ωn} an integral
basis for OK. Any two integral bases for OK (for K) are related by a matrix with determinant
±1.

Definition. The discriminant D of K is

D = (det(σi(ωj)))
2,

where σ1, . . . , σn are the embeddings of K in C and {ω1, . . . , ωn} is an integral basis. Note
that D is a non-zero integer.

Consider the set S of non-zero ideals in OK. We define a relation ∼ on S by saying that
a ∼ b, for ideals a, b ∈ S, if there exists non-zero elements α, β in OK such that [α]a = [β]b; here
[α] denote the principal ideal generated by α in OK and similarly for [β]. ∼ is an equivalence
relation on S and if a ∼ [1] then a is principal.

We can define a multiplication on the equivalence classes of S by taking multiplication of
representatives. This determines a finite abelian group called the ideal class group of K. The
order of the group is called the class number and is denoted by h. Thus if a is an ideal of OK

then ah ∼ [1].
Let K be a finite extension of Q. The group of units U(K) of OK is the set of invertable

elements in OK. It forms an abelian group under multiplication. Plainly the roots of unity of
K are in U(K).

In 1846, Dirichlet proved that U(K) is isomorphic to

µ(K) x Zr,

where µ(K) is a finite torsion group, where r = r1+r2−1 and where K has r1 real embeddings
in C and 2R2 non-real embeddings. Let σ1, . . . , σr1 be the real embeddings of K in C and
suppose that σr1+1, . . . , σr1+2r2 are the complex emebbedings and that σr1+i = σr1+r2+i for
i = 1, . . . , r2.

By Dirichlet’s result there exists units u1, . . . , ur such that every element x in U(K) can be
written in the form

X = ζ · ub11 · · ·ubrr where b1, . . . , br ∈ Z, ζ a root of unity.

The set {u1, . . . , ur} is said to be a fundamental system of units. While the fundamental
system of units need not be unique it is possible to attach a volume to the system which is
independent of the choice of system. We make use of the logarithmic map L : K∗ → Rr+1

given by

L(α) = (log |σ1(α)|, . . . , log |σr1(α)|, 2 log |σr1+1(α)|, . . . , 2 log |σr1+r2(α)|).
L is an abelian group homomorphism.
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For any α ∈ K we let NK/Q(α) denote the norm of α and we put

NK/Q(α) =
r1+2r2
∏

i=1

σi(α).

Note that the norm is multiplicative, in other words, NK/Q(αβ) = NK/Q(α)NK/Q(β). We see
that if x ∈ U(K) then NK/Q(x) = ±1. In particular, if α ∈ U(K) then L(α) lies in the r
dimensional subspace of Rr+1 given by

H = {(x1, . . . , xr) | x1 + · · ·+ xr = 0}.
Thus L : U(K) → H . The image of U(K) under L is a lattice in H and the kernel of L is just
the set of roots of unity of K. The volume of a fundamental region for the lattice is called the
regulator RK of K.

Let {u1, . . . , ur} be a fundamental system of units. We have

RK = det |δi log |σi(uj)||i=1,... ,r//j=1,... ,r,

where

δi =







1 if 1 ≤ i ≤ r1
2 if r1 < i

.

In 1981, Zimmert, sharpening work of Remak, proved that RK > .056 . In 1918, Landau
proved that there is positive number C, which depends on d = [K : Q], such that

log(hR) < C|D|1/2(log |D|)d−1.

Since the class number h of K is always at least 1 this yields an upper bound for R in terms
of the discriminant D and the degree d of K over Q.

Let I be an ideal in OK. The norm of I, denoted N(I), is the cardinality of OK/I. It can
be shown that if α in OK and [α] denotes the principal ideal of OK generated by α then

N([α]) = |NK/Q(α)|.
Dedekind introduced a generalization of the Riemann zeta function ζ(s). Let [K : Q] <∞.

He defined ζK(s) for Re(s) > 1 by

ζK(s) =
∑

I

1

N(I)s
,

where the sum is taken over all non-zero ideals of OK. This converges uniformly on compact
subsets to an analytic function for Re(s) > 1. Further ζQ(s) = ζ(s). It can be shown that ζK(s)
can be analytically continued to all of C with the exception of a simple pole at s = 1. Further
there is a functional equation which relates ζK(s) with ζK(1 − s). The Generalized Riemann
Hypothesis (GRH) is that the only zeros of ζK(s) with 0 ≤ Re(s) ≤ 1 have Re(s) = 1/2.
There is an Euler product representation for Re(s) > 1 given by

ζK(s) =
∏

p

(

1 − 1

N(p)s

)−1

where the product is taken over all prime ideals p of OK.
Let ω(K) denote the number of roots of unity in K. Then

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hRK

ω(K)
√

|D|
.
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Thue Equations

Let F (x, y) = anx
n + an−1x

n−1y + · · ·+ a0y
n be a binary form with integer coefficients, and

suppose n ≥ 3. Let m be a non-zero integer. Suppose that F has non-zero discriminant. The
equation

F (x, y) = m (4)

is known as a Thue equation. Thue proved in 1909 that if an 6= 0 and F (x, 1) is irreducible
then (4) has only finitely many solutions in integers x and y.

Eg x3 − 2y3 = 6. → Thue - only finitely many. In fact (2,1) is the only solution.
By contrast x2 − 2y2 = 1 has infinitely many solutions in integers x and y.
Let K be a finite extension of Q. It is possible to choose a fundamental system of units

{u1, . . . , ur} such that

max
1≤i≤r,1≤≤r

| log |u(j)
i | | < CR,

where R is the regulator of K and C is a number which depends on [K : Q].

Theorem 17. Let F be an irreducible binary form with integer coefficients and degree n ≥ 3.
Let m be a non-zero integer. There exists a positive number C, which is effectively computable

in terms of F , such that all solutions in integers x and y of the Diophantine equation F (x, y) =

m satisfy
max{|x|, |y|} < |2m|C log log |4m|.

Proof:
Let c1, c2, . . . denote positive numbers which are effectively computable in terms of F . Let
F (x, y) = anx

n + · · · + a1xy
n−1 + a0y

n. By considering an−1
n F (x, y) = an−1

n m and letting
an−1
n F (x, y) = f(X, y) with X = anx we see that we may suppose without loss of generality
an = 1.

Next let F (x, y) = (x− α(1)y) · · · (x − α(n)y) be the factorization of F over C. Suppose, as

usual, that α(1), . . . , α(r1) are real and that α(r1+i) = α(r1+r2+i) for i = 1, . . . , r2, hence that
n = r1 + 2r2.

Suppose that x and y are integers for which F (x, y) = m, and put

β(i) = x− α(i)y, for i = 1, . . . , n.

Then
|β(1) · · ·β(n)| = |m|.

Put K = Q(α(1)) and let η
(1)
1 , . . . , η(1)

r be a fundamental system of units for which

max
1≤i≤r
1≤j≤r

| log |η(i)
j | | < c1RK .

Every point p in Rr is within c2 of the lattice generated by the vectors

(log |η(i)
1 |, . . . , log |η(i)

r |) for i = 1, . . . , r.

Take
p = (log(|m|−1/n|β(1)|), . . . , log(|m|−1/n|β(r)|)).

Then we can find integers b1, . . . , br such that

|b1 log |η(1)
i + b2 log |η(2)

i | + · · ·+ br log |η(r)
i | + log(|m|−1/n|β(i)|)| < c2,

for i = 1, . . . , r. Now put, for j = 1, . . . , n,

γ(j) = β(j)η
(
1j)

b1 · · · (η(j)
r )br . (1)
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Observe that, for j = 1, . . . , r,
| log |m|−1/n|γ(j)| | < c2.

Since |γ(r1+i)| = |γ(r1+r2+i)| for i = 1, . . . , r we see that

| log |m|−1/n|γ(j)| | < c2

holds for j = 1, . . . , n except for j = n when r1 = n or for j = r1 + r2 and j = r1 + 2r2 when
r1 < n. But |γ(1) · · · γ(n)| = |β(1) · · ·β(n)| = m and so

n
∑

j=1

log |m|−1/n|γ(j)| = 0.

Therefore

| log(|m|−1/n|γ(j)|)| < c3 for j = 1, . . . n. (2)

Note that since β(j) is an algebraic integer so is γ(j) for j = 1, . . . , n. Further the height H(γ(j))
is at most c4|m| since the coefficients in the minimal polynomial are elementary symmetric
polynomials in the γ(i)’s, hence are at most c4|m| in absolute value.

Consider now the equations obtained from (1) by taking logarithms:

b1 log |η(j)
1 | + · · ·+ br log |η(j)

r | = log

∣

∣

∣

∣

∣

γ(j)

β(j)

∣

∣

∣

∣

∣

,

for j = 1, . . . , r. By Cramer’s Rule, for i = 1, . . . , r:

bi =

det











log |η(1)
1 | · · · log | γ(1)

β(1) | · · · log |η(1)
r |

...
...

...

log |η(r)
1 | · · · log | γ(r)

β(r) | · · · log |η(r)
r |











det









log |η(1)
1 | · · · log |η(1)

r |
...

...

log |η(r)
1 | · · · log |η(r)

r |









(3)

Our aim is to bound |bi| in terms of m hence to bound |x|, |y| in terms of m. Let B =
max(|b1|, . . . , |br|) and suppose that |bi| = B. Notice that ∆, the determinant in the denomi-
nator, satisfies

∆ = R · 2−r2 .
Expanding the determinant in the numerator of (3) along the i-th column we see that

max
1≤j≤r

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

∣

γ(j)

β(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> c5B.

Let the maximum occur for j = J . Then

| log |m|−1/n log |β(J)| | =

∣

∣

∣

∣

∣

log
|β(J)|
|γ(J)| + log |m|−1/n|γ(J)|)

∣

∣

∣

∣

∣

> c5B − c3.

Since
∑n
j=1 log |m|−1/n|β(j)| = 0 it follows that for some l with 1 ≤ l ≤ n

log(|m|−1/n|β(l)|) < c3 − c5B

n− 1
.

In particular,

|β(l)| < |m|1/nc7e−c6B. (4)
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Since |β(1) · · ·β(n)| = |m|, there exists an integer k with k 6= l such that

|β(k)| > |m|1/nc−1/(n−1)
7 ec6B/(n−1). (5)

Let j be an integer with 1 ≤ j ≤ n and with j 6= k and j 6= l. Note that j exists since n ≥ 3.
We have the identity

(α(k) − α(l))β(j) − (α(j) − α(l))β(k) = (α(k) − α(j))β(l).

Note

(α(k) − α(l))(x− α(j)y) − (α(j) − α(l))(x− (α(k)y) = (α(k) − α(j))(x− α(l)y).

Coef of y:

−(α(k) − α(l))α(j) + (α(j) − α(l))α(k) = −(α(l)α(k) − α(l)α(j))

= −(α(k) − α(j))α(l)

Divide by (α(k) − α(l))β(k)γ(j)/γ(k) to get

β(j)γ(k)

γ(j)β(k)
− α(j) − α(l)

α(k) − α(l)

γ(k)

γ(j)
=
α(k) − α(j)

α(k) − α(l)
)
β(l)γ(k)

β(k)γ(j)

⇒




η
(k)
1

η
(j)
1





b1

· · ·
(

η(k)
r

η
(j)
r

)br

− αr+1 = λ

where

αr+1 =
α(j) − α(l)

α(k) − α(l)

γ(k)

γ(j)

and

λ =

(

α(k) − α(j)

α(k) − α(l)

)

β(l)γ(k)

β(k)γ(j)

Put αi =
η
(k)
i

η
(j)
i

Thus

αb11 · · ·αbrr α−1
r+1 = 1 + λ

Thus taking the principal branch of the logarithm

log(αb11 · · ·αbrr α−1
r+1) = log

(

1 +
λ

αr+1

)

so

b1 logα1 + · · ·+ brαr − logαr+1 − br+2 log(−1) = log

(

1 +
λ

αr+1

)

and here |br+2| ≤ |b1| + · · · + |br+1| + 1 ≤ (r + 1) maxi=1,... ,r |bi| ≤ (r + 1)B and we have
introduced this factor since we have taken the principal branch of the logarithm. Put Λ =
b1 logα1 + · · ·+ br logαr − logαr+1 − br+2 log(−1). Since λ 6= 0 we see that Λ 6= 0. Put

Ar+1 = max(H(αr+1), e).

Put K = Q(α(k), α(j), α(l)). Notice that d = [K : Q] ≤ n3. By Thrm 2,

|Λ| > exp(−c6 logAr+1 log(r + 1)B). (6)
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Put Θ1 = α(j)−α(l)

α(k)−α(l) , Θ2 = γ(k), Θ3 = (γ(j))−1, so that αr+1 = Θ1Θ2Θ3. Then

H(αr+1) = H(Θ1Θ2Θ3) ≤ 2dM(Θ1Θ2Θ3)

≤ (2hΘ1Θ2Θ3))
d ≤ (2(h(Θ1)(Θ2)(Θ3))

d

≤ (2M(Θ1)M(Θ2)M(Θ3)
−1)d

≤ (2d3/2H(Θ1)H(Θ2)H(Θ−1
3 ))d by prop 5

≤ (c7m
2)d.

Therefore

logAr+1 ≤ c8 log 2|m|.
¿From (6)

log |Λ| > −c9(log 2|m|) logB (7)

But

|Λ| =

∣

∣

∣

∣

∣

log

(

1 +
λ

αr+1

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log

(

1 +

(

α(k) − α(j)

α(j) − α(l)

)

β(l)

β(k)

)∣

∣

∣

∣

∣

.

Notice that, by (4) and (5),
∣

∣

∣

∣

∣

(

α(k) − α(j)

α(j) − α(l)

)

β(l)

β(k)
)

∣

∣

∣

∣

∣

≤ c10e
−c11B.

Further we have

| log(1 + z)| ≤ 2|z|
for |z| < 1/2. Thus there exists a c12 such that B < c12 or c10e

−c11B < 1/2 and so B < c12 or

|Λ| < 2c10e
−c11B

hence

log |Λ| < log(2c10) − c11B.

Therefore B < c13 or

log |Λ| < −c14B.
Thus, by (7),

B

logB
< c15 log 2|m|

hence

B < c16 log 2|m| log log(4|m|).
But now

x =
α(2)β(1) − α(1)β(2)

α(2) − α(1)

and

y =
β(1) − β(2)

α(2) − α(1)
.

whence

max(|x|, |y|) < c17 max(|β(1)|, |β(2)|).
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We have

|β(i)| = |γ(i)(η
(i)
1 )−b1 · · · (η(i)

r )−br |
≤ c18|m|1/nec19B

≤ c18|m|1/nec20 log(2|m|) log log(4|m|)

≤ (2|m|)c21 log log(4|m|)

�

Comments:
(1) A sharper version of Theorem 2 allows us to conclude that

max(|x|, |y|) < (2|m|)C ;

where C is effectively computable in terms of F .
(2) It is possible to extend the theorem to treat the following situation. Let [K : Q] < ∞.

For any θ ∈ K let

|θ| = max
σ

|σ(θ)|
where the max is taken over all embeddings σ of K into C which fix Q. Let F ∈ OK[x, y] be
a binary form with non-zero discriminant and degree at least 3, let µ ∈ OK with µ 6= 0. Then
there exists a positive number c which is effectively computable in terms of F and µ such that
if x and y are in OK and F (x, y) = µ then max(|x|, |y|) < c. The proof is essentially the same
as that of Thrm 17.

What other Diophantine equations can we treat?
Let m ∈ Z with m ≥ 2 and f ∈ Z[x]. Subject to some hypotheses we can study the equations

ym = f(x). (8)

If m = 2, (8) is known as a hyperelliptic equation and for m > 2 we have a superelliptic
equation. We will proceed with the case m ≥ 3, f ∈ Z[x], monic, with 2 simple roots.

Let d = [K : Q] <∞. There is a fundamental system of units η1, . . . , ηr in OK such that

(I) max
1≤i,j≤r

| log |η(j)
i || < cR,

where R is the regulator and c is a positive number which is effectively computable in terms
of d.

Given such a system, every unit η in U(K) can be expressed as

(II) η = η′ηb11 · · · ηbrr with b1, . . . , br ∈ Z,

and |η′| < c2 where c2 depends on d and R.
Let α ∈ OK with

|NK/Q(α)| ≤M.

Then there exists a positive number c3, which is effectively computable in terms of d,R and
M , such that there is a unit ǫ in OK for which

(III) |ǫα| < c3.

Let a be an ideal of OK. There exists an ideal b in OK with

(IV ) N(b) ≤
√

|D|
such that ab is a principal ideal.
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Theorem 18. Let f ∈ Z[x] be a monic polynomial with at least 2 simple roots. Let m ∈ Z

with m ≥ 3. Then there exists a positive number c, which is effectively computable in terms of
f and m, such that if x, y ∈ Z for which ym = f(x) then

max(|x|, |y|) < c.

For the proof we need the following result.

Lemma 19. Let m ∈ Z with m ≥ 2, f ∈ Z[x] be a monic polynomial with at least 1 simple
root α, and let K be the splitting field of f over Q. Suppose that x, y ∈ Z for which ym =

f(x). There exists a positive number c, which is effectively computable in terms of m, f and
γ, φ, δ ∈ OK with γφ 6= 0, such that

(x− α) =

(

γ

φ

)

δm,

with

max(|γ|, |φ|) < c.

Proof:
Let f(x) = (x − α)(x− α2) · · · (x − αn); here α2, . . . , αn need not be distinct, but α 6= αi for
i = 2, . . . , n. Let c1, c2, . . . denote positive numbers which are effectively computable in terms
of f and m.

Let η1, . . . , ηr be a fundamental system of units satisfying I. Put

∆ =
n
∏

i=2

[α− αi],

so ∆ is a non-zero ideal of OK.
Let x, y ∈ Z for which ym = f(x). If x = α we may take γ = φ = 1, δ = 0 and the result

holds, so we may assume that x 6= α. We have

[y]m = [x− α][x− α2] · · · [x− αn] (1)

as an equation of ideals. Let ℘ be a prime ideal which divides [x − α]. Let l1, . . . , ln denote
the exact power of ℘ which divides [x − α], [x − α2], . . . , [x − αn] respectively. Let lj =
max(l1, . . . , ln).

First suppose that j = 1 so that l1 = lj. Then

℘li | [x− α] − [x− αi] = [α− αi] for i = 2, . . . , n.

Therefore
℘l2+···+ln | ∆.

By (1) l1 + · · · + ln ≡ 0 (mod m). Put l1 ≡ a (mod m) with 0 ≤ a ≤ m − 1. Then either
a = 0 or a ≤ (m− 1)(l2 + · · · + ln).

Next suppose j ≥ 2. Then

℘l1 | [x− α] − [x− αj ] so ℘l1 | [α− αj],

hence ℘l1 | ∆.
In both cases l1 ≡ a (mod m) where a is bounded from above by the power of ℘ which

divides ∆m−1. In particular, there exists ideals a, b ∈ OK with

[x− α] = abm (2)

where a | ∆m−1. By IV there exist ideals a1, b1 ∈ OK with aa1 and bb1 principal and with

max(N(a1), N(b1)) < c1.
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Put aa1 = [γ1] and bb1 = [δ1], with γ1, δ1 ∈ OK. Then, from (2),

a1b
m
1 [x− α] = aa1(bb1)

m

so

a1b
m
1 [x− α] = [γ1][δ1]

m. (3)

Note that a1b
m
1 is principal, say equal to [φ1] with φ1 ∈ OK. Observe that

N([φ1]) = N(a1)N(b1)
m < c2.

Further, since a | ∆m−1,

N([γ1]) = N(a)N(a1) ≤ N(∆)m−1N(a1) < c3.

By III we can find associates (equivalent up to multiplication by a unit) γ2 and φ2 of γ1 and
φ1 such that

max(|γ2|, |φ2|) < c4.

Therefore, by (3)

x− α = ǫ

(

γ2

φ2

)

δm1 ,

for some unit ǫ ∈ OK. By I and II we can find units ǫ1, ǫ2 ∈ OK such that

ǫ = ǫ1ǫ
m
2

with |e1| < c5. Therefore

x− α =

(

ǫ1γ2

φ2

)

(ǫ2δ1)
m,

and we put γ = ǫγ2, φ = φ2 and δ = ǫ2δ1. We have |ǫδ2| < c6 and |φ2| < c4 so the result
follows. �

Proof of Theorem 18 Suppose that x and y are integers for which ym = f(x). Let c1, c2, . . .
denote positive constants that are effectively computable in terms of of m and f . Let f(x) =
(x− α1)(x− α2) · · · (x− αn) with α1 and α2 simple roots of f . Put K = Q(α1, . . . , αn) so K
is the splitting field of f . By Lemma 19, there exist γ1, γ2, φ1, φ2, δ1, δ2 in OK with γ1φ1 6= 0
and γ2φ2 6= 0 such that

x− αi =

(

γi
φi

)

δmi for i = 1, 2 (4)

with

max(|γ1|, |γ2|, |φ1|, |φ2|) < c1 (5)

Therefore

(x− α1) − (x− α2) =

(

γ1

φ1

)

δm1 −
(

γ2

φ2

)

δm2

Accordingly
γ1φ2δ

m
1 − γ2φ1δ

m
2 = φ1φ2(α2 − α1).

We view this as a Thue equation
g(x, y) = µ

in OK with g(x, y) = γ1φ2x
m − γ2φ1y

m and µ = φ1φ2(α2 − α1). Since γ1φ2 6= 0 and γ2φ1 6= 0
and m ≥ 3 we have by a generalization of Thrm 17 to algebraic number fields that

max(|δ1|, |δ2|) < c2 (6)

By (4), (5), and (6) we see that |x| < c4 and so |y| < c5. �
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The hyperelliptic equation y2 = f(x) in integers x and y with f ∈ Z[x] a monic polynomial
and at least 3 simple zeros has the property

max(|x|, |y|) < c,

where c is effectively computable in terms of f . The proof depends upon a reduction of the
problem to a Thue equation in OK for a finite extension K of Q.

Bounds for linear forms in logarithms.

Lemma 20. Let L and K1, . . . , Kn be integers with 0 ≤ K1 < K2 < · · · < KN < L. Let E be

a set of at least L non-zero complex numbers. There exist a1, . . . , an ∈ E such that

det







(

a
Kj

i

)

i=1,... ,n
j=1,... ,n





 6= 0.

Proof:
By induction on n. True for n = 1. Suppose true for n−1. Then there exists a1, . . . , an−1 ∈ E
such that

A = det







(

a
Kj

i

)

i=1,...n−1
j=1,... ,n−1





 6= 0.

Consider the polynomial P (z) defined by

P (z) = det













aK1
1 · · · aK1

n−1 zK1

aK2
1 · · · aK2

n−1 zK2

...
...

...
...

aKn
1 · · · aKn

n−1 zKn













= Az + · · ·
Notice that a1, . . . , an−1 are roots of P (z) so

P (z) = (z − a1) · · · (z − an−1)Q(z)

for Q(z) ∈ C[z] with degQ = Kn − (n− 1). Since Card (E − {a1, . . . , an−1}) ≥ L− (n− 1) >
Kn − (n− 1). Therefore there is an element an ∈ E \ {a1, . . . , an−1} which is not a root of Q.
Therefore P (an) 6= 0 and the result follows by induction. �

Proposition 21. Let α1, α2, β ∈ C with α1α2 6= 0. Let K,L,R1, R2, S1, S2 ∈ Z+ and P ∈
C[x, y] be a non-zero polynomial with degree at most K − 1 in x and degree at most L− 1 in

y. Put R = R1 +R2 − 1 and S = S1 + S2 − 1. Suppose that

Card {αr1αs2 | 0 ≤ r < R1, 0 ≤ s < S1} > L

and that

Card {r + sβ | 0 ≤ r < R2, 0 ≤ s < S2} > (K − 1)L.

Then for some r and s with 0 ≤ r < R and 0 ≤ s < S we have

P (r + sβ, αr1α
s
2) 6= 0.

Proof:
Note that we may assume WLOG that P (x, 0) 6= 0 since otherwise P (x, y) = P1(x, y)y

t for
t ∈ Z+ and since α1α2 6= 0 we could replace P by P1.
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Suppose that

P (r + sβ, αr1α
s
2) = 0 (1)

for 0 ≤ r < R and 0 ≤ s < S. Let us write

P (x, y) =
n
∑

i=1

Qi(x)y
Ki

with 0 = K1 < K2 < · · · < Kn < L. Put E = {αr1αs2 | 0 ≤ r < R1, 0 ≤ s < S1}. By assumption
Card (E) > L and so by Lemma 20 there exists a subset L of

{(r, s) | 0 ≤ r < R1, 0 ≤ s < S1}
of cardinality n such that

B = det







(

(αr1α
s
2)
ki

)

i=1,... ,n
(r,s)∈L





 6= 0.

We now consider the polynomial Pr,s(x, y) for each pair (r, s) in L given by

Pr,s(x, y) = P (x+ r + sβ, αr1α
s
2y)

so

Pr,s(x, y) =
n
∑

i=1

Qi(x+ r + sβ)(αr1α
s
2)
KiyKi (2)

We now define the polynomial ∆(x) by

∆(x) = det







(

Qi(x+ r + sβ)(αr1α
s
2)
Ki

)

i=1,... ,n
(r,s)∈L





 .

If Qi(x) = bix
mi + · · · with bi 6= 0 for i = 1, . . . , n then

∆(x) = b1 · · · bnBxm1+···+mn + · · ·
with b1 · · · bnB 6= 0. In particular,

deg ∆(x) = m1 + · · ·+mn ≤ n(K − 1) ≤ L(K − 1). (3)

We may view (2) as a system of n linear equations in the variables Z1, . . . , Zn where Zi = yKi

for i = 1, . . . , n. Then, by Cramer’s Rule there exist polynomials Sr,s(x) ∈ C[x] for each
(r, s) ∈ L such that

∆(x) = Z1∆(x) =
∑

(r,s)∈L

Pr,s(x, y)Sr,s(x). (4)

Note that by (1) for each (r, s) ∈ L,

Pr,s(r0 + s0β, α
r0
1 α

s0
2 ) = P (r0 + s0β + r + sβ, αr+r01 αs+s02 )

= P ((r0 + r) + (s0 + s)β, αr+r01 αs+s02 ) = 0

for 0 ≤ r0 < R2 and 0 ≤ s0 < S2. Therefore by (4)

∆(r0 + s0β) = 0

for 0 ≤ r0 < R2 and 0 ≤ s0 < S2. By assumption

Card {r0 + s0β | 0 ≤ r0 < R2, 0 ≤ s0 < S2} > (K − 1)L.

Therefore deg ∆(x) > (K − 1)L contradicting (3). �
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In 1844, Catalan conjectured that the only two consecutive positive integers which are pure
powers are 8 and 9. In particular, he conjectured that the only solution of

xm − yn = 1 (5)

in integers x, y,m, n with x, y,m, n > 1 is given by x = n = 3, y = m = 2.
Recently Mihailescu proved that Catalan’s conjecture is correct. In 1976, Tijdeman had

reduced the problem to a finite computation.

Theorem 22. (Tijdeman) There exists a positive effectively computable number c such that if
x, y,m, n > 1 are integers satisfying (5) then max(x, y,m, n) < c.

Proof:
Let c1, c2, . . . be positive effectively computable numbers. We may assume WLOG that m and
n are primes p and q and we can consider the equivallent equation to (5) given by

xp − yq = ǫ, (1)

with p > q and x, y > 1 and ǫ from {−1, 1}.
Initial Assumption: min(p, q, x, y) > c1.
Therefore we may suppose that p and q are odd. Note by (1) gcd(x, y) = 1. Further since

p > q, we see that x < y. Notice from (1) that

xp = yq + ǫ = (y + ǫ)(yq−1 − ǫyq−2 + e2yq−3 − · · ·+ ǫq−1).

Let d = gcd(y + ǫ, yq−1 − ǫyq−2 + e2yq−3 − · · ·+ ǫq−1). Then

yq = (−ǫ+ (y + ǫ))q = (−ǫ)q +

(

q

1

)

(−ǫ)q−1(y + ǫ) + · · ·+ (y + ǫ)q

so

yq − (−ǫ)q
y + ǫ

=

(

q

1

)

(−ǫ)q−1 +

(

q

2

)

(−ǫ)q−2(y + ǫ) + · · · + (y + ǫ)q−1. (2)

Thus yq+ǫ
y+ǫ

= q + (y + e) · t for some integer t. Therefore d|q and so either d = 1 or d = q. If

d = q then by (2) and the fact that q is odd we see that q divides yq+ǫ
y+ǫ

and q2 6 | yq+ǫ
y+ǫ

. Therefore

there is an integer δ with δ ∈ {−1, 0} such that, for some s ∈ Z+,

y + ǫ = qδsp (3)

Similarly

yq = xp − ǫ = (x− ǫ)
(

xp − ǫ

x− ǫ

)

and so there exists a γ ∈ {0,−1} and a positive integer r such that

x− ǫ = pγrq. (4)

Note that r, s > 1 and if γ = −1 then p | r and similarly if δ = −1 then q | s. Thus

pγrq ≥ 2q−1 and qδsp ≥ 2p−1.

Now by (1),(3) and (4) we have

(pγrq + ǫ)p − (qδsp − ǫ)q = ǫ. (5)

¿From (1), (3) and (4),

2prpq ≥ (rq + 1)p + 1 ≥ xp + 1 > yq ≥ (qδsp − 1)q ≥ spq

(2q)q
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and similarly

2qspq ≥ (sp + 1)q + 1 ≥ yq + 1 > xp ≥ (pγrq − 1)p ≥ rpq

(2p)p
.

Thus, since p > q > c1,
spq ≤ 2p+qqqrpq ≤ 4pqqrpq

hence

s ≤ 4
1
q q

1
p r ≤ 2r (6)

Further we have
rpq ≤ 2p+qppspq ≤ (4p)pspq

hence

r ≤ (4p)
1
q s (7)

We shall first prove that q is much smaller than p. It follows from (3) and (4) that

max((x− 1)P , (y − 1)q) < xp = yq + ǫ < min((x+ 1)p, (y + 1)q). (8)

Therefore
pγprqp − qδqspq = (x− ǫ)p − (y + ǫ)q 6= 0.

Plainly pγrq ≥ 2q−1. Either 2q−1 > 12p3 or 12p3 ≥ 2q−1 in which case

log 12 + 3 log p ≥ (q − 1) log 2

hence

q < c2 log p. (9)

Assume now that 2q−1 > 12p3 so in particular pγrq > 12p3.
Now x− ǫ = pγrq so

∣

∣

∣

∣

∣

x

pγrq
− 1

∣

∣

∣

∣

∣

=
1

pγrq
, (10)

xp − yq = ǫ so
∣

∣

∣

∣

yq

xp
− 1

∣

∣

∣

∣

=
1

xp
(11)

and y + ǫ = qδsp so
∣

∣

∣

∣

∣

y

qδsp
− 1

∣

∣

∣

∣

∣

=
1

qδsp
(12)

Since | log(1 + z)| ≤ 2|z| for |z| < 1
2

we have from (10), (11) and (12) and the fact that p > q
and −1 ≤ γ, δ ≤ 0, that

∣

∣

∣

∣

∣

log
x

pγrq

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log

(

1 +

(

x

pγrq
− 1

))∣

∣

∣

∣

∣

<
2

pγrq

hence

|p log x− p log(pγrq)| < 2p2r−q (13)

and that

|p log x− q log y| =

∣

∣

∣

∣

∣

log

(

1 +

(

xp

yq
− 1

))∣

∣

∣

∣

∣

≤ 2

xp
≤ 2pr−q (14)

and finally that
|q log y − q log(qδsp)| ≤ 2q1−δs−p ≤ 2q2s−q < 2p2s−q
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and so by (7)

|q log y − q log(qδsp)| < 8p3r−q. (15)

Therefore by (13), (14), and (15)

|p log(pγrq) − q log(qδsp)| < 12p3r−q

Put Λ1 = p log(pγrq) − qlog(qδsp) so

Λ1 = p log pγ − q log qδ + pq log
(

r

s

)

.

We have

|Λ1| < 12p3r−q. (16)

We may employ Thrm 2 with α1 = p, α2 = q, α3 = r
s
, d = 1 and n = 3 to conclude that since

A1 = p, A2 = q < p and A3 = 2r (since s ≤ 2r),

|Λ1| > exp(−c3(log p)3 log r). (17)

Comparing (16) with (17) we find that

rq ≤ 12p3rc3 log3 p < rc4 log3 p (18)

Hence

q < c4 log3 p. (19)

It follows from (3), (1) and (8) that

(pγrq + ǫ)p − qqδsqp = xp − (y + ǫ)q 6= 0 (20)

we have by (14) and (15) that

|p log x− q log(qδsp)| ≤ 2x−p + 2q2s−p.

Further since xp = yq + ǫ and y + ǫ = qδsp,

xp ≥ yq − 1 > 2
q
2 y > 2qy > sp.

Thus
|p log(pγrq + ǫ) − q log(qδsp)| < 4q2s−p

so
∣

∣

∣

∣

−qδ log q + p log
(

pγrq + ǫ

sq

)∣

∣

∣

∣

< 4q2s−p.

Put Λ2 = −qδ log q + p log
(

pγrq+ǫ
sq

)

and then

|Λ2| < 4qss−p. (21)

We now apply Thrm 2 with A1 = q < p, A2 ≤ 5psq and B ≤ p to give a lower bound for |Λ2|.
Since (20), Λ2 6= 0 we have

|Λ2| > exp(−c6 log2 p log(5psq)). (22)

On comparing (21) and (22) we find that

sp ≤ 4q2(5psq)c6 log2 p

and since by (19), q < c5 log3 p,

sp ≤ sc7 log5 p,

hence
p < c7 log5 p



LINEAR FORMS IN LOGARITHMS AND DIOPHANTINE EQUATIONS C.L. STEWART 39

and so p < c8. Therefore, by (19), q < c9.
We may now suppose that p and q are fixed and so by Thrm 18 x and y are bounded. The

result now follows subject to our initial assumption that x, y,m and n exceed c1.
To be Continued �

The initial assumption can be dealt with by appleaing to two results due to Shorey +
Tijdeman. Let P ≥ 2 and let S be the set of integers composed of primes ≤ P .

Theorem 23. Let τ ≥ 1 and let P ≥ 2. The exists a positive number C with is effectively

computabale in terms of τ and P .such that all solutions of the equation axm − byn = bk in
integers a, b, x and k from S and m,n and y with x, y,m, n > 1 and with gcd(axm, k) ≤ τ

satisfy

max(|a|, |b|, |k|, x, y,m, n) < C.

Theorem 24. Let τ ≥ 1 and let m ∈ Z with m > 1 and let p ≥ 2. There exists a positive
number c0 which is effectively computable in terms of τ, p and m, such that all solutions of the

equation

axm − byn = k

in a, b and k from S and integers x, y and n with n, |x|, |y| > 1, mn > 4 and gcd(axm, k) ≤ τ
satisfy

max(|a|, |b|, |k|, |x|, |y|, n) < C0.

Returning to the proof of Thrm 22. note that if xp − yq = ǫ with x fixed then we may take
P to be the greatest prime factor of x and apply Thrm 23 to conclude that (x, y, p, q) < c11
and similarly if y is fixed. If p is fixed apply Thrm 24 and similarly if q is fixed.

One of the key tools in the proofs of Thrm 23 and Thrm 24 is a p-adic verstion of Thrm 2.
Let α1, . . . , αn be non-zero algebraic numbers of naive heights A1, . . . , An respectively. Put

K = Q(α1, . . . , αn) and d = [K : Q]. Let ℘ be a prime ideal of OK lying above the rational
prime p. For any fractional ideal A of K, let ord℘A denote the power of ℘ dividing A.

In 1977, van der Poorten proved:

Theorem 25. Let ℘ be a prime ideal of OK lying above the rational prime p. There exist

effectively computable positive numbers c and c0 such that

ord℘ α
b1
1 · · ·αbnn − 1 < (cnd)c0n

pd

log p
logA1 · · · logAn log2B,

for all rational integers b1, . . . , bn of absolute value at most B(≥ 2) for which αb11 · · ·αbnn 6= 1.

There were some mistakes in van der Poorten’s argument but they were fixed by Yu in 1989.
It is possible to use Thrm 25 to treat generalizations of the Thue equation. For any n ∈ Z let

P (n) denote the greatest prime factor of n with the convention that P (0) = P (1) = P (−1) = 1.
In 1977 Shorey, van der Poorten, Tijdeman and Schinzel proved the following result.

Theorem 26. Let f be a binary form with integer coefficients, non-zero discriminant and

degree at least 3. There exists a positive number C which is effectively computable in terms of
f such that if x and y are coprime integers with f(x, y) 6= 0 then

P (f(x, y)) > C log log z,

where z = max(|x|, |y|, 3).
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Notice that this implies the finiteness of Thue equation f(x, y) = m. Let p1, . . . , ps be
primes. The equation

f(x, y) = pz11 · · · pzs

s

in integers x and y and non-negative integers z1, . . . , zs is known as a Thue-Mahler equation.
By Thrm 26 it has only finitely many solutions.

Let α1, α2 be non-zero algebraic numbers. Let d = [Q(α1, α2) : Q]. Let logα1 be a branch
of the logarithm evaluated at α1 and let logα2 be a branch of the logarithm evaluated at α2.
Let b1, b2 be non-zero integers and put

Λ = b1 logα1 + b2 logα2.

Put Ai = max(h(αi)
d, e| logαi|, e) for i = 1, 2. We now prove a result due to Mignotte and

Waldschmidt, later established by Laurent by a different method.

Theorem 27. There exists a positive number C, which is effectively computable in terms of

d, such that if Λ 6= 0 then

|Λ| > exp(−C logA1 logA2 log2B′)

where

B′ = max

(

3,
|b1|

logA2
+

|b2|
logA1

)

.

Proof:
We may assume WLOG that b1 > 0, b2 < 0 and that α1 and α2 have absolute value at least
1. Replacing b2 by −b2 we can write

Λ = b2 logα2 − b1 logα1

with b2 and b1 positive.
Let K ≥ 3, L ≥ 2, R1, R2, S1, S2 be positive integers. Put N = KL, R = R1 + R2 − 1 and

S = S1 + S2 − 1. If the conditions

Card {αr1αs2 | 0 ≤ r < R1, 0 ≤ s < S1} > L (1)

Card {b2r + b1s | 0 ≤ r < R2, 0 ≤ s < S2} > (K − 1)L (2)

hold then the KL x RS matrix (make a choice for the indexing of the rows and columns)
((

rb2 + sb1
k

)

αlr1 α
ls
2

)

is of maximal rank N . For if not there exist ck,l ∈ C, not all zero, for k = 0, . . . , K − 1,
l = 0, . . . , L − 1 such that the sum of ck,l times the k, l-th column vector is the zero vector.
Equivalently the polynomial P (x, y) defined by

P (x, y) =
∑

0≤k<K
0≤l<L

ck,l

(

x

k

)

yl

of degree at most K − 1 in x and degree at most L − 1 in y is zero for x = rb2 + sb1 with
0 ≤ r < R2, 0 ≤ s ≤ S2 and y = αr1α

s
2 with 0 ≤ r < R1, 0 ≤ s < S2 which contradicts Prop

21.
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Suppose then that (1) and (2) hold. Then we can extract an N x N minor, from the N x
RS matrix, with non-zero determinant ∆. Thus

∆ = det

((

rjb2 + sjb1
ki

)

α
lirj
1 α

lisj

2

)

1≤i≤N
1≤j≤N

(3)

where (k1, l1), . . . , (kN , lN) is some ordering of the set {(0, 0), (0, 1), . . . , (0, L−1), (1, 0), (1, 1),
. . . , (K − 1, L− 1)} and (r1, s1), . . . , (rn, sn) is an ordering of the (r, s)’s chosen to make the
minor of maximal rank.

Strategy: we now compare estimates for |∆|.
Notice that

N
∑

i=1

ki = L
K
∑

k=1

k =
LK(K − 1)

2
=
N(K − 1)

2
.

Put

b = ((R− 1)b2 + (S − 1)b1)

(

K−1
∏

k=1

k!

)

−2

K2−K

.

Expand the determinant in (3). We see that there are N ! terms of the form EαE1
1 αE2

2 where

E is a product of binomail coefficients of the form
(

rb2+sb1
k

)

, E1 is a sum of lirj ’s and E2 is a

sum of lisj’s. Plainly 0 ≤ E1 ≤ NLR and 0 ≤ E2 ≤ NLS. Further since
(

x
k

)

= x!
k!(x−k)!

≤ xk

k!

for x ∈ Z+, 0 ≤ k ≤ x,

E ≤ (Rb2 + Sb1)
∑n

i=1
ki

N
∏

i=1
ki!

hence

E ≤ E∗ =
(Rb2 + Sb1)

N(K−1)/2

K−1
∏

k=1
(k!)L

.

Thus

h(∆) ≤ N !E∗h(α1)
NLRh(α2)

NLS

≤ NNbKN/2h(α1)
NLRh(α2)

NLS.

Observe that ∆ ∈ Q(α1, α2). Then

∏

(σ(∆)) =
u

v
with u, v ∈ Z, (u, v) = 1

where the product is take in over all embeddings σ of Q(α1, α2) in C which fix Q. We have

|v| ≤ h(∆) and 0 6= ∏

σ |σ(∆)| =
∣

∣

∣

u
v

∣

∣

∣ ≥ 1
|v|

.

Further |σ(∆)| ≤ h(∆)
1
d′ where d′ = [Q(∆) : Q]. Therefore

|∆| ≥ 1

|V |∏σ 6=id |σ(∆)|
hence

log |∆| > −DN logN − DKN log b

2
−DLN(R log h(α1) + S log h(α2)). (4)
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We now remark that

b ≤ (Rb2 + Sb1)

(

K−1
∏

k=1

kk−K
)

2
K2−K

≤ (Rb2 + Sb1) exp

(

2

K(K − 1)

K−1
∑

k=1

(k −K) log k

)

Note that
K−1
∑

k=1

k log k ≤ 2 log 2 + 3 log 3 +
∫ K−1

3
x log xdx

< 2 log 2 + 3 log 3 +
∫ K−1

3

(

x log x+
1

2
x
)

dx

< 2 log 2 + 3 log 3 +
1

2
x2 log x]K−1

3

< 2 log 2 + 3 log 3 +
1

2
(K − 1)2 log(K − 1) − 9

2
log 3

<
1

2
(K − 1)2 log(K − 1)

and
K−1
∑

k=1

log k = log(K − 1)! > log
(

K − 1

e

)K−1

.

Thus

b ≤ (Rb2 + Sb1) exp
(

2

K2 −K

(

1

2
(K − 1)2 log(K − 1) −K(K − 1) log

(

K − 1

e

)))

≤ (Rb2 + Sb1) exp
((

1 − 1

K

)

log(K − 1) − 2 log(K − 1) + 2
)

≤ (Rb2 + Sb1) exp

(

− log(K − 1) − log(K − 1)

K
+ 2

)

so

b ≤ Rb2 + Sb1
K − 1

· e2 ≤ Rb2 + Sb1
K

e3. (5)

We now introduce Λ′. We put

Λ′ = Λ · max
(

e
|Λ|LS

b2 (
LS

b2
), e

|Λ|LR
b1 (

LR

b1
)
)

.

Let ρ denote a real number larger than 1.

Lemma 28. If |Λ′| ≤ ρ−N+1/2 then

log |∆| ≤ −N2 log
ρ

2
+N logN +

KN log ρ

2
+
KN log b

2
+ ρLRN | logα1| + ρLSN | logα2|.

Proof:
We may suppose, WLOG, that b1| logα1| ≤ b2| logα2|. We have

Λ = b2 logα2 − b1 logα1.

Thus

logα2 =
Λ

b2
+
b1
b2

logα1.
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Put β = b1
b2

. Thus logα2 = Λ
b2

+ β logα1, hence α2 = αβ1e
Λ
b2 . By the multilinearity of the

determinant,

∆ = det

(

bki
2

ki!
(rj + sjβ)kiα

lirj
1 α

lisj

2

)

1≤i≤N
1≤j≤N

Notice that

α
lirj
1 α

lisj

2 = α
li(rj+sjβ)
1 e

Λlisj
b2 .

Now we put

e
Λlisj

b2 = 1 + Λ′Θi,j

where Θi,j = e

Λlisj
b2 −1
Λ′ . Thus

|Θi,j| ≤
b2(e

lisj |Λ|/b2 − 1)

LS|Λ|e|Λ|LS/b2
.

For x ∈ R+, ex − 1 ≤ xex, hence

|Θi,j| ≤
b2LS|Λ|
b2

eLS|Λ|/b2

LS|Λ|e|Λ|LS/b2
≤ 1.

Therefore

∆ = det

(

bki
2

ki!
(rj + sjβ)kiα

lirj+βsj

1 (1 + Θi,jΛ
′)

)

1≤i≤N
1≤j≤N

.

Accordingly the determinant ∆ can be expressed as

∆ =
∑

I⊆{1,... ,N}

(Λ′)N−|I|∆I (1)

and

∆I = det

(

φi(z1) · · · φi(zn)
Θi,1φi(z1) · · · Θi,Nφi(zn)

)







I ∈ I

I /∈ I

where φi(z) =
b
ki
2

ki!
zkiαliz1 , zj = rj + sjβ for 1 ≤ i, j ≤ N. We now define for each I ⊆ {1, . . . N}

the function ΦI(x) given by

ΦI(x) = det

(

φi(xz1) · · · φi(xzn)
Θi,1φi(xz1) · · · Θi,Nφi(xzn)

)







I ∈ I

I /∈ I
.

Notice that ΦI(1) = ∆I . We claim that ΦI(x) has a zero multiplicity ν2−ν
2

where ν = |I|. To
see this we expand each φi with i ∈ I as a Taylor series at the origin, say

φi(z) =
∑

n≥0

pi,nz
n.

We now plug the above Taylor series into the expression for the determinant and expand to
get

ΦI(x) =
∑

ni,i∈I

(

∏

i∈I

pi,ni
xni
i

)

det

(

zni

i · · · zni
n

Θi,1φi(x, z1) · · · Θi,Nφi(xzn)

)







I ∈ I

I /∈ I

where the summation indicies run independendently from 0 to ∞. Observe that if nγ = nψ for
γ, ψ ∈ I, γ 6= ψ then the corresponding term in the sum is zero since two rows in the associated
determinant are the same. Therefore we can restrict our attention to terms in the sum for
which n1, . . . , nν are all distinct. Hence for which n1 + · · ·+ nν ≤ 0 + 1 + · · ·+ ν − 1 = ν2−ν

2
.
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Thus Φi(x) has a zero of order ν2−ν
2

at 0. By the maximum modulus principle applied to the

analytic function ΦI(x)/x
ν2−ν

2 we find that

|∆I | = |ΦI(1)| =

∣

∣

∣

∣

∣

ΦI(1)

1
ν2−ν

2

∣

∣

∣

∣

∣

≤ ρ−
ν2−ν

2 max
|x|=ρ

|ΦI(x)|.

We deduce from (1) that

|∆| ≤ 2N max
0≤ρ≤N

ρ−(N− 1
2
)(N−ρ)− ρ2−ρ

2 max
I

max
|x|=ρ

|ΦI(x)|.

Observe that

min
0≤ν≤N

(

(N − 1

2
)(N − ρ) +

ρ2 − ρ

2

)

= min
0≤ν≤N

N2 −Nν − 1

2
N +

ν2

2

The min occurs at ν = N so is

N2 −N2 − N

2
+
N2

2
=
N(N − 1)

2
.

Therefore

|∆| ≤ 2Nρ−N(N−1)/2 max
I

max
|x|=ρ

|ΦI(x)| (2)

Futher

|ΦI(x)| ≤ N !

(

N
∏

i=1

(b2x(R + Sβ))ki

ki!

)

exp

(

N
∑

n=1

li(R+ Sβ)|x|| logαi|
)

(3)

and since β| logαi| ≤ | logα2|,
|ΦI(x)| ≤ N !(|x|b)(K−1)N/2 exp(|x|LRN log |α1| + |x|LSN | logα2|).

For N ≥ 6, 2NN ! ≤ NN , so from 2) and (3),

log |∆| ≤ − N2 log ρ

2
+
N log ρ

2
+N logN +

(K − 1)N log ρ

2
+

(K − 1)N log b

2
+ ρLRN | logαi| + ρLSN | logα2|,

as required. Lemma 28 Follows. �

We now compare our upper bound for log |∆|, obtained under the assumption that

|∆′| ≤ ρ−N+ 1
2 , with the lower bound (4). We find that

−2d logN − 2dK log b− 2dLR log h(α1) − 2dLS log h(α2) ≤
−N log ρ+ log ρ+ 2 logN + (K − 1) log ρ+ (K − 1) log b+ 2ρLR| logα1| + 2ρLS| logα2|.
So

N log ρ ≤(2d+ 1) logN + 3dK log b+K log ρ+ 2LR(ρ| logα1| + d log h(α1))

+ 2LS(ρ| logα2| + d log h(α2)).

Therefore, from the definition of logA1 and logA2,

N log ρ ≤ (2d+ 1) logN + 3dK log b+K log ρ+ 2L(ρ+ 1)(R logA1 + S logA2). (4)

Put B = max(log ρ, d(7 + logB′)) and take

K = [c2B logA1 logA2], L = [B], R1 = [B logA2]

S1 = ⌈B logA1⌉, R2 = ⌈cB logA2⌉, S2 = ⌈cB logA1⌉
where c is a real number with c > 1 to be choosen later.
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Notice that R1 ≥ L and S1 ≥ L hence if α1 and α2 are not both roots of unity then condition
(1) holds. The result follows easily if alpha1 and α2 are both roots of unity so we may suppose
(1) holds. Our argument now splits into two cases.
Case 1. The set {rb2 + sb1 | 0 ≤ r < R2, 0 ≤ s < S2} has R2S2 elements. Then

R2S2 ≥ c2B2 logA1 logA2 > (K − 1)L,

and so condition (1) and (2) apply. Now by (5), d log b ≤ B and so the right hand side of (4)
is at most

2(d+ 1) log(c2B2 logA1 logA2) + 3c2B2 logA1 logA2 + c2 log ρB logA1 logA2

+2(ρ+B(2(1 + 2c)B logA1 logA2) ≤ 4c212c(ρ+ 1) + 2c2)B2 logA1 logA2

< 6c(c+ 4ρ)B2 logA1 logA2 (5)

On the other hand

N log ρ = KL log ρ ≥ 1

2
c2 log ρB2 logA1 logA2.

Take ρ = c. Then comparing the lower bound with (5), using (4), we find that 1
2
c2 log c < 30c2

which is false for c > e60. Thus our assumption that |Λ′| ≤ ρ−N+ 1
2 is false hence |Λ′| >

exp((−N + 1
2
) log c), and so

|Λ| > exp((−N +
1

2
) log c) max

(

e|Λ|LS/b2(LS/b2), e
|Λ|LR/b1(LR/b1)

)

.

We may assume that |Λ| < (LS)−1 and |Λ| < (LR)−1 since otherwise the results holds. Then
1 + logL+ ∨R + logS < B2 logA1 logA2 hence

|Λ| > exp(−N2 log c).

Since N = KL < 2c2B logA1 logA2 and our results follows.
Case 2. The set {rb2 + sb1 | 0 ≤ r < R2, 0 ≤ s < S2} has fewer than R2S2 elements.

Then there exist integers r and s with |r| ≤ R − 1 and |s| ≤ S − 1 for which rb2 + sb1 = 0.
Accordingly,

|Λ| = |b1 logα1 + b2 logα2| =
b1
r
|r logα1 +

b2
b1
r logα2|

=
b1
r
|r logα1 − s logα2|.

Now by Prop 4 and the fact that for α algebraic of degree d,

H(α) ≥ 2dh(α)d,

our result follows. �

Lemma 29. Let N,Q, b1, . . . , bn be integers with N ≥ Q > 0. There exists a r ∈ Z+ with
[

N
Q

]

≤ r ≤ N and integers p1, . . . , pn such that

|bi − rpi| ≤ rQ−1/n +
|bi|

(2r − 1)
for i = 1, . . . , n.

Proof:
Consider the system of linear inequalities

|x0| ≤ Q

and

|x0
bi
N

− xi| < Q−1/n for i = 1, . . . , n.
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By Minkowski’s Linear Forms Theorem, Thrm 7’, there exists a non-zero vector
(p0, p1, . . . , pn) ∈ Zn+1 such that |P0| ≤ Q and

∣

∣

∣

∣

∣

p0
bi
N

− pi

∣

∣

∣

∣

∣

< Q−1/n for i = 1, . . . , n.

Multiplying (p0, . . . , pn) by −1 if necessary, we may suppose that 0 ≤ p0 ≤ Q. Note that
p0 6= 0 hence 0 < p0 ≤ Q.

Let r be the nearest integer to N/p0. Since N ≥ Q ≥ p0 > 0 we have N ≥ r ≥ [N/Q].
Further for 1 ≤ i ≤ n,

|bi − rpi| =

∣

∣

∣

∣

∣

r

(

p0bi
N

− pi

)

+

(

N

p0
− r

)

bi
N/P0

∣

∣

∣

∣

∣

≤ rQ−1/n +
1

2

|bi|
(r − 1

2
)
.

�

Estimate for linear forms in n logarithms from Thrm 27 and Lemma 29 :
Let α1, . . . , αn, αn+1 be non-zero algebraic numbers. We put K = Q(α1, . . . , αn+1) and

d = [K : Q]. We let b1, . . . , bn be non-zero integers. Let logα1, . . . , logαn+1 be determinations
of the logarithm of α1, . . . , αn+1 respectively. Let A1, . . . , An+1 be numbers for which

logAi ≥ max(d log h(αi)| logαi|, 1) for i = 1, . . . , n+ 1

and put
B = max(|b1|, . . . , |bn|).

Put
Λ = b1 logα1 + · · ·+ bn logαn + logαn+1.

Using an idea of Bombieri, two mathematicians Bilu and Bugeaud, proved from Lemma 29
and Thrm 27.

Theorem 30. Let ǫ > 0. Suppose that 0 < |Λ| < e−ǫB. There exists a positive number C,
which is effectively computable in terms of ǫ and A1, . . . , An, such that B < C logAn+1.

Note: This gives enough to prove Thrm 17 on Thue equations.
Idea of proof.
Replace |Λ| by r logα + log γ where

logα = p1 logα1 + · · ·+ pn logαn

and
log γ = (b1 − rp1) logα1 + · · · + (bn − rpn) logαn + logαn+1.

We apply Thrm 27 and choose pi as in Lemma 29. In particular take

N = Q[max(B1/2Q1/2, logAn+1Q
1+ 1

n ]

and then choose Q so that B ≥ N ≥ Q ≥ 1 appropriately to get a contradiction.


