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. CHAPTER 4
Primitive Divisors of Lucas and Lehmer Numbers

C. L. STEWART
Trinity College, Cambridge

- 1. INTRODUCTION

Let A and B be non-zero integers of an algebraic number field K of degree
. A prime ideal p of K is called a primitive divisor of 4" — B"if p|[4" — B"]
and pJ[A™ — B™] for 0 <m < n; here [x] denotes the principal ideal
generated by x in K, Schinzel [11] proved that if ({[A], [B] = 1 and 4/B is

‘not a root of unity then 4™ — B" has a primitive divisor for all n > ny(d)

where d is the degree of A/B over Q and n,(d) is effectively computable: This
extended earlier work of Postnikova and Schinzel [8]. By utilizing the
contribution of Baker [3] which appears in this volume we are able to make
the function ny(d) completely explicit. We prove:

TueoreMm 1. If ([A], [B]) = | and A/B is not a root of unity then A" — B* has
a primitive divisor for all n > max{2(2* — 1), e*>2d®’} where d is the degree
of A/B.

Theorems of this nature were fitst established for the rational numbers by
Bang [4], Zsigmondy [16] and Birkhoff and Vandiver [5]. In [5] and [16]
it was shown that if ¢ and b are coprime non-zero rational integers with
a # +bthena" — b" has a primitive divisor for n > 6. (Bang dealt only with
the case b = 1). Similar results have been obtained for the Lucas numbers
tsty ... defined by = = Y~ forn>0,

where o + f and «f are relatively prime non-zero integers (so that o, f§ are
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roots of a quadratic equation) and a/f is not a root of unity. A primitive
divisor of t,, is a prime p which divides ¢, but does notdivide (@ — f)*t, ... 1,1

In 1913 Carmichael [ 7] proved that if « and § are real then ¢, has a primi-
tive divisor for n > 12 and in 1955 Ward [15] proved the analogous result
for the Lehmer numbers u,, u,, . .. defined by

U, = (D:H - ﬁn)/(mﬁ T Bﬂ), n > 01

where 0 1s 1 if n1s odd and 2 if n 1s even, subject to the weaker condition that
( + B)* and ap are relatively prime non-zero integers with /8 not a root of
unity; a primitive divisor of a Lehmer number «, is a prime p which divides
u, but not (¢ — B)%(ax + H*uy...u,_,. Some Lucas, similarly Lehmer,
sequences have a number of terms which do not possess a primitive divisor.
Carmichael [ 7] gives the example of the Lucas sequence generated by « and
B where o 4+ =1 and off = 2, This sequence and the related Lehmer
sequence have no primitive divisors for the terms with indices 1, 2, 3, 5, 7, §,
12, 13 and 18.

In [11] Schinzel removed the restriction that « and f be real; he proved
that all Lucas and Lehmer numbers have primitive divisors for n sufficiently
large. We observe that as a consequence of Theorem 1 every Lucas number
t, with n > e*°22%7 possesses a primitive divisor; for the Lehmer numbers
u, the condition n > ¢*24%" is sufficient. In fact, we are able to improve
upon the above results considerably. We prove

THEOREM 2. There are only finitely many Lucas and Lehmer sequences whose
nth term, n > 6, n # 8, 10 or 12, does not possess a primitive divisor and these
sequences may be explicitly determined.

We see immediately from Theorems 1 and 2 that all Lucas numbers ¢, and
Lehmer numbers 4, with n > 6, n # 8, 10 or 12 which do not have a primi-
tive divisor are, in principle, explicitly computable. Such a computation,
however, could only be effected in practice, subject to certain refinements in
our estimates, with the aid of a modern computing machine.

We observe that one can prove, by reference to the fact that the p-adic
analogue of the equation y? = x> -+ k has only finitely many solutions in a
fixed algebraic number field, that for the Lucas sequences the restriction
n>6,n# 8 100r121n Theorem 2 may be replaced by n > 4, n # 6.(Details
‘will be supplied in a later note on the subject.) Theorem 2 is, however, a best
possible result for Lehmer sequences. We have
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THEOREM 3. For each integer m < 12, m # 7, 9 or 11, there exist infinitely
many Lehmer sequences {u,} for which u,, does not have a primitive divisor.

We mention, finally, that results concerning primitive divisors of Lucas
and Lehmer numbers have proved useful in the resolution of certain problems
concerning Diophantine equations, for example the equation x2 + 7 = 2°;
see [ 10] for references to work in this connexion.

2. PRELIMINARIES

Let f(x, y) denote a homogeneous binary form with integer coefficients
and assume that f(x, 1) has at least three distinct roots. Further let m be a
non-zero rational integer. Baker proved (see { 1] and Theorem 4.1 of [2])

LEMMA 1. If f{x,y) = m for integers x and y then

max{[x|, [yl} < Cq

where C, is a number which is computable in terms of m and the coefficients

of J.

We now require a precise estimate from below for a special linear form in
two logarithms. We shall deduce this from recent work of Baker [3]. Let «
be an algebraic number of height at most A(>4) and degree d; further let b,
and b, denote integers with absolute values < B(=>4). Set

A = b, log(—1) + b, loga (1)

where the logarithms are assumed to take their principal values. We prove

LEMMA 2. If A # 0 then
|A] > exp(—Clog 4 log B)
ﬁ'}l" C = 2435(3‘1)49'
The above value for C improves upon that given by Theorem 2 of {3].

Baker’s proof of Theorem 2 may be split into two parts, In the first part he
establishes an estimate for

AN =b,loga, +...+ b,loga,
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subject to the condition |
[K(«i%,...,0/9: K] = ¢" (2)

for some prime g = 7 where K = Q(ay, ..., a,). In fact for this part of Baker’s

argument it suffices to choose the parameter k, which arises in the proof, so
that

kefz ?__‘ 214(nd)2
where ¢ = 1/(3n). Thus subject to (2) we have

IAf > B—-C1ﬂiogﬂ’

where C; = k2. On setting #n = 2 and g = 7 we conclude that if [ K{a}/’,
23 "): K] = 49 and if A’ # 0 then

‘bl log oy + bz 10g 5‘:2‘ ~ B—ﬂzlnﬂ.«hlagdzloglogA; (3)

for C, = 2384348 where d = [K: Q]. (Recall that 4; > 4). We are able to
deduce Lemma 2 from (3) by an argument which is different from that

utilized by Baker for the second part of his proof and which, furthermore,
leads to a sharper estimate for |A].

Proof of Lemma 2. Recall that
A =b;log(—1)+ b, logu.

We may assume that b,b, # 0 for otherwise the lemma plainly holds.
Similarly we may assume that « is not a root of unity.
Let { = ™7 where r is the smallest integer > 1 such that e®7""" is not

an element of Q(a, {). Set K (= O, {). Clearly D < 6d where D = [K,: Q]
and thus we may write

A=0>bilog{+ b,loga

where b, = 7'b; < 2DB and the logarithms take their principal values. We
shall now prove that A may be written as a linear form in { and y only where
K, ("7, 17) is an extension of degree 49 over K.

We first show that if, for some y 1n K|,

=", 0<£s<D,

then 7° < 61D%log(4 + 1) where A is the height of «. This is certainly the
case if an integral prime ideal p of K, divides [«] for then p|[y] whence
p”'|[o]. If p lies over the rational prime p then we see, on taking norms, that
p™ divides the denominator of the norm of [a]. Thus 4% > p™ = 27 and so
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DlogA = 7' log 2. 1C)

The argument also applies if p|[«~']. If no prime ideal divides either [l
or [~ 1], then «, and thus also y, is a unit. Let ¢ be the field automorphism
of K, that sends v to its conjugate of largest absolute value. We may then
write

(@) = o({) (o(p)"

It follows from a result of Blanksby and Montgomery [6] that
lo(p)| > 1 + (30D? log 6D) ™,
while, (see p. 5 of [12]), |o(e)| < 4 + 1. Thus
log(4 + 1) > 7*log(l + (30D?log 6D)"%).
Since log(l + 1/x) > 1/(x + 1) for x > 1 we have
7t < (1 + 30D? log 6D) log(4 + 1) < 61D log(4 + 1) (5)

as required.
We now construct, as far as possible, a sequence

o = {1y vy = (293, ...

where the y,’s are in K. The sequence terminates for some ¢t 2 0 satisfying (5)

and on setting y, = y we may write
Say It

& = (*y

for some integer s with 0 < 5 < D. Therefore

loga = slog{ + 7' logy + s, 2ni
where the logarithms take their principal values; here s, € 7'. Thus
loga = s, log{ + 7'logy
where s, = s + 25,7 < 5D7'. Accordingly
| A=Blogl{+ B,logy
with B, = b} + b,s, and B, = 7'b,. We note that
B’ = max{4,]B,|,|B,|]] < 7"*'DB. (6)

By construction [K{{V"): K1 = 7 and, in fact, [K ({7, y!"): K] = 49
for otherwise, by Lemma 4 of [3], we could write y = {*y/,, for some ¥, ,



84 | - C. L. STEWART

in K, and some integer s, contradicting our choice of y. Thus from (3) we
have |

|A} > exp(—C, log A’ log B

where A’ is the larger of 4 and the height of y and where C, = 2°%4D*®,

Since D < 64 it is clear that to prove the lemma we need only verify the
ineguality

log A'log B’ < 4D log A log B. (7)
To this end we note first that, by Lemma 1.4 of [13],
|A] > exp(—2d Blog 34)
and so we assume that
2dBlog3A > Clog Alog B
and thus
B> 2400‘143' (8)
We next estimate 4. We have
y = (7ol
and by Lemma 5 of [ 3], we deduce that
A’ < 29(A + DT AP 2D+ 4@ DIT
whence
log A’ < D+ {(D+ 1)log A}/7. (9
From (6), (8) and (9) we have
log A'log B’ < max{4Dlog7, 6DlogB, 4(D + 1)log A)(log7")/7,
8(D + 1) log A log B/7'}.

If t =0 then A’ = A and B’ € 2DB whence (7) plainly holds. For ¢ = 1

inequality (7) follows from (4), (5) and (8). This completes the proof of the
lemma.

3. FURTHER PRELIMINARY LEMMAS

Following Schinzel, we set Q(A4/B) = K., A/B = a/ff where « and § are
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integers in K and ([«], [#]) = b. Let S be the set of all isomorphic injections
of K, in the complex field and set

Ha/p) = log | | max{|a(s)}, |o(B)|} — log ND,

gy

where N denotes the absolute norm in K. Plainly 8(«x/f) is independent of
the choice of o, § in K,

We note that by assumption A/B, and thus also «/B, 1s not a root of unity.
We assume, without loss of generality, that |«| > ||. We then prove

LEMMA 3. For n > 0 we have
log2 + nlogja| > log|o" — B" = nlogla} — Clog(n + D(d + 8(e/P))
where C = 2435(3d)*°. |

Proof. We have
loga” — 7| = nlogle| -+ log|(B/e)" — 11,

Now for any complex number z, either 4 < |¢* — 1| or
3z — ikn| < Je* — 1]

for some integer k. On setting z =n log(fi/o) where thellogarithm takes ifs

principal value, it is clear that the proof reduces to establishing a good lower
bound for

A = |n log(B/e) — ik}

over all integers k. Plainly we may assume that k¥ < 2n whence, on noting

that A 3 0 since o/ is not a root of unity, we have from Lemma 2 that for
n > 0,

Inlog(B/m) — klog(—1)| > exp (—C log A4 log(n + 1)), (10

where A(=4) denotes the height of /¢ and C = 2“"'*”(34:"1)“lg The coefficients
of the 1rreducibie polynomial

No~ T (6(B)x ~ o(w)

aesS

are rational integers and their absolute values do not exceed

No™* [T (B + lo@)]) < 2%*.

e LY

Thus log A < d + 6(/p), and the lemma now follows from (10),
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Let @ (x, y) denote the nth cyclotomic polynomial in x and y. We have
LeMMA 4. If p is a prime ideal of K which divides [®,{A, B)] for n > 2(2¢ — 1)
and if p is not a primitive divisor of [A" — B"] then

ord, @,(4, B) < ord, n.

Proof. This is Lemma 4 of [ 11].

4. PROOF OF THEOREM 1

Assume that n > 2(2% — 1). We have
q)n(As B) = B? ("}q)n(A/ B, 1) = B* {"}{Dn(m/ ﬁ! 1) == (B/ ﬁ)tﬂ"}q)u(m& B)

and since [B/f] = b~ !, where b is now considered as an ideal in K, we have

[B,(4, B] = b~"[0,(x, B
Thus

(d/1) 10g|Ng;o®@,(A, B)| = log|N®,(w, B)| — ¢(n) log Nb,
where N denotes the norm from K, to Q. The right-hand side is given by
(X Y uln/m)logl(o(@)" — (o(B)") — H(n)log Nd

aeS min

which, by Lemma 3, is

> ¢(nba/f — | Z log2 + Cd(d+ 8(e/F)} 2. logim + 1)} (i 1)

m|n min
p{nimy= ~1 uinimy =1

for C = 2*3%(3d)*°. On setting g(n) = 2°® where w(n) denotes the number
of distinct prime factors of n we see that the sum in curly brackets in (11) is
less than

Cdd + O/ logn,  n >3,

whence

(@/) 10g|N ,o®,(A, B)| > ¢(mb(o/p) — Cd(d + 6(c/B)aln)logn.  (12)

From Lemma 4 it follows that A® — B" has a primitive divisor whenever
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NgioP. (A, B) > ', and from (12) this is certainly the case i

(6(n)/q(n) log n) > Cd(24/6(x/B) + 1} (13)
To evaluate (13) we first establish a lower bound for 6(w/f). We have

Ho/B) = log [ | max{le(e/p)|,1} + log Nf — log ND.

ael
If /B is not an integer then { B8] # b and thus
9(&/6) = log NS — log Nb = log 2. (14)

On the other hand if «/f is an integer then by a result of Blanksby and
Montgomery (Theorem 1 of [ 6])

8(a/B) > (52d log 6d + 1)~ * (15)

Thus, from (13), (14), and (15), it foliows that A" — B" has a primitive divisor
for those n for which

(p(n)/q(n) log n) > 200 Cd*. (16)

We may assume that n > ¢**° for the theorem does not apply forn < ¢*°°,

We now estimate g(n) = 2°® from above, The number of distinct prime
factors of n is < x where

X x+1
[Ips<sn< ]l p (17)
e | =1

and p, denotes the ith prime. We first observe that
logn < (x + 1)log p.. 4
which by Theorem 3 of [9] is
< (x + D(log(x + 1) + log (2 log(x + 1))

Therefore, since n > ¢*°°, we may assume that x log x > 230, and thus, by
Theorem 10 of [9], that

Y logp > -89 xlogx. | (18)

psxlogx

From Theorem 3 of [9] we have p, > x log x whence from (17) and (18) we
conclude that -89 xlog x < log n and thus

x < (3log n)/loglogn.
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Therefore g(n) = 2°*" < 2* and so
gn) < n sotoriosn”
From Theorem 15 of [9] we have ¢(n) > n/2 lﬂg log n whence, for n > %3¢,

(d(m)/g(n) log n} > n*
Thus from (16) we see that if

n > (200 Cd%)3* > 324

then A® — B" has a primitive divisor. This concludes the proof.

5. PROOF OF THEOREM 2

We shall assume that @ and B are algebraic numbers for which «/f is not
a root of unity. Further we shall assume that (x + f)? and «f are coprime
non-zero rational integers. Thus o and # generate a sequence {¢,} of Lehmer
numbers. If, in addition, « + § is an integer then a and f also generate a
sequence {t,} of Lucas numbers. It is clear from the definition of Lucas and
Lehmer numbers and the identity

ot — p = g%(mﬁ)

that if p is a primitive divisor of u, or t, then p| ®,(a, §). It follows from Lemmas
5and 7 of [ 14] that for n > 6, #8, 10 or 12, u, and, when a + f is an integer,
t, have a primitive divisor whenever @,(a, f) is different from +1 and
+ P(n/(3, n); here P(m) denotes the greatest prime factor of m.

If follows from Theorem 1, since the degree of Q(a, f) is at most 4 that
u, and ¢, both possess a primitive divisor for n > C = ¢**24°7, To prove the
theorem we must therefore show that all of the <4C equations

G, f) = a (19)

with 6 <n< C; ns8 10 or 12, and with a given by one of +1 and
+ P{n/(3, ), have only finitely many solutions in algebraic numbers o and 3
as above. Plainly it is sufficient to assume only that (o + f)? is an integer
since if the above equations have only finitely many solutions with (« + f)°
an integer they obviously have only finitely many with a + § an integer,
The primitive nth roots of unity are ¥, (k, n) = 1 where { = ¢*™/". Now
since (n — k, n) = 1 when (k, n) = 1 we may group the nth roots of unity, for
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n > 2, into ¢(n)/2 pairs ({*,{™*). Therefore the nth cyclotomic polynomial
(n > 2), which has degree ¢(n), may be written

Do, f) = (@ — (Pl —{7'A) .. e = TP (e ~ {TFB)
= (2 + B2 —({ + (" Dap). .. (@ + B2 — (£ + {7 Hap),

where we now assume that k is the largest integer <n/2 for which (k, n) = 1.
Since we have assumed that both (o -+ £)? and aff are integers, «* + f? =
(@ + B)* — 2uf is an integer, Put «* + B2 = v and o = w. We then have

D0, ) = fllo,W) =@ — €+ {7 Hw)... (o = " + {7Hw)

where f(v, w) is a homogeneous binary form in integers v and w of degree
#{n)/2. Plainly the roots of f{v, 1), namely, ({ + {™),... (" + {75, are
distinct real numbers. Indeed they are conjugate algebraic numbers in the
maximal totally real subfield of Q((). The degree of this field is ¢(n)/2 for
n > 2, and we see that the binary form f, (v, w) has integer coefficients.

If the equations (19) have solutions (, ) then the corresponding equations
with ® (e, f) replaced by f,(v, w) must have solutions in integers v, w with
v = o + B2 and w = af. However, from Lemma 1, the equation

fAv,w) = g, (20)

where a 18 a non-zero integer, has only finitely many solutions in integers
vand w whenever f, has at least three roots, in other words when ¢(n)/2 = 3.
Furthermore the solutions are effectively computable. Each solution », w of
(20) with a defined by +1 or +P(n/(3,n)) gives rise to a pair («, f) and
(—a, —pB) of solutions of (19); (a, f) are the roots of x* — |(v + 2w)Hx ~ w
while (— o, — f) are the roots of the same polynomial with x replaced by — x.
Thus we may find all possible solutions («, f) of those equations specified

by (20) for which ¢(n) = 6. This therefore completes the proof, since ¢(n) > 6
forn> 6,n+# 8. 10 or 12,

6. PROOF OF THEOREM 3

We note first that u, = u, = 1 by definition and thus we may assume
m 2 3. As we observed in the proof of Theorem 2 a primitive divisor p of u,,
must divide @, (e, f). Therefore to prove the theorem it is sufficient to show
that for each integer m, 3 < m < 12, m # 7, 9 or 11, there exist infinitely
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many algebraic numbers « and f for which

@m(miﬁ) = 1,

such that {(« + §)* and aff are coprime non-zero rational integers with o/
not a root of unity. Again, as in the proof of Theorem 2, we have

(Dm(‘x! ﬁ) = fm(v! W)

where v = o + B2, w = af and f, has degree ¢(m)/2. We observe that if
p and w are coprime non-zero rational integers then (x + f)* = v + 2wand
x8 = w are also coprime. Furthermore they are non-zero as long as v # 2w
whence, since (v, w) = 1, as long as {v, w} # {2,1}. Now if o/ is a root of
unity ¢ then, since it is an element of a field of degree at most 4, it is one
from a finite set of roots of unity. But we may then write w = o¢*{ and
v = o3(1 + {?) and plainly each { may be associated with only finitely many
pairs of coprime non-zero rational integers v, w, Therefore to prove the
theorem it suffices to prove that each equation

oWy =1, 3<m<12,m#7911,

has infinitely many solutions in coprime non-zero integers v, w.
For the equations

fo=v—w=1 fi=v=1 fi=v+w=]1
the result is obvious. The remaining equations are
fo=0=32=1 fo=0—vw—w =],
fo=02—2wr=1 fi=0vP+ww—w =1
It is well known that the Pell’s equations f,, = 1 and f; = 1 have infinitely
many solutions {v, w} of the desired kind. Further, f;, = 1 when
| b2 — pw — (W2 + 1) = 0. (21)

This is solvable in integets v and w for a given integer w whenever the dis-
criminant of the above polynomial in v is the square of an integer ; in other
words, when

72 — 5w? =4, (22)

The above Pell’s equation has infinitely many solutions; we must insure,
however, that it has infinitely many coprime solutions z, w. Plainly it is
sufficient to exhibit infinitely many solutions z, w where z is odd. The minimal
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solution of (22) is z = 3, w = 1 and thus the general solution of (22) is given

by
Z, T+ w,,\/TS m= o 2(3 +2\/3) :

It follows, therefore, that

. - ( 3 +2J§) . (3 2\/3)
and setting oy = (3 + /3)/2 and B, = (3 — /5)/2 we see that
z, = oy + B = (23" — BgM/es — Bo)-
If we put n = p, p a prime > 5, then

ap = D, (%0, Bo) P, Bo)-

From Lemma 6 of [14] we see that if 2|z, then 2|®, = oy + f,. But
%y + B, = 3 and thus as n runs through the primes p we find infinitely many
solutions of (22) with z odd and hence with z and w coprime. Each solution
gives rise to two solutions {v, w} of (21). They are

w+zwand w—-—zw
2’ 2 )

Thus f,,(v, w) has infinitely many solutions in coprime non-zero integers
v, w. Finally, it can be shown that fs(v, w) = 1 reduces to the Pell’s equation
(22) and solutions of f; = 1 are of the form |

---w-i—z»:W and —-w—zw)
2 2

where z and w are coprime solutions of (22).
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