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WELL SPACED INTEGERS GENERATED

BY AN INFINITE SET OF PRIMES
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(Communicated by Matthew A. Papanikolas)

Abstract. In this article we prove that there exists an infinite set of prime
numbers with the property that the sequence 1 = n1 < n2 < · · · of positive
integers made up of primes from the set is well spaced. For example we prove

that there is an infinite set of prime numbers for which

ni+1 − ni > ni/ exp((logni)
1/2)

for i = 1, 2, . . . .

1. Introduction

Let T be a set of prime numbers and let 1 = n1 < n2 < · · · be the sequence of
positive integers all of whose prime factors are from T. Let |T | denote the cardinality
of T. If T is a finite set, Tijdeman [15] proved in 1973, improving earlier work
of Pólya [11] and Siegel [13], that there exist positive numbers C1 = C1(T ) and
C2 = C2(T ), which are effectively computable in terms of T, such that

(1.1) ni+1 − ni > ni/(log ni)
C1

for ni ≥ 3 and

(1.2) ni+1 − ni < ni/C2(log ni)
|T |−1

for infinitely many positive integers i. Further, Tijdeman [15] proved in 1974 that
there are positive numbers C3 and C4, which are effectively computable in terms
of T, such that if ni > C3, then

ni+1 − ni < ni/(log ni)
C4 .

Prior to this Wintner had asked Erdős [3] if there is an infinite set of primes T
for which

lim
i→∞

ni+1 − ni = ∞.

Tijdeman [15] answered Wintner’s question in the affirmative. He proved that for
each real number α with 0 < α < 1 there exists an infinite set of primes T (α) for
which

(1.3) ni+1 − ni > n1−α
i
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916 JEONGSOO KIM AND C. L. STEWART

for i = 1, 2 . . . . In this note we would like to refine (1.3) in two ways. The first
refinement is an elaboration of Tijdeman’s result and concerns the size of the primes
in T (α). We shall prove that for each positive real number ε there is a positive
number C = C(α, ε) and an infinite set of primes T (α) = {p1, p2, . . . } with

pr < Cr(2/α+ε)r2

for which (1.3) holds. More precisely, we shall prove the following.

Theorem 1.1. Let α be a real number with 0 < α < 1. There is a positive number
c = c(α), which is effectively computable in terms of α, and an infinite set of prime
numbers T (α) = {p1, p2, . . . } with

tr/2 < pr ≤ tr,

where

(1.4) tr = r2r
2/α(log 3r)cr

2

for r = 1, 2, . . . such that if 1 = n1 < n2 < · · · is the sequence of positive integers
all of whose prime factors are from T (α), then

(1.5) ni+1 − ni > n1−α
i

for i = 1, 2, . . . .

Our second refinement involves strengthening inequality (1.3). We shall prove
that it is possible to find infinite sets of primes T for which the positive integers
generated by them are more widely spaced than (1.3).

In order to state our next result we introduce the set E of continuous functions
ϕ : R → R for which ϕ(ϕ(x)) = ex. E is an uncountable set and it is possible to
characterize the elements of E . In particular ϕ is injective since the exponential
function is injective. Further, since the image of R under the exponential function
is (0,∞) and ϕ is continuous, the image of R under ϕ is (θ,∞) for some negative
real number θ. Therefore the image of (−∞, θ] is (θ, 0]. But notice that once we
have specified a negative real number θ and a continuous injective map ϕ from
(−∞, θ] to (θ, 0], we can extend ϕ to an element of E in the following recursive
manner. Put e1(x) = ex and

ek(x) = eek−1(x) for k = 2, 3, . . . .

Then put α0 = θ, α1 = 0 and

α2i = ei(θ), α2i+1 = ei(0) for i = 1, 2, . . . .

Next put I−1 = (−∞, θ] and Ij = (αj , αj+1] for j = 0, 1, 2, . . . and map ϕ from Ij
to Ij+1 for j = 1, 2, . . . by defining ϕ(x) for x in Ij to be ey, where y is in Ij−1 and
ϕ(y) = x; see Hardy [4] for such a construction.

Observe that since ϕ is a continuous and injective map from (−∞, θ] to (θ, 0]
it is increasing on (−∞, θ] and in fact on all of R. Let ϕ−1 : (θ,∞) → R denote
the function which is the compositional inverse of ϕ so that ϕ ◦ ϕ−1 is the identity
function on (θ,∞) and ϕ−1 ◦ϕ is the identity function on R. Then ϕ−1 is injective
and increasing. In particular, if 0 < x < y, then ϕ−1(x) < ϕ−1(y). While there is
no function ϕ in E which can be extended to an analytic function on C, Kneser [6]
showed that there are such functions which are real analytic. Szekeres [14] proposed
a way to pick an element from E in a canonical manner; see also [2].
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WELL SPACED INTEGERS 917

We shall be interested in the growth of functions from E , a topic studied by Hardy
[4]. He proved that their rate of growth cannot be measured by the logarithmic-
exponential scale. Put �1(x) = log x for x > 1 and put

�k(x) = log(�k−1(x)) for x > ek−1(1)

for k = 2, 3, . . . . Then for ϕ in E and k a positive integer,

(1.6) ek((�k(x))
2) < ϕ(x) < ek+1((�k(x))

1/2)

for x sufficiently large, as is readily checked. Functions from E have arisen in studies
of computational complexity [9].

Let ϕ be in E . We denote by Fϕ(x) the function from R+ to R+ which is 1 for
x at most ee and is given by

(1.7) Fϕ(x) = ϕ(log x log log x)log log x

for x > ee.

Theorem 1.2. Let ϕ ∈ E . There exists an infinite set of primes T such that if
1 = n1 < n2 < · · · is the sequence of positive integers all of whose prime factors
are from T , then

(1.8) ni+1 − ni > ni/Fϕ(ni).

Let k be a positive integer and let θ be a real number with 0 < θ < 1. It can be
checked that when ϕ is in E , then

Fϕ(x) < ek((�k(x))
θ)

for x sufficiently large. As a consequence we are able to deduce the following result.

Corollary 1.3. Let k be a positive integer. There is an infinite set of primes Tk

such that if 1 = n1 < n2 < · · · is the sequence of positive integers all of whose
prime factors are from Tk, then

(1.9) ni+1 − ni > ni/ek((�k(ni))
1/2)

for i > 1.

It follows from (1.2) that we cannot replace ek((�k(ni))
1/2) in (1.9) by (log ni)

c

with c a positive real number for any infinite set of primes T. We remark that the
exponent 1/2 in (1.9) can be replaced by θ for any real number θ with 0 < θ < 1,
provided that Tk is replaced by Tk,θ. Further, on taking k = 1 in Corollary 1.3 one
finds that there is an infinite set of primes for which

(1.10) ni+1 − ni > ni/ exp((logni)
1/2)

for i = 1, 2, . . . .
For the proofs of Theorems 1.1 and 1.2 we shall employ the strategy Tijdeman

used to prove (1.3). The key ingredient in the proofs is a lower bound for linear
forms in the logarithms of rational numbers. Whereas Tijdeman appealed to an
estimate of Baker [1], we shall apply an estimate of Matveev [7, 8].
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918 JEONGSOO KIM AND C. L. STEWART

2. Lower bounds for linear forms in the logarithms

of rational numbers

For any rational number α we have α = r/s with r and s coprime integers with
s positive. We define H(α), the height of α, by

H(α) = max(|r|, |s|).
Let α1, . . . , αn be positive rational numbers with heights at most A1, . . . , An re-
spectively. Suppose that Ai ≥ 3 for i = 1, . . . , n and that logα1, . . . , logαn are
linearly independent over the rationals where log denotes the principal value of the
logarithm. Let b1, . . . , bn be non-zero integers of absolute value at most B with
B ≥ 3 and put

Λ = b1 logα1 + · · ·+ bn logαn.

Lemma 2.1. There exists an effectively computable positive number c0(≥ 1) such
that

log |Λ| > −cn0 logA1 · · · logAn logB.

Proof. This follows from Theorem 2.2 of Nesterenko [10]. Nesterenko’s result is a
special case of the work of Matveev [7, 8]. �

We remark that while there is an extensive literature on estimates for linear
forms in the logarithms of algebraic numbers due to Baker and others, Matveev
was the first to establish an estimate for Λ with the factor cn0 in place of nδn for
some positive real number δ. Such weaker estimates would lead to a version of
Theorem 1.1 with 2r2/α in the exponent in (1.4) replaced by (2 + δ)r2/α. We also
note that the work of Matveev and of Nesterenko is completely explicit, and so c0
may be made explicit.

3. Proof of Theorem 1.1

Let α be a positive real number and let c1, c2, . . . denote positive numbers which
are effectively computable in terms of α. Suppose that c is a positive number which
exceeds c1, . . . , c5, where c1, . . . , c5 are defined below, and define tr for r = 1, 2, . . .
as in (1.4). We shall construct primes p1, p2, . . . with

(3.1) ti/2 < pi ≤ ti

for i = 1, 2, . . . so that (1.5) holds for the integers generated by p1, . . . , pr for
r = 1, 2, . . . . The result then follows by taking T (α) to be {p1, p2, . . . }.

For each real number x let π(x) denote the number of primes of size at most x.
By Corollary 3 of [12],

(3.2) π(x)− π(x/2) > 3x/(10 log x)

for x > 41. Let c1 satisfy
(log 3)c1 > 41.

Since t1 = (log 3)c and c exceeds c1, there is, by (3.2), a prime p1 with

(3.3) 20 < t1/2 < p1 ≤ t1.

The sequence 1 = n1 < n2 < · · · of integers generated by p1 satisfies ni = pi−1
1 for

i = 1, 2, . . . and certainly
ni+1 − ni > ni ≥ n1−α

i

for i = 1, 2, . . . and any α with 0 < α < 1.
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WELL SPACED INTEGERS 919

Suppose now that r is a positive integer and p1, . . . , pr have been constructed to
satisfy (3.1) and so that (1.5) holds for the integers generated by p1, . . . , pr. Then
we shall prove that there is a prime pr+1 satisfying (3.1) with i = r+1 and so that
(1.5) holds for the integers generated by p1, . . . , pr+1. We do so by bounding the
number of primes p with

(3.4) tr+1/2 < p ≤ tr+1

for which this is not the case. Accordingly suppose that p is a prime satisfying (3.4)
for which the sequence 1 = n1 < n2 < · · · of integers generated by p1, . . . , pr, p does
not satisfy (1.5) for all positive integers i. Put b = ni+1 and a = ni, where i is the
smallest index for which (1.5) fails. Observe that a and b are coprime and also that

(3.5) 1 < b/a ≤ 1 + a−α.

Further, p divides one of a and b since (1.5) holds for the integers generated by
p1, . . . , pr. Put

a = pα1
1 · · · pαr

r pα and b = pβ1

1 · · · pβr
r pβ

with α1, . . . , αr, α, β1, . . . , βr, β non-negative integers. By (3.5) b is at most 2a and
by (3.3) a ≥ p1 ≥ 23, so

(3.6) max{α1, . . . , αr, α, β1, . . . , βr, β} ≤ log b

log 23
≤ log 2a

log 23
< log a.

We shall now bound log a from above by Lemma 2.1 with n = r + 1 and

Λ = (β1 − α1) log p1 + · · ·+ (βr − αr) log pr + (β − α) log p.

Since c ≥ c1 and (log 3)c1 exceeds 41, we see that tr+1 > 2tr for r = 1, 2, . . . , and
so

p1 < p2 < · · · < pr < p;

hence log p1, . . . , log pr, log p are linearly independent over the rationals. We find
that

(3.7) log(b/a) > exp(−cr+1
0 log t1 · · · log tr+1 log log a).

By (3.5), since log(1 + x) < x for any positive real number x,

(3.8) log(b/a) < a−α.

Put

(3.9) γ = α−1(c0 log tr+1)
r+1.

It follows from (3.7), (3.8) and (3.9) that

log a

log log a
< γ.

If x and y are real numbers with x ≥ 3 and y ≥ 1 and y/ log y < x, then y < 2x log x.
Thus, since c0 ≥ 1,

(3.10) log a < 2γ log γ.

Since a and b are coprime, at least one of α and β is zero and at least one
of αi and βi is zero for i = 1, . . . , r. Thus the number of possible 2r + 2-tuples
(α1, . . . , αr, α, β1, . . . , βr, β) associated with a prime p satisfying (3.4) for which
(1.5) does not hold for all positive integers i is at most

(3.11) (1 + 2 log a)r+1.
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920 JEONGSOO KIM AND C. L. STEWART

Each such 2r+ 2-tuple determines an interval in which p must lie. In particular, if

we put A = pα1−β1

1 · · · pαr−βr
r we find from (3.5) that

A < pβ−α ≤ A(1 + a−α).

Put A1 = A1/(β−α). If β > α, then

A1 < p ≤ A1(1 + a−α),

whereas if α > β, then

(1 + a−α)1/(β−α)A1 ≤ p < A1;

and in both cases p lies in an interval of length at most A1/a
α. In the former case

A1 < p, while in the latter case A1 < 2p since aα > 1. Therefore each 2r + 2-
tuple determines an interval in which p must lie of length at most 2tr+1/a

α. Since
2a ≥ b ≥ p ≥ tr+1/2 we see that the number of primes determined by each 2r + 2-
tuple is at most 1 + 8t1−α

r+1 . Thus, since tr+1 ≥ 1, the number of such primes is at

most 9t1−α
r+1 . Therefore, by (3.10) and (3.11) there are at most

(3.12) 9t1−α
r+1 (1 + 4γ log γ)r+1

primes from the interval (tr+1/2, tr+1] which extend {p1, . . . , pr} to give a sequence
for which (1.5) does not hold. But by (3.2) there are at least 3tr+1/(10 log tr+1)
primes in (tr+1/2, tr+1], and so provided that this number exceeds (3.12) we can
choose pr+1 from (tr+1/2, tr+1] so that (1.5) holds for the sequence of positive
integers generated by {p1, . . . , pr+1} as required.

Thus it suffices to check that

30(1 + 4γ log γ)r+1 log tr+1 < tαr+1.

For c > c2 we find that

(3.13) log tr ≤ cr2 log 3r

for r = 1, 2, . . . . Further, from (3.9) and (3.13), for c > c3,

(3.14) γ ≤ α−1(c0c(r + 1)2 log 3(r + 1))r+1 ≤ (r + 1)2(r+1)(log 3(r + 1))cα(r+1)/4

for r = 1, 2, . . . . By (3.14), for c > c4,

(3.15) 1 + 4γ log γ < (r + 1)2(r+1)(log 3(r + 1))cα(r+1)/2

for r = 1, 2, . . . . Finally, by (3.15), for c > c5,

30(1 + 4γ log γ)r+1 log tr+1 < (r + 1)2(r+1)2(log 3(r + 1))cα(r+1)2 = tαr+1

for r = 1, 2, . . . as required.

4. Proof of Theorem 1.2

Let ϕ ∈ E and define Fϕ as in (1.7). We shall construct recursively an increasing
sequence of primes p1, p2, . . . with the property that for each positive integer r the
set of positive integers generated by {p1, . . . , pr} satisfies (1.8). The result follows
by taking T to be {p1, p2, . . . }.

Certainly the set of positive integers generated by {p1} satisfies (1.8) whenever
p1 is an odd prime. We shall take p1 = 23. Suppose that we have determined
primes p1 < p2 < · · · < pr such that the set of integers, all of whose prime factors
are from {p1, . . . , pr}, satisfies (1.8). We shall prove that there is a prime pr+1 with
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WELL SPACED INTEGERS 921

pr+1 > pr such that (1.8) holds for the integers generated by {p1, . . . , pr+1}, and
the result will then follow.

Accordingly let t be a real number with pr < t/2 and let p be a prime with
t/2 < p ≤ t for which (1.8) does not hold for {p1, . . . , pr, p}. If 1 = n1 < n2 < · · · is
the sequence of positive integers all of whose prime factors are from {p1, . . . , pr, p},
then for some integer i we have

(4.1) ni+1 − ni ≤ ni/Fϕ(ni).

Put ni+1 = b and ni = a with

a = pα1
1 · · · pαr

r pα and b = pβ1

1 · · · pβr
r pβ,

where α1, . . . , αr, α, β1, . . . , βr, β are non-negative integers. Since ϕ is non-
decreasing, so is Fϕ, and we may choose i minimal in (4.1) and thus ensure that a
and b are coprime. Thus at least one of αi and βi is zero for i = 1, . . . , r. By our
inductive hypothesis p divides ab, and since a and b are coprime, p divides exactly
one of a and b. Further

(4.2) max(αi, βi) ≤ (log b)/ log pi ≤ (log 2a)/ log 23 ≤ log a

for i = 1, . . . , r.
We shall now bound log a from above. Notice that a is not 1 and so a is divisible

by a prime of size at least p1 = 23; hence log a exceeds 3. It follows from (4.2) and
Lemma 2.1 with n = r + 1 and

Λ = log(b/a) = (β1 − α1) log p1 + · · ·+ (βr − αr) log pr + (β − α) log p

that

(4.3) log(b/a) > exp(−cr+1
0 log p1 · · · log pr log t log log a).

On the other hand, by (4.1),

(4.4) 0 < log(b/a) < Fϕ(a)
−1.

Since a > ee by (1.7), (4.3) and (4.4),

logϕ(log a log log a) < cr+1
0 log p1 · · · log pr log t.

Put c = cr+1
0 log p1 · · · log pr. Since ϕ−1 is defined and increasing on the positive

real numbers,

(4.5) log a log log a < ϕ−1(tc).

Since max(α, β) is at most log a, it follows from (4.2) and (4.5) that there are at
most

(4.6) ϕ−1(tc)r+1

possible 2r+2-tuples (α1, . . . , αr, α, β1, . . . , βr, β) for which (4.1) holds for the inte-
gers generated by {p1, . . . , pr, p} with t/2 < p ≤ t. Each such 2r+2-tuple determines

an interval in which p must lie. In particular, if we put A = pα1−β1

1 · · · pαr−βr
r we

find from (4.1) that

A < pβ−α ≤ A(1 + Fϕ(a)
−1).

If β > α, then

A1/(β−α) < p ≤ A1/(β−α)(1 + Fϕ(a)
−1),

whereas if α > β, then

(1 + Fϕ(a)
−1)1/(β−α)A1/(β−α) ≤ p < A1/(β−α);
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922 JEONGSOO KIM AND C. L. STEWART

and in both cases p lies in an interval of length at most A1/(β−α)/Fϕ(a).
By choosing t, hence also p and a, sufficiently large we can ensure that Fϕ(a)

exceeds 2, and so A1/(β−α) is at most 2t. Therefore each 2r + 2-tuple determines
an interval in which p must lie of length at most 2t/Fϕ(a). Since 2a ≥ b ≥ p ≥ t/2
and since Fϕ is non-decreasing, we see that the number of primes determined by
each 2r + 2-tuple is at most

1 + (2t/Fϕ(t/4)).

But Fϕ(t/4) > Fϕ(t)/4 and t exceeds Fϕ(t) by (1.6) and (1.7) for t sufficiently
large. Thus at most 9t/Fϕ(t) primes are determined by each 2r+2-tuple. Therefore,
by (4.6), there are at most

(4.7) (9t/Fϕ(t))(ϕ
−1(tc))r+1

primes from the interval (t/2, t] which will extend {p1, . . . , pr} to give a sequence
for which (1.8) does not hold. But for t sufficiently large there are at least t/2 log t
primes in (t/2, t], and so to be sure that there is a prime p for which (1.8) holds with
{p1, . . . , pr, p} it suffices to check that t/2 log t exceeds (4.7). But 18 log t < ϕ−1(tc)
for t sufficiently large, and so it suffices to check that

(ϕ−1(tc))r+2 < Fϕ(t).

Since r + 2 is less than log log t for t sufficiently large, we need only check that

ϕ−1(tc) < ϕ(log t log log t)

or, equivalently,

tc < ϕ(ϕ(log t log log t)) = tlog log t.

But this plainly holds for t sufficiently large and the result follows.
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