WELL SPACED INTEGERS GENERATED BY AN INFINITE SET OF PRIMES

JEONGSOO KIM AND C. L. STEWART
(Communicated by Matthew A. Papanikolas)

Abstract

In this article we prove that there exists an infinite set of prime numbers with the property that the sequence $1=n_{1}<n_{2}<\cdots$ of positive integers made up of primes from the set is well spaced. For example we prove that there is an infinite set of prime numbers for which $$
n_{i+1}-n_{i}>n_{i} / \exp \left(\left(\log n_{i}\right)^{1 / 2}\right)
$$ for $i=1,2, \ldots$.

1. Introduction

Let T be a set of prime numbers and let $1=n_{1}<n_{2}<\cdots$ be the sequence of positive integers all of whose prime factors are from T. Let $|T|$ denote the cardinality of T. If T is a finite set, Tijdeman [15] proved in 1973, improving earlier work of Pólya [11] and Siegel [13], that there exist positive numbers $C_{1}=C_{1}(T)$ and $C_{2}=C_{2}(T)$, which are effectively computable in terms of T, such that

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i} /\left(\log n_{i}\right)^{C_{1}} \tag{1.1}
\end{equation*}
$$

for $n_{i} \geq 3$ and

$$
\begin{equation*}
n_{i+1}-n_{i}<n_{i} / C_{2}\left(\log n_{i}\right)^{|T|-1} \tag{1.2}
\end{equation*}
$$

for infinitely many positive integers i. Further, Tijdeman [15] proved in 1974 that there are positive numbers C_{3} and C_{4}, which are effectively computable in terms of T, such that if $n_{i}>C_{3}$, then

$$
n_{i+1}-n_{i}<n_{i} /\left(\log n_{i}\right)^{C_{4}} .
$$

Prior to this Wintner had asked Erdős [3] if there is an infinite set of primes T for which

$$
\lim _{i \rightarrow \infty} n_{i+1}-n_{i}=\infty
$$

Tijdeman [15] answered Wintner's question in the affirmative. He proved that for each real number α with $0<\alpha<1$ there exists an infinite set of primes $T(\alpha)$ for which

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i}^{1-\alpha} \tag{1.3}
\end{equation*}
$$

[^0]for $i=1,2 \ldots$. In this note we would like to refine (1.3) in two ways. The first refinement is an elaboration of Tijdeman's result and concerns the size of the primes in $T(\alpha)$. We shall prove that for each positive real number ε there is a positive number $C=C(\alpha, \varepsilon)$ and an infinite set of primes $T(\alpha)=\left\{p_{1}, p_{2}, \ldots\right\}$ with
$$
p_{r}<C r^{(2 / \alpha+\varepsilon) r^{2}}
$$
for which (1.3) holds. More precisely, we shall prove the following.
Theorem 1.1. Let α be a real number with $0<\alpha<1$. There is a positive number $c=c(\alpha)$, which is effectively computable in terms of α, and an infinite set of prime numbers $T(\alpha)=\left\{p_{1}, p_{2}, \ldots\right\}$ with
$$
t_{r} / 2<p_{r} \leq t_{r}
$$
where
\[

$$
\begin{equation*}
t_{r}=r^{2 r^{2} / \alpha}(\log 3 r)^{c r^{2}} \tag{1.4}
\end{equation*}
$$

\]

for $r=1,2, \ldots$ such that if $1=n_{1}<n_{2}<\cdots$ is the sequence of positive integers all of whose prime factors are from $T(\alpha)$, then

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i}^{1-\alpha} \tag{1.5}
\end{equation*}
$$

for $i=1,2, \ldots$.
Our second refinement involves strengthening inequality (1.3). We shall prove that it is possible to find infinite sets of primes T for which the positive integers generated by them are more widely spaced than (1.3).

In order to state our next result we introduce the set \mathcal{E} of continuous functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ for which $\varphi(\varphi(x))=e^{x} . \mathcal{E}$ is an uncountable set and it is possible to characterize the elements of \mathcal{E}. In particular φ is injective since the exponential function is injective. Further, since the image of \mathbb{R} under the exponential function is $(0, \infty)$ and φ is continuous, the image of \mathbb{R} under φ is (θ, ∞) for some negative real number θ. Therefore the image of $(-\infty, \theta]$ is $(\theta, 0]$. But notice that once we have specified a negative real number θ and a continuous injective map φ from $(-\infty, \theta]$ to $(\theta, 0]$, we can extend φ to an element of \mathcal{E} in the following recursive manner. Put $e_{1}(x)=e^{x}$ and

$$
e_{k}(x)=e^{e_{k-1}(x)} \quad \text { for } k=2,3, \ldots
$$

Then put $\alpha_{0}=\theta, \alpha_{1}=0$ and

$$
\alpha_{2 i}=e_{i}(\theta), \quad \alpha_{2 i+1}=e_{i}(0) \quad \text { for } i=1,2, \ldots
$$

Next put $I_{-1}=(-\infty, \theta]$ and $I_{j}=\left(\alpha_{j}, \alpha_{j+1}\right]$ for $j=0,1,2, \ldots$ and map φ from I_{j} to I_{j+1} for $j=1,2, \ldots$ by defining $\varphi(x)$ for x in I_{j} to be e^{y}, where y is in I_{j-1} and $\varphi(y)=x$; see Hardy [4] for such a construction.

Observe that since φ is a continuous and injective map from $(-\infty, \theta]$ to $(\theta, 0]$ it is increasing on $(-\infty, \theta]$ and in fact on all of \mathbb{R}. Let $\varphi^{-1}:(\theta, \infty) \rightarrow \mathbb{R}$ denote the function which is the compositional inverse of φ so that $\varphi \circ \varphi^{-1}$ is the identity function on (θ, ∞) and $\varphi^{-1} \circ \varphi$ is the identity function on \mathbb{R}. Then φ^{-1} is injective and increasing. In particular, if $0<x<y$, then $\varphi^{-1}(x)<\varphi^{-1}(y)$. While there is no function φ in \mathcal{E} which can be extended to an analytic function on \mathbb{C}, Kneser [6] showed that there are such functions which are real analytic. Szekeres [14] proposed a way to pick an element from \mathcal{E} in a canonical manner; see also [2].

We shall be interested in the growth of functions from \mathcal{E}, a topic studied by Hardy 44. He proved that their rate of growth cannot be measured by the logarithmicexponential scale. Put $\ell_{1}(x)=\log x$ for $x>1$ and put

$$
\ell_{k}(x)=\log \left(\ell_{k-1}(x)\right) \quad \text { for } x>e_{k-1}(1)
$$

for $k=2,3, \ldots$. Then for φ in \mathcal{E} and k a positive integer,

$$
\begin{equation*}
e_{k}\left(\left(\ell_{k}(x)\right)^{2}\right)<\varphi(x)<e_{k+1}\left(\left(\ell_{k}(x)\right)^{1 / 2}\right) \tag{1.6}
\end{equation*}
$$

for x sufficiently large, as is readily checked. Functions from \mathcal{E} have arisen in studies of computational complexity [9].

Let φ be in \mathcal{E}. We denote by $F_{\varphi}(x)$ the function from \mathbb{R}^{+}to \mathbb{R}^{+}which is 1 for x at most e^{e} and is given by

$$
\begin{equation*}
F_{\varphi}(x)=\varphi(\log x \log \log x)^{\log \log x} \tag{1.7}
\end{equation*}
$$

for $x>e^{e}$.
Theorem 1.2. Let $\varphi \in \mathcal{E}$. There exists an infinite set of primes T such that if $1=n_{1}<n_{2}<\cdots$ is the sequence of positive integers all of whose prime factors are from T, then

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i} / F_{\varphi}\left(n_{i}\right) . \tag{1.8}
\end{equation*}
$$

Let k be a positive integer and let θ be a real number with $0<\theta<1$. It can be checked that when φ is in \mathcal{E}, then

$$
F_{\varphi}(x)<e_{k}\left(\left(\ell_{k}(x)\right)^{\theta}\right)
$$

for x sufficiently large. As a consequence we are able to deduce the following result.
Corollary 1.3. Let k be a positive integer. There is an infinite set of primes T_{k} such that if $1=n_{1}<n_{2}<\cdots$ is the sequence of positive integers all of whose prime factors are from T_{k}, then

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i} / e_{k}\left(\left(\ell_{k}\left(n_{i}\right)\right)^{1 / 2}\right) \tag{1.9}
\end{equation*}
$$

for $i>1$.
It follows from (1.2) that we cannot replace $e_{k}\left(\left(\ell_{k}\left(n_{i}\right)\right)^{1 / 2}\right)$ in (1.9) by $\left(\log n_{i}\right)^{c}$ with c a positive real number for any infinite set of primes T. We remark that the exponent $1 / 2$ in (1.9) can be replaced by θ for any real number θ with $0<\theta<1$, provided that T_{k} is replaced by $T_{k, \theta}$. Further, on taking $k=1$ in Corollary 1.3 one finds that there is an infinite set of primes for which

$$
\begin{equation*}
n_{i+1}-n_{i}>n_{i} / \exp \left(\left(\log n_{i}\right)^{1 / 2}\right) \tag{1.10}
\end{equation*}
$$

for $i=1,2, \ldots$.
For the proofs of Theorems 1.1 and 1.2 we shall employ the strategy Tijdeman used to prove (1.3). The key ingredient in the proofs is a lower bound for linear forms in the logarithms of rational numbers. Whereas Tijdeman appealed to an estimate of Baker [1], we shall apply an estimate of Matveev [7][8].

2. LOWER BOUNDS FOR LINEAR FORMS IN THE LOGARITHMS OF RATIONAL NUMBERS

For any rational number α we have $\alpha=r / s$ with r and s coprime integers with s positive. We define $H(\alpha)$, the height of α, by

$$
H(\alpha)=\max (|r|,|s|) .
$$

Let $\alpha_{1}, \ldots, \alpha_{n}$ be positive rational numbers with heights at most A_{1}, \ldots, A_{n} respectively. Suppose that $A_{i} \geq 3$ for $i=1, \ldots, n$ and that $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are linearly independent over the rationals where \log denotes the principal value of the logarithm. Let b_{1}, \ldots, b_{n} be non-zero integers of absolute value at most B with $B \geq 3$ and put

$$
\Lambda=b_{1} \log \alpha_{1}+\cdots+b_{n} \log \alpha_{n}
$$

Lemma 2.1. There exists an effectively computable positive number $c_{0}(\geq 1)$ such that

$$
\log |\Lambda|>-c_{0}^{n} \log A_{1} \cdots \log A_{n} \log B
$$

Proof. This follows from Theorem 2.2 of Nesterenko [10]. Nesterenko's result is a special case of the work of Matveev [7, 8].

We remark that while there is an extensive literature on estimates for linear forms in the logarithms of algebraic numbers due to Baker and others, Matveev was the first to establish an estimate for Λ with the factor c_{0}^{n} in place of $n^{\delta n}$ for some positive real number δ. Such weaker estimates would lead to a version of Theorem 1.1 with $2 r^{2} / \alpha$ in the exponent in (1.4) replaced by $(2+\delta) r^{2} / \alpha$. We also note that the work of Matveev and of Nesterenko is completely explicit, and so c_{0} may be made explicit.

3. Proof of Theorem 1.1

Let α be a positive real number and let c_{1}, c_{2}, \ldots denote positive numbers which are effectively computable in terms of α. Suppose that c is a positive number which exceeds c_{1}, \ldots, c_{5}, where c_{1}, \ldots, c_{5} are defined below, and define t_{r} for $r=1,2, \ldots$ as in (1.4). We shall construct primes p_{1}, p_{2}, \ldots with

$$
\begin{equation*}
t_{i} / 2<p_{i} \leq t_{i} \tag{3.1}
\end{equation*}
$$

for $i=1,2, \ldots$ so that (1.5) holds for the integers generated by p_{1}, \ldots, p_{r} for $r=1,2, \ldots$. The result then follows by taking $T(\alpha)$ to be $\left\{p_{1}, p_{2}, \ldots\right\}$.

For each real number x let $\pi(x)$ denote the number of primes of size at most x. By Corollary 3 of [12,

$$
\begin{equation*}
\pi(x)-\pi(x / 2)>3 x /(10 \log x) \tag{3.2}
\end{equation*}
$$

for $x>41$. Let c_{1} satisfy

$$
(\log 3)^{c_{1}}>41
$$

Since $t_{1}=(\log 3)^{c}$ and c exceeds c_{1}, there is, by (3.2), a prime p_{1} with

$$
\begin{equation*}
20<t_{1} / 2<p_{1} \leq t_{1} . \tag{3.3}
\end{equation*}
$$

The sequence $1=n_{1}<n_{2}<\cdots$ of integers generated by p_{1} satisfies $n_{i}=p_{1}^{i-1}$ for $i=1,2, \ldots$ and certainly

$$
n_{i+1}-n_{i}>n_{i} \geq n_{i}^{1-\alpha}
$$

for $i=1,2, \ldots$ and any α with $0<\alpha<1$.

Suppose now that r is a positive integer and p_{1}, \ldots, p_{r} have been constructed to satisfy (3.1) and so that (1.5) holds for the integers generated by p_{1}, \ldots, p_{r}. Then we shall prove that there is a prime p_{r+1} satisfying (3.1) with $i=r+1$ and so that (1.5) holds for the integers generated by p_{1}, \ldots, p_{r+1}. We do so by bounding the number of primes p with

$$
\begin{equation*}
t_{r+1} / 2<p \leq t_{r+1} \tag{3.4}
\end{equation*}
$$

for which this is not the case. Accordingly suppose that p is a prime satisfying (3.4) for which the sequence $1=n_{1}<n_{2}<\cdots$ of integers generated by p_{1}, \ldots, p_{r}, p does not satisfy (1.5) for all positive integers i. Put $b=n_{i+1}$ and $a=n_{i}$, where i is the smallest index for which (1.5) fails. Observe that a and b are coprime and also that

$$
\begin{equation*}
1<b / a \leq 1+a^{-\alpha} . \tag{3.5}
\end{equation*}
$$

Further, p divides one of a and b since (1.5) holds for the integers generated by p_{1}, \ldots, p_{r}. Put

$$
a=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} p^{\alpha} \quad \text { and } \quad b=p_{1}^{\beta_{1}} \cdots p_{r}^{\beta_{r}} p^{\beta}
$$

with $\alpha_{1}, \ldots, \alpha_{r}, \alpha, \beta_{1}, \ldots, \beta_{r}, \beta$ non-negative integers. By (3.5) b is at most $2 a$ and by (3.3) $a \geq p_{1} \geq 23$, so

$$
\begin{equation*}
\max \left\{\alpha_{1}, \ldots, \alpha_{r}, \alpha, \beta_{1}, \ldots, \beta_{r}, \beta\right\} \leq \frac{\log b}{\log 23} \leq \frac{\log 2 a}{\log 23}<\log a . \tag{3.6}
\end{equation*}
$$

We shall now bound $\log a$ from above by Lemma 2.1 with $n=r+1$ and

$$
\Lambda=\left(\beta_{1}-\alpha_{1}\right) \log p_{1}+\cdots+\left(\beta_{r}-\alpha_{r}\right) \log p_{r}+(\beta-\alpha) \log p
$$

Since $c \geq c_{1}$ and $(\log 3)^{c_{1}}$ exceeds 41, we see that $t_{r+1}>2 t_{r}$ for $r=1,2, \ldots$, and so

$$
p_{1}<p_{2}<\cdots<p_{r}<p
$$

hence $\log p_{1}, \ldots, \log p_{r}, \log p$ are linearly independent over the rationals. We find that

$$
\begin{equation*}
\log (b / a)>\exp \left(-c_{0}^{r+1} \log t_{1} \cdots \log t_{r+1} \log \log a\right) . \tag{3.7}
\end{equation*}
$$

By (3.5), since $\log (1+x)<x$ for any positive real number x,

$$
\begin{equation*}
\log (b / a)<a^{-\alpha} \tag{3.8}
\end{equation*}
$$

Put

$$
\begin{equation*}
\gamma=\alpha^{-1}\left(c_{0} \log t_{r+1}\right)^{r+1} \tag{3.9}
\end{equation*}
$$

It follows from (3.7), (3.8) and (3.9) that

$$
\frac{\log a}{\log \log a}<\gamma
$$

If x and y are real numbers with $x \geq 3$ and $y \geq 1$ and $y / \log y<x$, then $y<2 x \log x$. Thus, since $c_{0} \geq 1$,

$$
\begin{equation*}
\log a<2 \gamma \log \gamma \tag{3.10}
\end{equation*}
$$

Since a and b are coprime, at least one of α and β is zero and at least one of α_{i} and β_{i} is zero for $i=1, \ldots, r$. Thus the number of possible $2 r+2$-tuples $\left(\alpha_{1}, \ldots, \alpha_{r}, \alpha, \beta_{1}, \ldots, \beta_{r}, \beta\right)$ associated with a prime p satisfying (3.4) for which (1.5) does not hold for all positive integers i is at most

$$
\begin{equation*}
(1+2 \log a)^{r+1} . \tag{3.11}
\end{equation*}
$$

Each such $2 r+2$-tuple determines an interval in which p must lie. In particular, if we put $A=p_{1}^{\alpha_{1}-\beta_{1}} \cdots p_{r}^{\alpha_{r}-\beta_{r}}$ we find from (3.5) that

$$
A<p^{\beta-\alpha} \leq A\left(1+a^{-\alpha}\right)
$$

Put $A_{1}=A^{1 /(\beta-\alpha)}$. If $\beta>\alpha$, then

$$
A_{1}<p \leq A_{1}\left(1+a^{-\alpha}\right)
$$

whereas if $\alpha>\beta$, then

$$
\left(1+a^{-\alpha}\right)^{1 /(\beta-\alpha)} A_{1} \leq p<A_{1}
$$

and in both cases p lies in an interval of length at most A_{1} / a^{α}. In the former case $A_{1}<p$, while in the latter case $A_{1}<2 p$ since $a^{\alpha}>1$. Therefore each $2 r+2-$ tuple determines an interval in which p must lie of length at most $2 t_{r+1} / a^{\alpha}$. Since $2 a \geq b \geq p \geq t_{r+1} / 2$ we see that the number of primes determined by each $2 r+2$ tuple is at most $1+8 t_{r+1}^{1-\alpha}$. Thus, since $t_{r+1} \geq 1$, the number of such primes is at most $9 t_{r+1}^{1-\alpha}$. Therefore, by (3.10) and (3.11) there are at most

$$
\begin{equation*}
9 t_{r+1}^{1-\alpha}(1+4 \gamma \log \gamma)^{r+1} \tag{3.12}
\end{equation*}
$$

primes from the interval $\left(t_{r+1} / 2, t_{r+1}\right]$ which extend $\left\{p_{1}, \ldots, p_{r}\right\}$ to give a sequence for which (1.5) does not hold. But by (3.2) there are at least $3 t_{r+1} /\left(10 \log t_{r+1}\right)$ primes in $\left(t_{r+1} / 2, t_{r+1}\right]$, and so provided that this number exceeds (3.12) we can choose p_{r+1} from $\left(t_{r+1} / 2, t_{r+1}\right]$ so that (1.5) holds for the sequence of positive integers generated by $\left\{p_{1}, \ldots, p_{r+1}\right\}$ as required.

Thus it suffices to check that

$$
30(1+4 \gamma \log \gamma)^{r+1} \log t_{r+1}<t_{r+1}^{\alpha}
$$

For $c>c_{2}$ we find that

$$
\begin{equation*}
\log t_{r} \leq c r^{2} \log 3 r \tag{3.13}
\end{equation*}
$$

for $r=1,2, \ldots$. Further, from (3.9) and (3.13), for $c>c_{3}$,
(3.14) $\gamma \leq \alpha^{-1}\left(c_{0} c(r+1)^{2} \log 3(r+1)\right)^{r+1} \leq(r+1)^{2(r+1)}(\log 3(r+1))^{c \alpha(r+1) / 4}$
for $r=1,2, \ldots$ By (3.14), for $c>c_{4}$,

$$
\begin{equation*}
1+4 \gamma \log \gamma<(r+1)^{2(r+1)}(\log 3(r+1))^{c \alpha(r+1) / 2} \tag{3.15}
\end{equation*}
$$

for $r=1,2, \ldots$. Finally, by (3.15), for $c>c_{5}$,

$$
30(1+4 \gamma \log \gamma)^{r+1} \log t_{r+1}<(r+1)^{2(r+1)^{2}}(\log 3(r+1))^{c \alpha(r+1)^{2}}=t_{r+1}^{\alpha}
$$

for $r=1,2, \ldots$ as required.

4. Proof of Theorem 1.2

Let $\varphi \in \mathcal{E}$ and define F_{φ} as in (1.7). We shall construct recursively an increasing sequence of primes p_{1}, p_{2}, \ldots with the property that for each positive integer r the set of positive integers generated by $\left\{p_{1}, \ldots, p_{r}\right\}$ satisfies (1.8). The result follows by taking T to be $\left\{p_{1}, p_{2}, \ldots\right\}$.

Certainly the set of positive integers generated by $\left\{p_{1}\right\}$ satisfies (1.8) whenever p_{1} is an odd prime. We shall take $p_{1}=23$. Suppose that we have determined primes $p_{1}<p_{2}<\cdots<p_{r}$ such that the set of integers, all of whose prime factors are from $\left\{p_{1}, \ldots, p_{r}\right\}$, satisfies (1.8). We shall prove that there is a prime p_{r+1} with
$p_{r+1}>p_{r}$ such that (1.8) holds for the integers generated by $\left\{p_{1}, \ldots, p_{r+1}\right\}$, and the result will then follow.

Accordingly let t be a real number with $p_{r}<t / 2$ and let p be a prime with $t / 2<p \leq t$ for which (1.8) does not hold for $\left\{p_{1}, \ldots, p_{r}, p\right\}$. If $1=n_{1}<n_{2}<\cdots$ is the sequence of positive integers all of whose prime factors are from $\left\{p_{1}, \ldots, p_{r}, p\right\}$, then for some integer i we have

$$
\begin{equation*}
n_{i+1}-n_{i} \leq n_{i} / F_{\varphi}\left(n_{i}\right) \tag{4.1}
\end{equation*}
$$

Put $n_{i+1}=b$ and $n_{i}=a$ with

$$
a=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} p^{\alpha} \quad \text { and } \quad b=p_{1}^{\beta_{1}} \cdots p_{r}^{\beta_{r}} p^{\beta}
$$

where $\alpha_{1}, \ldots, \alpha_{r}, \alpha, \beta_{1}, \ldots, \beta_{r}, \beta$ are non-negative integers. Since φ is nondecreasing, so is F_{φ}, and we may choose i minimal in (4.1) and thus ensure that a and b are coprime. Thus at least one of α_{i} and β_{i} is zero for $i=1, \ldots, r$. By our inductive hypothesis p divides $a b$, and since a and b are coprime, p divides exactly one of a and b. Further

$$
\begin{equation*}
\max \left(\alpha_{i}, \beta_{i}\right) \leq(\log b) / \log p_{i} \leq(\log 2 a) / \log 23 \leq \log a \tag{4.2}
\end{equation*}
$$

for $i=1, \ldots, r$.
We shall now bound $\log a$ from above. Notice that a is not 1 and so a is divisible by a prime of size at least $p_{1}=23$; hence $\log a$ exceeds 3 . It follows from (4.2) and Lemma 2.1 with $n=r+1$ and

$$
\Lambda=\log (b / a)=\left(\beta_{1}-\alpha_{1}\right) \log p_{1}+\cdots+\left(\beta_{r}-\alpha_{r}\right) \log p_{r}+(\beta-\alpha) \log p
$$

that

$$
\begin{equation*}
\log (b / a)>\exp \left(-c_{0}^{r+1} \log p_{1} \cdots \log p_{r} \log t \log \log a\right) \tag{4.3}
\end{equation*}
$$

On the other hand, by (4.1),

$$
\begin{equation*}
0<\log (b / a)<F_{\varphi}(a)^{-1} \tag{4.4}
\end{equation*}
$$

Since $a>e^{e}$ by (1.7), (4.3) and (4.4),

$$
\log \varphi(\log a \log \log a)<c_{0}^{r+1} \log p_{1} \cdots \log p_{r} \log t
$$

Put $c=c_{0}^{r+1} \log p_{1} \cdots \log p_{r}$. Since φ^{-1} is defined and increasing on the positive real numbers,

$$
\begin{equation*}
\log a \log \log a<\varphi^{-1}\left(t^{c}\right) \tag{4.5}
\end{equation*}
$$

Since $\max (\alpha, \beta)$ is at most $\log a$, it follows from (4.2) and (4.5) that there are at most

$$
\begin{equation*}
\varphi^{-1}\left(t^{c}\right)^{r+1} \tag{4.6}
\end{equation*}
$$

possible $2 r+2$-tuples $\left(\alpha_{1}, \ldots, \alpha_{r}, \alpha, \beta_{1}, \ldots, \beta_{r}, \beta\right)$ for which (4.1) holds for the integers generated by $\left\{p_{1}, \ldots, p_{r}, p\right\}$ with $t / 2<p \leq t$. Each such $2 r+2$-tuple determines an interval in which p must lie. In particular, if we put $A=p_{1}^{\alpha_{1}-\beta_{1}} \cdots p_{r}^{\alpha_{r}-\beta_{r}}$ we find from (4.1) that

$$
A<p^{\beta-\alpha} \leq A\left(1+F_{\varphi}(a)^{-1}\right)
$$

If $\beta>\alpha$, then

$$
A^{1 /(\beta-\alpha)}<p \leq A^{1 /(\beta-\alpha)}\left(1+F_{\varphi}(a)^{-1}\right)
$$

whereas if $\alpha>\beta$, then

$$
\left(1+F_{\varphi}(a)^{-1}\right)^{1 /(\beta-\alpha)} A^{1 /(\beta-\alpha)} \leq p<A^{1 /(\beta-\alpha)}
$$

and in both cases p lies in an interval of length at most $A^{1 /(\beta-\alpha)} / F_{\varphi}(a)$.
By choosing t, hence also p and a, sufficiently large we can ensure that $F_{\varphi}(a)$ exceeds 2 , and so $A^{1 /(\beta-\alpha)}$ is at most $2 t$. Therefore each $2 r+2$-tuple determines an interval in which p must lie of length at most $2 t / F_{\varphi}(a)$. Since $2 a \geq b \geq p \geq t / 2$ and since F_{φ} is non-decreasing, we see that the number of primes determined by each $2 r+2$-tuple is at most

$$
1+\left(2 t / F_{\varphi}(t / 4)\right)
$$

But $F_{\varphi}(t / 4)>F_{\varphi}(t) / 4$ and t exceeds $F_{\varphi}(t)$ by (1.6) and (1.7) for t sufficiently large. Thus at most $9 t / F_{\varphi}(t)$ primes are determined by each $2 r+2$-tuple. Therefore, by (4.6), there are at most

$$
\begin{equation*}
\left(9 t / F_{\varphi}(t)\right)\left(\varphi^{-1}\left(t^{c}\right)\right)^{r+1} \tag{4.7}
\end{equation*}
$$

primes from the interval $(t / 2, t]$ which will extend $\left\{p_{1}, \ldots, p_{r}\right\}$ to give a sequence for which (1.8) does not hold. But for t sufficiently large there are at least $t / 2 \log t$ primes in $(t / 2, t]$, and so to be sure that there is a prime p for which (1.8) holds with $\left\{p_{1}, \ldots, p_{r}, p\right\}$ it suffices to check that $t / 2 \log t$ exceeds (4.7). But $18 \log t<\varphi^{-1}\left(t^{c}\right)$ for t sufficiently large, and so it suffices to check that

$$
\left(\varphi^{-1}\left(t^{c}\right)\right)^{r+2}<F_{\varphi}(t) .
$$

Since $r+2$ is less than $\log \log t$ for t sufficiently large, we need only check that

$$
\varphi^{-1}\left(t^{c}\right)<\varphi(\log t \log \log t)
$$

or, equivalently,

$$
t^{c}<\varphi(\varphi(\log t \log \log t))=t^{\log \log t}
$$

But this plainly holds for t sufficiently large and the result follows.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms. II, Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, I, Acta Arith. 24 (1973), 33-36. (errata insert). MR 0376549 (51 \#12724)
[2] C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. R. Turner, Generalized exponential and logarithmic functions, Comput. Math. Appl. Part B 12 (1986), no. 5-6, 1091-1101. MR871348 (88a:33027)
[3] Paul Erdős, Some recent advances and current problems in number theory, Lectures on Modern Mathematics, Vol. III, Wiley, New York, 1965, pp. 196-244. MR0177933 (31 \#2191)
[4] G. H. Hardy, Properties of Logarithmico-Exponential Functions, Proc. London Math. Soc. S2-10, no. 1, 54, DOI 10.1112/plms/s2-10.1.54. MR 1576038
[5] J. S. Kim, On a question of Wintner concerning the sequence of integers composed of primes from a given set, Ph.D. thesis, University of Waterloo, 2007, ProQuest LLC, Ann Arbor, MI. MR 2711171
[6] Hellmuth Kneser, Reelle analytische Lösungen der Gleichung $\varphi(\varphi(x))=e^{x}$ und verwandter Funktional-gleichungen (German), J. Reine Angew. Math. 187 (1949), 56-67. MR 0035385 (11,726e)
[7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers (Russian, with Russian summary), Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 4, 81-136, DOI 10.1070/im1998v062n04ABEH000190; English transl., Izv. Math. 62 (1998), no. 4, 723-772. MR 1660150 (2000g:11071)
[8] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II (Russian, with Russian summary), Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125-180, DOI 10.1070/IM2000v064n06ABEH000314; English transl., Izv. Math. 64 (2000), no. 6, 1217-1269. MR1817252|(2002e:11091)
[9] Peter Bro Miltersen, N. V. Vinochandran, and Osamu Watanabe, Super-polynomial versus half-exponential circuit size in the exponential hierarchy, Computing and Combinatorics Conference, Tokyo, 1999, Lecture Notes in Comput. Sci., 1627, Springer, Berlin, 1999, 210-220. MR1730337|(2000h:68084)
[10] Yuri Nesterenko, Linear forms in logarithms of rational numbers, Diophantine approximation (Cetraro, 2000), Lecture Notes in Math., vol. 1819, Springer, Berlin, 2003, pp. 53-106, DOI 10.1007/3-540-44979-5_2. MR2009829 (2004i:11082)
[11] Georg Pólya, Zur arithmetischen Untersuchung der Polynome (German), Math. Z. 1 (1918), no. 2-3, 143-148, DOI 10.1007/BF01203608. MR1544288
[12] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25 \#1139)
[13] Carl Siegel, Über Näherungswerte algebraischer Zahlen (German), Math. Ann. 84 (1921), no. 1-2, 80-99, DOI 10.1007/BF01458694. MR 1512021
[14] G. Szekeres, Fractional iteration of exponentially growing functions, J. Austral. Math. Soc. 2 (1961/1962), 301-320. MR0141905 (25 \#5302)
[15] R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), 319-330. MR0325549 (48 \#3896)
[16] R. Tijdeman, On the maximal distance between integers composed of small primes, Compositio Math. 28 (1974), 159-162. MR0345917 (49 \#10646)

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

E-mail address: cstewart@uwaterloo.ca

[^0]: Received by the editors February 28, 2012 and, in revised form, July 25, 2012.
 2010 Mathematics Subject Classification. Primary 11N25, 11J86.
 Key words and phrases. Prime factors, fractional exponential function.
 The research of the second author was supported in part by the Canada Research Chairs Program and by grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

