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Abstract

We use functional magnetic resonance imaging (fMRI) and behavioral analyses to study the neural roots of biases in causal reasonin
Fourteen participants were given a task requiring them to interpret data relative to plausible and implausible causal theories. Encounterin
covariation-based data during the evaluation of a plausible theory as opposed to an implausible theory selectively recruited neural tissue in tf
prefrontal and occipital cortices. In addition, the plausibility of a causal theory modulated the recruitment of distinct neural tissue depending
on the extent to which the data warensistenversusinconsistentvith the theory provided. Specifically, evaluation of datmsistentvith
a plausible causal theory recruited neural tissue in the parahippocampal gyrus, whereas evaluatingridgéentvith a plausible theory
recruited neural tissue in the anterior cingulate, left dorsolateral prefrontal cortex, and precuneus. We suggest that these findings provide
neural instantiation of the mechanisms by which working hypotheses and evidence are integrated in the brain.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction changes how they evaluate information provided to them.
Specifically, the knowledge individuals bring to bear on a task
For over 400 years scientist€rick, 1999, philosophers has been shown to greatly influence their tendency to carry
(Bacon, 1620/1854cognitive psychologist&unbar, 2002, out that task in a way traditionally deemed as normatively
and even politiciandH{ealy, 1996 have debated the preferred appropriate.
way for people to think and reason about data. Inthe cognitive A prevalent form of human inference where knowledge
laboratory, decades of research have clearly established thamodulates the analyses of datacsusal reasoningHere,
one’s knowledge influences how people interpret data in their the reasoner must ascertain the extent to which variables
environment. These findings have come from a variety of are causally related based on one or more causal cues (e.g.,
theoretical traditions including the investigation of heuristics covariation, mechanism, temporal and spatial contiguity).
and biases in decision-making (e @igerenzer & Goldstein, = Recent work conducted in our laboratory has shown that
1996 Kahneman & Tversky, 1996Todd & Gigerenzer, the degree to which data are evaluated is modulated by the
2000 Tversky & Kahneman, 1974 belief-bias effects in  plausibility of the causal theory being testdeligelsang &
deductive reasoning (e.ggvans, 1989 Evans, Barston, = Thompson, 2000, 200&ugelsang et al., 2004Specifically,
& Pollard, 1983 Goel & Dolan, 2003 Klauer, Musch, & we have shown that the plausibility of a causal theory guides
Naumer, 2000 and knowledge mediation in causal and the analyses of data such that reasoners may be more inclined
scientific reasoningRugelsang & Thompson, 2000, 2001, to assess data that are encountered during the evaluation of
2003 Fugelsang, Stein, Green, & Dunbar, 2084ahr, Fay, a plausible theory as opposed to data encountered during the
& Dunbar, 1993Koehler, 1993 A common thread through  evaluation of an implausible theory.
these approaches is that the knowledge people possess By what mechanism does this knowledge mediation
occur? Recent cognitive models have converged on the
* Corresponding author. Tel.: +1 603 646 2998; fax: +1 603 646 1419. notion that attentional processes mediate much of theory and
E-mail addresskevin.n.dunbar@dartmouth.edu (K.N. Dunbar). data interactions in a number of reasoning domains (e.g.,
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Evans, 2003 Fugelsang & Thompson, 200&igerenzer theoretical papers have recently been devoted to understand-
& Goldstein, 1996 Kahneman & Tversky, 1996Klauer, ing the central role of the anterior cingulate cortex in error
Musch, & Naumer, 2000 However, the locus of such detection and conflict monitoring (e.d3otvinick, Braver,
effects has remained relatively elusive. There are at least twoBarch, Carter, & Cohen, 200Bush, Luu, & Posner, 2000
possible ways in which attentional processes can mediate theHolroyd & Coles, 2002van Veen & Carter, 20Q2Yeung,
interplay between theory and data in the domain of causal Botvinick, & Cohen, 200%
reasoning. These hypotheses concern the extent to which Based on these prior findings, and the hypothesized mech-
one’s attention, and subsequent working memory processesanisms of reasoning described above, we predict that the
are drawn to data encountered during the evaluation of disparate networks associated with learning versus conflict
plausible versus implausible theories. One possibility is monitoring will show increased activity when participants
that reasoners quickly accept with little deliberation data evaluate data that ammnsistenversusinconsistentrespec-
encountered while evaluating a plausible theory and closely tively, with the theory provided to them. To address these is-
scrutinize data encountered while evaluating an implausible sues, we developed a causal reasoning task where the strength
theory. Conversely, reasoners may preferentially attend to of statistical data is manipulated orthogonally to the plausi-
data encountered while evaluating a plausible theory andbility of the theory being tested. To do this, we adapted a
ignore data encountered while evaluating an implausible methodology commonly used in the cognitive laboratory to
theory. These hypotheses can be dissociated by examiningneasure causal reasoning processes based on the strength
the extent to which brain networks typically associated with of covariation-based statistical data. This methodology takes
attention, working memory, and executive processes, such asnto account the combined role of tkafficiencyandneces-
the prefrontal cortex (e.gGurtis & D'Esposito, 2003Smith sity of observed statistical relationships. The sufficiency of
& Jonides, 199y are selectively recruited when encounter- a cause is determined by the probability that the effect oc-
ing data during the evaluation of plausible versus implausible curs in the presence of a cause [ile(g/c)], whereas the
theories. necessity of a cause is determined by the probability that
A second component of these hypotheses concern thethe effect occurs in the absence of a cause [Ré&e/~c)].
mechanisms by which datzonsistencyinteracts with the Using these two components, the covariation between a po-
plausibility of the causal theory being tested. Are people tential cause and outcome can be determined by subtracting
more inclined to attend to, associate, and integrate cata the latter equation from the former [i.&(e/c)— P(e/~c)].
sistentwith a theory while treating datanconsistentwith This metric of covariation, commonly referred to as thie;
a theory as erroneous? Research in behavioral and cogeoefficient is featured prominently in contemporary theo-
nitive neuroscience indicates that there are a number ofries of causal thinking (e.gGheng, 1997Cheng & Novick,
key brain networks that are invoked during learning ver- 199Q Novick & Cheng, 2004White, 2002 and numerous
sus error detection and conflict monitoring that may pro- experiments conducted in the cognitive laboratory support
vide a neural basis for operationalizing such biases in causalthe assumption that people do indeed make causal infer-
reasoning. ences to a large degree based on the observed covariation
Concerning the former, both patient studies (e.g., between variables (e.gAllan & Jenkins, 1980 Fugelsang
Bernasconi et al., 2003®amasio, Eslinger, Damasio, Van & Thompson, 2000, 2001, 200%ugelsang et al., 2004;
Hoesen, & Cornell, 19891ay, Moscovitch, & Levine, 2002 Spellman, 1996; White, 2002We were predominantly in-
Milner, Corkin, & Teuber, 196Band functionalimaging stud-  terested in examining (1) the degree to which theory plausi-
ies (e.g.Kapur et al., 1996; Kelley et al., 1998; McDermott bility biases the evaluation of statistical covariation-based
et al., 1999; Poldrack et al., 2002; Ranganath et al., 003 data, and (2) the neural foundations that subserve these
have highlighted the primary role of the parahippocampal biases.
gyrus and related mesial structures in declarative learning
and memory. Specifically, the parahippocampal gyrus and
adjacent structures in the temporal lobes are thought to be2. Method
crucial for binding stimulus features into an episodic mem-
ory trace Moscovitch, 1992 Wagner, Maril, & Schacter,  2.1. Participants
2000 thus allowing successful subsequent retrieval of in-
formation retrospectively. Concerning the latter, numerous  Fourteen participants (6 males, 8 females; age range
ERP and fMRI studies using a variety of tasks including 18-31 years) took part in the study and were paid $10. All
variants of the Stroop task (e.@ush et al., 1998; Kerns  participants were right-handed, reported no significant ab-
et al., 2004, the Eriksen Flanker task (e.¢ran, Flombaum,  normal neurological history and had normal or corrected-
McCandliss, Thomas, & Posner, 200&n Veen, Cohen, to-normal visual acuity. Informed written consent for all
Botvinick, Stenger, & Carter, 200land probabilistic learn-  participants was obtained prior to the experiment in ac-
ing paradigms (e.gHolroyd et al., 200% have highlighted cordance with the guidelines established by the Commit-
the predominant role of the anterior cingulate cortex in error tee for the Protection of Human Subjects at Dartmouth
detection and conflict monitoring. Indeed, a number of key College.
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Table 1
Mean (standard deviations in parentheses) pre-tested plausibility and familiarity ratings of the causal theories
Causal theory Plausibility rating (0-10y=23 Familiarity rating (1-7)N=13
Plausible theories
Serotonin reuptake inhibitor 8.17 (1.07) 2.69 (1.75)
Monoamine oxidase inhibitor 8.22 (0.95) 2.31(2.18)
Implausible theories
Protein binder 0.78 (0.80) 2.31(2.32)
Topoisomerase inhibitor 1.17 (1.54) 2.08 (1.65)
2.2. Design and apparatus define theory plausibility in terms of the degree to which a

mechanism of action exists that links the candidate cause to

A standard block design was used with 50s of task fol- the effect under consideration (séén, Kalish, Medin, &
lowed by 30s of fixation only rest trials. Visual stimuli Gelman, 1995Harre & Madden, 1975White, 1989. The
were presented using a G4 PowerBook computer runningcausal mechanisms consisted of biological agents that were
PsyScope 2.5.1 softwarecC¢hen, MacWhinney, Flatt, & equated for complexitylable 1presents the mean pre-rated
Provost, 1998 Stimuli were projected to participants using plausibility and familiarity ratings for these stimuli obtained
an Epson (model ELP-7000) LCD projector onto a screen from an independent sample of Dartmouth College under-
positioned at the head end of the fMRI scanner bore. Par-graduate students who did not receive the covariation-based
ticipants viewed the screen through a mirror. Cushions were data manipulation. Participants were given no explicit causal

used to minimize head movement. mechanism information for the blue pill and were instructed
to treat it as a placebo condition.
2.3. Stimuli and task Data were then provided to participants in a trial-by-trial

format where they viewed 20 trials of data each lasting 2.5s
Using fMRI, we measured the task related blood oxygen for each of the four causal theories provided. These data
level dependent (BOLD) response as participants observedwere presented in combinations of the causeethpill or
covariation-based data on the effectiveness of drugs designed blue pill) and the effectl{appinessor neutral outcome)
to relieve depressive symptoms. The plausibility of a theory co-occurring.Fig. 1 presents a graphical depiction of these
was manipulated by presenting participants with a brief four eventtypes. Under some conditionstixé pill andhap-
introductory statement that contained either (1) a direct pinesscovaried strongly, under other conditions tee pill
causal mechanism of action linking a red pill to a mood andhappinesxovaried weakly. This was accomplished by
outcome, or (2) no direct causal mechanism of action linking varying the frequency with which each of the four event types
a red pill to a mood outcome (seéppendix A). Here, we  (red pill/happinesgred pill/neutral blue pillhappinessblue

Effect No Effect

Pill Patient Status Pill Patient Status
4

Cause
£

+

f
e

+

Iz

Pill Patient Status Pill Patient Status
4 }

No Cause

Fig. 1. Example stimuli representing the four possible combinations of the candidate cause (checked pill vs. white pill) and effect (happiogss vs. ne
emotion). Note that the stimuli in the actual experiments utilized a red pill and a blue pill in the place of the checked pill and the white pill.
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Table 2 to remove sources of noise and artifact. Functional data were
Event frequencies used for the computation of covariation-based data realigned within and across runs to correct for head move-

strength _ — ment using a six parameter, rigid body alignment technique

Event frequencies Degree of covariation (Kiebel, Ashburner, Poline, & Friston, 199®oods, Grafton,

ce cwe ~ce ~c~e Pelc) P(e~c) Covariation APc) Holmes, Cherry, & Mazziotta, 199&nd coregistered with

18 2 4 16 18/20  4/20 0.7 (strong) each particip_ant’s anatomical data. F_unctional data were the_n
10 10 4 16 10/20  4/20 0.3 (weak) transformed into a standard anatomical space (3 mm isotopic

Note (ce) represents the number of times the cause and effect co-occurred;VOXels) based on the ICBM 152 brain template (Montreal
(c~e) represents the number of times the cause occurred in the absence oNeurological Institute), which approximatdalairach and
the effect; (-ce) represents the number of times the effect occurred in the Tournoux (1988)atlas space using higher order polynomial
absence of the cause;y¢~e) represents the number of times the effect was then non-linear basis functionAihburner & Friston 1999
absent when the cause was absent. . . !
Normalized data were then spatially smoothed (10 mm full-
. width-at-half-maximum) using a Gaussian kernel in order
pill/neutra) occurred.Table 2presents the event frequen- o . : )
. . O : . to optimize signal-to-noiseSkudlarski, Constable, & Gore,
cies used to manipulate covariation information on a trial- ; ; .
1999 and abide by the assumptions of Gaussian random

by t“"?" paS'S' Note that the.s:trong covariation- and weak field theory (Norsley & Friston, 199% The normalized and
covariation-based data conditions represented an actual co- ' -

L . smoothed images were then used for the subsequent statisti-
variation of 0.7 and 0.3, respectively, as measured by the

. ; L cal analysis. For each subject, a general linear méiton
AP coefficient Note also that high covariation-based data ysIS. >Ub) 9 o
) ) . et al., 1998 incorporating task effects (modelled as a box-
encountered during the evaluation of a plausible causal the- : . . :
R . car function convolved with the canonical hemodynamic re-
ory and low covariation-based data encountered during the

. ! ; sponse function), a mean, and a linear trend were used to
evaluation of an implausible causal theory would both con- : )
. : - compute parameter estimat@3 &ndt-contrast images (con-
stitute consistentdata, whereas low covariation-based data

encountered during the evaluation of a plausible theory andtalnlng weighted-parameter estimates) for each comparison

high covariation-based data encountered during the evalua-at each voxel. A random-effects analysfsigton, Holmes,

tion of an implausible theory would both constitineonsis- Egge’ ;;Jg; ggngs‘,i:':ﬁrsl:fyénr%eg:i%rizageﬁsne\;itiﬁeﬁ negt’h%
tentdata. After participants received 20 trials of data, they Y, 9 P yp

. : L esized mean of 0 was then applied to the individual sub-
were asked to judge the effectiveness of the red pill in caus-. . )
. : . ject t-contrast images to create mdamages (thresholded
ing the happiness using a scale that ranged from 1 (low) to _

. : . ) atP=.001, uncorrected).

3 (high). This procedure was repeated four times: once for
each level of the theory plausibility and covariation manipu-
lations. Therefore, each participant took part in all conditions

using a completely within subjects design. 3. Results

o The results are presented in two sections. The first section

2.4. Image acquisition presents the omnibus analyses of theory plausibility (implau-
) sible versus plausible), and the strength of the covariation-
Imaging was performed on a 1.5T whole body scanner pased data (strong versus weak) for the behavioral judgments.
(General Electric Medical Systems Signa, Milwaukee, The second section presents the fMRI random-effects group

Wisconsin) with a standard head coil. Anatomical images analyses. Effect size estimates in the behavioral results sec-
were acquired using a high-resolution 3D spoiled gradient tjon were computed usingartial 2.

recovery sequence (SPGR; 124 sagittal slicds=%ms,
TR=25ms, flip angle=25 voxel size=1mmx 1 mmx 3.1. Behavioral results
1.2mm). Functional images were collected in runs using

a gradient spin-echo echo-planar sequence sensitive t0 Fjg 2 presents the mean effectiveness ratings for the
blood oxygen level-dependent (BOLD) contrast (T2  two theory types for both strong and weak covariation-
(TR=2500ms, T2evolution time=35ms, flip angle=90  pased data. These data reveal that the participants’ causal
3.75mmx 3.75mm in-plane resolution). During each jydgments were influenced by both the plausibility of the
functional run, 40 sets of axial images (25 slices; 5.5-mm theory,F(1,13) =5.2, M.S.E. =0.495,2 = 0.29,P< .05, and
slice thickness, 1 mm skip between slices) were acquiredthe covariation between the occurrence of the red npill

allowing complete brain coverage. and the outcomér(1,13) =81.37, M.S.E. =0.1482 = 0.86,
P <.01. Importantly, there is also a significant interaction be-
2.5. Statistical analysis tween theory plausibility and covariatiofr(1,13)=10.48,

M.S.E.=0.17052=0.45,P< .01 revealing that the covaria-
All data were analyzed using SPM99 software (Wellcome tion manipulation has a greater effect for plausible theories
Department of Cognitive Neurology, London, UKriston (mean difference 1.29) than implausible theorieséan dif-
etal., 199%. For each functional run, data were preprocessed ference= 0.57). Consistent with prior behavioral work (i.e.,
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; 2.93 Inferior Frontal
v Gyrus (BA 45/47)

Primary Visual

Cortex (BA 17/18)

Superior Frontal
Gyrus (BA 8)

1.57

Causal Effectiveness Rating
N

---A---High Plausibility
—&— Low Plausibility

1 T |
Low Covariation High Covariation

) ) ) Fig. 3. Unique task associated BOLD activations occurring when partici-
Fig. 2. Mean causal effectiveness ratings for the two theory types (low plau- pants encountered data while evaluating a plausible vs. an implausible the-
sibility vs. high plausibility) for both weak data (low covariation) and strong ory.

data (high covariation) after the 20 presentation trials.

Fugelsang & Thompson, 2000, 2Q@&igelsang etal., 2004  bilateral prefrontal regions (right superior frontal gyrus [BA
these data revealelief-biagn causal reasoning whereby the 9] and the left inferior frontal gyrus [BA 45/47]) are signifi-
effects of covariation are larger when evaluating a plausible cantly (P <.00%ncorrected More activated when subjects en-

as opposed to an implausible causal theory. countered data during the evaluation of a plausible theory as
opposed to an implausible theory. In addition, encountering
3.2. fMRI results data during the evaluation of a plausible theory preferentially

recruits neural tissue in the primary visual cortex (BA 17/18).
We analyzed the task related BOLD response for condi- These latter findings are consistent with recent work estab-
tions in which subjects encountered data while evaluating lishing the relationship between visual attention and working
a plausible versus an implausible thedfig. 3 shows that memory and the subsequent recruitment of neural tissue in
regions typically associated with working memory and ex- primary and secondary regions of the visual coriRgds &
ecutive processingQurtis & D’Esposito, 2003), including  Lavie, 2001 Rees, Frith, & Lavie, 1997

Parahippocampal

Gyrus Plausible Theory Implausible Theory

Caudate

Anterior Cingulate
Cortex (BA 24/32)

Precentral
Superior Frontal Gyrus (BA6)
Gyrus (BA 9)
Precuneus
(BA7)

betineon | Lo | Lot | ool

[4a] [4b]

Fig. 4. Unique task associated BOLD activations occurring when viewingrmtatasistents. consistentith a plausible theory (a) and an implausible theory
(b). Note that the activations denoted by red to yellow are for the conditions in which the provided theory and idataaistentind the activations denoted
by blue to green are for the conditions in which the theory and datecssistent
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To assess the degree to which plausibility modulates use of the covariation-based data in participants’ behavioral
the integration of data as a function of theory and data judgments. These patterns of activation suggest that the indi-
consistencywe examined the task related BOLD function viduals in the current study may have preferentially devoted
for conditions in which theory and data awmmnsistent more attentional/working memory resources when encoun-
(i.e., plausible theory and strong data; implausible theory tering data during the evaluation of plausible as opposed to
and weak data) versus conditions in which theory and implausible theories. These findings are consistent with ex-
data areinconsistent(i.e., plausible theory and weak data; tensive research demonstrating that the prefrontal cortex is
implausible theory and strong dat&jg. 4 shows that when  involved in a vast array of tasks that require the active encod-
theory and data areonsistenta distinct network of brain  ing and maintenance of patterns of stim@ngith & Jonides,
regions widely associated with learning and meméw®iiey 1999. In addition, and perhaps most relevant for the current
et al., 1998; McDermott et al., 199%re preferentially  experiment, the prefrontal cortex has also been linked to the
recruited, including the caudate, and the parahippocampalinitiation ofbias signaldo other structures in the brai{ller
gyrus. In contrast, when theory and data im@nsistenta & Cohen, 200). These bias signals from the prefrontal cor-
different pattern of activation occurs that is widely associated tex are proposed to guide the flow of activity along specific
with error detection and conflict monitoringB¢tvinick neural pathways in order to establish the proper mappings be-
et al.,, 2001; Yeung et al., 200#olroyd & Coles, 2002, tween inputs and outputs needed to perform a specific task.
including the left dorsolateral prefrontal cortex (BA 9), Considering the observdatlief-biasin the behavioral judg-
dorsal regions of the anterior cingulate cortex (BA 24/32), ments, one can envision such a role for the prefrontal cortex
and the precuneus (BA 7). Importantly, this latter brain in the current experiment.
network is only significantly activated when participants Furthermore, the plausibility of a theory influenced the
encounter data that conflicts with a plausible causal theory. degree to which dat@onsistentversusinconsistentwith

that theory invoked disparate neural tissue associated with

learning or conflict monitoring. Specifically, the selective
4. Discussion activations of the caudate and parahippocampal gyrus under

conditions in which theory and data wetensistenimply

In the present experiment, we show that people display that participants may be more apt to efficiently encode data
specific behavioral and neural response patterns as a funcunder such conditions. Unexpectedly, in both cases in which
tion of the relationship between theory and data. Theory andtheory and data wereonsistentthe precentral gyrus was
data have an interactive effect on participants’ causal judg- preferentially recruited in concert with the parahippocampal
ments whereby data are weighted more heavily when they aregyrus. One possible explanation for this finding reflects
encountered during the evaluation of plausible as opposed tothe extent to which preparatory motor functions might be
implausible causal theories. These data are consistent withoccurring during the data accumulation phase of the task.
recent models of scientific causal thinking and hypothesis Specifically, participants in the current task were required
testing that incorporate theory and data interactinspar, to withhold their causal response until after the 20 trials
1993 Fugelsang & Thompson, 2000, 2063ahr et al., 1993 of data had been presented. The fact that regions typically
Klayman & Ha, 1987 Koehler, 1993. Here, it is proposed  associated with motor functions were recruited during this
that using one’s knowledge to constrain the use of statistical data accumulation period is consistent with a continuous
data is an adaptive strategy. Specifically, given the potentially flow model of information processing (e.€phen, Dunbar,
infinite number of covarying causes for every naturally occur- & McClelland, 1990 Eriksen & Shultz, 197p Here, the
ring effect, itis preferable to focus one’s attention on data en- accumulation, deliberation, and response associated with a
countered during the evaluation of plausible as opposed toim-particular task are proposed to occur continuously during
plausible hypotheses. In this way, using one’s knowledge to all portions of the process, rather than in a serial manner
filter out data for implausible theories serves to make the taskwhereby response information would not contribute to the
of evaluating causal hypotheses from statistical data feasible.cognitive process until the task demanded.

By contrasting the selective activations associated with  The preferential recruitment of the anterior cingulate, left
encountering data while evaluating plausible versus implau- dorsolateral prefrontal cortex, and precuneus imply that par-
sible theories, we were able to dissociate the extent to whichticipants likely perceived data as error when it wrasonsis-
one’s attention, and subsequent working memory processestentwith a plausible causal theory. The fact that the precuneus
are drawn to data as a function of theory plausibility. Con- and dorsolateral prefrontal cortex are recruited in concert with
current with the behavioral response patterns, we show thatthe anterior cingulate cortex provides important additional
the brain responds differently to incoming data as a function information for understanding the types of cognitive mecha-
of the plausibility of the theory being tested. Specifically, nisms that may be applied when participants encounter data
the preferential recruitment of prefrontal and occipital cor- under such conditions. Considering first the precuneus, there
tices for conditions in which data are encountered during has now been considerable evidence suggesting that the pre-
the evaluation of plausible theories directly correspond to cuneus may have a predominant role in the reallocation of
those conditions in which plausibility modulated the greater attentional resources (e.d4andy, Hopfinger, & Mangun,
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Table 3 That is, regions in the dorsal anterior cingulate cortex, dor-
BOLD signal increases & < .001 (minimum 5 voxels) for all contrasts of solateral prefrontal cortex. and precuneus were onIy prefer-
interest as a function of the th lausibility and iati ipulati : ) e

Interestas afunction ofthe theory plausibility and covariation manipulations o ia 1y recruited when participants encounter data that were

Brain region X Y z Fvalue inconsistent with a plausible causal theory, and not an implau-

Plausible >implausible sible causal theory. One possible explanation for this finding
Superior frontal gyrus 18 38 51 5.64 is that one’s knowledge of the presence of causal mechanisms
Occipital lobe 3 -84 15 4.57

is more sensitive to inconsistency than one’s knowledge of
the absence of causal mechanisms. Here, individuals may be
more inclined to preserve their beliefs in the face of con-
flicting data when the representation of that belief reflects a

Inferior frontal gyrus -39 14 -13 4.98

Implausible > plausible
No significant activations

Stg’”g r‘]’_o"a”aﬁonjweak Covari‘;tf” i u po2 known mechanism of actiorAbin et al., 199% In addition,
arahippocampalgyrus = - - : the fact that these disparate neural patterns selectively oc-
Weak covariation > strong covariation curred when participants encountered data while evaluating
m:]dgddzltgxsgra' gyrus 756 :62 _% i'ig plausible rather than implausible theories provides additional
Precuneus _3 _68 42 4.49 support for the preceding arguments regarding the priority

that data for plausible theories may receive. These findings,

Plausible strong covariation > plausible weak covariation taken together with the main effects analyses of theory plau-

Precentral gyrus 33 -6 30 5.81

Parahippocampal gyrus ~ —27 _30 _3 5.26 sibility (both in terms of behavior and the brain), suggest that
. - . - attentional/working memory priority is given to the analy-

Plausible weak covariation > plausible strong covariation . . .

Precuneus _6 _69 45 6.47 ses of data during the evaluation of plausible as opposed to

Superior frontal gyrus —-36 36 30 5.44 implausible causal theories.

Anterior cingulate cortex 9 21 27 4.53 The fMRI data may also provide a neural instantiation for
Implausible strong covariation > implausible weak covariation the growing body of research aonfirmation biaghat has

No significant activations been examined over the past several decaded(skerson,
Implausible weak covariation >implausible strong covariation 1998 for review). For example, research In cognitive psy-

Precentral gyrus 60 0 9 5.43 chology (e.g.,Bruner, Goodnow & Austin, 1956Evans,

Caudate -18 3 15 4.19 1989 Klayman & Ha, 1987 Mynatt, Doherty, & Tweney,

Parahippocampal gyrus ~ —24 —24 -9 4.18 1977 Wason, 1968 scientific thinking (e.g.Cohen, 1985;

Gorman, 1989; Mitroff, 1974; Tweney, 1989weney &

2001, Mazoyer, Wicker, & Fonlupt, 20Q2Raichle, 2000; Doherty, 1983, judicial reasoning (e.g.Fugelsang &
Raichle et al., 20011 That is, when patrticipants reallocate at- Dunbar, 2004Hendry & Shaffer, 198%ennington & Hastie,
tention away from a task (commonly found in resting states) 1993, medical reasoning (e.gElstein & Bordage, 1979
the precuneus often exhibits increased activity as measuredand politics (e.g.Healy, 1996 have all noted the preponder-
by the fMRI BOLD signal Table 3. In addition, the selective  ance of confirmatory-based reasoning strategies across many
dorsolateral prefrontal recruitment in this condition may be disparate domains. Providing a neural mechanism by which
the result of the activanhibition of the attentional processes these biases operate may assist in the development of tech-
associated with the task. Recentpel and Dolan (2003)  niques to minimize such biases when they may hinder ef-
found preferential recruitment of the dorsolateral prefrontal fective reasoning (seBunbar, 1993; Evans, 200Evans,
cortex in a deductive reasoning task when beliefs and logic Newstead, Allen, & Pollard, 19%r examples of the reduc-
were in conflict and required thi@hibition of a response.  tion of reasoning biases through instructional manipulations).
Taken together, these findings suggest that the network in-A fruitful avenue for future research would be to directly
volving the precuneus, anterior cingulate, and dorsolateral compare belief-bias effects in causal and deductive reason-
prefrontal cortex may represent the active reallocation of at- ing within the same individuals. In contrast to our findings
tentional resources when presented with statistical data thatwithin the domain of causal reasoning, several theoretical ac-
areinconsistentvith one’s a priori theory. Indeed, a similar  counts of deductive reasoning propose that it is the unbeliev-
synergistic relationship between the anterior cingulate and able information that demands the most attention and work-
the dorsolateral prefrontal cortex has also recently been ob-ing memory processes (e.gvans, 1989Newstead, Pollard,
served in the Stroop taskérns et al., 200¢ Evans, & Allen, 19920akhill, Johnson-Laird, & Garnham,

These data also speak to the growing work examining the 1989. Determining the degree to which causal and deduc-
role of the anterior cingulate in error detection and conflict tive reasoning recruit common or distinct neural circuitry will

monitoring. Here we show that the brain respondsda- aid in the development of more comprehensive general mod-
ceptualinconsistencies in a similar manner to what others els of reasoning and provide mechanisms describing when
have found usingerceptualnconsistencies (e.gBush et al., processing may differ when the task demands it. In addi-

1998; Kerns et al., 2004Importantly, the extent to which  tion, the extent to which these biases, and concurrent recruit-
conflict monitoring networks are recruited as a function of ment of disparate neural tissue, are the result of automatic or
datainconsistency depends on the nature of the inconsistencycontrolled reasoning processes (&sns, 2003Fugelsang
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& Thompson, 2008 is an important avenue for future the brain. Theed pill is a “selective serotonin reuptake

research. inhibitor”. This pill blocks the recycling process for the
These data may also contribute to the development of serotoninwhich then keeps more of this neurotransmitter

more comprehensive models of human causal reasoning. in the brain available to communicate with other nerve

Recent models of causality in cognitive science, computer cells.

science, developmental psychology, and philosophy have(2) Past research has demonstrated that peoples’ feelings

begun to adopt a Bayes net approach to understanding of happinessare directly related to the level ofore-

the acquisition and representation of causal knowledge pinephrinein the brain. Theed pill is a “monoamine ox-

(Glymour, 2001; Gopnik et al., 2004; Pearl, 2000he data idase inhibitor”. Monoamine oxidase is an enzyme that
obtained in our experiment are consistent with a Bayesian breaks dowmorepinephrinein the brain. Monoamine
formulation if one takes into account the role of prior oxidase inhibitors inhibit this enzyme, thus allowing a
knowledge when judging probabilistic data. When judging greater supply of this neurotransmitter to remain avail-
probabilistic data, prior knowledge is typically operational- able in the brain.

ized in terms of one’s knowledge of, or use of base-rate

information @ar-Hillel, 198Q Kahneman & Tversky, 1973 A.2. Implausible causal theory

Peterson & Beach, 1987Here, theposterior odds of a

given hypothesisg(H/D)] using a Bayesian formulation are (1) Past research has demonstrated that the growth of small
a product of theprior odds of the given outcome occurring amounts of the bacterstaphylococcu# the body has
[p(H)] and the current data to be evaluatgqCj/H)]. One nodirect link to peoples’ feelings of happiness. Tied

can express our manipulations of theory plausibility and pill is a “topoisomerase inhibitor”. Topoisomerase is an
covariation-based data probabilistically and thus onto the enzyme that is necessary for the reproductiostaphy-

Bayesian formulations op(H) and p(D/H), respectively. lococcusn the body. “Topoisomerase inhibitors” inhibit
Here, the degree to which covariation-based dp(B/H)] this enzyme, thus restricting the abilitysiphylococcus

influences the strength of one’s causal judgment when to replicate.
evaluating a theoryp(H/D)] is determined in part by the  (2) Past research has demonstrated that the growth of small

plausibility of the theory being testegp(H)]. Therefore, if amounts of the bacterigostridiumin the body has no
the theory being tested is implausible [e.g., srpé)], the direct link to peoples’ feelings of happiness. The red pill
covariation-based data is unlikely to significantly impact is a “protein binder”. The cell walls of bacteria are con-
one’s judgment when evaluating a specific causal hypothesis  tinuously expanding through the synthesis of proteins
[p(H/D)]. By incorporating the role opriors, a Bayesian and amino acids. In order for a bacteria cell to flourish
account of causal reasoning may serve as a useful tool to  and reproduce, the cell wall must be able to expand with
further our understanding of complex reasoning behavior. the growing interior. “Protein binders” bind to specific

Remarkably, the human brain appears to have evolved a  amino acids and proteins thus inhibiting the cell wall of
particular mechanism for treating the myriads of potentially clostridiumto synthesize.

conflicting information to which an organism is exposed. One

ofthe main riddles of understanding the scientific mind is that

there are an infinite variety of models and theories that can

be invoked to explain a set of data. By having a mechanism , ,

that limits possible interpretations, the brain makes the sheerAhn’ W., Kalish, C. W., Medin, D. L., & Gelman, S. A. (1995). The role
p P . ! of covariation versus mechanism information in causal attribution.

number of models to be considered tractable. Cogpnition 54, 299-352.

Allan, L. G., & Jenkins, H. M. (1980). The judgments of contingency and
the nature of response alternativ€anadian Journal of Psychology
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