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Brain-based mechanisms underlying complex causal thinking
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Abstract

We use functional magnetic resonance imaging (fMRI) and behavioral analyses to study the neural roots of biases in causal reasoning.
Fourteen participants were given a task requiring them to interpret data relative to plausible and implausible causal theories. Encountering
covariation-based data during the evaluation of a plausible theory as opposed to an implausible theory selectively recruited neural tissue in the
prefrontal and occipital cortices. In addition, the plausibility of a causal theory modulated the recruitment of distinct neural tissue depending
on the extent to which the data wereconsistentversusinconsistentwith the theory provided. Specifically, evaluation of dataconsistentwith
a plausible causal theory recruited neural tissue in the parahippocampal gyrus, whereas evaluating datainconsistentwith a plausible theory
recruited neural tissue in the anterior cingulate, left dorsolateral prefrontal cortex, and precuneus. We suggest that these findings provide a
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eural instantiation of the mechanisms by which working hypotheses and evidence are integrated in the brain.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

For over 400 years scientists (Crick, 1990), philosophers
Bacon, 1620/1854), cognitive psychologists (Dunbar, 2002),
nd even politicians (Healy, 1996) have debated the preferred
ay for people to think and reason about data. In the cognitive

aboratory, decades of research have clearly established that
ne’s knowledge influences how people interpret data in their
nvironment. These findings have come from a variety of

heoretical traditions including the investigation of heuristics
nd biases in decision-making (e.g.,Gigerenzer & Goldstein,
996; Kahneman & Tversky, 1996; Todd & Gigerenzer,
000; Tversky & Kahneman, 1974), belief-bias effects in
eductive reasoning (e.g.,Evans, 1989; Evans, Barston,
Pollard, 1983; Goel & Dolan, 2003; Klauer, Musch, &

aumer, 2000), and knowledge mediation in causal and
cientific reasoning (Fugelsang & Thompson, 2000, 2001,
003; Fugelsang, Stein, Green, & Dunbar, 2004; Klahr, Fay,
Dunbar, 1993; Koehler, 1993). A common thread through

hese approaches is that the knowledge people possess

changes how they evaluate information provided to th
Specifically, the knowledge individuals bring to bear on a
has been shown to greatly influence their tendency to
out that task in a way traditionally deemed as normati
appropriate.

A prevalent form of human inference where knowle
modulates the analyses of data iscausal reasoning. Here,
the reasoner must ascertain the extent to which vari
are causally related based on one or more causal cues
covariation, mechanism, temporal and spatial contigu
Recent work conducted in our laboratory has shown
the degree to which data are evaluated is modulated b
plausibility of the causal theory being tested (Fugelsang &
Thompson, 2000, 2003; Fugelsang et al., 2004). Specifically
we have shown that the plausibility of a causal theory gu
the analyses of data such that reasoners may be more in
to assess data that are encountered during the evalua
a plausible theory as opposed to data encountered duri
evaluation of an implausible theory.

By what mechanism does this knowledge media
occur? Recent cognitive models have converged on
∗ Corresponding author. Tel.: +1 603 646 2998; fax: +1 603 646 1419.
E-mail address:kevin.n.dunbar@dartmouth.edu (K.N. Dunbar).

notion that attentional processes mediate much of theory and
data interactions in a number of reasoning domains (e.g.,
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Evans, 2003; Fugelsang & Thompson, 2003; Gigerenzer
& Goldstein, 1996; Kahneman & Tversky, 1996; Klauer,
Musch, & Naumer, 2000). However, the locus of such
effects has remained relatively elusive. There are at least two
possible ways in which attentional processes can mediate the
interplay between theory and data in the domain of causal
reasoning. These hypotheses concern the extent to which
one’s attention, and subsequent working memory processes
are drawn to data encountered during the evaluation of
plausible versus implausible theories. One possibility is
that reasoners quickly accept with little deliberation data
encountered while evaluating a plausible theory and closely
scrutinize data encountered while evaluating an implausible
theory. Conversely, reasoners may preferentially attend to
data encountered while evaluating a plausible theory and
ignore data encountered while evaluating an implausible
theory. These hypotheses can be dissociated by examining
the extent to which brain networks typically associated with
attention, working memory, and executive processes, such as
the prefrontal cortex (e.g.,Curtis & D’Esposito, 2003;Smith
& Jonides, 1999), are selectively recruited when encounter-
ing data during the evaluation of plausible versus implausible
theories.

A second component of these hypotheses concern the
mechanisms by which dataconsistencyinteracts with the
plausibility of the causal theory being tested. Are people
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theoretical papers have recently been devoted to understand-
ing the central role of the anterior cingulate cortex in error
detection and conflict monitoring (e.g.,Botvinick, Braver,
Barch, Carter, & Cohen, 2001; Bush, Luu, & Posner, 2000;
Holroyd & Coles, 2002; van Veen & Carter, 2002; Yeung,
Botvinick, & Cohen, 2004).

Based on these prior findings, and the hypothesized mech-
anisms of reasoning described above, we predict that the
disparate networks associated with learning versus conflict
monitoring will show increased activity when participants
evaluate data that areconsistentversusinconsistent, respec-
tively, with the theory provided to them. To address these is-
sues, we developed a causal reasoning task where the strength
of statistical data is manipulated orthogonally to the plausi-
bility of the theory being tested. To do this, we adapted a
methodology commonly used in the cognitive laboratory to
measure causal reasoning processes based on the strength
of covariation-based statistical data. This methodology takes
into account the combined role of thesufficiencyandneces-
sity of observed statistical relationships. The sufficiency of
a cause is determined by the probability that the effect oc-
curs in the presence of a cause [i.e.,P(e/c)], whereas the
necessity of a cause is determined by the probability that
the effect occurs in the absence of a cause [i.e.,P(e/∼c)].
Using these two components, the covariation between a po-
tential cause and outcome can be determined by subtracting
t
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ore inclined to attend to, associate, and integrate datacon-
istentwith a theory while treating datainconsistentwith
theory as erroneous? Research in behavioral and

itive neuroscience indicates that there are a numb
ey brain networks that are invoked during learning
us error detection and conflict monitoring that may
ide a neural basis for operationalizing such biases in c
easoning.

Concerning the former, both patient studies (e
ernasconi et al., 2003; Damasio, Eslinger, Damasio, V
oesen, & Cornell, 1985; Hay, Moscovitch, & Levine, 2002;
ilner, Corkin, & Teuber, 1968) and functional imaging stud

es (e.g.,Kapur et al., 1996; Kelley et al., 1998; McDerm
t al., 1999; Poldrack et al., 2002; Ranganath et al., 2)
ave highlighted the primary role of the parahippocam
yrus and related mesial structures in declarative lea
nd memory. Specifically, the parahippocampal gyrus
djacent structures in the temporal lobes are thought
rucial for binding stimulus features into an episodic m
ry trace (Moscovitch, 1992; Wagner, Maril, & Schacte
000) thus allowing successful subsequent retrieval o

ormation retrospectively. Concerning the latter, nume
RP and fMRI studies using a variety of tasks includ
ariants of the Stroop task (e.g.,Bush et al., 1998; Kern
t al., 2004), the Eriksen Flanker task (e.g.,Fan, Flombaum
cCandliss, Thomas, & Posner, 2003; van Veen, Cohen
otvinick, Stenger, & Carter, 2001), and probabilistic learn

ng paradigms (e.g.,Holroyd et al., 2004) have highlighted
he predominant role of the anterior cingulate cortex in e
etection and conflict monitoring. Indeed, a number of
he latter equation from the former [i.e.,P(e/c)−P(e/∼c)].
his metric of covariation, commonly referred to as the�Pc
oefficient, is featured prominently in contemporary th
ies of causal thinking (e.g.,Cheng, 1997; Cheng & Novick
990; Novick & Cheng, 2004; White, 2002) and numerou
xperiments conducted in the cognitive laboratory sup
he assumption that people do indeed make causal
nces to a large degree based on the observed cova
etween variables (e.g.,Allan & Jenkins, 1980; Fugelsang

Thompson, 2000, 2001, 2003; Fugelsang et al., 200
pellman, 1996; White, 2002). We were predominantly in

erested in examining (1) the degree to which theory pla
ility biases the evaluation of statistical covariation-ba
ata, and (2) the neural foundations that subserve
iases.

. Method

.1. Participants

Fourteen participants (6 males, 8 females; age r
8–31 years) took part in the study and were paid $10
articipants were right-handed, reported no significan
ormal neurological history and had normal or correc

o-normal visual acuity. Informed written consent for
articipants was obtained prior to the experiment in
ordance with the guidelines established by the Com
ee for the Protection of Human Subjects at Dartmo
ollege.



1206 J.A. Fugelsang, K.N. Dunbar / Neuropsychologia 43 (2005) 1204–1213

Table 1
Mean (standard deviations in parentheses) pre-tested plausibility and familiarity ratings of the causal theories

Causal theory Plausibility rating (0–10),N= 23 Familiarity rating (1–7),N= 13

Plausible theories
Serotonin reuptake inhibitor 8.17 (1.07) 2.69 (1.75)
Monoamine oxidase inhibitor 8.22 (0.95) 2.31 (2.18)

Implausible theories
Protein binder 0.78 (0.80) 2.31 (2.32)
Topoisomerase inhibitor 1.17 (1.54) 2.08 (1.65)

2.2. Design and apparatus

A standard block design was used with 50 s of task fol-
lowed by 30 s of fixation only rest trials. Visual stimuli
were presented using a G4 PowerBook computer running
PsyScope 2.5.1 software (Cohen, MacWhinney, Flatt, &
Provost, 1993). Stimuli were projected to participants using
an Epson (model ELP-7000) LCD projector onto a screen
positioned at the head end of the fMRI scanner bore. Par-
ticipants viewed the screen through a mirror. Cushions were
used to minimize head movement.

2.3. Stimuli and task

Using fMRI, we measured the task related blood oxygen
level dependent (BOLD) response as participants observed
covariation-based data on the effectiveness of drugs designed
to relieve depressive symptoms. The plausibility of a theory
was manipulated by presenting participants with a brief
introductory statement that contained either (1) a direct
causal mechanism of action linking a red pill to a mood
outcome, or (2) no direct causal mechanism of action linking
a red pill to a mood outcome (seeAppendix A). Here, we

define theory plausibility in terms of the degree to which a
mechanism of action exists that links the candidate cause to
the effect under consideration (seeAhn, Kalish, Medin, &
Gelman, 1995; Harre & Madden, 1975; White, 1989). The
causal mechanisms consisted of biological agents that were
equated for complexity.Table 1presents the mean pre-rated
plausibility and familiarity ratings for these stimuli obtained
from an independent sample of Dartmouth College under-
graduate students who did not receive the covariation-based
data manipulation. Participants were given no explicit causal
mechanism information for the blue pill and were instructed
to treat it as a placebo condition.

Data were then provided to participants in a trial-by-trial
format where they viewed 20 trials of data each lasting 2.5 s
for each of the four causal theories provided. These data
were presented in combinations of the cause (ared pill or
a blue pill) and the effect (happinessor neutral outcome)
co-occurring.Fig. 1 presents a graphical depiction of these
four event types. Under some conditions thered pill andhap-
pinesscovaried strongly, under other conditions thered pill
andhappinesscovaried weakly. This was accomplished by
varying the frequency with which each of the four event types
(red pill/happiness, red pill/neutral, blue pill/happiness, blue

F of the vs. ne
e pill an
ig. 1. Example stimuli representing the four possible combinations
motion). Note that the stimuli in the actual experiments utilized a red
candidate cause (checked pill vs. white pill) and effect (happinessutral
d a blue pill in the place of the checked pill and the white pill.
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Table 2
Event frequencies used for the computation of covariation-based data
strength

Event frequencies Degree of covariation

ce c∼e ∼ce ∼c∼e P(e/c) P(e∼c) Covariation (�Pc)

18 2 4 16 18/20 4/20 0.7 (strong)
10 10 4 16 10/20 4/20 0.3 (weak)

Note: (ce) represents the number of times the cause and effect co-occurred;
(c∼e) represents the number of times the cause occurred in the absence of
the effect; (∼ce) represents the number of times the effect occurred in the
absence of the cause; (∼c∼e) represents the number of times the effect was
absent when the cause was absent.

pill /neutral) occurred.Table 2presents the event frequen-
cies used to manipulate covariation information on a trial-
by-trial basis. Note that the strong covariation- and weak
covariation-based data conditions represented an actual co-
variation of 0.7 and 0.3, respectively, as measured by the
�Pc coefficient. Note also that high covariation-based data
encountered during the evaluation of a plausible causal the-
ory and low covariation-based data encountered during the
evaluation of an implausible causal theory would both con-
stituteconsistentdata, whereas low covariation-based data
encountered during the evaluation of a plausible theory and
high covariation-based data encountered during the evalua-
tion of an implausible theory would both constituteinconsis-
tentdata. After participants received 20 trials of data, they
were asked to judge the effectiveness of the red pill in caus-
ing the happiness using a scale that ranged from 1 (low) to
3 (high). This procedure was repeated four times: once for
each level of the theory plausibility and covariation manipu-
lations. Therefore, each participant took part in all conditions
using a completely within subjects design.

2.4. Image acquisition

Imaging was performed on a 1.5 T whole body scanner
(General Electric Medical Systems Signa, Milwaukee,
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to remove sources of noise and artifact. Functional data were
realigned within and across runs to correct for head move-
ment using a six parameter, rigid body alignment technique
(Kiebel, Ashburner, Poline, & Friston, 1997; Woods, Grafton,
Holmes, Cherry, & Mazziotta, 1998) and coregistered with
each participant’s anatomical data. Functional data were then
transformed into a standard anatomical space (3 mm isotopic
voxels) based on the ICBM 152 brain template (Montreal
Neurological Institute), which approximatesTalairach and
Tournoux (1988)atlas space using higher order polynomial
then non-linear basis functions (Ashburner & Friston, 1999).
Normalized data were then spatially smoothed (10 mm full-
width-at-half-maximum) using a Gaussian kernel in order
to optimize signal-to-noise (Skudlarski, Constable, & Gore,
1999) and abide by the assumptions of Gaussian random
field theory (Worsley & Friston, 1995). The normalized and
smoothed images were then used for the subsequent statisti-
cal analysis. For each subject, a general linear model (Friston
et al., 1998) incorporating task effects (modelled as a box-
car function convolved with the canonical hemodynamic re-
sponse function), a mean, and a linear trend were used to
compute parameter estimates (β) andt-contrast images (con-
taining weighted-parameter estimates) for each comparison
at each voxel. A random-effects analysis (Friston, Holmes,
Price, Buchel, & Worsley, 1999; Lazar, Luna, Sweeney, &
Eddy, 2002) consisting of one-samplet-tests with a hypoth-
e sub-
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isconsin) with a standard head coil. Anatomical ima
ere acquired using a high-resolution 3D spoiled grad

ecovery sequence (SPGR; 124 sagittal slices, TE = 6 ms
R = 25 ms, flip angle = 25◦, voxel size = 1 mm× 1 mm×
.2 mm). Functional images were collected in runs u

gradient spin-echo echo-planar sequence sensiti
lood oxygen level-dependent (BOLD) contrast (T* )
TR = 2500 ms, T2* evolution time = 35 ms, flip angle = 90◦,
.75 mm× 3.75 mm in-plane resolution). During ea

unctional run, 40 sets of axial images (25 slices; 5.5-
lice thickness, 1 mm skip between slices) were acq
llowing complete brain coverage.

.5. Statistical analysis

All data were analyzed using SPM99 software (Wellco
epartment of Cognitive Neurology, London, UK;Friston
t al., 1995). For each functional run, data were preproce
sized mean of 0 was then applied to the individual
ect t-contrast images to create meant-images (thresholde
tP= .001, uncorrected).

. Results

The results are presented in two sections. The first se
resents the omnibus analyses of theory plausibility (imp
ible versus plausible), and the strength of the covaria
ased data (strong versus weak) for the behavioral judgm
he second section presents the fMRI random-effects g
nalyses. Effect size estimates in the behavioral results

ion were computed usingpartial η2.

.1. Behavioral results

Fig. 2 presents the mean effectiveness ratings for
wo theory types for both strong and weak covariat
ased data. These data reveal that the participants’ c

udgments were influenced by both the plausibility of
heory,F(1,13) = 5.2, M.S.E. = 0.495,η2 = 0.29,P< .05, and
he covariation between the occurrence of the red
nd the outcome,F(1,13) = 81.37, M.S.E. = 0.148,η2 = 0.86,
< .01. Importantly, there is also a significant interaction

ween theory plausibility and covariation,F(1,13) = 10.48
.S.E. = 0.170,η2 = 0.45,P< .01 revealing that the covari

ion manipulation has a greater effect for plausible theo
mean difference= 1.29) than implausible theories (mean dif-
erence= 0.57). Consistent with prior behavioral work (i.
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Fig. 2. Mean causal effectiveness ratings for the two theory types (low plau-
sibility vs. high plausibility) for both weak data (low covariation) and strong
data (high covariation) after the 20 presentation trials.

Fugelsang & Thompson, 2000, 2003; Fugelsang et al., 2004),
these data reveal abelief-biasin causal reasoning whereby the
effects of covariation are larger when evaluating a plausible
as opposed to an implausible causal theory.

3.2. fMRI results

We analyzed the task related BOLD response for condi-
tions in which subjects encountered data while evaluating
a plausible versus an implausible theory.Fig. 3 shows that
regions typically associated with working memory and ex-
ecutive processing (Curtis & D’Esposito, 2003), including

Fig. 3. Unique task associated BOLD activations occurring when partici-
pants encountered data while evaluating a plausible vs. an implausible the-
ory.

bilateral prefrontal regions (right superior frontal gyrus [BA
9] and the left inferior frontal gyrus [BA 45/47]) are signifi-
cantly (P< .001uncorrected) more activated when subjects en-
countered data during the evaluation of a plausible theory as
opposed to an implausible theory. In addition, encountering
data during the evaluation of a plausible theory preferentially
recruits neural tissue in the primary visual cortex (BA 17/18).
These latter findings are consistent with recent work estab-
lishing the relationship between visual attention and working
memory and the subsequent recruitment of neural tissue in
primary and secondary regions of the visual cortex (Rees &
Lavie, 2001; Rees, Frith, & Lavie, 1997).

F ing dainco ory
( itions i ed
b resistent.
ig. 4. Unique task associated BOLD activations occurring when view
b). Note that the activations denoted by red to yellow are for the cond
y blue to green are for the conditions in which the theory and data acon
tansistentvs.consistentwith a plausible theory (a) and an implausible the
n which the provided theory and data areinconsistentand the activations denot
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To assess the degree to which plausibility modulates
the integration of data as a function of theory and data
consistency, we examined the task related BOLD function
for conditions in which theory and data areconsistent
(i.e., plausible theory and strong data; implausible theory
and weak data) versus conditions in which theory and
data areinconsistent(i.e., plausible theory and weak data;
implausible theory and strong data).Fig. 4shows that when
theory and data areconsistent, a distinct network of brain
regions widely associated with learning and memory (Kelley
et al., 1998; McDermott et al., 1999) are preferentially
recruited, including the caudate, and the parahippocampal
gyrus. In contrast, when theory and data areinconsistent, a
different pattern of activation occurs that is widely associated
with error detection and conflict monitoring (Botvinick
et al., 2001; Yeung et al., 2004; Holroyd & Coles, 2002),
including the left dorsolateral prefrontal cortex (BA 9),
dorsal regions of the anterior cingulate cortex (BA 24/32),
and the precuneus (BA 7). Importantly, this latter brain
network is only significantly activated when participants
encounter data that conflicts with a plausible causal theory.

4. Discussion

In the present experiment, we show that people display
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use of the covariation-based data in participants’ behavioral
judgments. These patterns of activation suggest that the indi-
viduals in the current study may have preferentially devoted
more attentional/working memory resources when encoun-
tering data during the evaluation of plausible as opposed to
implausible theories. These findings are consistent with ex-
tensive research demonstrating that the prefrontal cortex is
involved in a vast array of tasks that require the active encod-
ing and maintenance of patterns of stimuli (Smith & Jonides,
1999). In addition, and perhaps most relevant for the current
experiment, the prefrontal cortex has also been linked to the
initiation ofbiassignalsto other structures in the brain (Miller
& Cohen, 2001). These bias signals from the prefrontal cor-
tex are proposed to guide the flow of activity along specific
neural pathways in order to establish the proper mappings be-
tween inputs and outputs needed to perform a specific task.
Considering the observedbelief-biasin the behavioral judg-
ments, one can envision such a role for the prefrontal cortex
in the current experiment.

Furthermore, the plausibility of a theory influenced the
degree to which dataconsistentversus inconsistentwith
that theory invoked disparate neural tissue associated with
learning or conflict monitoring. Specifically, the selective
activations of the caudate and parahippocampal gyrus under
conditions in which theory and data wereconsistentimply
that participants may be more apt to efficiently encode data
u hich
t as
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t t be
o task.
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pecific behavioral and neural response patterns as a
ion of the relationship between theory and data. Theory
ata have an interactive effect on participants’ causal j
ents whereby data are weighted more heavily when the
ncountered during the evaluation of plausible as oppos

mplausible causal theories. These data are consisten
ecent models of scientific causal thinking and hypoth
esting that incorporate theory and data interactions (Dunbar
993; Fugelsang & Thompson, 2000, 2003; Klahr et al., 1993;
layman & Ha, 1987; Koehler, 1993). Here, it is propose

hat using one’s knowledge to constrain the use of statis
ata is an adaptive strategy. Specifically, given the poten

nfinite number of covarying causes for every naturally oc
ing effect, it is preferable to focus one’s attention on data
ountered during the evaluation of plausible as opposed t
lausible hypotheses. In this way, using one’s knowledg
lter out data for implausible theories serves to make the
f evaluating causal hypotheses from statistical data fea

By contrasting the selective activations associated
ncountering data while evaluating plausible versus imp
ible theories, we were able to dissociate the extent to w
ne’s attention, and subsequent working memory proce
re drawn to data as a function of theory plausibility. C
urrent with the behavioral response patterns, we show
he brain responds differently to incoming data as a func
f the plausibility of the theory being tested. Specifica

he preferential recruitment of prefrontal and occipital
ices for conditions in which data are encountered du
he evaluation of plausible theories directly correspon
hose conditions in which plausibility modulated the gre
nder such conditions. Unexpectedly, in both cases in w
heory and data wereconsistent, the precentral gyrus w
referentially recruited in concert with the parahippocam
yrus. One possible explanation for this finding refl

he extent to which preparatory motor functions migh
ccurring during the data accumulation phase of the
pecifically, participants in the current task were requ

o withhold their causal response until after the 20 tr
f data had been presented. The fact that regions typ
ssociated with motor functions were recruited during
ata accumulation period is consistent with a continu
ow model of information processing (e.g.,Cohen, Dunba

McClelland, 1990; Eriksen & Shultz, 1979). Here, the
ccumulation, deliberation, and response associated w
articular task are proposed to occur continuously du
ll portions of the process, rather than in a serial ma
hereby response information would not contribute to
ognitive process until the task demanded.

The preferential recruitment of the anterior cingulate,
orsolateral prefrontal cortex, and precuneus imply that

icipants likely perceived data as error when it wasinconsis-
entwith a plausible causal theory. The fact that the precu
nd dorsolateral prefrontal cortex are recruited in concert

he anterior cingulate cortex provides important additio
nformation for understanding the types of cognitive mec
isms that may be applied when participants encounter
nder such conditions. Considering first the precuneus,
as now been considerable evidence suggesting that th
uneus may have a predominant role in the reallocatio
ttentional resources (e.g.,Handy, Hopfinger, & Mangun
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Table 3
BOLD signal increases atP≤ .001 (minimum 5 voxels) for all contrasts of
interest as a function of the theory plausibility and covariation manipulations

Brain region X Y Z T-value

Plausible > implausible
Superior frontal gyrus 18 38 51 5.64
Occipital lobe 3 −84 15 4.57
Inferior frontal gyrus −39 14 −13 4.98

Implausible > plausible
No significant activations

Strong covariation > weak covariation
Parahippocampal gyrus −24 −38 −11 4.62

Weak covariation > strong covariation
Middle temporal gyrus 56 −6 −11 4.28
Lingual gyrus −6 −64 3 4.42
Precuneus −3 −68 42 4.49

Plausible strong covariation > plausible weak covariation
Precentral gyrus 33 −6 30 5.81
Parahippocampal gyrus −27 −30 −3 5.26

Plausible weak covariation > plausible strong covariation
Precuneus −6 −69 45 6.47
Superior frontal gyrus −36 36 30 5.44
Anterior cingulate cortex 9 21 27 4.53

Implausible strong covariation > implausible weak covariation
No significant activations

Implausible weak covariation > implausible strong covariation
Precentral gyrus 60 0 9 5.43
Caudate −18 3 15 4.19
Parahippocampal gyrus −24 −24 −9 4.18

2001; Mazoyer, Wicker, & Fonlupt, 2002; Raichle, 2000;
Raichle et al., 2001). That is, when participants reallocate at-
tention away from a task (commonly found in resting states)
the precuneus often exhibits increased activity as measured
by the fMRI BOLD signal (Table 3). In addition, the selective
dorsolateral prefrontal recruitment in this condition may be
the result of the activeinhibition of the attentional processes
associated with the task. Recently,Goel and Dolan (2003)
found preferential recruitment of the dorsolateral prefrontal
cortex in a deductive reasoning task when beliefs and logic
were in conflict and required theinhibition of a response.
Taken together, these findings suggest that the network in-
volving the precuneus, anterior cingulate, and dorsolateral
prefrontal cortex may represent the active reallocation of at-
tentional resources when presented with statistical data that
areinconsistentwith one’s a priori theory. Indeed, a similar
synergistic relationship between the anterior cingulate and
the dorsolateral prefrontal cortex has also recently been ob-
served in the Stroop task (Kerns et al., 2004).

These data also speak to the growing work examining the
role of the anterior cingulate in error detection and conflict
monitoring. Here we show that the brain responds tocon-
ceptual inconsistencies in a similar manner to what others
have found usingperceptualinconsistencies (e.g.,Bush et al.,
1998; Kerns et al., 2004). Importantly, the extent to which
conflict monitoring networks are recruited as a function of
d tency

That is, regions in the dorsal anterior cingulate cortex, dor-
solateral prefrontal cortex, and precuneus were only prefer-
entially recruited when participants encounter data that were
inconsistent with a plausible causal theory, and not an implau-
sible causal theory. One possible explanation for this finding
is that one’s knowledge of the presence of causal mechanisms
is more sensitive to inconsistency than one’s knowledge of
the absence of causal mechanisms. Here, individuals may be
more inclined to preserve their beliefs in the face of con-
flicting data when the representation of that belief reflects a
known mechanism of action (Ahn et al., 1995). In addition,
the fact that these disparate neural patterns selectively oc-
curred when participants encountered data while evaluating
plausible rather than implausible theories provides additional
support for the preceding arguments regarding the priority
that data for plausible theories may receive. These findings,
taken together with the main effects analyses of theory plau-
sibility (both in terms of behavior and the brain), suggest that
attentional/working memory priority is given to the analy-
ses of data during the evaluation of plausible as opposed to
implausible causal theories.

The fMRI data may also provide a neural instantiation for
the growing body of research onconfirmation biasthat has
been examined over the past several decades (seeNickerson,
1998 for review). For example, research in cognitive psy-
chology (e.g.,Bruner, Goodnow & Austin, 1956; Evans,
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977; Wason, 1968), scientific thinking (e.g.,Cohen, 1985
orman, 1989; Mitroff, 1974; Tweney, 1989; Tweney &
oherty, 1983), judicial reasoning (e.g.,Fugelsang &
unbar, 2004; Hendry & Shaffer, 1989; Pennington & Hastie
993), medical reasoning (e.g.,Elstein & Bordage, 1979),
nd politics (e.g.,Healy, 1996) have all noted the prepond
nce of confirmatory-based reasoning strategies across
isparate domains. Providing a neural mechanism by w

hese biases operate may assist in the development of
iques to minimize such biases when they may hinde

ective reasoning (seeDunbar, 1993; Evans, 2002; Evans
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& Thompson, 2003) is an important avenue for future
research.

These data may also contribute to the development of
more comprehensive models of human causal reasoning.
Recent models of causality in cognitive science, computer
science, developmental psychology, and philosophy have
begun to adopt a Bayes net approach to understanding
the acquisition and representation of causal knowledge
(Glymour, 2001; Gopnik et al., 2004; Pearl, 2000). The data
obtained in our experiment are consistent with a Bayesian
formulation if one takes into account the role of prior
knowledge when judging probabilistic data. When judging
probabilistic data, prior knowledge is typically operational-
ized in terms of one’s knowledge of, or use of base-rate
information (Bar-Hillel, 1980; Kahneman & Tversky, 1973;
Peterson & Beach, 1967). Here, theposterior odds of a
given hypothesis [p(H/D)] using a Bayesian formulation are
a product of theprior odds of the given outcome occurring
[p(H)] and the current data to be evaluated [p(D/H)]. One
can express our manipulations of theory plausibility and
covariation-based data probabilistically and thus onto the
Bayesian formulations ofp(H) and p(D/H), respectively.
Here, the degree to which covariation-based data [p(D/H)]
influences the strength of one’s causal judgment when
evaluating a theory [p(H/D)] is determined in part by the
plausibility of the theory being tested [p(H)]. Therefore, if
t
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ppendix A. Plausible and implausible causal
heories

.1. Plausible causal theory

1) Past research has demonstrated that peoples’ feeli
happinessaredirectly related to the level ofserotoninin
f

amounts of the bacteriaclostridium in the body has n
direct link to peoples’ feelings of happiness. The red
is a “protein binder”. The cell walls of bacteria are c
tinuously expanding through the synthesis of prot
and amino acids. In order for a bacteria cell to flou
and reproduce, the cell wall must be able to expand
the growing interior. “Protein binders” bind to spec
amino acids and proteins thus inhibiting the cell wa
clostridiumto synthesize.
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