
Theory and Data Interactions of the Scientific Mind:
Evidence From the Molecular and the Cognitive Laboratory

Abstract A number of researchers and scholars have
stressed the importance of disconfirmation in the quest for
the development of scientific knowledge (e.g., Popper,
1959). Paradoxically, studies examining human reasoning in
the laboratory have typically found that people display a
confirmation bias in that they are more likely to seek out
and attend to data consistent rather than data inconsistent
with their initial theory (Wason, 1968). We examine the
strategies that scientists and students use to evaluate data
that are either consistent or inconsistent with their expecta-
tions. First, we present findings from scientists reasoning
“live” in their laboratory meetings. We show that scientists
often show an initial reluctance to consider inconsistent
data as “real.” However, this initial reluctance is often over-
come with repeated observations of the inconsistent data
such that they modify their theories to account for the new
data. We further examine these issues in a controlled scien-
tific causal thinking simulation specifically developed to
examine the reasoning strategies we observed in the natural
scientific environment. Like the scientists, we found that
participants in our simulation initially displayed a propensi-
ty to discount data inconsistent with a theory provided.
However, with repeated observations of the inconsistent
data, the students, like the scientists, began to see the once
anomalous data as “real” and the initial bias to discount that
data was significantly diminished. 

Science ... warns me to be careful how I adopt a view
which jumps with my preconceptions, and to require
stronger evidence for such belief than for one to which I
was previously hostile. My business is to teach my aspira-
tions to conform themselves to fact, not to try and make
facts harmonize with my aspirations. (Huxley, 1860)

These words by Thomas Huxley highlight a phe-
nomenon that scholars have struggled with for cen-
turies – the predisposition of individuals to seek out,
interpret, and weight evidence in ways that are consis-
tent with their pre-existing beliefs and expectations,
while downplaying or ignoring evidence that is incon-

sistent with their beliefs and expectations. This phe-
nomenon is commonly referred to as the confirmation
bias (Nickerson, 1998) and is one of the most preva-
lent sources of inferential error found in human rea-
soning (Evans, 1989). Researchers from a variety of
disciplines, including cognitive psychology (e.g.,
Bruner, Goodnow, & Austin, 1956; Evans, 1989;
Klayman & Ha, 1987; Koriat, Lichtenstein, &
Fishchhoff, 1980; Mynatt, Doherty, & Tweney, 1977;
Wason, 1968), scientific thinking (e.g., Cohen, 1985;
Gorman, 1989; Mitroff, 1974; Tweney, 1989; Tweney &
Doherty, 1983), judicial reasoning (e.g., Hendry &
Shaffer, 1989; Pennington & Hastie, 1993), medical rea-
soning (e.g., Elstein & Bordage, 1979), and politics
(e.g., Healy, 1996) have noted the preponderance of
confirmatory-based strategies in human reasoning.
One does not have to look far to find examples of
confirmation biases depicted in the media. For exam-
ple, the recent report from the Columbia Accident
Investigation Board stated that NASA’s failure to consid-
er relevant data contributed to the recent space shuttle
disaster (Sanger, 2003).

A common form of reasoning where confirming and
disconfirming strategies are apparent is causal reason-
ing. Indeed, many of the learning and discovery
processes in which scientists and nonscientists engage
pertain to the development and testing of causal mod-
els portraying the relationship between variables of
interest (Dunbar, 1995, 2001; Dunbar & Fugelsang, in
press). For example, does the Atkins’ diet result in
weight loss, smoking cause lung cancer, or aspirin
reduce the chance of heart attack? Scientists and non-
scientists alike are constantly inundated with claims
regarding the causal relationship between such vari-
ables. 

One’s ability to assess the validity of causal claims is
often complicated by the nondeterministic (i.e., proba-
bilistic) nature and the complexity of most cause and
effect relationships in the natural environment. For
example, the observed relationship between smoking
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and lung cancer is probabilistic in nature in that a pro-
portion but not all of those who smoke contract lung
cancer, just as a proportion of those who do not
smoke contract lung cancer. The multidimensional
nature of both causes and effects, the impossibility of
accounting for all potential extraneous variables, and
errors of data measurement often confound clear
delineation of these relationships. 

Given the claims that scientists frequently disregard
data that are inconsistent with their preferred theories,
we wanted to investigate the ways that scientists and
nonscientists reason about data that are either consis-
tent or inconsistent with their expectations.
Considering the complex environment in which scien-
tists work and the multidimensional nature of the
problems often investigated, a complete understanding
of the strategies used by scientists can only be gath-
ered by using a multipronged approach including both
tightly controlled cognitive experiments and naturalis-
tic observation of scientists reasoning “live” in their
laboratories (see Dunbar & Blanchette, 2001 for an
example of this research strategy applied to analogical
reasoning). In the current research, we apply this two-
pronged approach to the study of causal reasoning
strategies in scientific inquiry.

Study 1: Scientific Causal Reasoning 
in the Real World

We first wanted to examine how scientists reasoned
about consistent and inconsistent data “live” in their
laboratories. We were especially interested in the
extent to which scientists applied confirmatory versus
disconfirmatory reasoning strategies when receiving
data that were either consistent or inconsistent with
their predictions. Confirmatory reasoning strategies, in
this naturalistic context, can reveal themselves in a
number of ways. Do scientists accept consistent data
without question? Do scientists spend more time rea-
soning about consistent or inconsistent data? Are
inconsistent data simply explained away as error, or
are they closely scrutinized and followed up with fur-
ther tests of replicability?

Method
Laboratories. Three leading molecular biology labo-

ratories at a prominent U.S. university were analyzed. A
detailed account of the three laboratories investigated
as well as the precise methodologies used, including
explanations of audiotape and videotape transcription
and protocol analyses procedures, can be found in
Dunbar (1995, 2001). All three laboratories were of
similar size and structure, having three to four post-
doctoral associates, three to five graduate students, and
one or two technicians.

Procedure. Kevin Dunbar interviewed the scientists,
attended the laboratory meetings, and read grant pro-
posals and drafts of papers. For the purpose of this
investigation, we will focus our analyses on the week-
ly laboratory meetings, as they constituted a rich
source of data representing a wide cross-section of
reasoning processes. The laboratory meetings were
audiotaped and transcribed. They were then coded
along a number of dimensions, including the nature of
the experimental finding (e.g., whether it was consis-
tent or inconsistent with expectations), the cognitive
operations used (e.g., inductive, deductive, analogical,
and causal reasoning), and types of interactions
between speakers (e.g., clarification, agreement and
elaboration, disagreement, and questioning). Two
independent transcribers trained in molecular biology
completed all transcriptions. 

Results and Discussion
We will focus our analyses on 12 laboratory meet-

ings, four from each of the three molecular biology
laboratories. Due to the remarkable similarity between
the three laboratories in terms of cognitive operations
and experimental outcomes, the data were aggregated
for the purpose of analyses. The research programs of
these laboratories involved a variety of experimental
questions related to how genes control and promote
replication in bacteria, parasites, and viruses. For
example, one laboratory included in our investigation
was conducting various experiments to determine the
causal mechanism by which the HIV virus infiltrates
the host organism. Consider the following protocol
collected where a researcher explains multiple poten-
tial mechanisms by which the HIV virus might bind
with the host cell. 

As you can imagine, for instance, for a cellular mechanism,
there is this cellular polymerase that fills in the four bases
leaving you with just a small gap… another possibility is
that a viral component is what causes this to occur. In this
case you can imagine maybe reverse transcriptase is what
fills in this four base region. So, for either path, you, now
have a finished end provirus.

Here, the researcher clearly outlines two causal
hypotheses that formed the basis for a series of experi-
ments. In addition to the theoretically motivated exper-
iments, many of the studies conducted in these labora-
tories involved the development and testing of new
methodologies.

Our main units of analyses are the reasoning strate-
gies that scientists use when faced with data that are
consistent or inconsistent with their initial predictions.
We will concentrate our analyses on two main aspects
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of the data: (1) the frequency of occurrence and the
types of causal reasoning strategies elicited by consis-
tent versus inconsistent findings, and (2) the changes
in reasoning strategies that occur as a function of repli-
cated inconsistent findings.

Reasoning about consistent and inconsistent data.
The analysis of the 12 laboratory meetings yielded 28
research projects, with 165 experiments, producing a
total of 417 results. When the 417 results of the 165
experiments were divided into consistent versus incon-
sistent findings, we found that over half of the experi-
mental findings were inconsistent with the scientists’
predictions (223 out of 417 results). The relatively
equal distribution of consistent and inconsistent results
permitted a thorough analysis of the different types of
causal operations that the scientists undertook as a
function of the consistency of their obtained results. 

Once a finding was classified, the scientists treated
the results in different ways. Consistent results typically
led to the next step in a sequence of experiments that
was being planned. Inconsistent results, however,
prompted a variety of causal reasoning processes.
Specifically, scientists developed causal explanations
for the inconsistent findings. These causal explanations
could be classified into one of two types: (1) method-
ological or (2) theoretical. The predominant strategy,
which occurred for 196 of the 223 inconsistent find-
ings, was to blame the method used in the experiment.
In these cases, the scientists would try to find a
methodological problem (e.g., wrong incubation tem-
perature) in the experimental methodology.
Alternatively, scientists offered theoretical explanations
for the data that were inconsistent with their predic-
tions (27 of the 223). Here, the scientists examined
either existing theoretical models or revised theoretical
models to account for the novel finding. 

Changes in reasoning strategies as a function of
replicated inconsistent findings. The finding that 12%
(27 out of 223) of initial observations of inconsistent
findings resulted in theory modification is indicative of
a conservative strategy for theory change. Post labora-
tory meeting interviews suggest that the use of this
strategy is based largely on the researchers’ knowledge
of the high base rate of experimental methodological
error. Of the 223 inconsistent findings that occurred,
the majority (154 out of 223) were followed up utiliz-
ing the same methodology, modified methodologies,
or similar control conditions in other experiments. Of
those follow-up experiments, 84 resulted in replica-
tions of the inconsistent findings. Interestingly, the way
that the scientists reasoned about inconsistent findings
changed as a function of their repeated occurrence.

When repeated observations of inconsistent findings
occurred, scientists began to modify their causal model
of how the variables of interest were related. For
example, of the 84 anomalous replications, scientists
now offered 51 theoretical and only 33 methodological
explanations. That is, the plausibility of the once
anomalous finding being a legitimate scientific discov-
ery, one that warrants theoretical consideration, was
substantially increased.

In summary, the analyses of the causal reasoning
strategies in the three molecular biology laboratories
have demonstrated that scientists are often reluctant to
accept an isolated instance of a finding that is inconsis-
tent with their predictions. However, the inconsistent
data are not simply tossed away as error. Rather, in the
majority of the cases observed, inconsistent findings
were further scrutinized and tested through repeated
experimentation. Furthermore, 61% of the replicated
inconsistent findings resulted in the scientists re-formu-
lating their original causal theories. Note that this rep-
resents a dramatic increase from the 12% of theory
modifications that occurred as a function of the initial
observation of inconsistent findings. 

Study 2: Scientific Causal Reasoning in 
the Cognitive Laboratory

We next sought to examine the relationship
between one’s belief in a causal theory and data con-
sistency in a more controlled setting. To do this, a lab-
oratory equivalent of the scientific environment
observed in “real world” molecular biology laborato-
ries was created. In order to devise a nondeterministic
environment similar to that observed in the scientists’
laboratories, we adapted a methodology commonly
used in the cognitive laboratory to measure causal rea-
soning processes based on probabilistic data.
Probabilistic data often take into account the combined
role of sufficiency and necessity. The sufficiency of a
cause is determined by the probability that the effect
occurs in the presence of a cause [P(e/c)], whereas the
necessity of a cause is determined by the probability
that the effect occurs in the absence of a cause
[P(e/~c)]. The roles of sufficiency and necessity have
been featured prominently in contemporary theories of
causal thinking (e.g., Cheng, 1997; Novick & Cheng, in
press; White, 2002) and numerous experiments con-
ducted in the psychological laboratory have supported
the assumption that people do indeed form causal
models based to a large degree on the observed con-
tingency (i.e., covariation or probabilistic relationship)
between variables (e.g., Cheng & Novick, 1990; Lober
& Shanks, 2000; Spellman, 1996; White, 2002).

Do students, like the scientists, initially show a
reluctance to accept a strong experimental finding as
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causally valid if there is no plausible causal theory
supporting it? Do repeated observations of inconsistent
data influence students’ willingness to accept inconsis-
tent data as causally relevant? The following experi-
ment addresses these issues by manipulating the plau-
sibility of a causal theory, the degree to which the data
are consistent or inconsistent with the theory, and the
amount of data available. 

Methods
Participants. Thirty-two participants (25 females and

7 males, mean age = 21.31 years) took part in the
study and were paid US$10. Informed written consent
for all participants was obtained prior to the experi-
ment in accordance with the guidelines established by
the Committee for the Protection of Human Subjects at
Dartmouth College.

Design and apparatus. This experiment was a 3 x 2
x 4 within subjects design with plausibility of the
causal theory (no direct causal link predicted, neutral,
and direct causal link predicted), strength of covaria-
tion-based data (weak and strong covariation), and
sample size (10, 20, 30, and 40 data trials) as within-
subject variables. All stimuli were presented on a G3

iMac computer running PsyScope 2.5.1 software
(Cohen, MacWhinney, Flatt, & Provost, 1993).

Materials and procedure. The plausibility of the the-
ory of action of a drug and whether the data were
consistent or inconsistent with the theory were varied.
The plausibility of a theory was manipulated by pre-
senting participants with a brief introductory statement
that contained either (1) a direct plausible causal
mechanism of action linking a red pill to a mood out-
come, (2) no direct causal mechanism of action linking
a red pill to a mood outcome (i.e., analogous to an
experimental control condition in the “real world”
environment), or (3) a neutral causal mechanism of
action (see Appendix). This level of the plausibility
variable will be referred to as plausible, implausible,
and neutral theories, respectively. The causal mecha-
nisms consisted of biological agents in order to create
a situation that was roughly analogous to those
observed in the three molecular biology laboratories.

Data were then provided to participants in a trial-
by-trial format where they viewed 40 trials of data for
each causal theory provided. These data were present-
ed in combinations of the cause (a red pill or a blue
pill) and the effect (happiness or neutral outcome) co-

Figure 1. Example stimuli representing the four possible combinations of the candidate cause (checked
pill vs. white pill) and effect (happiness vs. neutral emotion). Note that the stimuli in the actual experi-
ments utilized a red pill and a blue pill in the place of the checked pill and the white pill.
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occurring. Figure 1 presents a graphical depiction of
these four event types. Under some conditions, the red
pill and happiness covaried strongly, under other con-
ditions, the red pill and happiness covaried weakly.
This was accomplished by varying the frequency with
which each of the four event types (red pill/happiness,
red pill/neutral, blue pill/happiness, blue pill/neutral)
occurred. In the strong covariation condition, DPc [i.e.,
P(e/c) - P(e/~c)] was equal to .7; for the weak covaria-
tion condition, DPc was equal to .3. The marginal totals
(i.e., total number of observations where the cause
was present or absent) were set at 40 for both levels of
DPc. Note that strong covariation-based data following
a plausible causal theory and weak covariation-based
data following an implausible causal theory both con-
stitute consistent data, whereas weak covariation-based
data following a plausible theory and strong covaria-
tion-based data following an implausible theory both
constitute inconsistent data. 

Participants advanced each trial of data by pressing
the space bar on the computer keyboard. Four times
throughout each data-testing period, participants were
asked to make a rating about how probable they think
it is that the red pill caused the happiness using a scale
that ranged from 1 (Low) to 5 (High). These ratings
were made after 10, 20, 30, and 40 trials of patient
data. Participants were instructed to treat the 40 trials
of data as cumulative. This procedure was repeated six
times: once for each level of the theory plausibility and
covariation-based data manipulations. Note that sub-
jects were not given any information about the blue
pill and were not asked to make any ratings about the
blue pill. The order in which each causal theory was
presented, and the order in which each event type
within each testing period occurred was random.

Results and Discussion
The results will be presented in two sections. The

first section presents the omnibus analyses of theory
plausibility (implausible, neutral, and plausible),
strength of the covariation-based data (strong and
weak), and sample size (10, 20, 30, and 40 patient tri-
als). The second section presents the effect of sample
size on the interplay between theory plausibility and
strength of the covariation-based data. The alpha level
for all statistical tests was set at .05 (two-tailed) unless
otherwise stated. Effect size estimates were computed
using partial η2.

Theory, data, and sample size. Figure 2 presents the
mean causal ratings for the three theory plausibility
levels, the two covariation levels, and the four sample
sizes. The causal ratings were analyzed using a 3 x 2 x
4 (Plausibility Level x Data Strength x Sample Size)

repeated measures ANOVA. As expected, there was a
main effect of theory plausibility F(2,62) = 21.87, MSE =
1.93, η2 = .41, where causal ratings were higher for
conditions containing a plausible causal mechanism (M
= 3.31) than either a neutral (M = 3.07) or an implausi-
ble causal mechanism (M = 2.52). Individual paired t-
tests revealed that all three means were reliably differ-
ent from each other (smallest t = 2.56). In addition,
causal ratings were also higher when the covariation-
based data were strong (M = 3.42) than when the
covariation-based data were weak (M = 2.10), F(1,31) =
269.11, MSE = 1.96, η2 = .90. Importantly, there was
also a Plausibility x Data Strength interaction, F(2,62) =
9.83, MSE = .94, η2 = .24, where the effect of the data
strength manipulation increased parametrically as a
function of the plausibility of the causal theory.
Specifically, the effect of data strength was largest
when the theory being tested was plausible (M differ-
ence = 2.03) as compared to when the theory was
neutral (M difference = 1.67), or implausible (M differ-
ence = 1.27). These three interaction terms were all
reliably different from each other (smallest t = 2.22).
There was also a main effect of sample size, F(3,93) =
3.46, MSE = 0.69, η2 = .10, where causal ratings
increased as a function of increasing sample size.
Individual paired t-tests revealed that the locus of the
main effect was the increase in magnitude of the
causal ratings between a sample size of 10 (M = 2.88)
and 40 (M = 3.13), t(31) = 2.91, SE = .09; all other com-
parisons were not reliably different (largest t = 1.91). 

Effect of sample size on the interplay between theory
and data. We next wanted to examine the degree to
which the interaction between plausibility and data
strength varied as a function of sample size. To simpli-
fy the description of these analyses, the four sets of
analyses (one for each sample size) will be summa-
rized together in terms of (1) main effects of theory
plausibility, (2) main effects of data strength, and (3)
the presence or absence of a Plausibility x Data
Strength interaction. First, main effects of theory plau-
sibility (smallest F = 9.92, η2 = .24), and data strength
(smallest F = 102.08, η2 = .78), were found for all sam-
ple sizes. Importantly, however, the Plausibility x Data
Strength interaction was significant in the 10, 20, and
30 trial sample sizes (smallest F = 4.89, η2 = .14) but
not in the 40-trial sample size, F(2,62) = 1.59, MSE =
.44, η2 = .05. Analyses of participants’ covariation dis-
crimination (i.e., difference in causal ratings for high
minus low covariation) for each theory as a function of
sample size revealed that participants’ covariation dis-
crimination increased as a function of the sample size
manipulation (i.e., 10, 20, 30, and 40 patient trials) for
low plausible theories, F(3,93) = 3.16, MSE = 1.05, η2 =
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.09 whereas participants covariation discrimination for
the neutral and highly plausible theories remained
unchanged as a function of sample size (both Fs < 1).

In summary, the dependence of the Theory
Plausibility x Data Strength interaction on sample size
can be interpreted as evidence for a multifaceted
account of scientific causal thinking. Specifically, when
there was a strong relationship observed in the context
where none was expected (i.e., implausible theory),
the data appeared to have been initially discounted by
the participants. In contrast, when a strong relationship
was observed in the context of a theory that predicted
a relationship to exist (i.e., plausible theory), the data

were given more weight. This propensity to discount
data inconsistent with an implausible theory was mod-
ulated by the amount of data present. Here, many
replications (i.e., 40-patient trial condition) of strong
data for an implausible causal theory (i.e., inconsistent
data) increased participants’ ratings of causality. These
findings are consistent with the data observed in the
real-world laboratories of the molecular biologists.
There, too, repeated observations of inconsistent data
resulted in modifications of original theories and thus
increased acceptance of the inconsistent data as “real”
and nonanomalous.

Figure 2. Mean causal ratings for the three theory plausibility levels (implausible, neutral, and plausible),
the two covariation conditions (weak and strong), and the four sample sizes (10, 20, 30, and 40 patients).
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General Discussion
In the two studies reported, we have shown that

scientists and nonscientists display similar strategies
when dealing with data that are consistent or inconsis-
tent with their causal theories. While data consistent
with a theory are met with little scrutiny, data inconsis-
tent with a theory are initially met with skepticism,
resulting in primarily methodological explanations by
scientists in the molecular biology laboratories and low
causal ratings from students participating in the scien-
tific reasoning simulation. However, this initial tenden-
cy to accept data consistent with a theory and discount
data inconsistent with a theory can be overcome by
replications of the inconsistent data.

The initial inclination to question data inconsistent
with a theory does not necessarily represent a faulty
reasoning strategy in a practical sense. Due to experi-
menter error and methodological inconsistencies from
lab to lab, anomalous findings may, and often do,
occur for a number of theoretically insignificant rea-
sons. Initial skepticism of inconsistent findings can act
as a failsafe against prematurely modifying one’s theo-
retical understanding of the variables under study.
Indeed, Baker and Dunbar (2000) have shown that sci-
entists often include both “known standard” and “base-
line” control conditions for this very reason. 

Relevance to Models of Scientific Causal Thinking
These data are broadly consistent with findings

observed in the inductive reasoning (e.g., Gorman &
Gorman, 1984; Wason, 1968), hypothesis testing (e.g.,
Klayman & Ha, 1987), and the scientific thinking litera-
ture (Tweney, 1989; Tweney & Doherty, 1983). Here, it
has been shown that people initially adopt a confirma-
tory reasoning-based strategy but turn to disconfirma-
tory strategies when confirmatory-based strategies fail.
These data also provide a theoretical extension to
recent models of causal thinking that incorporate theo-
ry and data interactions (Fugelsang & Thompson,
2000, 2002, 2003). Specifically, we provide an account
of how data replicability may influence the interplay
between theory and data. Here, we show that data
inconsistent with an implausible theory are initially
met with skepticism. However, through the course of
repeated observations of the inconsistent data, people
begin to modify their initial theory and, as such,
increase their causal ratings. This initial reluctance and
subsequent re-theorizing can be thought of as a useful
heuristic in that it serves two primary decision-making
purposes. First, it prevents people from prematurely
accepting findings that may be spurious. Indeed, if one
modified his/her theoretical beliefs for every occur-
rence of data that are inconsistent with a theory, one
would continually need to modify his/her knowledge

and be unable to form any strong causal impressions.
Secondly, it permits the updating of theories and the
development of knowledge through repeated observa-
tion. The finding that one’s knowledge can be modi-
fied with extensive replications provides an optimistic
view of causal reasoning heuristics used by scientists
and nonscientists alike. 

One especially interesting finding, one that warrants
further investigation, is the asymmetry observed
between the effects of theory plausibility and sample
size when data were inconsistent with a prescribed
theory. Specifically, it appears that participants in our
study were prepared to give a lot of weight to null
findings with few trials when they had a theory that
led them to expect a causal relationship. In contrast,
participants were more reluctant (i.e., required more
trials) to accept positive findings when they were led
to expect no causal relationship. One possible expla-
nation for this asymmetry is that people’s beliefs in the
capacity of a potential cause may be independently
influenced by their strength or personal conviction in
those beliefs. Indeed, Poletiek and Berndsen (2000)
and Koehler (1993) have demonstrated that the subjec-
tive value and strength of personal beliefs may alter
the strategies that participants employ when testing
hypotheses and judging the quality of data. Here, the
extent to which participants are willing to renounce
prior beliefs in a causal theory may be related to the
strength of those beliefs independent of their plausibil-
ity.

In summary, we have provided evidence that scien-
tists reasoning “live” in their laboratories and students
in a scientific reasoning simulation both demonstrate
an initial reluctance to consider data inconsistent with
their predictions. On the surface, these findings are
consistent with traditional accounts of confirmation
bias that argue that people possess an inherent dispo-
sition to downplay data inconsistent with their expec-
tations. We have provided an extension to this account
that incorporates the amount of inconsistent data pre-
sent. Here, we show that the confirmation bias is sig-
nificantly reduced under situations where people
receive a preponderance of inconsistent data. As these
processes are surely influenced by motivational fac-
tors, level of expertise of the reasoner, and knowledge
domain, future research should examine the extent to
which this heuristic is modulated by both individual
difference variables among the reasoners, and situa-
tional factors in the reasoning environment.

Research reported in this paper has been funded by
grants from Dartmouth College, The Spencer Foundation,
Natural Sciences and Engineering Research Council of
Canada, McGill University, and The Office of Naval
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Appendix

Stimuli used in scientific causal reasoning simulation. The stimuli were pretested for
plausibility with an independent sample of 23 subjects. This separate group of partici-
pants was simply asked to rate the degree to which the presented pill could cause the
elevation of mood in a sample of patients. They were not provided with any covaria-
tion information. Following each scenario is the mean pretested plausibility rating
(Plausibility) and standard deviation (SD). 

Plausible Mechanism
(1) Past research has demonstrated that people’s feelings of happiness are directly

related to the level of serotonin in the brain. The red pill is a “selective serotonin
reuptake inhibitor.” This pill blocks the recycling process for the serotonin, which
then keeps more of this neurotransmitter in the brain available to communicate
with other nerve cells. (Plausibility = 8.18, SD = 1.07).

(2) Past research has demonstrated that people’s feelings of happiness are directly
related to the level of norepinephrine in the brain. The red pill is a “monoamine
oxidase inhibitor.” Monoamine oxidase is an enzyme that breaks down norepi-
nephrine in the brain. Monoamine oxidase inhibitors inhibit this enzyme, thus
allowing a greater supply of this neurotransmitter to remain available in the brain.
(Plausibility = 8.22, SD = .95).

Implausible Mechanism
(1) Past research has demonstrated that the growth of small amounts of the bacteria

staphylococcus in the body has no direct link to people’s feelings of happiness.
The red pill is a “topoisomerase inhibitor.” Topoisomerase is an enzyme that is
necessary for the reproduction of staphylococcus in the body. “Topoisomerase
inhibitors” inhibit this enzyme, thus restricting the ability of staphylococcus to
replicate. (Plausibility = 1.17, SD = 1.54).

(2) Past research has demonstrated that the growth of small amounts of the bacteria
clostridium in the body has no direct link to people’s feelings of happiness. The
red pill is a “protein binder.” The cell walls of bacteria are continuously expand-
ing through the synthesis of proteins and amino acids. In order for a bacteria cell
to flourish and reproduce, the cell wall must be able to expand with the growing
interior. “Protein binders” bind to specific amino acids and proteins, thus inhibit-
ing the cell wall of clostridium to synthesize. (Plausibility = .78, SD = .80).

Neutral Mechanism
The active chemical agents of the red pill are unknown.
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Les auteurs de la présente enquête se penchent sur les
stratégies utilisées par scientifiques et étudiants pour éva-
luer des données qui sont soit conformes soit non con-
formes à une théorie causale. L’examen est fondé tant sur
l’observation naturalistique que sur des méthodes d’expéri-
mentation contrôlée. Dans un premier temps, les auteurs
présentent les constatations de scientifiques qui raisonnent
« de vive voix » à des réunions du personnel de labora-
toires. Ils découvrent ainsi des stratégies utilisées par les
scientifiques pour déterminer la validité de données qui
sont soit conformes soit non conformes à leurs théories.
L’analyse repose principalement sur les stratégies de raison-
nement auxquelles les scientifiques ont recours face à des
données conformes ou non conformes à leurs prédictions
initiales. Les auteurs s’intéressent à deux principaux aspects
des données : (1) la fréquence de l’occurrence et les types
de stratégies de raisonnement causal suscitées par des
constatations conformes par opposition à des constatations
non conformes; (2) les changements aux stratégies de
raisonnement découlant de la répétition d’observations non
conformes. L’analyse des données précitées révèle que les
scientifiques sont souvent réticents à accepter une constata-
tion isolée non conforme à leurs prédictions théoriques. Par
contre, ils n’écartent pas simplement les données non con-
formes, les jugeant erronées. Dans la majorité des cas

observés, des constatations non conformes ont été exa-
minées et testées plus à fond par des expériences répétées.
Les auteurs ont approfondi l’examen de la question au
moyen d’une simulation contrôlée de réflexion scientifique
expressément conçue pour analyser les stratégies de raison-
nement qu’ils avaient observées en milieu scientifique
naturel. À l’instar des scientifiques, ils ont constaté que les
participants à la simulation ont manifesté, dans les premiers
temps, une tendance à écarter les données non conformes
à leurs théories. Toutefois, à force d’observations répétées
de données non conformes, les étudiants, à la manière des
scientifiques, ont commencé à percevoir comme « réelles »
les données autrefois jugées des anomalies, et le biais initial
qui entravait le rejet des données en était diminué de façon
appréciable. À première vue, ces constatations se situent
dans la ligne des explications classiques du biais en faveur
de la confirmation, selon lesquelles les gens sont foncière-
ment disposés à minimiser l’importance des données non
conformes à leurs attentes et à se concentrer plutôt sur
celles qui les avèrent. Les auteurs ont poussé plus loin ces
explications et tenu compte du volume de données non
conformes en cause. Ils ont montré, dans les circonstances,
que le biais en faveur de la confirmation est sensiblement
réduit dans des situations où les gens reçoivent des don-
nées dont la plupart sont non conformes.
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