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Reasoners’ judgments of the causal relation between a
putative causal candidate and an observed effect may be
influenced by two variables: (1) the degree to which the
candidate and the effect are observed to covary (e.g.,
Cheng & Novick, 1990) and (2) the reasoners’ prior be-
liefs or knowledge about the two events in question (e.g.,
White, 1989). We investigated the sources of information
that underlie causal beliefs and how these beliefs con-
strain the evaluation of covariation-based evidence.

A Brief Note on Terminology
In this article, causal beliefs will be defined as one’s

preexisting knowledge about the propensity of a given
causal candidate to produce a given effect. We propose
that these beliefs may be derived from several sources of
information. We were specifically interested in two po-
tential sources of causal beliefs: (1) long-term memory
representations of covariation-based information and
(2) long-term memory representations of mechanism-
based properties of the relevant variables. We will refer
to causal beliefs derived from covariation-based cues as
covariation-based beliefs (or beliefs reflecting covariation-
based information), whereas causal beliefs derived from
mechanism-based cues will be referred to as mechanism-

based beliefs (or beliefs reflecting mechanism-based in-
formation). This variable will be referred to as belief
modality.

In addition, we investigated how these beliefs influ-
ence the evaluation of new empirical evidence. In this se-
ries of experiments, empirical evidence was provided in
the form of summary data that described the degree to
which the two variables were observed to covary with
each other in a hypothetical study. The empirical evidence
provided to participants will be generally referred to as
covariation-based data (or more descriptively, as the DPc
manipulation).

Covariation-Based Models
Some researchers claim that humans are “intuitive sta-

tisticians” (Peterson & Beach, 1967) who make causal-
ity judgments by using a normative strategy wherein the
degree of covariation between a putative cause and its
observed effect is computed. This model is based on the
assumption that an event that exhibits a regularity of as-
sociation with an effect (i.e., covaries with that effect) is
more likely to be identified as a cause of that effect than
is an event that does not exhibit a regularity of associa-
tion. For example, eating peanuts is likely to covary more
strongly with allergic reactions than is eating broccoli
and, as such, will be more likely to be perceived as
causal. Such covariation-based models of causation are
the product of the Humean tradition of radical empiri-
cism (Hume, 1739/1978), which posits that humans and
other animals rely primarily on observable empirical
cues to understand and explain causal sequences. Cur-
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rent versions of this view (e.g., Cheng, 1997) propose
that causal attributions are based on the perceived degree
of covariation between a candidate cause and an effect,
as well as on the temporal and spatial relations between
them.

Measuring the covariation between cause and ef-
fect. Summary information about the presence and ab-
sence of a putative cause and its effect is often repre-
sented in the form of a 2 3 2 contingency table. Figure 1
depicts the cells representing the four possible event con-
junctions needed to compute an estimate of covariation.
Covariation-based models typically assume that causal
inferences are made by combining information from
these four cells and deriving an estimate of the strength
of the causal relation (e.g., Anderson & Sheu, 1995;
Cheng, 1997; Cheng & Novick, 1990, 1992; Einhorn &
Hogarth, 1986; Jenkins & Ward, 1965; Rescorla, 1968;
Salmon, 1965; White, 2000, 2002b).

Proponents of this and other covariation-based models
claim that the covariation between the cause and the ef-
fect is used as part of a causal model or schema to obtain
a measure of causal strength between a putative cause
and its effect (Cheng, 1997; Cheng & Novick, 1990, 1992).
Take, for instance, the probabilistic contrast model (PCM;
Cheng & Novick, 1990). This model and its successor,
the power pc theory (Cheng, 1997), assume that causal
judgments are based on two pieces of information: the
probability of the effect’s occurring when the cause is
present [P(e/c)] and the probability of the effect’s occur-
ring when the cause is absent [P(e/~c)]. As is illustrated
in Figure 1, these probabilities can be computed from the
event conjunctions represented in a 2 3 2 contingency

table. A measure of covariation (DPc) can then be com-
puted, using the unidirectional contingency rule:

DPc = P(e/c) 2 P(e/~c). (1)

If DPc is positive, the candidate cause (c) should be
judged to be a facilitatory factor in producing the effect
(e). If DPc is negative, the potential cause (c) should be
judged to be an inhibitory factor. Finally, when DPc is
zero, the candidate cause (c) should be judged as a non-
causal factor with respect to the observed effect (e).

Evidence for normative covariation-based models.
The DPc index is regarded by virtually all researchers in
the field as a normatively appropriate index of the con-
tingency between two binary variables (Kao & Wasser-
man, 1993). Furthermore, it has been proposed that the
contingency-based model of causation appears to cap-
ture (at least in part) our everyday notion of how a cause
and effect sequence might behave (Spellman, 1996). For
example, the probability of getting lung cancer is greater
if one smokes than if one does not smoke (i.e., DPc is pos-
itive); this is often interpreted as evidence in favor of a
causal relation between smoking and lung cancer, even
though smoking is neither necessary nor sufficient for
getting lung cancer. In this way, the fact that the two
events covary supports a causal attribution, despite the
fact that covariation does not guarantee that there is a
causal link between them.

Laboratory evidence also suggests that reasoners
make causal judgments that conform, at least approxi-
mately, to the DPc contingency rule. Specifically, when
reasoners are asked to judge the probability that a given
cause produced a given effect, their likelihood judg-

Figure 1. A 2 2 contingency table representing the four possible event conjunctions re-
quired to calculate the conditional relation between an event and an outcome. The cells a, b,
c, and d are the frequency of each conjunction and are used to calculate the conditional prob-
ability of the effect’s (e) occurring in the presence of the cause (c) [P(e/c)] and its absence
[P(e/~c)]. Note that Pc can be expressed in terms of both a probability and an event frequency.
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ments generally increase with increasing values of DPc.
This is the case regardless of whether the information
needed to compute DPc is presented in a 2 3 2 contin-
gency table (Allan & Jenkins, 1980), is presented in a
free-operant paradigm in which participants observe the
putative causes and subsequent effects continuously in
time (Lober & Shanks, 2000; Wasserman, Chatlosh, &
Neunaber, 1983), or is summarized in sentences (Cheng
& Novick, 1990).

Limitations of covariation-based models. Although
there is much evidence to suggest that reasoners are sen-
sitive to DPc information, covariation-based models face
two problems. The first is a problem in principle, in that
covariation does not necessarily imply causation. Take,
for example, the regular succession of day and night,
where day is perfectly contiguous with night (DPc = 1)
and appears temporally prior to night. Despite this per-
fect covariation, reasoners know that these two events
are not causally linked. Although sequences such as this
exhibit observable statistical characteristics similar to
those for their valid causal counterparts, they lack the
critical connection (i.e., causal mechanism) implied by a
truly causal relation (Cheng, 1997).

Second, there are a number of research findings that
challenge traditional contingency-based models. For ex-
ample, several studies have demonstrated that partici-
pants will confidently infer a strong causal link between
two events after observing only a single positive instance
of a cause and an effect’s co-occurring (Beasley, 1968;
Boyle, 1960; Michotte, 1963). These reasoners cannot
be using a derivative of the DPc rule to inform their judg-
ments, because DPc requires at least two observations,
one of which must include information about the proba-
bility of the effect’s occurring in the absence of the cause
[i.e., P(e/~c)]. Moreover, although DPc assumes equal
weighting for all four cells of a 2 3 2 contingency table,
participants appear to weight Cells A and B more heav-
ily than Cells C and D (Downing, Sternberg, & Ross,
1985; Schustack & Sternberg, 1981; Wasserman,
Dorner, & Kao, 1990; White, 2002a). In addition, it ap-
pears that the order in which participants receive either
conf irmatory (Cells A and D) or disconfirmatory
(Cells B and C) information can have a profound impact
on participants’ final judgments of causality (Collins &
Shanks, 2002; Dennis & Ahn, 2001; Lopez, Shanks, Al-
maraz, & Fernandez, 1998) even though the order of pre-
sentation does not affect the objectively computed value
of DPc. As a result, there has been a move to modify the
DPc contingency rule (e.g., White, 2000, 2002b) to model
human behavior more accurately.

Clearly, these findings indicate that participants do not
rely on covariation as their only cue to causality. In their
now classic review of causality judgments, Einhorn and
Hogarth (1986) discussed a number of cues to causality,
such as temporal order (Siegler & Liebert, 1974; Tversky
& Kahneman, 1980), contiguity in time and space (Bul-
lock, Gelman, & Baillargeon, 1982; Michotte, 1963), and
similarity between cause and effect (Shultz & Ravinsky,

1977; Tversky, 1977), all of which may be used to sup-
port a causal attribution even when they conflict with
covariation-based cues. In this view, covariation-based
evidence is one of several cues to causality, rather than
the primary or dominant cue (White, 1992).

Concept-Based Models
Whereas covariation-based models suggest that rea-

soners use empirical observation to evaluate causal hy-
potheses, concept-based models give priority to the role
of acquired knowledge in evaluating causal relations.
The lineage of such models can be traced back to Kant’s
(1781/1965) model of generative transmission. This
view posits that causes not only covary with effects, but
actually produce those effects. The term generative
transmission refers to the transmission of energy from
the cause to the effect such that the cause, through the
nature of its properties, acts on the object, resulting in a
causal outcome (Harre & Madden, 1975; Madden &
Humber, 1974; White, 1989, 1995).

For example, the notion of generative transmission
forms the core of the causal powers theory that was first
proposed in philosophy by Harre and Madden (1975) and
later applied to psychologically relevant questions by
White (1989). Harre and Madden posited that causal pow-
ers are stable properties of objects, whose power to pro-
duce an effect is based on the “chemical, physical, or ge-
netic natures of the entities involved” (p. 5); this power
produces the effect only when the appropriate enabling
conditions are present (White, 1989, 1995). For example,
although peanuts may possess the causal power to produce
allergic reactions, they will do so only if they are ingested.
In this view, causal roles are defined conceptually, rather
than through empirical associations. The assessment of
causal hypotheses, therefore, is thought to be mainly a
matter of (1) seeking some object believed to possess the
power to produce the effect in question and (2) determin-
ing whether the appropriate enabling conditions are pres-
ent to permit the power of the object to exert the effect.

Evidence for concept-based models. A number of
studies have supported the hypothesis that reasoners’
causal attributions reflect knowledge of causal powers.
For example, when asked to evaluate the utility of various
types of cues to test a causal hypothesis (e.g., covariation
or temporal and spatial contiguity), reasoners reliably in-
dicate that information regarding the causal mechanism
will be the most informative (Shultz, 1982; Shultz, Fisher,
Pratt, & Rulf, 1986). Moreover, when provided with the
opportunity, reasoners do not spontaneously seek out co-
variation information between potential causal candidates
and effects. Rather, individuals prefer to gather further
information regarding the specific target events in ques-
tion, to test hypotheses about possible underlying mecha-
nisms (Ahn, Kalish, Medin, & Gelman, 1995; White,
1989). Taken together, these findings suggest that knowl-
edge about a causal mechanism plays an important role
in testing causal hypotheses and may even take priority
over covariation-based data.
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Combining Covariation-Based Data With
Causal Beliefs

In summary, there is ample evidence that reasoners
draw on at least two sources of information when mak-
ing causal attributions. Reasoners are clearly sensitive to
covariation-based data available in the environment; their
judgments also reflect a need to understand the underlying
causal mechanism that mediates the relation between cause
and effect. However, despite the fact that both sources of
knowledge clearly inform causal judgments, the ten-
dency of most research to date has been to examine one
or the other factor in isolation, or to pit covariation-based
data and causal beliefs against each other as competing
explanations for people’s causal attributions. In our view,
this approach has limited our understanding of causal
judgments in two ways.

First, there is abundant evidence from other reasoning
domains that shows that reasoners evaluate the informa-
tion provided to them in light of their own beliefs and ex-
periences and that their reasoning judgments are as sen-
sitive to their prior beliefs as to the logical demands of
the task (e.g., Evans, Handley, & Harper, 2001; Klauer,
Musch, & Naumer, 2000; Newstead, Pollard, Evans, &
Allen, 1992; Oakhill & Garnham, 1993; Thompson,
Striemer, Reikoff, Gunter, & Campbell, 2003). Thus, it
seems reasonable to expect that reasoners do not evalu-
ate covariation-based data in an a theoretical manner but,
instead, do so in light of their preexisting causal beliefs
(Fugelsang & Thompson, 2000, 2001; White, 1995).

Second, the tendency to assume that either covariation-
or mechanism-based cues have epistemological priority
leads one to overlook the fact that these elements are
closely related. Specifically, if I know that Cause A has
the causal power to produce Effect B, I will almost cer-
tainly believe that A and B covary, even if I have not had
the opportunity to observe such covariation empirically.
For example, on the basis of my causal beliefs regarding
the sharpness of tacks and the delicacy of the stomach
lining, I am prepared to believe that ingesting tacks will
covary with severe abdominal pain, even though I have
never had the opportunity to observe the co-occurrence
of these events. Conversely, knowing that two events co-
vary can lead one to assume that there is a causal mech-
anism linking the two. For example, a great deal of re-
search was carried out to discover a causal mechanism
linking lung cancer to smoking on the basis of early find-
ings that established that these events were correlated. In
summary, causal beliefs likely reflect both covariation-
based information and mechanism-based information,
regardless of whether causal beliefs are initially formed
by observing cues to covariation (e.g., Cheng & Lien,
1995; Young, 1995) or by inferring causal mechanisms
(e.g., White, 1989).

Evidence for cue combination. To date, there have
been few studies that have examined how reasoners com-
bine covariation-based data with their causal beliefs. Much
of the existing research concerns when covariation entails
causality (e.g., Lien & Cheng, 2000; Waldmann, 1996;

Waldmann & Hagmayer, 2001) or how causal beliefs can
moderate or downplay the importance of covariation-
based data (Ahn et al., 1995; Garcia, McGowan, Ervin,
& Koelling, 1968; Michotte, 1963; White, 1989). The
data that are available suggest that these sources of in-
formation contribute interactively, as opposed to addi-
tively, to causal judgments (Fugelsang & Thompson,
2000). For example, participants in Fugelsang and
Thompson’s (2000) experiments judged the likelihood
that a candidate cause produced a given effect following
orthogonal manipulations of belief level and DPc. We ob-
served that the belief level and DPc manipulations inter-
acted, so that the effect of DPc was larger for believable
than for unbelievable candidates. We interpreted these
findings to be consistent with White’s (1989) hypothesis
that mechanism-based beliefs restrict the set of candi-
dates about which covariation-based data are sought out
and considered.

We report three experiments designed to extend these
findings. Our first goal was to test the hypothesis that
mechanism-based beliefs per se are used to restrict the
set of causal candidates about which covariation-based
data are considered. In addition, we wished to test a sec-
ond assumption of White’s (1989) causal power theory.
White (1989) proposed that mechanism-based beliefs
are applied in an unconscious heuristic manner, rather
than in a strategic thoughtful manner. Specifically, he as-
sumed that mechanism-based beliefs are recruited auto-
matically and that their influence on subsequent causal
attributions are thus beyond one’s conscious control.
Evans and Over (1996, 1997) have made similar argu-
ments in the case of deductive reasoning. They proposed
that the recruitment of beliefs to problems of deduction
may occur unconsciously and, thus, may be beyond the
realm of introspection. In this view, strategic analytic
processes are proposed to operate after heuristic belief-
based processes have identified elements in the environ-
ment for subsequent processing. We therefore predicted
that reasoners would be unable to introspect accurately
on the degree to which their causal judgments were af-
fected by their prior mechanism-based beliefs. In con-
trast, we hypothesized that covariation-based data would
be used strategically and analytically, after belief-based
processes have been applied, and thus would be available
for introspection.

EXPERIMENT 1

Our goal in the present experiments was to vary
mechanism-based beliefs independently of covariation-
based beliefs. In Experiment 1, we did this by presenting
participants with unknown candidates (i.e., Substance X)
and manipulating (1) the degree to which they would be
believed to covary with an effect and (2) the degree to
which they possessed a causal mechanism capable of
producing the given effect. In addition, we presented the
reasoners with information needed to compute DPc and
examined how the use of these covariation-based data
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changed across different levels of belief modality. To test
our hypothesis about the strategic use of belief-based in-
formation and covariation-based data, we asked the par-
ticipants to record how much they had relied on the be-
lievability of the causal candidates, as well as on the
covariation-based data provided to them (see Jack &
Roepstorff, 2002, for a recent analysis of similar retro-
spective introspection techniques).

Method
Participants. One hundred seventy-one f irst-year psychology

students from the University of Saskatchewan, with a mean age of
20.2 years (range, 18– 44), completed the study in partial fulfill-
ment of a course requirement.

Design . This was a 2 3 2 3 2 mixed design with belief level (low
vs. high) and covariation-based data (DPc = .1 vs. .9) as within-subjects
variables; belief modality (mechanism based vs. covariation based)
was a between-subjects variable.

Materials and Procedure. For this experiment, we used four
story scenarios, each presented on a separate page in a small book-
let. Each story scenario concerned a different effect in need of ex-
planation: fatigue, slippery roads, flowers blooming, and lung can-
cer (a complete set of stimuli is presented in the Appendix). Each
scenario described causal links that were either believable or unbe-
lievable. Believability ratings were pretested with a separate sam-
ple of 91 participants. These ratings, along with participants’  esti-
mates of the degree to which the putative causes and effects
covaried in the natural environment, appear in Table 1. The critical
manipulation in this experiment was the manipulation of the source
of those beliefs (i.e., the belief modality). Half of the participants
received information describing how the cause and the effect had
covaried in the past (i.e., covariation-based beliefs); the remaining
half received information describing a causal mechanism (i.e.,
mechanism-based beliefs). Each participant solved four problems,
one in each belief level 3 DPc cell. The four story scenarios and the
two DPc conditions were fully counterbalanced, so that each sce-
nario appeared equally often under each covariation contingency.
Each problem began with a brief introductory paragraph that ex-
plained an event that had happened and a possible cause for that
event. The possible cause was an unknown candidate (e.g., Sub-
stance X ) that was arbitrarily linked to the effect. For example, in
the slippery roads scenario, the participants were provided with the
following paragraph:

Imagine you are a municipal researcher who works for a local town-
ship. Recently, you have discovered that a small section of town is
showing a dramatic increase in the number of slippery roads. You have
a hypothesis that the slippery roads may be due to the recent use of
“substance X” in the mixture of asphalt.

The belief modality information was then provided. Specifically,
the nature of Substance X was then described either in terms of the

inherent properties of the substance (mechanism based) or in terms
of its statistical relation with the effect (covariation based). For exam-
ple, in the mechanism-based condition, the participants were told the
following: “You discover that ‘substance X ’ is a chemical additive
that alters the freezing point of precipitation such that rain freezes
at a warmer temperature.”  This information provides the reasoner
with information regarding the causal power of Substance X to elicit
the observed effect without providing any information about past
statistical regularities. The participants in the covariation-based
condition were told that “past research has shown that ‘substance X’
and slippery roads are strongly correlated, although the reasons for
this relation are not fully understood.”  This information provides
the reasoner with information regarding past statistical regularities
without revealing the exact nature of the causal candidate.

At this point, the participants made an initial likelihood judg-
ment. They were asked to judge the likelihood that the putative
causal candidate was responsible for the observed effect, using an
11-point Likert scale that ranged from 0 (definitely not likely) to 10
(definitely likely), with 5 (somewhat likely) as the midpoint. Note
that this initial likelihood judgment is based solely on knowledge of
the believability of the candidate cause in the absence of covariation-
based data. We shall refer to these judgments as baseline perceived
causal efficacy (PCE).

Immediately following the baseline PCE judgment, we presented
the covariation-based data needed to compute DPc. This information
was presented in a frequency format. For example, in the highly
contingent (DPc = .9) slippery roads scenario, the participants were
provided with the following new empirical evidence:

In order to test this theory, you investigate 10 townships that had “sub-
stance X” and 10 townships that did not have “substance X.” A thor-
ough investigation revealed the following information: of the 10 town-
ships that had “substance X,” 9 experienced slippery roads; of the 10
townships that did not have “substance X,” 0 had slippery roads.

In the high-contingency condition, DPc was set equal to .9; in the
low-contingency condition, DPc was equal to .1. The marginal totals
(i.e., total number of observations for which the cause was present
or absent) were set at 10 for all levels of DPc. The value of DPc was
manipulated by changing the probability of the effect’s occurring in
the presence of the cause [i.e., P(e/c)], as is illustrated in Table 2.

This information was followed by another Likert scale, which
was identical to the first one. The participants were then asked to
make a second PCE judgment reflecting all sources of information
given (belief based and evidence based). Finally, for each scenario,
the participants were asked to indicate (1) how heavily they had
weighted their causal beliefs and (2) how heavily they had weighted
the new covariation-based data. These judgments were also made
using an 11-point Likert scale that ranged from 0 (not at all) to 10
(extremely heavily) and will be referred to as belief-weighting and
DPc-weighting, respectively.

All the participants were tested in a single session. The partici-
pants were randomly assigned to one of the two belief modality

Table 1
Mean Plausibility Ratings and Covariation Estimates [i.e., both P(e/c) and P(e/~c)]

for the Scenarios Used in Experiments 1 and 2

Scenario Candidate Cause Plausibility P(e/c) P(e/~c)

Cancer taking iron supplements 2.57 .17 .20
Exam success paper writing success 5.55 .73 .38
Fatigue insomnia 7.96 .85 .22
Fever having chills 3.60 .66 .17
Flowers blooming red pots 0.23 .75 .72
Slippery roads ice storms 9.28 .96 .19

Note—All six items were used in Experiment 2; only those appearing in boldface were used
in Experiment 1. These data were gathered in an independent sample of 91 participants.
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conditions. The materials for this experiment were included in a set
of unrelated experiments on other topics. Instructions were all writ-
ten, so the experimenter gave only a brief introduction informing
the participants that they should complete the questions in the order
in which they appeared and that they should work at their own pace.
The participants were encouraged to ask any questions they might
have at any time during the experiment.

Results and Discussion
The results will be presented in three sections. The first

section will deal with the baseline PCE judgments (i.e., the
judgments made prior to the provision of the covariation-
based data). In the second section, the final PCE judg-
ments will be analyzed as a function of belief level, belief
modality, and DPc. In the final section, we will compare the
participants’ perceived use of causal cues to their actual
use of causal cues by comparing their subjective belief-
and DPc-weighting judgments with their actual judgments.
The a level for all the statistical tests was set at .05 (two-
tailed) unless otherwise stated. Effect size estimates
were computed using partial h2.

Baseline PCE judgments. The first series of analy-
ses served as a manipulation check to verify that the

mechanism-based and covariation-based belief manipu-
lations affected PCE judgments in the predicted manner.
Recall that these baseline PCE judgments were made
after the participants had been provided with informa-
tion regarding a causal mechanism or covariation-based
information but prior to the presentation of new empiri-
cal evidence (i.e., the DPc manipulation). The baseline
PCE judgments should, therefore, vary across levels of
belief, but not across levels of DPc. Figure 2 presents the
mean PCE judgments (baseline and final) for the two be-
lief level conditions (low belief and high belief) and the
two DPc conditions (.1 and .9) as a function of belief
modality (mechanism and covariation based).

The baseline PCE judgments were analyzed using a
2 3 2 3 2 (belief level 3 DPc 3 belief modality) mixed
analysis of variance (ANOVA). There was an expected
main effect of belief level [F(1,169) = 385.56, MSe =
4.01, h2 = .68] such that the participants’ baseline PCE
judgments were higher when the candidates were be-
lievable (M = 7.2) than when they were not (M = 4.2).
This main effect was qualified, however, by an interaction
between belief level and belief modality [F(1,169) =
10.03, MSe = 4.01, h2 = .02]: The difference between
high belief and low belief was larger for the covariation-
based (M = 3.5) than for the mechanism-based (M = 2.5)
condition. The effect of DPc (F = 3.68), the DPc 3 belief
modality interaction (F = 2.29), and the three-way inter-
action (F < 1) were not significant (all ps > .05). There-
fore, the belief manipulation successfully influenced the
participants’ belief judgments and was not contaminated
by the later DPc manipulation.

Final PCE judgments. The f inal PCE judgments
were analyzed using a 2 3 2 3 2 (belief level 3 DPc 3
belief modality) mixed ANOVA. As was expected, PCE
judgments were higher for believable (M = 6.1) than for

Table 2
Event Frequencies for the Computation of the Pc Values Used

in Experiments 1, 2, and 3

Frequencies DPc Computations

ce c~e ~ce ~c~e P(e/c) 2 P(e/~c) DPc

9 1 0 10 9/10 2 0/10 .9
1 9 0 10 1/10 2 0/10 .1

Note—c, cause; e, effect; ce represents the number of times that the cause
and the effect co-occurred; c~e represents the number of times that the
cause occurred in the absence of the effect; ~ce represents the number of
times that the effect occurred in the absence of the cause; ~c~e represents
the number of times that the effect was absent when the cause was absent.

Baseline Low
Belief
Baseline High
Belief
Final Low
Belief
Final High
Belief

10

8

6

4

2

0

10

8

6
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2
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Mechanism-based beliefs Covariation-based beliefs

P
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u
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Figure 2. Experiment 1: mean perceived causal efficacy (PCE) judgments for the two belief level condi-
tions (low belief and high belief) and the two Pc conditions (.1 and .9) as a function of belief modality
(mechanism vs. covariation based).
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unbelievable (M = 5.5) candidates [F(1,169) = 25.45,
MSe = 2.52, h2 = .13]; PCE judgments were also higher
when DPc = .9 (M = 8.4) than when DPc = .1 [M = 3.2;
F(1,169) = 771.28, MSe = 6.06, h2 = .82]. As with the
baseline PCE judgments, there was also a belief level 3
belief modality interaction [F(1,169) = 4.26, MSe = 2.52,
h2 = .03]. The difference between believable and unbe-
lievable candidates was larger for the covariation-based
(M = 0.9) than for the mechanism-based (M = 0.4) belief
modality condition. The main effect of belief modality
(F = 1.15), the DPc 3 belief level interaction (F = 2.36),
and the DPc 3 belief modality interaction (F = 3.28) were
not significant (all ps > .05).

Importantly, the predicted interaction between belief
level, DPc, and belief modality [F(1,169) = 3.74, MSe =
1.86, p = .055, h2 = .02] was marginally reliable. To in-
terpret this three-way interaction, separate belief level 3
DPc ANOVAs were computed for the two belief modality
conditions. As was predicted, in the mechanism-based
belief modality condition, the effect of DPc was larger
when the candidate was highly believable (M difference =
5.9) than when the candidate was of low belief [M dif-
ference = 5.2; F(1,169) = 6.77, MSe = 1.68, h2 = .07]. In
contrast, however, in the covariation-based belief modal-
ity condition, belief level and DPc contributed additively
to PCE judgments (F < 1, h2 < .01); the effect of DPc was
equivalent for believable (M difference = 4.9) and unbe-
lievable (M difference = 4.9) candidates. This null effect
occurred despite adequate power to detect an interaction
of similar magnitude to that in the previous analysis [1 2
b for (M difference ³ .72) = .83, a = .05, one-tailed].

These findings support the conclusion that mechanism-
based and covariation-based beliefs are distinct and con-
tribute in different ways to causality judgments (Fugelsang
& Thompson, 2000). Specifically, when DPc is evaluated
in light of covariation-based beliefs, it appears that the

two sources of information are simply added together,
perhaps because they are derived from the same modality.
In contrast, when DPc is evaluated in light of mechanism-
based beliefs, it is weighted differently depending on the
believability of the candidate. Specifically, covariation-
based data are weighted more heavily for believable than
for unbelievable causal candidates. This pattern is con-
sistent with our hypothesis that mechanism-based beliefs
are used to restrict the set of candidates for which covari-
ation information is considered (Fugelsang & Thompson,
2000; White, 1989).

Actual/subjective calibration. In the final series of
analyses, we examined the accuracy of the participants’
reported use of belief-based information and covariation-
based data. To do this, two scores were computed that
represented (1) actual use of belief-based information and
covariation-based data and (2) subjective use of belief-
based information and covariation-based data. The actual
use of belief-based information and covariation-based
data was determined by creating difference scores that
represented the degree to which the reasoners’ judg-
ments changed as a function of belief level and DPc
across problems (i.e., the difference in final PCE scores
between the high- and the low-belief conditions and the
difference in final PCE scores between the high- and
low-DPc conditions). Likewise, we computed two scores
that represented the degree to which the reasoners be-
lieved that their judgments changed as a function of the
belief level manipulations and the DPc manipulations;
this was done by averaging the participants’ subjective
weighting judgments of belief-based information (i.e.,
how much they thought that they had made use of the in-
formation regarding the believability of the candidate)
and covariation-based data (i.e., how much they thought
that they had made use of the new empirical evidence)
across problems. These data are plotted in Figure 3.

Figure 3. Experiment 1: individual calibration of participants’ actual use of belief- and covariation-based cues with their subjec-
tive use of belief- and covariation-based cues.
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These analyses revealed several interesting findings.
First, the participants’ subjective weighting of covariation-
based data was positively associated with their actual use
of covariation-based data when making their final PCE
judgments [r(169) = .38, p < .01]. In other words, the
participants were able to gauge their use of covariation-
based data: The participants who said that their judgments
were influenced by the covariation-based data did in fact
change their judgments across problems as a function of
covariation-based data. In contrast, however, the partic-
ipants’ subjective weighting of belief-based information
was not correlated with their actual use of belief-based
information when making their final PCE judgments
[r(169) = .07, p = .34], despite adequate power to detect
a correlation of moderate size [1 2 b for (r ³ .3) = .97].
It appears, therefore, that the participants were unable to
gauge their use of belief-based cues and were unaware of
the influence that this information had on their final PCE
judgments. Performing a simple comparison between the
slopes of the belief (actual vs. subjective) and covariation
(actual vs. subjective) calibration estimates corroborated
these analyses. This analysis revealed that these two slopes
were reliably different from each other [t(168) = 3.32, p <
.05] and, thus, represented dissociable processes. How-
ever, the slopes did not vary as a function of the belief
modality manipulation (all ts < 1, ps > .05), suggesting
that the influence of causal beliefs may be unavailable for
introspection, regardless of the source of those beliefs.

In summary, we report two novel findings concerning
the relation between preexisting beliefs and the evaluation
of new covariation-based data. Using unfamiliar causal
candidates, we demonstrated that reasoners weight
covariation-based data more heavily for believable than
for unbelievable candidates, but only when there is a
causal mechanism that links the cause to the effect; oth-
erwise, prior beliefs and new data contribute additively
to causal judgments. We also demonstrated that the rea-
soners are relatively accurate at evaluating how much
their causal judgments reflect the impact of covariation-
based data but seem to have little insight into how much
their causal judgments reflect the impact of their prior
beliefs. The purpose of the next two experiments was to
extend and replicate each of these findings, using famil-
iar causal relations.

EXPERIMENT 2

In Experiment 1, we sought to manipulate mechanism-
based and covariation-based beliefs by using unknown
candidates. In Experiment 2, in contrast, we used famil-
iar causal candidates; these candidates varied in whether
there was a mechanism that mediated the relation and in
the degree to which the cause and the effect were believed
to covary. A second goal of this experiment was to extend
our analyses to judgments of covariation. Recent research
has suggested that the inferential processes associated
with judgments of covariation are different from those as-
sociated with judgments of causality (e.g., Mandel &
Lehman, 1998; White, 2001). Consequently, we wanted

to determine whether the interaction we observed be-
tween DPc and belief level would be observed when rea-
soners were asked to judge the degree of covariation be-
tween cause and effect, as opposed to judging the
strength of the causal relation (i.e., PCE judgments).

Thus, the participants in Experiment 2 were provided
with causal scenarios in which the causal candidates var-
ied in terms of (1) the belief modality (covariation vs.
mechanism based), (2) the belief level (high vs. low),
and (3) the strength of covariation-based data (DPc = .1
vs. .9). In addition, the participants made one of two
types of judgments. Specifically, the participants either
(1) made PCE judgments or (2) estimated the degree to
which the cause and the effect covaried (hereafter re-
ferred to as COV estimates). We hypothesized that the
belief level 3 DPc interaction would occur only when be-
liefs were represented in terms of mechanism-based in-
formation and individuals were making PCE judgments,
rather than COV estimates.

Method
Participants. One hundred thirty-four first-year psychology stu-

dents from the University of Saskatchewan, with a mean age of
18.8 years (range, 17–49), completed the study in partial fulf ill-
ment of a course requirement.

Design . This was a 3 (belief level) 3 2 (covariation-base d
data) 3 2 (judgment type) mixed design, with belief-level (low vs.
high) and covariation-based data (DPc = .1 vs. .9) as within-subjects
variables and judgment type (PCE judgment vs. COV estimate) as
a between-subjects variable.

Materials and Procedure. In this experiment, the participants
were presented with six story scenarios, one on each page of a small
booklet. Each scenario presented an event in need of explanation
(i.e., fatigue, slippery roads, flowers blooming, lung cancer, fevers,
and exam success) and a putative cause. The scenarios were se-
lected on the basis of ratings obtained in the same pretesting session
as that noted in Experiment 1. These ratings appear in Table 1. Be-
cause covariation-based beliefs and mechanism-based beliefs are
highly correlated, we were unable to manipulate these dimensions
orthogonally using naturalistic materials. Consequently, we pre-
sented causal candidates having one of three relations to the target
event: The candidate was highly correlated with the effect but was
not believed to have a causal mechanism to link it to the effect (e.g.,
having chills causing a fever), the candidate was correlated with the
effect and was believed to possess a causal mechanism (e.g., in-
somnia causing fatigue), or the candidate was not correlated and
was not believed to have a mechanism (e.g., taking iron supple-
ments causing lung cancer). The latter condition served as the low-
belief control condition.

Each putative cause was presented with covariation-based data
that were either highly contingent with the effect (DPc = .9) or of low
contingency with the effect (DPc = .1). The causal scenarios and the
DPc manipulations were fully counterbalanced so that each scenario
appeared equally often under both covariation contingencies. As in
Experiment 1, the marginal totals (i.e., total number of observations
for which the cause was present or absent) were set at 10 for all lev-
els of DPc. The value of DPc was manipulated by changing the prob-
ability of the effect’s occurring in the presence of the cause [i.e.,
P(e/c)], as is illustrated in Table 2. Finally, the participants were
asked to make judgments regarding either (1) how likely it was that
the given candidate caused the given effect or (2) the degree to
which the cause and the effect covaried.

An example of the scenarios given to the participants who made
PCE judgments is as follows. The participants were first provided
with a brief introductory paragraph that explained the event that had
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happened and a possible cause for that event. For example, in the fa-
tigue scenario , the participants were provided with the following
paragraph:

Imagine you are a doctor trying to determine the cause of fatigue in a
group of patients. You have a hypothesis that the fatigue may be due to
insomnia. In order to test this theory, you investigate 10 patients that
had insomnia and 10 patients that did not have insomnia. A thorough
investigation revealed the following information: of the 10 patients that
had insomnia, 9 were fatigued; of the 10 patients that did not have in-
somnia, 0 were fatigued.

At this point, the participants judged the likelihood that the putative
candidate was causally responsible for the observed effect, using an
11-point Likert scale that ranged from 0 (definitely not likely) to 10
(definitely likely), with 5 (somewhat likely) as the midpoint.

The participants who made COV estimates were provided with
the identical scenarios, save that references to the evaluation of
causal relation changed. The critical changes are shown in italics in
the example. For example, in the fatigue scenario , the participants
were provided with the following paragraph:

Imagine you are a doctor trying to determine if there is a relationship
between insomnia and fatigue in a group of patients . In order to test
this theory, you investigate 10 patients that had insomnia and 10 pa-
tients that did not have insomnia. A thorough investigation revealed the
following information: of the 10 patients that had insomnia, 9 were fa-
tigued; of the 10 patients that did not have insomnia, 0 were fatigued.

The participants then judged the strength of the relation between
the two variables, using a similar 11-point Likert scale that ranged
from 0 (not related) to 10 (very strong relationship ), with 5 (mod-
erate relationship ) as the midpoint. The procedure was otherwise
identical to that in Experiment 1.

Results and Discussion
Figure 4 presents the mean PCE judgments and COV

estimates for the two belief level conditions (low belief
and high belief) and the two DPc conditions (.1 and .9) as
a function of belief modality (mechanism based vs. co-
variation based). In the first set of analyses, we exam-
ined the effects of belief level, DPc, and belief modality.
The PCE judgments were analyzed using two separate

2 3 2 (belief level 3 DPc) ANOVAs. In the first 2 3 2
ANOVA, scenarios describing candidates having a be-
lievable causal mechanism were contrasted to the low-
belief control. In the second 2 3 2 ANOVA, scenarios
describing candidates that were correlated with the ef-
fect but that lacked a believable causal mechanism were
contrasted to the low-belief control. Parallel analyses
were conducted for the COV estimates.

To simplify the description of these analyses, the four
sets of analyses will be summarized together in terms of
(1) main effects of belief level, (2) main effects of DPc,
and (3) the presence or absence of a belief level 3 DPc
interaction. First, main effects of belief level were found
for both belief modality manipulations and both judg-
ment types (all Fs > 5.6, h2s > .08). That is, under all the
conditions, the participants’ judgments (PCE and COV)
were higher when the candidate cause was highly be-
lievable (M = 5.7) than when it was of low believability
(M = 4.5), regardless of how those beliefs were manipu-
lated. In addition, main effects of DPc were found for
both belief modality manipulations and both judgment
types (all Fs > 234.68, h2s > .79). That is, under all the
conditions, the participants’ judgments (PCE and COV)
were higher when the candidate was highly contingent
(M = 8.2) than when it was weakly contingent (M = 2.1),
regardless of how those beliefs were manipulated.

Importantly, however, the belief level 3 DPc interaction
was significant only when beliefs were manipulated in
terms of mechanism-based information and the partici-
pants were making PCE judgments [F(1,63) = 6.20, MSe =
2.83, h2 = .09]. The form of this interaction was as ex-
pected: The effects of the DPc manipulation were larger
when the candidate was highly believable (M difference =
6.3) than when the candidate was of low believability (M
difference = 5.3). Under all other conditions, the test for
the belief level 3 DPc interaction was additive (largest F =

Figure 4. Experiment 2: mean perceived causal efficacy (PCE) judgments and covariation (COV) esti-
mates for the two belief level conditions (low belief and high belief) and the two Pc conditions (.1 and .9)
as a function of belief modality (mechanism vs. covariation based).



A DUAL-PROCESS MODEL OF CAUSAL REASONING 809

1.2, h2 = .02), despite adequate power to detect an inter-
action of magnitude similar to that observed for PCE
judgments when beliefs were represented by mechanism-
based information [1 2 bs for (M difference ³ 1.05) =
.83, a = .05, one-tailed).

In summary, it appears that the interaction between
belief level and DPc is observed under restricted circum-
stances: (1) when judgments about the perceived causal
efficacy of candidates (i.e., PCE judgments) are made and
(2) when beliefs are represented in terms of mechanism-
based information. On the other hand, if beliefs are rep-
resented in terms of long-term memory representations
of covariation-based information, or when people are
judging the degree to which two variables are correlated
(i.e., COV estimates), the relation between belief level
and DPc is additive.

EXPERIMENT 3

The goal of Experiment 3 was to provide a replication
of the introspection data reported in Experiment 1. In ad-
dition, we wanted to rule out a possible alternative inter-
pretation of these findings. Recall that we found reason-
ers to be more accurate when introspecting about the
contribution of covariation-based data to their causal
judgments than when introspecting about the contribu-
tion of their prior beliefs. The interpretation of this find-
ing is potentially compromised by the fact that the effect
of covariation-based data on both actual and subjective
judgments (Ms = 5.2 and 7.2) was larger than the corre-
sponding effect of beliefs [Ms = 0.7 and 5.8; t(170) =
19.25, SE = 0.24, and t(170) = 9.79, SE = 0.14, respec-
tively]. The restricted range for the belief-based mea-
sures may have artificially attenuated the correlation be-
tween the actual and the subjective measures. If this were
the case, it would compromise our conclusions regarding
the phenomenological characteristics of belief- and
covariation-based processing.

Thus, a second goal of Experiment 3 was to test whether
this dissociation still occurs when the effects of belief on
both actual and subjective judgments are comparable in
size to the effects of covariation-based data. Fugelsang and
Thompson (2000, Experiment 2) observed that present-
ing the belief-based information prior to the covariation-
based data reduced the size of the belief effect. Thus, one
explanation for the relatively small belief effects ob-
served in Experiment 1 was that the belief-based infor-
mation was presented prior to the covariation-based data.
Consequently, in the present experiment, we presented
the belief-based information and covariation-based data
simultaneously in order to reduce any possible recency
effects associated with presenting the covariation-based
data last.

Method
Participants . Two hundred forty-two first-year psychology stu-

dents from the University of Saskatchewan, with a mean age of 19.9
years (range, 16–54), completed the study in partial fulfillment of
a course requirement.

Design . This was a 2 3 2 design with belief level (low vs. high) and
covariation-based data (DPc = .1 vs. .9) as within-subjects variables.

Materials and Procedure. Four story scenarios, adapted from
Fugelsang and Thompson (2000), were presented on separate pages
in a small booklet. The four scenarios concerned the following ef-
fects in need of explanation: depleted f ish populations, car acci-
dents, car start failures, and allergic reactions. As in Experiments 1
and 2, each scenario contained causal links that were either believ-
able or unbelievable (see Fugelsang & Thompson, 2000, for
pretested believability ratings, using a separate sample of 64 par-
ticipants).

In addition, we accompanied each putative cause with covariation-
based data that supported a relation that was either highly contingent
(DPc = .9) or of low contingency (DPc = .1). As was the case in Ex-
periment 2, the belief- and covariation-based information was pre-
sented simultaneously, and a single judgment (in this case, a PCE
judgment) was made after both the belief-based information and
the covariation-based data had been presented.

The four scenarios and two DPc conditions were fully counter-
balanced so that each scenario appeared equally often under both
covariation contingencies. The marginal totals (i.e., total number of
observations for which the cause was present or absent) were set at
10 for all levels of DPc. As was the case in Experiments 1 and 2, the
value of DPc was manipulated by changing the probability of the ef-
fect’s occurring in the presence of the cause [i.e., P(e/c)], as is il-
lustrated in Table 2.

In addition to making PCE judgments, the participants were asked
to indicate (1) how heavily they had weighted the belief-based in-
formation and (2) how heavily they had weighted the covariation-
based data, using an 11-point Likert scale that ranged from 0 (not
at all) to 10 (extremely heavily). The procedure was otherwise iden-
tical to that in Experiments 1 and 2.

Results and Discussion
The results will be presented in three separate sec-

tions. In the first section, we will examine the magnitude
of the actual and subjective belief and DPc effects. In the
second section, we will analyze the PCE judgments as a
function of the belief level and DPc manipulations. The
final section will present the calibration between the ac-
tual and the subjective uses of the causal cues.

The effects of belief level and Pc. In the first set of
analyses, we examined the degree to which we were suc-
cessful in equalizing the effects of belief level and DPc.
These analyses revealed that the effects of belief level
(M = 3.7) and of DPc (M = 3.8) on actual judgments were
comparable (t < 1), as were the subjective evaluations of
the effect of belief (M = 5.6) and DPc (M = 5.6; t < 1).
Thus, we were successful in equating the effects of be-
lief and DPc on both actual and subjective judgments.

PCE judgments. The PCE judgments were analyzed
using a 2 3 2 (belief level 3 DPc) repeated measures
ANOVA. Figure 5 presents the mean PCE judgments for
the two belief level conditions (low belief and high be-
lief) and the two DPc conditions (.1 and .9). As was the
case in Experiments 1 and 2, there was a main effect of
belief level [F(1,241) = 515.31, MSe = 6.33, h2 = .68],
such that PCE judgments were higher for believable (M =
5.9) than for unbelievable (M = 2.3) candidates. There was
also an effect of DPc [F(1,241) = 536.25, MSe = 6.67, h2 =
.69], such that the candidates were given higher PCE
judgments when they were highly contingent (M = 6.0)
than when they were weakly contingent (M = 2.2). There
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was also a belief level 3 DPc interaction [F(1,241) =
77.93, MSe = 4.88, h2 = .24], such that the effects of DPc
were larger when the causal candidates were believable
(M difference = 5.1) than when they were of low belief (M
difference = 2.6).

Actual/subjective calibration. In the final series of
analyses, we examined the extent to which the partici-
pants were aware of the influence of belief-based infor-
mation and covariation-based data. These analyses par-
alleled those of Experiment 1. For each individual,
scores representing the actual use of belief-based infor-
mation were computed by subtracting the mean PCE
judgment made in the high- and low-belief conditions;

comparable scores were computed for the two DPc con-
ditions. The subjective estimates were obtained by aver-
aging the relevant ratings across problems. These data
are plotted in Figure 6.

As was the case in Experiment 1, the participants’ sub-
jective weighting of covariation-based data was positively
associated with their actual use of covariation-based data
[r(240) = .34, p < .01]. In contrast, unlike Experiment 1,
the subjective use of belief-based information was mildly
associated with actual use of belief-based cues [r(240) =
.18, p < .01]. Therefore, when baseline belief effects
were substantially increased, the participants’ awareness
of their influence did increase slightly. Importantly, how-
ever, the two correlations differed reliably [t(239) = 2.30,
p < .05]. Thus, the participants appeared to be less ac-
curate when introspecting about the contribution of prior
knowledge than when introspecting about the contribution
of covariation-based data to their PCE judgments.

GENERAL DISCUSSION

Our findings support two conclusions. First, beliefs
about causal relations reflect at least two independent
nonredundant sources of information: knowledge about
the degree to which the cause and the effect covary and
knowledge about causal mechanisms that mediate between
cause and effect. These two sources of knowledge appear
to be represented independently and appear to contribute
differently to the subsequent evaluation of covariation-
based data. Specifically, we found that covariation-based
data were weighted more heavily for believable than for
unbelievable candidates, but only when those candidates
were believed to have a causal mechanism linking them to
their effect and when the reasoners were making causal
judgments, as opposed to estimating covariation. These
findings held for both familiar and unfamiliar causal re-

Figure 5. Experiment 3: mean perceived causal efficacy (PCE)
judgments for the two belief level conditions (low belief and high
belief) and the two Pc conditions (.1 and .9).

Figure 6. Experiment 3: individual calibration of participants’ actual use of belief- and covariation-based cues with their sub-
jective use of belief- and covariation-based cues for Experiment 3.
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lations. Second, we observed that the reasoners were rel-
atively accurate at articulating the extent to which their
judgments were sensitive to empirical evidence but were
less able to indicate the extent to which their judgments
reflected their prior beliefs; again, this was the case for
both familiar and unfamiliar causal relations.

Multiple Long-Term Memory Representations
of Beliefs and Subsequent Biasing Effects

Three experiments were reported that demonstrated
that the form of the interaction between belief level and
DPc depended on the nature of causal beliefs, and not just
on the strength of the causal beliefs held. We have ar-
gued elsewhere (Fugelsang & Thompson, 2000) that this
interaction can be thought to reflect an adaptive process
wherein the search for a plausible mechanism restricts
the sets of candidates for which covariation is consid-
ered. This can be thought of as a useful heuristic, given
the potentially infinite number of potential causal candi-
dates for every given effect that occurs in the natural en-
vironment. Indeed, an exhaustive analysis of all poten-
tially covarying candidates could take an eternity. The
finding that this interaction emerges only when beliefs
are represented in terms of mechanism-based information
suggests that the initial evaluation of naturally occurring
variables represents a search for mechanistic-based evi-
dence. If one can identify a plausible causal mechanism,
covariation-based information is given more weight. The
f inding that this interaction is unique to causal judg-
ments adds to the body of research that indicates that the
perception of causality represents a unique cognitive ca-
pacity that is functionally dissociable from covariation
estimation (e.g., Mandel & Lehman, 1998; White, 2001).

These data support the interpretation that causal be-
liefs are based on multiple nonredundant sources of in-
formation and argue against an interpretation in which
causal beliefs are represented in a unidimensional man-
ner. For example, according to a strict interpretation of
the covariation-based view, all causal beliefs are based
on the degree to which the candidate cause and the effect
are observed to covary (e.g., Cheng, 1997; Rescorla,
1968; Young, 1995); this includes beliefs based on both
past (i.e., long-term memory representations) and cur-
rent (i.e., new empirical evidence) experience. In con-
trast to this view, our data suggest that people’s causal
beliefs reflect at least two nonredundant properties:
(1) knowledge of covariation-based information and
(2) knowledge of mechanism-based information.

At a minimum, therefore, models of human causal
reasoning need to be modified to incorporate a role for
noncovariation-based information, such as causal mech-
anisms, into causal beliefs. As well, these models need
to explain how these causal beliefs influence the evalua-
tion of new covariation-based evidence. One means by
which covariation-based views can address the latter
concern is to assume that reasoners base their judgments
on a limited range of possibilities defined by a focal set
(Cheng, 1997; Cheng & Novick, 1990, 1992).

Focal Sets and the Computation of Covariation
Cheng (1997) and Cheng and Novick (1990) argued

that participants compute covariation with respect to a
target population of events, which they termed a focal
set. This target population may extend beyond the events
defined by the experimenter in the problem scenario and
may include additional information that is extracted
from long-term memory. It is crucial, then, to know
which events are deemed relevant and which irrelevant
for inclusion in the focal set. Causal beliefs, regardless
of how they are derived, may be a variable that sets
boundaries for focal set selection.

For example, when a potential candidate is unbeliev-
able, perhaps the relevant focal set is expanded to in-
clude instances in which the effect failed to occur when
the cause was present or in which another cause pro-
duced the effect in question. When DPc is computed
within this larger universe of events, the presence of
these alternative causes will lower the computed covari-
ation between cause and effect. Thus, even though the
nominal value of DPc is high, the value that is computed
within the focal set may be substantially lower than that
suggested in the problem. Moreover, because this dilu-
tion is presumably more likely when the candidate is un-
believable than when it is believable, the effect of the
presented value of DPc should be smaller for unbeliev-
able than for believable candidates.

One possible contribution of our findings might be to
delimit circumstances under which reasoners either expand
their focal sets beyond the range of the stimuli provided or
restrict themselves to the events discussed in the problem.
Therefore, our data may provide a means to rectify one of
the crucial limitations of the focal set hypothesis—namely,
difficulty in a priori specification (see Glymour, 2001).

Unconscious Belief-Based and Conscious
Evidence-Based Processing

In Experiments 1 and 3, we observed that the reason-
ers were more accurate in judging the contribution of
covariation-based data to their causal attributions than they
were in judging the contribution of their causal beliefs.
These findings are consistent with White’s (1989) argu-
ment that causal beliefs may be recruited automatically
and that their application to a problem-solving situation
may be beyond the reasoner’s conscious control. However,
White (1989) provided several boundary conditions under
which this automatic belief activation should occur that
are not consistent with our findings. Specifically, he ar-
gued that this automatic activation of beliefs should occur
only when the beliefs in question represent mechanism-
based information. As such, one would not necessarily ex-
pect beliefs derived from other sources (e.g., covariation-
based information) to be applied automatically. In contrast,
the results of Experiment 1 suggested that the reasoners
were equally poor at introspecting about the contributions
of covariation-based and mechanism-based beliefs. Thus,
it appears that past knowledge, regardless of how it is rep-
resented, may be applied automatically.
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Our f indings are also broadly consistent with the
framework provided by Evans and Over (1996, 1997).
They argued that rational behavior is defined in terms of
an organism’s ability to learn from experience and re-
spond appropriately to a variety of familiar and novel
stimuli in the environment. They proposed that most of
this learning, and indeed the application of this prior
knowledge, occurs unconsciously and intuitively (Evans
& Over, 1996, 1997). In this respect, Evans and his col-
leagues (e.g., Evans, 1984, 1989, 1996; Evans & Over,
1996, 1997) have argued that much of the behavior ob-
served in typical reasoning tasks can be attributed to un-
conscious processes that they describe as being both
heuristic and tacit. In this model, heuristic processes de-
termine which aspects of the problem are relevant, and
the analytic processes then focus only on those aspects of
the problem. Conscious processes, therefore, are thought
to be engaged after the fact, so that analytic logical rea-
soning takes place in a circumscribed domain defined by
the unconscious processes.

The findings of the present experiments are consistent
with the main assumptions of this theory. Specifically, we
found evidence suggesting that the recruitment of causal
beliefs, a heuristic process, may occur unconsciously (or
at least, with limited awareness) and, moreover, that
these beliefs constrain the deliberate analytic processes
needed to evaluate the empirical evidence that was pro-
vided. That is, the reasoners’ evaluation of covariation-
based data depended on the strength and type of belief-
based information that was available. Thus, similar to
Evans and Over (1996, 1997), we envision a model of
reasoning that encompasses both automatic heuristic
processes and deliberate analytic processes.

Finally, in a larger context, we suggest that this inter-
action between belief-based and empirically based pro-
cesses may be an adaptive reasoning strategy. That is,
when faced with an infinite number of potential causal
candidates for every given effect encountered in the nat-
ural environment, it makes sense to restrict the set of
candidates about which covariation information is as-
sessed. Otherwise, an organism will expend much
wasted effort examining the empirical evidence associ-
ated with implausible candidates. The practical strategy,
therefore, is to import conceptual knowledge concerning
the causal candidate in question in order to determine its
plausibility before the decision is made to make use of
any empirical cues.

A Two-Stage Model of Reasoning
In this final section, we outline a model to account for

our findings and to integrate our assumptions about con-
scious and unconscious processes with our findings
about covariation- and mechanism-based beliefs. The
basic assumptions of the model are represented in Fig-
ure 7. According to our model, causal reasoning consists
of two primary decision-making processes. In the first
stage, individuals are assumed to recruit knowledge
about the causal candidates in question. This knowledge
may incorporate information about long-term memory
representations of covariation-based information, long-
term memory representations of mechanism-based in-
formation, or some combination of the two. This re-
cruitment is assumed to occur automatically and with
little conscious awareness on behalf of the reasoner.
Stage 2 processing entails the conscious evaluation of
empirical evidence (i.e., covariation-based data). Here,

Figure 7. Graphical depiction of the proposed two-stage model of causal rea-
soning.
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we assume that the reasoner deliberately evaluates the
empirical evidence and judges the perceived causal effi-
cacy of the candidate cause. Furthermore, along with
Evans and Over (1996, 1997), we assume that the out-
come of Stage 1 processing determines the course of
conscious Stage 2 processing.

An explicit assumption of this model is that people
represent two types of beliefs about causal relations and
that these can be held independently of each other. That
is, people may believe that two events covary with each
other, or they may believe that a candidate cause has the
capacity to produce a given effect due to the inherent
properties of the events in question. These two sources of
beliefs may be held in an independent or interactive fash-
ion. That is, beliefs about long-term memory represen-
tations of covariation-based information and beliefs
about causal mechanisms are nonredundant aspects of
causal beliefs.

Moreover, it is assumed that beliefs about mechanism-
based information have different effects on Stage 2 pro-
cessing than do beliefs about covariation-based informa-
tion. When covariation-based data are evaluated in light
of covariation-based beliefs, the two sources of informa-
tion contribute additively to the final causal judgment. In
contrast, for reasons outlined above, when covariation-
based data are evaluated for candidates in which a causal
mechanism is available, the two sources of evidence inter-
act, so that the covariation-based data carry more weight
for believable than for unbelievable candidates.

In the present series of experiments, we have shown
that the knowledge that individuals bring to bear on a
task may greatly influence their ability to carry out that
task in a way deemed normatively appropriate. More im-
portant, however, individuals may not be entirely aware
of the extent to which their knowledge influences their
decisions. These findings have implications for causal
reasoning in particular and for decision making in gen-
eral. For these reasons, future researchers should attempt
to devise more extensive methods of accurately assess-
ing such biases, as well as developing techniques to min-
imize their influence when such biases would hinder ac-
curate decision making. In addition, because causal
beliefs are certainly constructed within the cultural con-
straints of the social environment, a fruitful avenue for
future research would be to examine cross-cultural dif-
ferences in the acquisition and application of personal
causal theories.
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APPENDIX
Causal Scenarios Used in Experiments 1 and 2

The six causal scenarios are presented below. Note that all
six scenarios were used in Experiment 2 and only four of the
scenarios (Cancer, Fatigue, Flowers Blooming, and Slippery
Roads) were used in Experiment 1. All the scenarios were pre-
sented equally often, using both of the covariation contingen-
cies; however, only the highly contingent (DPc = .9) versions
are illustrated here. In addition, for the sake of brevity, the sce-
narios are presented only in the format utilized in Experiment 2.

Fatigue
Imagine you are a doctor trying to determine the cause of fa-

tigue in a group of patients. You have a hypothesis that the fatigue
may be due to insomnia. In order to test this theory, you investi-
gate 10 patients that had insomnia and 10 patients that did not
have insomnia. A thorough investigation revealed the following
information: of the 10 patients that had insomnia, 9 were fatigued;
of the 10 patients that did not have insomnia 0 were fatigued.

Slippery Roads
Imagine you are a city researcher who is trying to determine the

cause of slippery roads in a group of townships. You have a hy-
pothesis that the slippery roads may be due to ice storms. In order
to test this theory, you investigate 10 townships that had ice storms
and 10 townships that did not have ice storms. A thorough inves-
tigation revealed the following information: of the 10 townships
that had ice storms, 9 experienced slippery roads; of the 10 town-
ships that did not have ice storms, 0 experienced slippery roads.

Flowers Blooming
Imagine you are a horticulturist who is trying to determine

the cause of flowers blooming. You have a hypothesis that the
flowers blooming may be due to being planted in red pots. In
order to test this theory, you investigate 10 flowers that were
planted in red pots and 10 flowers that were not planted in red
pots. A thorough investigation revealed the following informa-
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tion: of the 10 flowers that were planted in red pots, 9 bloomed;
of the 10 flowers that were not planted in red pots, 0 bloomed.

Cancer
Imagine you are a scientist who is trying to determine the

cause of the development of lung cancer in a group of patients.
You have a hypothesis that the lung cancer may be due to tak-
ing iron supplements. In order to test this theory, you investi-
gate 10 patients who took iron supplements and 10 patients who
did not take iron supplements. A thorough investigation re-
vealed the following information: of the 10 patients who took
iron supplements, 9 had lung cancer; of the 10 patients who did
not take iron supplements, 0 had lung cancer.

Fever
Imagine you are a school nurse who is trying to determine

the cause of a recent surge in fevers among children. You have

a hypothesis that the fevers may be due to having chills. In order
to test this theory, you investigate 10 children who had chills
and 10 children who did not have chills. A thorough investiga-
tion revealed the following information: of the 10 children who
had chills, 9 had fevers; of the 10 children who did not have
chills, 0 had fevers.

Exam Success
Imagine you are a professor who is trying to determine the

cause of exam success. You have a hypothesis that the exam
success may be due to paper writing success. In order to test
this theory, you investigate 10 students who had paper writing
success and 10 students who did not have paper writing suc-
cess. A thorough investigation revealed the following informa-
tion: of the 10 students who had paper writing success, 9 wrote
successful exams; of the 10 students who did not have paper
writing success, 1 wrote a successful exam.
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