
Modeling and measuring insurance risks for a hierarchical copula model

considering IFRS 17 framework

Carlos Andrés Araiza Iturria

A Thesis

in

The Department

of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Science (Mathematics) at

Concordia University

Montreal, Quebec, Canada

June 2019

© Carlos Andrés Araiza Iturria, 2019



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Carlos Andrés Araiza Iturria

Entitled: Modeling and measuring insurance risks for a hierarchical copula model con-

sidering IFRS 17 framework

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final Examining Committee:

Thesis Supervisor

Dr. M. Mailhot

Thesis Supervisor

Dr. F. Godin

Examiner

Dr. M. Pigeon

Examiner

Dr. J. Garrido

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Date



Abstract

Modeling and measuring insurance risks for a hierarchical copula model

considering IFRS 17 framework

In this thesis, a stochastic approach to insurance risk modeling and measurement that

is compliant with the new International Financial Reporting Standards (IFRS 17) is

proposed. The compliance is achieved through the use of a semiparametric hierarchical

copula which accounts for the dependence between the lines of business of the Canadian

auto insurance industry. A model for the marginal unpaid claim liabilities of each line of

business based on double generalized linear models is also developed. Development year

and accident year effect factors along with an autoregressive feature for residuals enable

modeling the dependence between the various entries of the loss triangles in a given line of

business. Capital requirements calculations are then performed through simulation; num-

bers obtained with univariate and multivariate risk measures are compared. Moreover,

a risk adjustment for non-financial risk required by IFRS 17 is also computed through a

cost of capital approach.
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Introduction

Actuaries are interested in reserving the appropriate amount to cover for future claims,

ensuring solvency for the insurer while, most importantly, protecting the insureds. The

capital allocated to a reserve is disclosed on the financial reports of the insurance entities.

New international financial reporting regulations have been set with the new International

Financial Reporting Standards (IFRS 17) to homogenize and facilitate their interpreta-

tion, making it simpler to compare insurance entities across jurisdictions.

Generalized linear models are commonly used in the industry to forecast future claims due

to their accuracy and simple interpretation. In the recent actuarial literature, awareness to

model the dispersion jointly with the mean has increased through double generalized linear

models. Moreover, it is essential to verify that the assumptions of the statistical models

are satisfied. Insurance portfolios are represented by multivariate distributions and due to

the increasing computational power and development of the theory for copulas, modeling

and measuring the risk associated with the multivariate distribution while accounting for

dependence has become fundamental.

This thesis is structured as follows. In Chapter 1, we discuss the new IFRS 17 framework

for financial reporting, the capital requirements set by the insurance regulator in Canada

and a justification for the proposed model. Chapter 2 explains the statistical and actuarial

concepts needed to understand the model in Chapter 3. Chapter 4 describes the concept

of reserving through univariate and multivariate risk measures. Furthermore, the cost of

capital method is presented to account for a risk adjustment. Then, in Chapter 5 the

model is applied to a dataset from the Canadian automobile industry.
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Chapter 1

Background

In this chapter, basic insurance definitions are presented, along with laws and the entities

responsible of regulating the insurance industry in Canada to justify the model suggested

in this thesis.

An insurance contract or policy is issued by an entity called the insurer for exchange of

a monetary consideration also known as a premium. The policy protects the owner of

the contract, also called the insured or policyholder, against a possible unfavorable event

with economic consequences. Specifically in this thesis, we are interested in Property and

Casualty (P&C), an insurance entity that protects the policyholder from costs arising by

loss or damage to tangible or intangible property. Examples of P&C insurance contracts

include but are not limited to fire, marine, legal expenses and automobile insurance. The

numerical results presented in Chapter 5 are an application in automobile insurance.

In order to protect the policyholder, laws exist to regulate the financial management of

the insurance companies through financial reporting and accounting standards. Laws

regulating the insurance industry for Canada are found in the Insurance Companies Act

Government of Canada (1991). The Insurance Companies Act states the Office of the

Superintendent of Financial Institutions (OSFI) as the primary regulator of insurance

companies with a federal charter in Canada. OSFI sets guidelines with regard to the

capital and solvency of the insurer. The Insurance Companies Act also states that all

2



financial statements must be prepared in accordance with generally accepted accounting

principles, the primary source of which is the Handbook of the Chartered Professional

Accountants Canada. In May 2018, OSFI announced in OSFI (2018a) that IFRS 17

Insurance Contracts1 was endorsed by the Canadian Accounting Standards Board and

thus, it is now incorporated into the Handbook.

It is of vital importance to highlight that capital requirements imposed by OSFI or other

insurance regulatory entities in other jurisdictions serve a different purpose than for IFRS

reporting. While a regulatory entity establishes principles in order to protect the pol-

icyholder and ensure solvency by the insurer at all times, IFRS has the objective of

creating comparable financial reporting across international boundaries for benchmarking

purposes. Thus, in Section 1.1 specific information is presented regarding the new IFRS

international framework for financial reporting and in Section 1.2 we deal with capital

allocation requirements set by the OSFI in Canada. In Section 1.3, we justify the model

used throughout this thesis related to the capital requirements and the financial reporting

framework.

1.1 Reporting - IFRS 17 Insurance Contracts

The International Accounting Standards Board (IASB), an independent international non-

profit group of experts in accounting and financial reporting, issued IFRS 17 Insurance

Contracts, a new accounting standard for insurance contracts in May 2017, superseding the

current regulatory framework IFRS 4. IFRS 17 Insurance Contracts establishes principles

for the recognition, measurement, presentation and disclosure of insurance contracts.

IFRS 4 worked well reflecting national requirements because it allowed for different ac-

counting practices. But having dissimilar standards across countries made it difficult

for investors, analysts and decision makers to compare insurers’ results. IFRS 17 is in-

tended to be the key towards a common international insurance accounting standard IASB

1IFRS stands for International Financial Reporting Standards.
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(2017a). The effective date of IFRS 17 has officially been set by the IASB to January 1st,

20212, meaning March 31st, 2021 is the first quarter of reporting under IFRS 17.

Although in this thesis the numerical results presented in Chapter 5 are from the Cana-

dian industry and the capital requirement standards are considered under the Canadian

regulator (OSFI), IFRS 17 is an international framework working under several jurisdic-

tions, meaning the model described in Chapter 3 can be applied in other countries while

respecting the specific national capital requirements.

1.1.1 Measurement

Measurements under IFRS 17 seek to faithfully disclose the insurers’ obligations arising

from the portfolios of insurance contracts. IFRS 17 establishes three approaches to mea-

sure a liability depending on the duration (short and long term contracts), type of liability,

and whether the contract depends on an underlying item. There are two types or classi-

fications of liabilities under IFRS 17, liability for remaining coverage (LRC) and liability

for incurred claims (LIC). LRC represents the unearned portion of risk from insurance

contracts which are in force and LIC represent insurance events that already occurred

but the claims have not been reported or have not been fully settled. Three measurement

approaches and some examples of applicable contracts are presented in Table 1.1 which

is adapted from CIA-CAS (2018). None of the measurement methods explained in what

follows are mentioned in the superseded framework IFRS 4.

We are interested in P&C contracts, which under IFRS 17, can be measured with the

General Model or with the PAA (as presented in Table 1.1). The General Model is the

default approach for LIC because the horizon is usually more than one year. The PAA is

an optional simplification which can apply for LRC if the duration of the contract is less

or equal than one year (short-term contract). An example of a multi-year P&C contract is

home insurance, where the insurer protects the policyholder against possible defects in the

2The IASB has proposed delaying the implementation of IFRS 17 by one year to 2022, subject to

public consultation. As of the date of this thesis, the delay is not yet official.
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construction of a home. Most automobile insurance contracts are short-term given that

the duration of the policies is for a one year period. Consequently, on initial recognition3,

the measurement of the liabilities for remaining coverage is performed under the PAA.

General Model
Premium Allocation

Approach (PAA)

Variable Fee Approach

(VFA)

Applicability Default approach
To simplify short-term

contracts (optional).

Direct Participation Con-

tracts: where policy cash

flows are linked to under-

lying items.

• Life insurance • Most P&C • Segregated funds

Examples of • Life annuities contracts • Unit-linked contracts

applicable • Universal life (UL) • Short-term • Index-linked UL

contracts • Reinsurance contracts group contracts • Not applicable to P&C

• Multi-year P&C

Table 1.1: Liability measurement approaches under IFRS 17.

According to the PAA in paragraph 55 of IASB (2017b), the liability is measured on

initial recognition as:

• The premiums,

• Minus acquisition cash flows (e.g. commissions paid to agents or taxation over the

premiums),

• Plus or minus any amount arising from the derecognition (at the date of recog-

nition of the insurance contracts) of prepayments, incurred expenses or any other

acquisition cash flow the insurer pays or receives before the date of recognition.

P&C short-term contracts are accounted under the PAA which does not involve a risk ad-

3Recognition (derecognition) is the addition (removal) of an asset or liability from the balance sheet.
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justment for non-financial risks component (described in Section 1.1.2). However, events

not settled during the duration of the contract sometimes occur. Thus, the cost of the

insurance event for the insurer could extend for years. The unknown amount that will

be paid in upcoming years is also known as unpaid claims liabilities for expired coverage

under short-term contracts. Although the original insurance contracts were accounted

for upon initial recognition with the PAA, the unpaid claim liabilities fall under the gen-

eral measurement due to the duration of these liabilities, as mentioned in IAA (2018).

Contrary to the PAA, the General Model requires a risk adjustment for non-financial

risks (described in Section 1.1.2). Therefore, even for short-term contracts, the general

approach is most of the time required in order to take into consideration the unpaid claim

liabilities.

We highlight the importance of the unpaid claim liabilities which are formed of two impor-

tant reserves known as the Incurred But Not Reported (IBNR) reserve and the Reported

But Not Settled (RBNS) reserve. IBNR and RBNS are reserve accounts representing the

amount of money the insurer has to set aside to fulfill future liabilities as consequence of

the insurance contracts. Notation and methods to calculate the unpaid claim liabilities

are described in Chapter 2.

Since the unpaid claim liabilities or LIC fall under the General Model, we need to un-

derstand the measurement requirements. The General Model establishes in paragraph 32

of IASB (2017b) that upon initial recognition, a group of insurance contracts should be

measured as the sum of:

• The fulfillment cash flow (FCF), which include:

– Estimates of future cash flows,

– An adjustment to reflect the time value of money and the financial risks related

to the future cash flows,

– A risk adjustment for non-financial risk.

• The contractual service margin (CSM).

6



“The contractual service margin (CSM) represents the unearned profit the entity will rec-

ognize as it provides services in the future” as stated in paragraph 38 of IASB (2017b).

CSM applies for unexpired coverage (LRC) and it is not within the scope of this work.

1.1.2 Risk adjustment for non-financial risk

To calculate the unpaid claim liabilities that fall under the General Model within the IFRS

17 framework, in this section we describe the definition, specific characteristics and other

considerations for the risk adjustment for non-financial risks. There exist non-financial

risks that can arise from insurance contracts that all insurance entities share but there

are risks that are entity specific. The shared non-financial risks are, as mentioned in IAA

(2018),

• Model risks: in practice, the true model of the unpaid claim amounts is unknown,

thus, the difference between the true model and the model used to estimate the

FCF is known as model risk. Additionally, we rely on limited variables to predict

the unpaid claim amounts, augmenting the model risk.

• Parameter risk: given that only a sample of the phenomena is observed, the es-

timation of the parameters of the model could be biased or differ from the true

parameters

• Process risk: assuming the model and parameters are correctly specified, the random

nature of the phenomena can lead to a difference between the observed and estimated

FCF.

Examples of entity specific non-financial risks for life insurance include mortality risk,

lapse risk, etc. In this thesis, since we deal with automobile insurance (P&C), the en-

tity specific non-financial risks considered are frequency and severity risks. Frequency

and severity risks are the uncertainty associated to the number of claims and their cost,

respectively.
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1.1.2.1 Definition

As stated in paragraph 37 of IASB (2017b), for the definition of a risk adjustment for non-

financial risks, “An entity shall adjust the estimate of the present value of the future cash

flows to reflect the compensation that the entity requires for bearing the uncertainty about

the amount and timing of the cash flows that arises from non-financial risk.” Thus, the

actuary shall exclude incorporating into the calculation of the risk adjustment financial

risks and risks that do not arise from insurance contracts. Examples of the aforementioned

risks are, but are not limited to, investment risk, credit risk, operational risk, interest rate

risk and underwriting risk which are included in other sections of the financial reports.

The risk adjustment can be understood as the price assigned by the insurer for bearing the

non-financial risks associated with the portfolio of insurance contracts, more specifically,

the risks that arise from unfavorable outcomes on a long-term horizon. This assigned

price has to meet the objective and characteristics described in the following Sections

1.1.2.3 and 1.1.2.4.

1.1.2.2 Example

From paragraph B87 of IASB (2017b), “The risk adjustment for non-financial risk for

insurance contracts measures the compensation that the entity would require to make the

entity indifferent between:

• Fulfilling a liability that has a range of possible outcomes arising from non-financial

risk; and

• Fulfilling a liability that will generate fixed cash flows with the same expected present

value as the insurance contracts.”

To improve the understanding of the indifference principle, we present a simplifying exam-

ple. We use a time value of money diagram in Figure 1.1, where we consider the following

simplifying assumptions: an annual interest rate of 5%, the range of outcomes arising

from the non-financial risks in the portfolio of insurance contracts, which are equiproba-
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ble over a 3 year period, the insurer has no profit nor any other expense and we assume

equal fixed cash flows.

Scenario 1

2020 2021 20222019

{100, 110} {40, 50} {10, 20}

Expected Present Value = 153.77

Scenario 2

2020 2021 20222019

56.47 56.47 56.47

153.77

Figure 1.1: Comparison of scenarios using a time value of money diagram.

In Figure 1.1, we can observe in Scenario 1 a liability with a range of outcomes arising

from non-financial risk and in Scenario 2, using the same expected present value from the

insurance contracts in Scenario 1, a liability that will generate fixed cash flows. Therefore,

the risk adjustment is the price in excess of the 153.77 currency units that accounts for

the uncertainty in Scenario 1 and thus, causing the insurer to be indifferent from selecting

either of the scenarios.

1.1.2.3 Objective

“The objective of a risk adjustment is to provide a quantitative assessment of risk based on

the entity’s risk preferences” IAA (2018). To meet the objective, the following elements

mentioned in IAA (2018) can be considered in developing the adjustment:

• Risk preferences,

• Key drivers of risk,
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• The complexity of the probability or stochastic models,

• The ability to explain and quantify the risk adjustments in the context of financial

statements.

1.1.2.4 Characteristics

The risk adjustment is a point estimate, not a range, and is stated in the same mone-

tary terms as the other monetary values in the entity’s financial statement IAA (2018).

Paragraph B88 of IASB (2017b) states that the risk adjustment for non-financial risk also

reflects:

• “The degree of diversification benefit the entity includes when determining the com-

pensation it requires for bearing that risk,

• Both favorable and unfavorable outcomes, in a way that reflects the entity’s degree

of risk aversion.”

In paragraph B91 of IASB (2017b), it is stated that the estimation technique(s) used to

determine the risk adjustment for non-financial risks are not specified. However, the risk

adjustment should comply with the following characteristics:

Risks with respectively,

• Low frequency and high severity,

• Longer duration,

• Higher variance,

• Higher parameter uncertainty,

will result in a higher risk adjustment for non-financial risks than risks with respectively

high frequency and low severity, shorter duration, lower variance and lower parameter

uncertainty. Additionally:

• New information reducing (increasing) uncertainty about the amount and/or timing
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of cash flows, will decrease (increase) the value of the risk adjustments for non-

financial risks.

1.1.2.5 Disclosure

Once the risk adjustment for non-financial risks has been calculated with the appropriate

technique(s) to reflect the entity’s view of compensation for bearing the uncertainty of

the insurance contracts considering the objective and characteristics presented in Sections

1.1.2.3 and 1.1.2.4, then, disclosure is required. More specifically, paragraph 119 of IASB

(2017b) states that if the insurer uses a technique different from the Value-at-Risk4,

commonly abbreviated as VaR (see Chapter 4 for definition) for determining the risk

adjustment for non-financial risks, then, the insurer has to show the technique(s) used

and disclose the corresponding level of confidence associated to the result obtained through

the corresponding technique. For example, if the risk adjustment is set to X using the

cost of capital method (described in Chapter 4) then the actuary has to disclose that X

is equivalent to the VaR at a α% confidence level.

1.1.2.6 Contrasts with Standards of Practice

The current accepted actuarial practice framework in Canada is established in a document

called Standards of Practice ASB (2018) from the Actuarial Standards Board, established

by the Canadian Institute of Actuaries (CIA). The Standards of Practice has a concept

called Provision for Adverse Deviations (commonly known as PfAD) which measures

the effect of uncertainty of the assumptions and data in determining the liability. The

method to calculate PfAD can also be used to determine the risk adjustment but only

if all the proper precautions are taking into account since both have different purposes.

The following examples accompanied by a list that summarizes the contrasts between the

PfAD and the risk adjustment will help understanding the important differences between

the two concepts.

4In IFRS 17, the Value-at-Risk is referred to as the confidence level technique.
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• Example A. Under IFRS 17, an insurer with a risk aversion policy has set the risk

adjustment for non-financial risks to $10 million using the cost of capital method

(described in Chapter 4),

• Example B. Following the Standards of Practice, the appointed actuary of an insurer

might expect the interest rate to be 5% but assumed for the calculations a 4%

interest rate. This difference in the interest rate could value the liabilities in $110

million and $100 million, respectively. Thus, the provision for adverse deviations is

the difference of $10 million.

Even though the monetary value of the PfAD and the risk adjustment in Example A and

B are exactly the same, we compare and summarize their differences with the following

list:

• Objective: While the PfAD is a provision to account for uncertainty in the assump-

tions of the liability estimation, the risk adjustment is meant to reflect the entity’s

view of compensation for risk. In Example A, the risk preferences of the insurer

were taken into consideration. Another insurer with the same group of insurance

contracts could have set a higher risk adjustment to reflect the entity’s view for the

compensation for bearing the uncertainty,

• Scope: The risk adjustment only accounts for uncertainty arising from the insurance

contracts, contrary to the PfAD, which in Example B, clearly also accounts for

uncertainty in financial risks,

• Responsible: Under the Standards of Practice, the entity responsible for the PfAD

is the appointed actuary whereas IFRS 17 intends to involve management since the

definition of the risk adjustment is associated with the entity’s view of compensation

for bearing the uncertainty,

• Method: as stated in Section 1.1.2.4, the technique(s) to calculate the risk adjust-

ment for non-financial risks are not specified under IFRS 17. Under the Standards

of Practice the PfAD is the difference obtained from using more conservative as-
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sumptions to protect the insurer for adverse deviations (hence, the name PfAD),

• Diversification Benefit: Under IFRS 17, the level of aggregation depends solely on

the insurer’s view of diversification within an insurance portfolio. In other words,

when considering similar risks, the level of aggregation to calculate the diversifi-

cation benefit can be done at a line of business level (low level) or across entities

among the same group (highest level). Under the Standards of Practice no ex-

plicit consideration was given until 2017 where in section 2120, paragraph 07 was

added. This paragraph states, “The provision resulting from the application of all

margins for adverse deviations5, in addition to increasing the net liability, should be

appropriate in the aggregate.” Thus, even if in practice it is considered (not often

considered according to CIA (2018)), the diversification benefit would also involve

financial risks, contrary to the IFRS 17 specifications.

• Disclosure: A entirely new requirement under IFRS 17 is to disclose the confidence

level equivalent to the VaR technique (as described in Section 1.1.2.5).

1.2 Capital allocation - OSFI

The previous Section 1.1 deals with financial reporting for insurance contracts, which is

managed by IFRS and applies to all IFRS jurisdictions. In this section, the regulatory

principles set by OSFI are described and thus, the information presented is specifically

for Canadian federally regulated insurers. These principles have the goal of ensuring an

insurance entity maintains adequate capital levels in order to always be able to pay their

liabilities to policyholders and creditors. The document Guideline A: Minimum Capital

Test (MCT) OSFI (2018b) provides the framework within which OSFI assesses whether a

P&C insurer maintains an adequate level of capital. The capital allocated with IFRS 17

needs to be compared with the capital levels set by OSFI since the latter is the minimum

amount permitted by an insurance company in Canada.

5The margin for adverse deviations (MfAD) is the PfAD in a relative percentage term.
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OSFI sets a minimum amount of capital that needs to be available at all times to address

and support insurance risks called minimum capital which works as an indicator for the

regulator. If the insurer capital falls below this threshold, the continuity of the entity

becomes questionable. To alert OSFI before the occurrence of this event, there exists a

supervisory target capital providing a margin of 50% above the minimum capital. The

target capital requirements has been set by OSFI in OSFI (2018b) to be the conditional

tail expectation at a 99% level for insurance risk, over a period of one year or alternatively,

if deemed not practical by an expert, the VaR at 99.5% confidence level (see Chapter 4

for a description of such risk measures). Thus, due to the 50% margin mentioned, the

minimum capital becomes the target capital divided by 1.5.

The target capital requirement (TCR) is calculated as

TCR =
Insurance

+
Market

+
Credit

+
Operational

−
Diversification

risk risk risk risk credit

In this thesis, we focus on the capital required for insurance risk, which corresponds to

the risk that arises purely from the insurance contracts. Insurance risk breaks down as

the following four components:

• Capital required for unpaid claims liabilities (or LIC),

• Capital required for premium liabilities (or LRC),

• Margin required for reinsurance ceded to unregistered reinsurers,

• Catastrophe reserves.

Unpaid claims according to OSFI have to be calculated by line of business. An insurer

should not rely only on these regulatory capital measures but should conduct its Own

Risk and Solvency Assessment (ORSA) OSFI (2018c) and, based on the entity’s risk

composition, determine its particular capital requirements and establish Internal Capital

Targets OSFI (2018d).
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1.3 Justification of the copula model

In order to obtain the diversification benefit related to the aggregation and pooling of risks,

it is necessary to apply appropriate statistical techniques. In the specific case of P&C,

naturally offsetting product lines may not exist, contrary to products in life insurance

that compensate with payout annuities where the insurer pays if the policyholder survives,

and thus, mortality is offset by longevity as stated in IAA (2018). Therefore, in P&C,

diversification benefits are available by aggregating types of commercial and personal

products, through geographical dispersion of risk dependent on legislation Burgi et al.

(2008) or by dependence strength measured with a distance-based method Côté et al.

(2016).

IFRS 17 allows an entity to set the risk adjustment at a level of aggregation that rep-

resents the compensation the entity requires for bearing the uncertainty regarding the

liabilities. “For example, the risk adjustment might be set at the entity level, thus, incor-

porating all diversification benefits in the organization aggregated across its product lines”

as mentioned in IAA (2018). The use of this level of aggregation would produce a high

level of diversification of risk, therefore, a small risk adjustment amount.

In order to comply with IFRS 17 and set the appropriate reserve amount to protect the

policyholders under the requirements set by OSFI, we need a statistical model which can

capture the characteristics established in this chapter and provide the risk adjustment

for non-financial risks needed for the unpaid claim liabilities. An appropriate statistical

method of risk aggregation is the hierarchical copula model reviewed in Chapter 2.
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Chapter 2

Review of Actuarial and Statistical

Models

In order to calculate the risk adjustment for non-financial risks from IFRS 17, described in

Section 1.1 and to calculate the minimum capital required by OSFI to demonstrate finan-

cial strength towards the policyholder and creditors described in Section 1.2, this Chapter

describes common actuarial and statistical models which are of use in the construction of

the model presented in this thesis in Chapter 3. First, we introduce the notation. Then, in

Section 2.2 the marginal distributions considered for each line of business are described.

In Section 2.3, the multivariate model which accounts for the diversification benefit is

presented, and finally, in Section 2.4, the simulation technique for the estimation of the

unpaid claim liabilities is described.

2.1 Notation

Claims can be presented graphically in an upper triangle array as in Table 2.1, commonly

known as a run-off triangle. This presentation can be done in two different ways, with

cumulative claims Ci,j or incremental claims Ci,j − Ci,j−1, where Ci,0 = 0; the latter

is preferred in this thesis. Incremental claims are arranged in Table 2.1, where i =
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{1, 2, . . . , I} represents the accident year, j = {1, 2, . . . , J} the development lag, and I, J

represent the last year of available information (data can also be measured by semester,

quarterly or monthly). The development lag is the number of years between the occurrence

of the accident and the date in which the final payment is made (closure of case).

To standardize claims and have comparable data, either premiums or volume (number

of claims) are used for each line of business, depending on available information. In this

thesis, the premiums are used to create what is known as a loss ratio. We denote the

loss ratio for accident year i, development lag j and for line of business k as Y
(k)
i,j and the

premiums of accident year i with p
(k)
i :

Y
(k)
i,j =

C
(k)
i,j − C

(k)
i,j−1

p
(k)
i

. (2.1.1)

The superscript k = {1, 2, . . . , K} denotes the line of business, where K is the total

number of business lines available.

i\j 1 2 · · · j · · · · · · · · · J

1

2

...

i Y
(k)
i,j

...

...

...

I

Table 2.1: General notation for a run-off triangle with loss ratios for the k-th line of

business.

Note that after each year that goes by, one diagonal is added to the loss triangle. Fur-

thermore, in this thesis there is no explicit correction for inflation; it is assumed to be

captured within the development lag factors.
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2.2 Marginal distributions

2.2.1 Collective Risk Model

A common practice in the insurance industry is to use the collective risk model which

provides a way to understand the aggregate loss as the sum of the individual claims.

Following the notation from Klugman et al. (2008), let S be the random variable which

represents the aggregate loss of a random number of claims N , of independent and iden-

tically distributed random variables Xi, i = 1, 2, . . . , n. In the insurance industry, N is

known as the frequency component and Xi as the severity (risks also described in Section

1.1.2). Then, S has the following additive representation,

S =

0 N = 0,

X1 +X2 + . . .+XN N > 0

(2.2.1)

The collective risk model has the following independence assumption:

• Conditionally on N = n, N and the i.i.d. sequence Xi, i = 1, 2, . . . , n are indepen-

dent.

N has to be a discrete count random variable and in the insurance context X follows a

positive continuous random variable. In this thesis, a Poisson distribution is assumed for

the count random variable and a gamma distribution for the severity.

2.2.2 Compound Poisson-Gamma distribution

The following definitions are useful in the construction of the objective distribution S.

Definition 2.2.1. Let X be a positive continuous random variable with probability density

function,

fX(x) =
βαxα−1

Γ(α)
e−xβ, (2.2.2)
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where α, β > 0. Then, X is said to follow a gamma distribution with shape parameter α

and rate parameter β and it is denoted X ∼ Gamma(α, β). A gamma distribution has

moment generating function (m.g.f.) MX(t) =
(

1− t
β

)−α
, for t < β.

Definition 2.2.2. Let N be a discrete random variable with support on the set of non-

negative integers N ∪ {0} and probability mass function,

PN(n) =
e−λλn

n!
, (2.2.3)

where λ > 0. Then, N is said to follow a Poisson distribution with parameter λ and it is

denoted N ∼ Poisson(λ). The moment generating function of a Poisson distribution is

MN(t) = exp(λ(et − 1)), for any t ∈ R.

Theorem 2.2.1. (Klugman et al., 2008) Let S represent the aggregate loss from the

collective risk model as presented in Section 2.2.1, with frequency N ∼ Poisson(λ) and

severity X ∼ Gamma(α, β), then the moment generating function of S is,

MS(t) = exp

(
λ

[(
1− t

β

)−α
− 1

])
, t < β. (2.2.4)

Proof.

MS(t) = E[eSt] = E[E[eSt|N ]] = E[E[e(X1+X2+...XN )t|N ]]

i.i.d.
= E[E[eXit|N ]N ] = E[MN

X ] = E[eN log(MX(t))]

= MN(log(MX(t)))

= exp

(
λ

[(
1− t

β

)−α
− 1

])
.

Definition 2.2.3. A distribution S with m.g.f. of the form (2.2.4) is known as a Com-

pound Poisson-Gamma distribution, denoted as S ∼ CPG(λ, α, β).

19



2.2.3 Generalized Linear Models (GLM)

With the construction of our objective distribution S in Section 2.2.2 arises the need for

a methodology to link the expected aggregate claim amounts with explanatory variables.

Generalized linear modeling was introduced by McCullagh (1984), allowing to focus on

the effects of explanatory variables, and generalizing the classical normal linear model by

relaxing some of its restrictive assumptions. The GLM framework imposes for a random

variable Yi, fixed covariates Xi ∈ Rp and for observations i = {1, 2, . . . , n}, that

g(E[Yi|Xi]) = β0 +

p∑
j=1

Xi,jβj = XT
i β, (2.2.5)

where g is a function called the link function, which defines the relationship between

the linear predictors and the mean, and β is the vector of parameters that we want to

estimate. If g is the identity function, we have a classic linear model. To simplify the

notation of equation (2.2.5), the relationship is usually denoted by,

g(µi) = ηi, (2.2.6)

where µi is the conditional expected value of the response variable for observation i and

ηi = XT
i β is the additive relation of parameters and covariates.

GLMs rely on the following assumptions:

• Y1, Y2, . . . , Yn are conditionally independent given X1,X2, . . . ,Xn,

• g must be monotonic and differentiable,

• Given the covariates Xi, the Yi are all distributed from the same member of the

exponential family.

Definition 2.2.4. Let Y be a random variable that belongs to the exponential family, then

Y has probability density function of the form,

fY (y; θ, φ) = exp

yθ − b(θ)
a(θ)

+ c(y;φ)

 , (2.2.7)
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with canonical parameter θ, dispersion parameter φ and some specific functions a(·), b(·)

and c(·). Furthermore, b(·) has to be twice differentiable and the random variable Y

satisfies,

E[Y ] = b′(θ), (2.2.8)

Var[Y ] = b′′(θ)a(θ). (2.2.9)

If the dispersion parameter φ is known, then (2.2.7) is referred to as a one-parameter

exponential family. If φ is unknown, then, the distribution is part of the two-parameter

exponential family or exponential dispersion family defined in the following section.

For the selection of the link function g, it is a common practice in actuarial applications

to use the log link because every covariate enters in the mean equation through a mul-

tiplicative structure which allows to provide a simple interpretation of the parameters.

Another convenient option is the canonical link function since it establishes a direct con-

nection between the canonical parameter of the exponential family and the covariates, i.e.

θi = XT
i β. But in some cases like the Gamma distribution, it allows the mean to vary on

the real numbers and thus, to enforce positive means the log link is used in this thesis.

2.2.4 Exponential Dispersion Family (EDF)

GLMs defined in 2.2.3 were originally developed for the exponential family. Then, Jørgensen

(1997) introduced the exponential dispersion family by analyzing the error distribution

of the GLMs. To draw a comparison between the exponential family and the exponen-

tial dispersion family, we rewrite a random variable Y from the exponential family with

density function as in equation (2.2.7), in its canonical parametrization:

fY (y; θ) = c(y) exp (yθ − κ(θ)) , (2.2.10)

where θ remains the canonical parameter and κ(·) is the cumulant generator. Equation

(2.2.10) lacks the parameter φ in contrast with equation (2.2.7) because for the usual
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members of the exponential family (e.g. Normal, Poisson, Gamma and Binomial distri-

bution), the dispersion parameter φ is assumed to be known. The definition for the EDF

is as follows.

Definition 2.2.5. The distribution of a random variable Y is part of the exponential

dispersion family if it has probability function of the form

fY (y; θ, φ) = c(y, φ) exp
(
φ−1(yθ − κ(θ))

)
, (2.2.11)

where c(·, ·) and κ(·) are given functions, θ ∈ R is the canonical parameter and φ > 0 is

the dispersion parameter. κ(·) is known as the cumulant function and is assumed to be

twice differentiable.

Comparing the density function of the canonical parametrization of the exponential family

(2.2.10) with the density function of the exponential dispersion family (2.2.11), we can

deduce the latter is a generalization since they are equal up to an additional parameter,

the dispersion parameter φ. The intention of the dispersion parameter, as interpreted by

Madsen and Thyregod (2010), is to separate the mean from dispersion features like the

sample size or common over-dispersion effects not related to the mean. Thus, it is a perfect

fit for insurance claims because an assumption of the collective risk model (described in

2.2.1) is that conditionally on the number of claims, the frequency and the severity are

independent.

The moment generating function of a random variable of the form (2.2.11) is

MY (t) = exp

(
κ(θ + tφ)− κ(θ)

φ

)
. (2.2.12)

Following the notation from the original author Jørgensen (1987), any random variable

Y member of the EDF can be parametrized in terms of the location µ and dispersion φ

denoted as Y ∼ ED(µ, φ). The random variable Y has first moment E[Y ] = µ = κ′(θ)

and variance Var[Y ] = φV (µ), where V (µ) = κ′′(θ) as presented in Jørgensen (1987).

The function V (µ) is known as the variance function and captures the mean-variance

relationship of the data as it is explicitly seen for the Tweedie family in Section 2.2.4.1.
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Another generalized concept is the residual sum of squares from the analysis of variance,

for a member of the exponential dispersion family, it is called analysis of deviance and is

equivalent to sums of unit deviances Jørgensen (1997).

Definition 2.2.6. A function d : Ω→ R is called a unit deviance if it satisfies

d(y; y) = 0 ∀y ∈ Ω

and

d(y;µ) > 0 ∀y 6= µ.

where Ω is the domain of the parameter µ.

The unit deviance d can be understood as a measure of the distance from y to the mean µ.

Therefore, to analyze the dispersion features, it is necessary to calculate the unit deviances

from the estimated mean. Additionally, with the unit deviance a random variable Y from

the exponential dispersion family can be reparametrized in the standard form,

fY (y; θ, φ) = c(y, φ) exp
(
φ−1d(y;µ)

)
. (2.2.13)

Once the mean and dispersion have been estimated for different lines of business, in

this thesis, the following theorem is essential to homogenize and study the dependence

structure.

Theorem 2.2.2. If Y ∼ ED(µ, φ) for some µ ∈ R, we have

Y − µ√
φV (µ)

d−→ N(0, 1) as φ→ 0. (2.2.14)

Proof. Refer to Jørgensen (1997).

Theorem 2.2.2 shows that any member of the EDF is asymptotically normal for a small

dispersion parameter φ.
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2.2.4.1 Tweedie family

The Tweedie family, in honor of Tweedie (1984), is a member of the EDF where the

variance function is of the form,

V (µ) = µp, (2.2.15)

for some index p ∈ (−∞, 0]∪ [1,∞)1. A random variable of the Tweedie family is denoted

Y ∼ TWp(µ, φ).

Index Distribution

p = 0 Normal

p = 1 Poisson

p ∈ (1, 2) Compound Poisson-Gamma

p = 2 Gamma

p = 3 Inverse Gaussian

Table 2.2: Some cases of the Tweedie family depending on the index parameter p.

Table 2.2 shows how some very well known distributions are part of the Tweedie family.

We pay special interest to the case where p ∈ (1, 2). For p = 1, we have a Poisson

distribution, which is discrete, and for p = 2 we have a continuous Gamma distribution.

When p ∈ (1, 2) the distribution is mixed, continuous for positive values with a point of

mass at zero, and as p→ 2, the distribution starts losing the point of mass. This mixed

domain makes it very relevant for actuarial analysis, given that for certain years, specially

several years after the accident year, the claims converge to zero as the development lag

increases, and in some cases, is exactly zero.

To obtain the probability density function and the moment generating function of a

1The case p ∈ (0, 1) has been shown by Jørgensen (1997) to have null variance for some cases of the

canonical parameter making it a degenerate distribution and thus, concluding there are no members of

the Tweedie family for these values of p.
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Tweedie distribution, we use the property of the EDF where V (µ) = κ′′(θ) and the

procedure described by Dunn and Smyth (2004). Thus, the canonical parameter θ is

obtained by integrating the following differential equation and setting the constant equal

to zero.

µp = κ′′(θ) =
∂µ

∂θ∫
1

µp
dµ =

∫
∂θ

∂µ

⇒ θ =


µ1−p

1− p
p 6= 1,

log µ p = 1.

(2.2.16)

And the cumulant function κp(θ) (with subscript p to denote the functional dependence

on the index) is obtained by integrating κ′p(θ) = µ with respect to θ:

κp(θ) =


1

2−p((1− p)θ)
2−p
1−p p 6= {1, 2},

eθ p = 1,

− log(−θ) p = 2.

(2.2.17)

Thus, to obtain the connection between the Tweedie family (member of the EDF) with

a CPG distribution, we substitute the canonical parameter (2.2.16) and the cumulant

function (2.2.17) (when p 6= {1, 2}) into the moment generating function of Y ∼ ED(µ, φ)

shown in equation (2.2.12),

MY (t) = exp

(
1

φ

[
1

2− p

(
(µ1−p + (1− p)φt)

2−p
1−p − µ2−p

)])
. (2.2.18)

Then, Quijano Xacur (2011) proved the existence of Tweedie families for p ∈ (1, 2) and

shows that they are equivalent to a CPG(λ, α, β) distribution with the following trans-

formations,

λ =
1

φ

µ2−p

2− p
, α = −2− p

1− p
, β = −1

φ

µ1−p

1− p
. (2.2.19)
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Then, the moment generating function (2.2.18) becomes:

MY (t) = exp

 (µ1−p + (1− p)φt)−α

φ(2− p)
− λ


= exp

(
λ

[(
1− t

β

)−α
− 1

])
. (2.2.20)

Finally, we have showed the connection between the CPG distribution and the Tweedie

family with p ∈ (1, 2) through the moment generating function by showing that (2.2.12)

is equal to (2.2.20), provided the appropriate transformations (2.2.19) are used.

Another important result with actuarial applications from Jørgensen (1997) is the scale

invariance of the Tweedie family,

Theorem 2.2.3. Let Y ∼ TWp(µ, φ), then

cY ∼ TWp(cµ, c
2−pφ). (2.2.21)

Proof. Refer to Jørgensen (1997).

Theorem 2.2.3 is fundamental to homogenize the data and sample from the Tweedie

family as done in Section 2.4.1 when the dispersion parameter φ is assumed constant

across observations. In this thesis, a GLM is used to estimate the dispersion parameter

and therefore, another approach is taken.

Definition 2.2.7. The probability density function of a Tweedie random variable Y ∼

TWp(µ, φ) is of the form,

fY (y;µ, φ, p) = a(y;φ, p) exp

1

φ

y µ1−p

1− p
−
µ2−p

2− p

 (2.2.22)

where a(y;φ, p) =
∞∑
r=1

 φp−1y`

(2− p)(p− 1)`

r 1

r!Γ(r`)y
, ` = −2−p

1−p .

Thus, the point of mass at zero has probability given by,

fY (0;µ, φ, p) = exp

− µ2−p

φ(2− p)

 .
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2.2.5 Double Generalized Linear Models (DGLM)

We have introduced GLMs in Section 2.2.3 to link the expected insurance claims with

explanatory variables. Then, by analyzing the error distribution of the GLMs Jørgensen

(1997) introduced the EDF, as described in Section 2.2.4. The EDF led us to the Tweedie

family in Section 2.2.4.1 as a link with the CPG distribution under the appropriate trans-

formations. In this section, to account for the dispersion features we study DGLMs.

These double generalized linear models allow the mean and the dispersion to be modeled

simultaneously using GLMs. DGLM handles the case where only the aggregate claims is

available but the number of claims has not been recorded or is unreliable, see Smyth and

Jørgensen (2002). Furthermore, DGLM is a more flexible model since we add a new set of

parameters to be estimated for the dispersion and thus, should be used carefully to avoid

overfitting. Research in actuarial science like Smyth and Jørgensen (2002); Boucher and

Davidov (2011), and more recently Andersen and Bonat (2017); Smolárová (2017) have

highlighted the importance of modeling the mean and dispersion structures for claims

reserving.

Introduced by Smyth (1989), the simultaneous estimation for the mean and dispersion for

a Tweedie distribution is possible due to the statistical orthogonality of the parameters φ

and p to µ, as explained in what follows.

Definition 2.2.8. The parameter orthogonality introduced by Cox and Reid (1987), states

that if we partition the parameter vector of interest θ = (µ, φ, p) into θ1 = µ and θ2 =

(φ, p), and the information matrix of the corresponding log-likelihood L satisfies,

E

− ∂2L
∂θ1∂θ2

;θ

 = 0, (2.2.23)

then, θ1 and θ2 are said to be locally orthogonal.

Equation (2.2.23) implies mainly that the maximum likelihood estimates of θ1 and θ2 are

asymptotically independent. Refer to Cox and Reid (1987) for further implications.
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2.2.5.1 Estimation of DGLM

In this section, we explain the estimation procedure used to obtain the parameters of the

mean model and the dispersion submodel for independent observations from a Tweedie

distribution through a DGLM. The algorithm procedure described in what follows serves

as a building block for algorithms in the presence of correlation between observations

as illustrated in subsequent sections. The procedure consists in an alternating scheme

presented in Smyth (1989) where the dispersion is assumed to be known when estimating

the mean and then, the mean is assumed to be known when estimating the dispersion.

The alternation is possible due to the parameter orthogonality (Definition 2.2.8) of the

parameter vector. The estimation of the index parameter p, the power of the variance

function for a member of the Tweedie family, is a more difficult problem than estimating

φ or µ. Most authors using Tweedie densities have taken p to be specified a priori as in

Dunn and Smyth (2004). In other words, p is fixed in the interval (1, 2) to guarantee the

existence of the connection with the CPG distribution, and then, the process to obtain

the maximum likelihood estimates of µ and φ begins. The process is repeated with several

values of the index p until the likelihood function is maximized within a given threshold.

This procedure to estimate µ and φ is explained in what follows.

For observations y = {y1, y2, . . . , yn}, from the random variable Yi|Xi ∼ TWp(µi, φi) we

assume a DGLM with the following equations:

g(µi) = XT
i β, g(φi) = ZT

i γ, (2.2.24)

where X,Z are the matrix of fixed covariates for the mean and dispersion submodel, re-

spectively. The same log-link function g(x) = log(x) is used for both GLMs (reasons ex-

plained in Section 2.2.3) and β,γ are the parameter vectors we wish to estimate. Further-

more, to simplify notation we denote the vector of mean parameters as µ = {µ1, . . . , µn}

and the vector of dispersion parameters as φ = {φ1, . . . , φn}. Initially, we assume the dis-

persion parameters φ are known and using maximum likelihood we estimate the vector
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β. We denote the log-likelihood function as,

L(β|y,γ, p) =

n∑
i=1

log fY (yi;µi, φi, p). (2.2.25)

We proceed to establish a recursive algorithm to estimate β as presented in Hardin and

Hilbe (2013). The estimates of the parameter vector β are the solution of the estimating

equation given by,

∂L
∂β

= 0. (2.2.26)

The solution denoted as β∗ can be obtained by a Taylor series expansion,

∂L
∂β

(β∗)− (β − β∗)
∂2L

∂β∂βT
+ . . . = 0, (2.2.27)

by solving for β∗ and substituting the expected value of the Hessian matrix given by,

− E

 ∂2L

∂β∂βT

 = XTWX. (2.2.28)

Results in the weighted ordinary least squares equation for iteration k + 1,

β(k+1) = (XTWX)−1XTWz, (2.2.29)

where W is the diagonal matrix of weights. To introduce W , we first denote diag(wi) as

the notation to represent a diagonal matrix whose entries are the elements {w1, . . . , wn}.

Consequently, the weights to estimate the parameters of the mean model are,

W = diag


∂g(µi)

∂µ

−2 1

Var(yi)

 = diag

(
µ2−p
i

φi

)
, (2.2.30)

where Var(yi) = φiV (µi), µi = g−1(XT
i β

(k)) and the right side equation is obtained

through the log-link function and the Tweedie distributional assumption with variance

function of the form (2.2.15). The vector z from equation (2.2.29) has components,

zi =
∂g(µi)

∂µ
(yi − µi) + g(µi) =

yi − µi
µi

+ log µi. (2.2.31)
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After estimating the parameters of the mean model β, we proceed to estimate the pa-

rameters of the dispersion submodel γ. As stated in Section 2.2.4, from the theory of

dispersion models by Jørgensen (1997), the unit deviance is the equivalent of the sum of

squares in analysis of variance. The unit deviance 2.2.6 for the Tweedie family is given

by,

di(yi;µi) =


2

yiy1−pi − µ1−p
i

1− p
−
y2−pi − µ2−p

i

2− p

 yi 6= 0,

2
µ2−p
i

2− p
yi = 0.

(2.2.32)

By assuming the mean parameters β are fixed, Smyth (1989) showed that the log-

likelihood given in equation (2.2.25) can be reparametrized in terms of the unit deviance,

as done with equation (2.2.13) to obtain the standard form, causing the dispersion sub-

model to have the form of a GLM with observations di, canonical parameter φi and

dispersion parameter 2. Thus, analogous to the mean model with observations yi and

canonical parameter µi, we use the unit deviance as the response vector of the dispersion

submodel.

Furthermore, Smyth and Verbyla (1999) showed that di ∼ φiχ
2
1 approximately as φi → 0

with the saddlepoint approximation (refer to Jørgensen (1997) for more on the saddle-

point approximation). Assuming a gamma distribution instead of a chi-square simplifies

the procedure for the weight matrix of the dispersion submodel as shown in what fol-

lows. This assumption is possible given that the χ2
1 distribution is a special case of the

gamma distribution (2.2.1), therefore, a gamma GLM is fitted for the dispersion sub-

model. Maximum likelihood estimators for variance parameters in regression models are

generally biased, thus, a restricted maximum likelihood (REML) approach is used as in

Smyth and Verbyla (1999) to adjust for degrees of freedom and produce estimators that

are approximately unbiased.

Consequently, the unit deviances (2.2.32) are calculated and the parameters for the dis-

persion submodel γ are obtained by using the same technique as for the mean model:

Taylor series expansion for L(γ|y,β, p), substitute expected value of Hessian matrix and
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thus, for iteration k + 1 the weighted ordinary least squares equation for the dispersion

submodel is,

γ(k+1) = (ZTWdZ)−1ZTWdzd, (2.2.33)

where Wd is the matrix of weights for the dispersion submodel using the same notation

as Smyth and Jørgensen (2002). The matrix Wd is given by,

Wd = diag


∂g(φi)

∂µ

−2 1

2V (φi)

 . (2.2.34)

Since we are fitting a gamma GLM, member of the Tweedie family with p = 2 (refer to

Table 2.2), the variance function becomes V (φi) = φ2
i . Thus, the weight matrix (2.2.34)

simplifies to a diagonal matrix with entries 1
2
. Furthermore in equation (2.2.33), the vector

zd has the same structure as equation (2.2.31) but with response di. A REML approach

is used as Smyth and Jørgensen (2002) to correct for the bias of the maximum likelihood

estimators for the variance parameter as mentioned in Section 2.2.5. The dispersion

submodel is modified with,

γ(k+1) = (ZTW ∗
dZ)−1ZTW ∗

d z
∗
d, (2.2.35)

where

W ∗
d = diag

1− hi
2

 , z∗d =
d∗i − φi
φi

+ log φi. (2.2.36)

The modified responses are d∗i =
di

1− hi
and hi are the diagonal elements of the projection

matrix H, known as leverages from the mean model. The projection matrix H is given

by,

H = diag(hi) = W 1/2X(XTWX)−1XTW 1/2. (2.2.37)

This REML approach is possible because of the extension made by Cox and Reid (1987)

and the simplifications on the convergence algorithm provided by Lee and Nelder (1998).
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2.2.5.2 DGLM estimation algorithm

To summarize, the estimation algorithm for the DGLM is as follows:

1. Set initial values µ
(0)
i = yi, φ

(0)
i = 1,

2. For iteration k, obtain β(k) with the equation (2.2.29),

3. Calculate the unit deviances di with equation (2.2.32),

4. Obtain γ(k) with equation adjusted for the dispersion submodel (2.2.35) using the

REML approach,

5. Calculate the maximum likelihood L(y, p,µ(k),φ(k)) with the estimated parameters,

6. Set k = k + 1 and repeat steps 2-5 until convergence.

2.2.6 Goodness-of-fit

The goal is to determine a model that is good enough for the marginal distributions to

continue with the modeling procedure. We have to remember that “All models are wrong,

but some models are useful.”2

A model deemed good enough in this thesis is defined as a marginal model which will not

reject the null hypothesis H0: the data came from a population with the stated model.

This is done through the Kolmogorov-Smirnov and Anderson-Darling tests to assess the

fit on the center and tails of the distribution, respectively. The tests are defined as follows,

2.2.6.1 Kolmogorov-Smirnov (K-S)

For a random variable X and independent observations {x1, . . . , xn} from X, let Fn(x) =

1
n

n∑
i=1

1(xi ≤ x) be the empirical cumulative distribution function, where 1(A) denotes

the indicator function which is set to 1 if A occurs and zero otherwise. Additionally, let

2Usually attributed to George Box.
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F (x) be the model cumulative distribution function. Then, the statistic of the K-S test

is calculated as,

D = sup
x
|Fn(x)− F (x)| . (2.2.38)

The model distribution function F (x) is assumed to be continuous over the relevant range

Klugman et al. (2008).

2.2.6.2 Anderson-Darling (A-D)

The test is similar to the Kolmogorov-Smirnov test but it uses a different measure of the

distance between the two cumulative distribution functions. The test statistic is

A2 = n

∫ 1

0

(Fn(x)− F (x))2

F (x)(1− F (x))
f(x)dx. (2.2.39)

The Anderson-Darling test assesses whether the estimated model has a good fit close to

the tails of the distribution. This can be seen in the denominator of the statistic; as F (x)

gets closer to 0 and 1, the quotient reaches its maximum value.

The combination of the Kolmogorov-Smirnov test in Section 2.2.6.1 and the Anderson-

Darling test in Section 2.2.6.2 ensures that the center and the tails of the fitted distribution

are being assessed statistically.

2.2.7 Generalized Estimating Equations (GEE)

An important inspection for a fitted GLM is a residual plot in order to verify the indepen-

dence assumption of the response variable given the fixed covariates as stated in the GLM

Section 2.2.3. For the loss ratio Yi,j and the vector of fixed covariates Xi,j, it is reasonable

to suspect dependence between Yi,j|Xi,j and the loss ratio of the next development lag

Yi,j+1|Xi,j+1. To address the issue when there is correlation between observations, GEE

suggest a way to estimate efficient parameters with the same concepts of a GLM model.

Thus, a two-stage estimation method is proposed in this section by first estimating the
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DGLM from Section 2.2.5 and then, to account for correlation, apply the estimation of

the GEE presented in what follows. An example of claims reserving with GEE is men-

tioned in Hudecová and Pešta (2013) and this problem applied to non-life insurance data

is mentioned in Smolárová (2017), but there are differences in this thesis regarding to

the correlation estimator presented in what follows and the estimator of φ given that we

consider a DGLM, compared to the moment estimator applied in Smolárová (2017).

GEE is a an ad hoc method which can make it unattractive for some researchers. There

are several research articles dealing with GLM models for non-life insurance, e.g. Shi

and Frees (2011) and Côté et al. (2016), where correlation is not an issue raised by the

authors. The usual application of GEE is in biostatistics, where the correlation is assumed

for each subject i between the different j measurements. The concepts are borrowed from

this field and adapted to our context to capture the correlation for every accident year

i between the different j development lags. The theory is also developed to account for

unbalanced data which is exactly the case for a loss triangle given that for every accident

year i, there is exactly one less development lag j due to the triangular nature of the data

as it can be seen in what follows. First, we introduce the linear correlation considered for

the generalized estimating equations.

Definition 2.2.9. For two square integrable random variables X and Y , Pearson’s cor-

relation is defined as,

ρ(X, Y ) =
E(XY )− E(X)E(Y )√

Var(X)Var(Y )
. (2.2.40)

The correlation parameter ρ is an additional parameter for the marginal distributions as

it is described in what follows. The loss ratios for accident year i = {1, 2, . . . , I} are

grouped in a vector to ease the notation as in Figure 2.1,

34



Figure 2.1: Vectorial notation of loss ratios for GEE.

Thus, from Figure 2.1, the random vector Yi = {Yi,1, . . . , Yi,ni} corresponds to the vector of

ni loss ratios with each component distributed Yi,j|Xi,j ∼ TWp(µi,j, φi,j) for accident year

i, development lag j and correlation parameter ρ which is explained in what follows. The

mean vector of Yi is µi = {µi,1, . . . , µi,ni} and has dispersion vector φi = {φi,1, . . . , φi,ni}.

The following results and notation are taken and adapted from Liang and Zeger (1986).

Let X,Z be the same matrices of fixed covariates for the mean model and dispersion

vector submodel, respectively, as in Section 2.2.5.1. The conditional variance matrix of

the random vector is denoted Vi = Var [Yi|Xi]. The following generalized estimating

equation obtained from Liang and Zeger (1986) corresponds to the weighted least squares

estimator, which ensures the estimator of β to remain consistent,

ni∑
i=1

DT
i V

−1
i (Yi − µi) = 0, (2.2.41)

where Di =
∂µi

∂β
is a matrix of derivatives with dimension (ni×q), β the parameter vector

of dimension q and variance matrix Vi = A
1/2
i Ri(ρ)A

1/2
i , where the matrix Ai is presented

in what follows. The variance matrix Vi of dimension (ni × ni) is key to capture the

correlation between observations. The diagonal matrix Ai is given by,

Ai =


φi,1V (µi,1) 0 . . . 0

0 φi,2V (µi,2) . . . 0
...

...
. . .

...

0 0 . . . φi,niV (µi,ni)


(ni×ni)

, (2.2.42)
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where the elements V represent the variance function of the Tweedie family with equation

(2.2.15). Furthermore, Ri(ρ) is the correlation matrix of the random vector Yi|Xi and

in this thesis, we assumed the correlation matrix Ri(ρ) to be functionally related to the

scalar ρ which can be easily extended to be a vector depending on the independence

assumptions. If the correlation matrix Ri(ρ) = Ini , where Ini is the identity matrix of

dimension (ni × ni), then independence is assumed and the model is equivalent to the

normal GLM estimation. Common correlation matrices can be found in Hardin and Hilbe

(2013) with their respective estimators. In this thesis, an autoregressive model of order

1 or AR(1), is used to minimize the number of estimated parameters while providing

a reasonable correlation matrix. An AR(1) assumes cor(Yi,j, Yi,j′ |Xi,j,Xi,j′) = ρ|j−j
′|.

Thus, the further apart the observations are in time, a smaller correlation is assumed.

The correlation matrix for claims in accident year i, has the form,

Ri(ρ) =



1 ρ ρ2 . . . ρni−1

ρ 1 ρ . . . ρni−2

ρ2 ρ 1 . . . ρni−3

...
...

...
. . .

...

ρni−1 ρni−2 ρni−3 . . . 1


(ni×ni)

(2.2.43)

The correlation matrix in (2.2.43) assumes independence across accident years but for

a given accident year, loss ratios are dependent between development lags. A parallel

can be drawn between the general estimating equation (2.2.41) introduced in this section

and the equation (2.2.29) used for the DGLM estimation. Instead of having a diagonal

matrix of weights W , we use the variance matrix Vi with non-zero off-diagonal entries in

the presence of correlation. Thus, to obtain the estimator of β for the GEE equation, we

follow the same procedure as in the DGLM Section 2.2.5 by using a Taylor expansion and

replacing the expected value of the Hessian matrix with the variance matrix presented in

this section. After fitting the DGLM with the algorithm in Section 2.2.5.1, we need to
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check for autocorrelation. Therefore, we calculate the residuals,

r̂i,j =
yi,j − µ̂i,j√
φ̂i,jµ̂

p
i,j

. (2.2.44)

Relying on the asymptotic convergence stated in Theorem 2.2.2, the residuals {r̂i,j}
d−→

N(0, 1) converge asymptotically in distribution to a standard normal random variable as

φ → 0. Since we are dealing with loss ratios (i.e. usually, numbers between 0 and 1)

it is reasonable to assume a dispersion parameter close to 0 as seen more explicitly with

the assumptions made for the model presented in Chapter 3. We calculate the residuals

in (2.2.44) to test if the independence assumption is valid. To test this we order the

residuals first by accident year and then by development lag, leading to the following

notation, where we denote the ordered set,

r̂ = {r̂1,1 . . . , r̂1,n1 , r̂2,1, . . . , r̂2,n2 , . . . , r̂I,nI} = {r̂1, r̂2, . . . , r̂N}, (2.2.45)

where N = (nI+1)·nI
2

is the total number of residuals. Then, proceed with a Ljung & Box

(L-B) test (for more technical details refer to Ljung and Box (1978)), with the following

test statistic,

Q(r̂) = N(N + 2)

H∑
i=1

ρ̂2(i)

N − i
, (2.2.46)

where H is the number of autocorrelation lags to be tested, which in this case, an AR(1)

is assumed, and ρ̂(i) is the sample autocorrelation function. If the null hypothesis,

H0 : The series is a square integrable strong white noise3 of the series r̂, is rejected, then,

estimate the correlation parameter ρ for the correlation matrix Ri(ρ). The p-value of the

statistical test is obtained with an approximative chi-square distribution as the residuals

are a proxy of the white noise. In this thesis, to estimate the correlation parameter ρ, the

3A strong white noise X is a sequence of integrable i.i.d random variables such that E[Xt] = 0 ∀ t.

37



ordinary least squares estimator is used,

ρ̂ =

I−1∑
i=1

ni∑
j=2

r̂j r̂j−1

I−1∑
i=1

ni∑
j=2

r̂2j−1

. (2.2.47)

2.2.7.1 GEE estimation algorithm

In this section, we provide an algorithm which handles the estimation of the DGLM

parameters in the presence of correlation between observations. Once the correlation has

been confirmed through the Ljung-Box test (2.2.46), the algorithm is as follows.

1. Set the estimates from the DGLM algorithm in Section 2.2.5.2 as initial values µ̂
(0)
i

and φ̂
(0)
i ,

2. For iteration k, compute the residuals r
(k)
i,j with equation (2.2.44) under the asymp-

totic normality assumption,

3. Compute the correlation parameter ρ̂ with equation (2.2.47) and set the block di-

agonal correlation matrix:

R =


R1(ρ̂) 0 . . . 0

0 R2(ρ̂) . . . 0
...

...
. . .

...

0 0 . . . Rni(ρ̂)


(N×N)

,

4. Compute the variance matrix V = A1/2 R A1/2, where A has block diagonal entries

Ai as in equation (2.2.42),

5. Compute the matrix of derivatives D =
∂µi

∂β
= µ̂(k)TX (due to the log-link function),

6. Re-estimate the parameters of the mean model,

β̂(k+1) = β̂(k) +
(
DTV −1D

)−1 (
DTV −1(y − µ̂(k))

)
(2.2.48)
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7. Compute µ̂(k+1) with the new estimated parameters,

8. Do steps 3-4 from the DGLM algorithm in Section 2.2.5.2 to re-adjust the parameters

of the dispersion submodel γ(k+1),

9. Set k = k+ 1 and repeat steps 2-8 until convergence of the correlation parameter ρ̂.

Before we proceed to Section 2.3 with the dependence analysis, compute the uncorrelated

residuals r∗,

r∗ = L−1 · r, (2.2.49)

where L, called the Cholesky factor, is the lower triangular matrix of the Cholesky decom-

position of the full correlation matrix R and r is the ordered vector of residuals defined

in (2.2.45). Thus, L−1 is the block diagonal matrix of dimension (N × N), containing

L−1i (ρ) on entry i, with the following form,

L−1i (ρ) =
1√

1− ρ2



√
1− ρ2 0 0 . . . 0 0

−ρ 1 0 . . . 0 0

0 −ρ 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

0 0 0 . . . −ρ 1


(ni×ni)

. (2.2.50)

Matrix L−1i (ρ) can be shown to have the from as in (2.2.50) by using the Cholesky-

Banachiewicz algorithm if and only if R is positive definite.

2.2.7.2 GEE Goodness-of-fit

To measure the fit using GEE, in this thesis, we perform the goodness-of-fit tests pre-

sented in Section 2.2.6, i.e. the Kolmogorov-Smirnov and the Anderson-Darling tests as

if the parameters obtained from using GEE were from a GLM which is done in Swan

(2006) with quantile residuals. As mentioned in Swan (2006), using diagnostics of GLMs

when using GEE is not entirely rigorous but it is the best approach available to test the
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distribution assumed for the response variable. There are limitations to this approach due

to the fact that observations are not independent but we still do it as no other consen-

sual approach currently exists, specially when using GEE considers a varying dispersion

parameter (DGLM).

The Correlation Information Criterion (CIC) introduced in Hin and Wang (2009) and

discussed in Hudecová and Pešta (2013) is considered in the analysis but not further

pursued as it works better to compare different correlation structures which is not the

goal in this thesis. Furthermore, in Hudecová and Pešta (2013) it is mentioned that even

if the CIC suggests the independence structure, it does not imply the claim amounts are

independent, which under misspecification, results in misleading reserve estimates.

2.3 Copula models

In Section 2.2, we removed the marginal effects to have homogeneous data and to be able

to account for the diversification benefit. In this section, we describe the multivariate

model that has as marginal inputs the uncorrelated residuals r∗ obtained with the GEE

algorithm in Section 2.2.7.1. In our context, assuming K lines of business with distribution

F = C(F (1), F (2), . . . , F (K)), where C is the copula associated with F , a distribution

function C : [0, 1]K → [0, 1] that satisfies

F (x) = C(F1(x1), . . . , FL(xK)), x ∈ RK . (2.3.1)

To understand the definition of a copula we refer to the most important theorem in the

field, Sklar’s theorem.

Theorem 2.3.1. Sklar’s theorem (Sklar, 1959). Let F be a joint distribution with margins

FX1 , . . . , FXd. Then, there exists a copula C : [0, 1]d → [0, 1] such that, for all X1, . . . , Xd,

F (x1, . . . , xd) = C(FX1(x1), . . . , FXd(xd)). (2.3.2)

If the margins are continuous, then C is unique. A clever interpretation of Sklar’s theorem

is made in Derendinger (2015), and it can be interpreted as follows,
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• We can decompose any multivariate distribution function into its margins and a

copula. This allows us to study multivariate distributions independently of the

margins,

• With a backward analysis, a copula together with marginal distribution functions

can be used to construct a new multivariate distribution.

The following two theorems were obtained from Nelsen (2006) and are presented in their

bivariate form but can be generalized for d dimensions. These theorems describe some

properties of copulas which are fundamental in following sections for dependence analysis

and copula selection.

Theorem 2.3.2. Fréchet-Hoeffding bounds: For every copula C and every (u, v) in the

unit square [0, 1]2,

W (u, v) ≤ C(u, v) ≤M(u, v),

where W (u, v) = max(0, u + v − 1) is the counter-monotonic copula and M(u, v) =

min(u, v) is the comonotonic copula.

Proof. Refer to Nelsen (2006). Theorem 2.3.2 is used in the definition of the Plackett

copula introduced in Section B.2.

Theorem 2.3.3. Let X and Y be continuous random variables, then X and Y are inde-

pendent if and only if,

C(u, v) = uv.

In this case, C is known as the product copula and denoted by Π(u, v).

Proof. Let u = FX(x) and v = FY (y) be the marginal functions of the independent

random variables X and Y with joint distribution H. By the independence assumption,

H(x, y) = FX(x)FY (y). Then, by Sklar’s theorem 2.3.1,

C(u, v) = H(x, y)

= FX(x)FY (y)

= uv.

The proof in the other direction follows the same way using Sklar’s theorem 2.3.1.
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Theorem 2.3.3 is summoned when the dependence between lines of business is not statis-

tically significant and thus, a product copula is used. A fundamental tool used in Chapter

4 is the survival copula, denoted as Ĉ(u, v) and equal to,

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v).

The survival copula Ĉ(F̄X(x), F̄Y (y)) is the joint probability H̄(x, y) = P [X > x, Y > y]

which is key to analyze the tail of the distribution, i.e., in the insurance context, the

survival copula is the probability of two lines of business with losses that simultaneously

exceed a given threshold (x, y).

2.3.1 Dependence analysis

In Section 2.3, we describe copula models with the purpose of using multivariate distri-

butions for multiple lines of business and ultimately, be able to model the expected losses

and calculate the capital requirements described in Chapter 1. In this section, we describe

common dependence measurement tools in order to explain the relationship between ran-

dom variables and assign a proper member of a copula family. Copula families used in

this thesis are presented in the following section.

The first dependence measurement is presented in Section 2.2.7, with Pearson’s correla-

tion ρ. However, the major disadvantage of Pearson’s correlation is that it only measures

linear dependence, when X and Y could still be strongly dependent with another type of

association. Referring back to Sklar’s theorem (2.3.1), the inputs of the selected copula

are the marginals and the Pearson’s correlation ρ between the random variables X and Y

is not the same as for the cumulative distribution functions FX and FY . To circumvent

this problem, we study dependence with rank correlations. Rank correlations have an ad-

vantage over the usual Pearson’s correlation because they are invariant under monotonic

transformations Joe (1997). Furthermore, Spearman’s ρS and Kendall’s τ described in

what follows, are equal to 1 for the upper copula bound and −1 for the lower counter-

monotonic copula; a desirable property not held by Pearson’s correlation ρ.
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Definition 2.3.1. Spearman’s ρS is the linear correlation for the cumulative distribution

functions of X and Y . Let FX(x) = u be the cdf of X and FY (y) = v the cdf of the r.v.

Y , then,

ρS(X, Y ) = ρ(FX(X), FY (Y ))

= −3 + 12

∫ 1

0

∫ 1

0

uv dC(u, v).

Definition 2.3.2. Kendall’s τ (refer to Joe (1997) for more details) is another dependence

measure between two random variables. It can be understood as a measure of concordance.

For any two points (X1, Y1) and (X2, Y2) from the random variables X and Y , Kendall’s

τ is defined as

τ(X, Y ) = P((X1 −X2)(Y1 − Y2) > 0)− P((X1 −X2)(Y1 − Y2) < 0)

= P(concordance)− P(discordance)

= −1 + 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v).

In Figure 2.2, we have a set of three points {P1, P2, P3} from the random vector (X, Y ).

Kendall’s τ is defined as the probability of concordance minus the probability of discor-

dance. Thus, from the figure we can observe the pair of points {P1, P2} and {P1, P3} are

concordant pairs while {P2, P3} are discordant pairs. Thus, τ = 2
3
− 1

3
= 1

3
.

Figure 2.2: Kendall’s τ in finite samples.

In loss reserving, analyzing the probability of two random variables being jointly large
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is fundamentally important. Thus, we introduce what is known as measuring the tail

dependence of a random vector.

Definition 2.3.3. Tail dependence coefficient: Let X and Y be random variables with a

copula C(u, v) = C(FX(x), FY (y)). The coefficient of upper tail dependence of X and Y

is given by,

λu = lim
q→1−

P[Y > F←Y (q)|X > F←X (q)]

= lim
q→1−

1− 2q + C(q, q)

1− q

If the limit exists. Where F←X (q) = inf{x ∈ R : FX(x) ≥ q}. The coefficient λu ∈ [0, 1],

λu = 0 for asymptotically independent random variables in the upper tail and λu = 1 for

X and Y comonotonic.

2.3.2 Copula families

The multivariate model to account for the diversification benefit has been chosen to be

a copula model and the strength of the dependence is measured with rank correlations

due to the advantages presented in Section 2.3.1. In Figure 2.3, we show the dependence

considered in this thesis using the same approach as in Shi and Frees (2011) for the ob-

servations of accident year i and development lag j for two lines of business k and k′.

The dependence between the random variables is measured using the empirical distribu-

tion function (further details in Section 2.3.4 and 2.3.5) of the residuals that have been

calculated to remove the marginal effects.
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Figure 2.3: Dependence for accident year i and lag j between two lines of business.

In order to select the parametric copula C from Figure 2.3, in this section we describe

some copula families considered in the modeling procedure. For other copula families

considered in the modeling procedure refer to Appendix B.

2.3.2.1 Elliptical Copulas

For an elliptical distribution X, an elliptical copula is the copula associated with X

Embrechts et al. (2001). The definition of an elliptical distribution follows,

Definition 2.3.4. Elliptical distributions. The vector X = {X1, . . . , Xd} of dimension d

is an elliptical distribution if and only if there exist R, L and U such that,

X
d
= µ+R ·L ·U , (2.3.3)

where µ is the mean vector, R is a positive random variable, L is the Cholesky factor of the

the covariance matrix Σ and U is uniformly distributed on the unit sphere of dimension

d.

The density of the elliptical vector X is given by,

H(X1, . . . , Xd) =
1

|Σ| 12
· g
(
(X − µ)TΣ−1(X − µ)

)
, (2.3.4)
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where g is the density generator of the multivariate spherical distribution associated with

X (refer to McNeil et al. (2005) for more technical details).

The normal or Gaussian copula is based on the multivariate normal distribution. The

density generator is given by g(x) = (2π)−
d
2 e−

x
2 . Although the normal or Gaussian cop-

ula is a benchmark model, it is not used nor discussed in this thesis because the upper

tail coefficient is λu = 0 independently of the dependence parameter McNeil et al. (2005).

Therefore, it underestimates the probability of two random variables being simultaneously

large, which makes it unattractive for loss reserving.

Definition 2.3.5. The t-copula is the copula associated with the elliptical vector in equa-

tion (2.3.3), with R ∼
√
d · Fd,ν, where ν represent the degrees of freedom, Fd,ν is a

random number from an F-distribution and density generator given by,

g(x) =
Γ(d+ν

2
)

Γ(ν
2
) · (πν)

d
2

·
(

1 +
x

ν

)− d+ν
2
.

The bivariate t-copula with ν degrees of freedom and shape parameter ρ is given by,

C(u, v) = tν,ρ(t
−1
ν (u), t−1ν (v))

=

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π(1− ρ2)1/2

(
1 +

s2 − 2ρst+ t2

ν(1− ρ2)

)− ν+2
2

dsdt,

where tν and tν are the multivariate and univariate distribution functions of a student-t,

respectively.

The shape parameter ρ is the standard linear correlation parameter if ν > 2. The gamma

function Γ(x) appears in the density generator because a t-distribution is a mixture of

normal distributions with weights from an inverse gamma distribution as mentioned in

McNeil et al. (2005). Since the inverse gamma distribution is a heavy-tailed distribution,

the t-copula is a better fit for loss models. For example, modeling a catastrophic event for

personal and commercial auto insurance X and Y , the losses are highly likely placed in the

upper corner of the unit square (when analyzing the joint cumulative distribution) due to

the number of policyholders affected and the amount of their losses. The underlying event
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is the same and therefore, the observations should be highly dependent. A Gaussian copula

would underestimate the probability of the catastrophic event due to the asymptotic

independence compared to the heavy tailed t-copula which allocates a higher probability

to the unfavorable outcome.

The upper tail coefficient for a t-copula of a random vector (X, Y ) (which is the same as

the lower tail coefficient because elliptical copulas are radially symmetric McNeil et al.

(2005)) is given by,

λu = 2 · tν+1

−
√√√√(ν + 1)(1− ρ)

1 + ρ

 ,

where ρ is the off-diagonal element of the bivariate correlation matrix associated with

(X, Y ) and tν+1 is the density of a univariate t-distribution with ν+1 degrees of freedom.

For fixed ρ, the strength of the tail dependence increases as the degrees of freedom ν

decreases. And for fixed ν, the tail dependence increases as ρ increases.

2.3.3 Hierarchical Copula Model (HCM)

This section is inspired by the research of Burgi et al. (2008), Arbenz et al. (2012) and

Côté (2014); Côté et al. (2016) in hierarchical copula modeling where the aggregation of

risks plays an important role. The first idea that comes to mind when learning copula

models presented in Section 2.3, is to capture the dependence of a whole portfolio with

one copula. As mentioned in Derendinger (2015), “the main advantage of hierarchical

risk aggregation is that we do not need to specify the copula of all risks. It is extremely

unlikely to find a copula model which adequately describes the dependence structure between

a large number of risks. Joint observations between all risks are too rare, and the attainable

dependence structures of common parametric copula models are too limited”. The rigorous

mathematical foundation of a HCM can be found in Arbenz et al. (2012) but in what

follows, we explain through a graphical representation of a dependence structure in Figure
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2.4, a more intuitive explanation of a HCM.

C5

C1

L1 L2

C4

C2

L3 L4

C3

L5 L6

Figure 2.4: Example of a hierarchical copula model for a portfolio with 6 lines of

business.

The idea behind a hierarchical copula model (an example can be seen in Figure 2.4)

is to use a divide and conquer approach, where the portfolio (in an insurance setting)

has to be subdivided either by geographical standards with dependence on legislation as

in Burgi et al. (2008), by pooling similar risks as done in Shi and Frees (2011) or by

using a dependence-distance criteria as done in Côté et al. (2016). Thus, if the HCM is

pursued, risks have to be shown that they can be aggregated with respect to any of the

aforementioned criteria. Once the first level of copulas have been fitted (C1, C2 and C3 in

Figure 2.4), risks are aggregated to then fit the second level copulas (C4 in Figure 2.4),

afterwards, risks are aggregated until last dependence level to attain the model accounting

for the total risk in the portfolio. Thus, higher level copulas (C4 and C5 in example of

Figure 2.4) are meant to represent the dependence structure in the sum of risks when

this aggregations is a reasonable choice. The objective of aggregating different risks is to

reduce the overall risk, providing a diversification benefit as established by IFRS 17, see

characteristics in Section 1.1.2. The idea for the aggregation of risks for a copula model

first came from Burgi et al. (2008) where they set an example with a P&C reinsurer that

sells policies against fire and windstorm events.
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Figure 2.5: Hierarchical copula model used in Burgi et al. (2008).

Figure 2.5 (recreated from Figure 5 in Burgi et al. (2008)), shows the hierarchical depen-

dence structure considered by the authors. It may seem strange to model the dependence

between a fire in France and a fire in Germany with a copula due to the fact that these

unfavorable events occur kilometers from each other and are physically independent of

each other but the interpretation is not as straightforward. As said by the original author,

significant dependence between products do not arise through the underlying peril itself

but are caused by changes in legislation and insurance practices. In this example, since

both are countries of the European Union, it may imply dependence between risks. A

specific case of a hierarchical copula model is called a nested Archimedean copula (NAC)

model, where the copulas at each node of the hierarchy are part of the Archimedean

family presented in Appendix B.1.

Cϕ(u,v)

L1

Cϕ(u,v)

L2 L3

Figure 2.6: Example of nested Archimedean copula.

Figure 2.6 shows three lines of business where the dependence is accounted for with a

NAC model with bivariate Archimedean copulas Cϕ, where ϕ is the copula generator.
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As mentioned in Abdallah et al. (2015), one of the main advantages of a NAC model

compared to any other hierarchical copula model is that they can be explicitly defined in

terms of the generator ϕ mentioned in equation (B.1.1). Furthermore, sampling from a

NAC model is a more simple task than sampling from a hierarchical copula model with

copulas from other families because they rely on the Iman-Conover reordering algorithm

Côté et al. (2016); presented in Section 2.4.1. Described in Hofert and Pham (2013) and

Abdallah et al. (2015), nested Archimedean copulas have to satisfy the following:

• The degree of dependence must decrease at each ascending level,

• The same copula has to be used for each level due to the convexity on nested

Archimedean copulas.

Thus, NAC models are not considered in this thesis because they are more restrictive than

considering a hierarchical copula model with other copula families at each node. In the

examples presented in Figures 2.4, 2.5 and 2.6, the hierarchical copula models considered

have bivariate copulas at each dependence level. This is not a necessary condition for a

hierarchical copula model given that at each level, d-dimensional copulas can be fitted.

In this thesis, we focus on bivariate copulas due to the simplicity in the interpretability

of the results and moreover, we share the idea presented in Derendinger (2015) that one

copula is highly unlikely to reflect the complete dependence structure of more than two

risks. In a nutshell, the proposed hierarchical copula model has the flexibility of fitting any

bivariate copula family at each node, allowing for more complex dependence structures

than what can be achieved with a NAC model. Additionally, all formal goodness-of-fit

tests are rank-based (refer to 2.3.5) and the bivariate approach allows for graphical and

more interpretable results. An important limitation mentioned in Côté et al. (2016),

due to the aggregation step at each node, the copulas need to have the same number

of components, implying the procedure done in Abdallah et al. (2015) to incorporate

calendar year dependence with a copula cannot be implemented with this hierarchical

copula model. To circumvent this issue, a calendar year covariate could be easily added

into the marginal distribution with the disadvantage of increasing the number of estimated
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parameters more than the copula approach. The calendar year effect is not included in

this thesis because it is deemed not significant for the numerical application presented in

Chapter 5.

2.3.4 Estimation

The estimation procedure for the HCM is done with a frequentist approach as for the

marginal distributions in Section 2.2. To obtain the set of dependence parameters of the

HCM we use maximum pseudo-likelihood (MPL). MPL is first used in Oakes (1994) and

further analyzed in Genest et al. (1995) where they show the estimator is consistent and

asymptotically normal. This estimation approach consists in obtaining the dependence

parameter θ of a parametric copula density denoted by cθ for a random vector (X, Y ) by

maximizing the following log pseudo-likelihood,

L(θ) =

n∑
i=1

log (cθ(û, v̂)) , (2.3.5)

where û and v̂ are the empirical cumulative distribution functions applied to the obser-

vations of X and Y , respectively. This method differs from the traditional maximum

likelihood estimate by not including the marginal distributions in the function to be max-

imized and instead use a nonparametric estimate of the marginal cumulative distribution

functions which does not depend on the parameter θ. The maximum likelihood estimate

would result in an estimate with smaller variance than with MPL only if the margins were

known exactly. The HCM has a conditional independence assumption established in the

rigorous mathematical foundation of a HCM in Arbenz et al. (2012), meaning that given a

sum at each node, then, the elements that made the sum are independent of the rest of the

hierarchy. Thus, equation (2.3.5) is used for each node of the HCM to obtain the set of all

dependence parameters. In other words, due to the conditional independence assumption,

the estimation procedure is independent for each copula composing the HCM.
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2.3.5 Copula selection and Goodness-of-fit

The most common model selection criteria is Akaike’s Information Criteria (AIC). It is

meant to reflect a parsimony and accuracy trade-off,

AIC = 2(q − logL), (2.3.6)

where q is the number of parameters in the model and L is the value of the maximum

likelihood function with the estimated parameters. The best model is then selected with

respect to the smallest AIC, since we are trying to use the least number of parameters,

thus, minimizing the term q and with the highest accuracy, i.e., the largest value of logL.

In Grønneberg and Hjort (2014), it is pointed out that using the AIC when estimating

the copula through MPL is not appropriate since we are using a pseudo-likelihood func-

tion instead of the likelihood function. Thus, the copula selection for each node of the

semiparametric HCM is more heuristic than analytical due to the current lack of formal

criterions to evaluate the best copula when considering MPL. From the copula families

presented in Section 2.3.2, taking advantage of the bivariate approach, graphical compar-

isons are drawn between the empirical copula Cn and the parametric copula with the MPL

estimate denoted Cθn . The empirical copula defined in Deheuvels (1979) for a random

vector (X, Y ) with marginal cumulative distribution functions u = FX(x) and v = FY (y)

is given by

Cn(u, v) =
1

n

n∑
i=1

1

 Ri

n+ 1
≤ u,

Si

n+ 1
≤ v

 , (2.3.7)

where Ri and Si are the ranks of xi and yi, respectively. For the goodness-of-fit process

for the HCM we rely on more formal mathematical tools. The goal is to statistically

test the null hypothesis H0 : C ∈ Cθ, i.e., the copula C is indeed part of the parametric

family Cθ. An underlying copula C of a random vector is invariant by continuous, strictly

increasing transformations of its components, thus, Genest et al. (2009) proposed to base

the inference on the maximally invariant statistics4 with respect to this set of transforma-

4As established in Young and Smith (2005), a statistic is maximally invariant if every other invariant

statistic is a function of it.

52



tions, i.e., the ranks. Motivated by selecting the appropriate copula family, Genest and

Rémillard (2008) introduced the Cramér-Von Mises statistic for copula models which can

be calculated as follows,

Sn = n

∫
[0,1]d

(Cn(u)− Cθn(u))2 dCn(u), (2.3.8)

where Cn is the empirical copula and Cθn is the parametric copula with a rank-based

estimate of θ. The Cramér-von Mises statistic Sn is used to asses if the sample can be

assigned to a member of a certain parametric copula family (some families presented in

Section 2.3.2). The validity of the p-value relies on performing the Cramér-Von Mises

test by parametric bootstrapping, see Genest and Rémillard (2008). Furthermore, our

approach is rank-based due to the recommendation of Genest et al. (2009) which states:

“Based on the present state of knowledge: Overall, the statistic Sn [...] yield the best

blanket5 goodness-of-fit test procedure for copula models.”

When the goodness-of-fit is meant to be assessed between two copulas without the need

of assuming a parametric copula, the following test is appropriate. The null hypothesis is

H0 : C = D for two copulas C and D, which in other words is a test to try to determine if

two copulas are identical in distribution. The test statistic (2.3.9) for the equality between

two copulas relies on the empirical process Rémillard and Scaillet (2009), given by,

En1,n2 =
Cn1 −Dn2√
n−11 + n−12

, (2.3.9)

where n1 and n2 are the sample size of the respective copulas C and D. Similarly as in

equation (2.3.8), the approach considered in Rémillard and Scaillet (2009) depends on the

Cramér-von Mises principle, providing the test statistic:

Sn1,n2 =

∫
[0,1]d

E2
n1,n2

(u)du. (2.3.10)

5By ”blanket” the author means the statistical test for Sn does not involve any parameter tuning or

strategic choices.
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2.4 Simulation

The purpose of the HCM as stated in Chapter 1 is to estimate the unpaid claim liabilities

while accounting for the diversification benefit for financial reporting and reserving objec-

tives. Throughout Chapter 2, the mathematical justification, estimation procedure and

goodness-of-fit techniques for the marginal and multivariate model are described. This

section describes the algorithm used to simulate from the bottom-right part of the run-off

triangle corresponding to the unpaid claim liabilities. Due to the aggregation involved at

each node of the hierarchical copula modeling, simulating from a HCM is not a trivial

task. The Iman-Conover reordering algorithm proposed by Iman and Conover (1982) and

adapted by Arbenz et al. (2012) is the solution to the problem. An additional step is con-

sidered in this thesis to account for the marginal distributions where the aggregate claims

are of the form Yi,j|Xi,j ∼ TWp(µi,j, φi,j) presented in Section 2.2.5 and the distributional

assumption of the residuals from Theorem 2.2.2.

2.4.1 Iman-Conover reordering algorithm

C5

C1

L1 L2

C4

C2

L3 L4

C3

L5 L6

Figure 2.7: Example of a HCM with six lines of business, three levels and five bivariate

copulas.

In Figure 2.7, we have the visual representation of a given dependence structure in a

hierarchical copula model. We assume the aggregate claims of the six lines of business
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each follow Tweedie marginal distributions of the form Y
(k)
i,j |X

(k)
i,j ∼ TWp(k)(µ

(k)
i,j , φ

(k)
i,j ) for

accident year i, development lag j and lines k = {1, 2, 3, 4, 5, 6}. Furthermore, we assume

for each line of business the variance-covariance structure V (k) = A(k)1/2R(ρ(k))A(k)1/2 as

in Section 2.2.7, where V (k) is a block diagonal matrix that assumes correlation between

development lags but independence across accident years. The vector of uncorrelated

residuals for all accident years and development lags without the dependence structure

are denoted r∗
(k)
ind and conversely, r∗(k) when the dependence structure is obtained for each

line of business k. Correspondingly, the correlated residuals are denoted r(k) to preserve

the notation from Section 2.2.7.1. In this example, we use the Iman-Conover reordering

algorithm to generate i.i.d. samples of size n = J(J−1)
2

from the lower part of the loss

triangle with indices i + j > I + 1, assuming the HCM observed in Figure 2.7. The

residuals r∗
(k)
ind,r∗(k) and r(k) are to be associated with the corresponding line of business

Lk from Figure 2.7 but should not be confused mathematically speaking. In other words,

Figure 2.7 is a graphical representation of the HCM assumed for the example, which is

meant to ease the understanding of the dependence structure, but the Lk have no place

in the algorithm. The algorithm goes as follows,

1. Simulate k independent standard normal random samples of size m >> n6.

r∗
(k)
ind ∼ N(0, 1), k = {1, 2, 3, 4, 5, 6}.

2. Simulate independent copula samples of sizem from each bivariate copula C1, . . . , C5.

3. Reorder the samples of each bivariate vector by merging the observed marginal ranks

with the joint ranks in the copula sample. A brief example follows for the first node

of the HCM.

6In Côté (2014) it is pointed out that the empirical distribution functions of the marginals and the

copula converge asymptotically to the true distributions. Thus, a larger sample size m provides a better

estimate of the HCM sample.
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r∗
(1)
ind Rank r∗

(2)
ind Rank C1 Ranks

1.27 2 3.71 3 (0.7, 0.4) (3, 2)

-0.10 1 -2.19 1 (0.2, 0.9) (1, 3)

2.80 3 0.40 2 (0.5, 0.3) (2, 1)

→

Reordered Sample

(2.80, 0.40)

(-0.10, 3.71)

(1.27,-2.19)

Table 2.3: Iman-Conover reordering algorithm example for the first node of dependence

structure (HCM) from Figure 2.7. Inspired by examples in Arbenz et al. (2012).

Then, the reordered data is a sample from the copula
(
r∗(1), r∗(2)

)
∼ C1.

4. Repeat step 3 for the first level copulas C2 and C3.

5. Aggregate the reordered data following the dependence structure to obtain samples

from r∗(1) + r∗(2) and respectively for r∗(3) + r∗(4) and r∗(5) + r∗(6).

6. Repeat step 3 to obtain sample from
(
r∗(3) + r∗(4), r∗(5) + r∗(6)

)
∼ C4.

7. Aggregate the reordered sample from C4 to obtain a sample from
6∑

k=3

r∗(k), and

repeat step 3 for

(
r∗(1) + r∗(2),

6∑
k=3

r∗(k)

)
∼ C5.

8. To obtain a joint sample of
(
r∗(1), r∗(2), r∗(3), r∗(4), r∗(5), r∗(6)

)
, perform the permu-

tations applied to r∗(1) + r∗(2) back to r∗(1) and r∗(2), the permutations applied

to r∗(3) + r∗(4) back to r∗(3) and r∗(4), and finally, the permutations applied to

r∗(5) + r∗(6) back to r∗(5) and r∗(6).

9. Get a subsample of size n from the reordered sample of size m.

Formally, the Iman-Conover reodering algorithm is finished after step 9, but given the

model presented in Chapter 3 we want to induce the covariance structure V
(k)
i for each
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line of business k. Thus, apply the Cholesky block matrix factor L(k) given by

L(k) =


L1(ρ̂

(k)) 0 . . . 0

0 L2(ρ̂
(k)) . . . 0

...
...

. . .
...

0 0 . . . Lni(ρ̂
(k))


(n×n)

,

to the lower part of the loss triangle (inverse of matrix in equation (2.2.49)), as follows,

L(k)r∗(k) = r(k). (2.4.1)

Thus, we have obtained the vector r(k) with variance V (k) and the dependence structure

from the HCM represented in Figure 2.7 for k = {1, 2, 3, 4, 5, 6}. The additional step

described in what follows is useful when calculating reserves (for more details refer to

Chapter 4). The objective by invoking Theorem 2.2.2 is having all observations from the

same distribution, without mean and dispersion differences between each cell (i, j) of the

loss triangle in Table 2.1. This approach is useful for obtaining the rank estimate of the

dependence parameter θn discussed in the copula Section 2.3. Unfortunately, applying the

inverse transformation, i.e, multiplying by the standard deviation and adding the mean

to obtain Tweedie samples is not a good idea since in this case, the objective distribution

is a non-negative random variable while a standard normal variable Z has support in R.

Thus, the inverse transformation has non-zero probability of being a negative number, or,

P
[
Z
√
φi,jµ

p
i,j + µi,j < 0

]
6= 0.

To avoid approximation errors using the aforementioned technique, instead, we calculate

the empirical distribution for each marginal distribution and apply the appropriate inverse

quantiles. The empirical distribution is calculated as,

F̂ (k)
n (x) =

1

n

n∑
i=1

1

(
r
(k)
i ≤ x

)
, k = {1, 2, 3, 4, 5, 6},

where r
(k)
i is the i-th entry of the vector r(k) obtained with equation (2.4.1) with sample

size n obtained for the marginal distribution k after applying the Iman-Conover reordering
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algorithm 2.4.1 and correlating the residuals. Then, apply the inverse quantile transfor-

mation to obtain samples from the desired Tweedie distribution,

F−1(F̂ (k)
n ;µ

(k)
i,j , φ

(k)
i,j , p

(k)) ∼ TWp(k)(µ
(k)
i,j , φ

(k)
i,j ).
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Chapter 3

Model

A HCM is considered with semi-parametric estimation of the dependence parameter and

a two-step estimation for the marginals. The two-step procedure consists in (1) a DGLM

with Tweedie distributions is assumed for the loss ratio of the aggregate claims Yi,j and

in the presence of correlation, (2) rely on the GEE with an autoregressive factor of lag 1

or AR(1) to obtain uncorrelated residuals. The aforementioned model has the objective

of generating unpaid claim liabilities for financial reporting and the reserving purposes

mentioned in Chapter 1.

For all lines of business and loss ratio denoted Y
(k)
i,j |Xi,j ∼ TWp(k)(µ

(k)
i,j , φ

(k)
j ), a DGLM is

considered with the following mean model from equation (2.2.6),

g(µ
(k)
i,j ) = ι(k) + α

(k)
i + δ

(k)
j , (3.0.1)

where for line of business k = {1, 2, . . . , K}, the parameter ι(k) is the intercept, α
(k)
i

accounts for the effects of the accident year i = {1, 2, . . . , I}, δ(k)j considers the effects

of the development lag j = {1, 2, . . . , J} and to avoid non-identifiability issues we set

α
(k)
1 = δ

(k)
1 = 0. Furthermore, we assume I = J and a log-link function g as mentioned in

Section 2.2.3 to have an interpretable and multiplicative structure. In matrix notation,

the mean model has the following equation,

g(µ
(k)
i,j ) = XT

i,jβ
(k), (3.0.2)
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where Xi,j is the vector of covariates for accident year i and development lag j. The

covariates in this case are dummy variables, which for example in equation (3.0.2), the

parameter of accident year i has covariates set to 1 for the loss ratios in accident year i

and 0 otherwise. Correspondingly, for the parameter of development lag j, the covariates

are set to 1 for loss ratios in column j of the loss triangle and 0 otherwise. Thus, the

matrix of covariates X and the parameter vector β(k) have the following general form,

Xβ(k) =



I J

1 0 . . . 0 0 0 . . . 0

1 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...

1 0 . . . 0 0 0 . . . 1

1 1 . . . 0 0 0 . . . 0

1 1 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...

1 0 . . . 1 0 0 . . . 0


(n×q)



ι(k)

α
(k)
2

...

α
(k)
I

δ
(k)
2

...

δ
(k)
J


(q×1)

=



ι(k)

ι(k) + δ
(k)
2

...

ι(k) + δ
(k)
J

ι(k) + α
(k)
2

ι(k) + α
(k)
2 + δ

(k)
2

...

ι(k) + α
(k)
I


(n×1)

,

where n = I(I+1)
2

and q = 1 + (I − 1) + (J − 1) = 2I − 1. In Figure 3.1 we place the

equations into a loss triangle to have a better understanding of the GLM structure.

Figure 3.1: Loss triangle with GLM equations of mean model.
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Simultaneously, for the dispersion parameter φ, we consider another log-link relation to

obtain the following dispersion submodel (presented in Section 2.2.5),

g(φ
(k)
j ) = ZT

j γ
(k). (3.0.3)

The matrix of covariates Z and the link function g for convenience and simplicity, are

usually assumed to be the same as for the mean model. But practically, it can be whatever

the user considers statistically relevant. In this thesis, to avoid overfitting and due to

statistical evidence, the dispersion submodel only varies with the development lags and

not with the accident years as for the mean model, i.e, φi,j = φj ∀ i. From Figure 3.2 we

can infer that although every observation is assumed from a Tweedie distribution with its

own mean, we expect the dispersion (closely related to the number of claims) j years after

the accident to be equal across accident years. Thus, for a development lag we assume

the dispersion has common effects across accident years. In matrix notation, we have the

following equations,

Zγ(k) =


1 0 . . . 0 0 0 . . . 0

1 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...

1 0 . . . 1 0 0 . . . 0


(n×J)


ι
(k)
d

γ
(k)
2

...

γ
(k)
J


(J×1)

=


ι
(k)
d

ι
(k)
d + γ

(k)
2

...

ι
(k)
d + γ

(k)
J


(n×1)

,

where ι
(k)
d is the intercept for the dispersion submodel and we also set γ

(k)
1 = 0 to avoid

non-identifiability of the parameter vector γ. The DGLM can be visualized in Figure 3.2

for accident year i and i′, and development lag j and j′.
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Figure 3.2: Distributional visualization of the DGLM considered for the run-off triangle.

Then, the set of parameters {β(k),γ(k)} are obtained with the DGLM estimation algorithm

presented in Section 2.2.5.2 for each k. When the goodness-of-fit tests presented in Section

2.2.6 are satisfactory, we proceed to the second step of the marginal fitting. To check for

correlated residuals we use the Ljung-Box test (2.2.46) in the residuals r̂
(k)
i,j computed

with equation (2.2.44). In the presence of dependent residuals we estimate the correlation

parameter ρ(k) for each line of business with the GEE algorithm presented in Section

2.2.7.1. Upon convergence and validation with the techniques presented in Section 2.2.7.2,

calculate the uncorrelated residuals with equation (2.2.49) to proceed to the fitting of the

multivariate distribution.

For the K lines of business denoted Lk, k = {1, 2, . . . , K}, a HCM presented in Section

2.3.3 is considered. This thesis deals specifically with automobile insurance and thus, we

assume the insurer does business in K/2 (we assume K even) geographical regions where

for each region the insurer has a personal auto line and a commercial auto line. Thus,

the first level copulas are split by region to consider the dependence between the personal

and commercial line as done in Shi and Frees (2011). The first level copulas have the

following structure,
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Figure 3.3: First level copula structure in the HCM.

The set of parametric copulas {C1, C2, . . . , CK
2
} from Figure 3.3 are estimated with the

MPL approach from Section 2.3.4, from the selected parametric families Cθ presented

in Section 2.3.2. Furthermore, to test the null hypothesis H0 : Ck ∈ Cθ, we perform

the Cramér-von Mises test described in Section 2.3.5. Once the first level copulas have

been statistically validated, we move up the dependence structure by computing the K/2

aggregates of residuals for each region denoted {Ri}K/2i=1 to analyze the second level of

copulas. The fitting procedure now considers the regions with stronger dependence as

done in Côté et al. (2016). The dependence is measured with Kendall’s τ from Section

2.3.1 to all possible region pairings, the result is a matrix of the following form,

1 τ(R1, R2) τ(R1, R3) . . . τ(R1, RK
2

)

τ(R1, R2) 1 τ(R2, R3) . . . τ(R2, RK
2

)

τ(R1, R3) τ(R3, R2) 1 . . . τ(R3, RK
2

)
...

...
...

. . .
...

τ(RK
2
, R1) τ(RK

2
, R3) τ(RK

2
, R3) . . . 1


(K2 ×

K
2 )

(3.0.4)

The pair of regions with the highest off-diagonal absolute value for Kendall’s τ in (3.0.4)

are selected for the second level of the HCM which has exactly bK/4c1 copulas to maintain

the bivariate approach.

1The notation bxc represents the floor function of x.
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Figure 3.4: Second level copula structure in the HCM.

The dependence parameter rank-based estimation, copula selection and goodness-of-fit

statistical tests for the set of second level copulas {CK
2
+1, . . . , CK

2
+bK/4c} is the same as

for the first level copulas. This process is repeated until fitting the last bivariate copula

CK−1 at the top of the dependence structure as observed in Figure 3.5.

Figure 3.5: Complete dependence structure of the HCM.
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Once the bivariate copula CK−1 has been statistically validated, the HCM fitting proce-

dure is finished and we are able to proceed to the simulation of the unpaid claim liabilities.

To generate simulations we rely on the Iman-Conover reordering algorithm presented in

Section 2.4.1.
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Chapter 4

Risk Assessment and Capital

Requirements

In this chapter, we explain the need for reserving through the model presented in Chapter

3. Furthermore, to calculate the risk adjustment for non-financial risk defined in Chapter

1, we present techniques involving risk measures and the cost of capital method. There

is special emphasis in the risk measures section given that not only they are useful for

the risk adjustment required by IFRS 17, but insurance companies’ regulators commonly

define them as the entity’s level of solvency.

Insurance companies differ from other non-financial enterprises given that capital from

shareholders is not directly linked with produced goods or a provided service, but with

the ability to maximize returns by maintaining financial solvency while paying contingent

claims produced during the lifetime of insurance contracts. This amount of capital needed

to maintain financial solvency is called a reserve.
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4.1 Reserving

The goal for actuaries is to forecast future claims Ŷi,j, where i+j > J+1. In other words,

to use the upper triangle of Table 2.1 to predict the lower triangle corresponding to the

unpaid claim liabilities. A procedure also known as squaring the triangle. The sum of the

lower triangle
I∑
i=2

J∑
j=J+2−i

Ŷi,j is known liabilities for incurred claims reserve.

4.1.1 Risk measures

In Chapter 3, the objective of the stochastic model is to generate simulations of the un-

paid claim liabilities while considering the dependence in the insurance portfolio. The

simulation of the unpaid claim liabilities form themselves a loss distribution for the in-

surer. In order to evaluate the risk inherent of the insurance portfolio, in this section, we

describe risk measures which are a measurement with respect to a certain criteria of the

loss distribution. The risk adjustment for non-financial risk as established in Chapter 1

can be determined using a risk measure.

Definition 4.1.1. Artzner et al. (1999) coined as coherent, the risk measures that satisfy

the following properties.

We consider a measure % : G → R, where G ∈ Ω is the set of all risks.

1. Translation invariance. For all X ∈ G and all real numbers α,

%(X + α) = %(X) + α.

2. Subadditivity. For all X and Y ∈ G,

%(X + Y ) ≤ %(X) + %(Y ).

3. Positive homogeneity. For all λ > 0 and all X ∈ G,

%(λX) = λ%(X).
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4. Monotonicity. For all X and Y ∈ G with X ≤ Y ,

%(X) ≤ %(Y ).

One important characteristic of a coherent measure of risk is that the aggregate risk

measure is less than or equal to the sum of the measures for the individual risks being

aggregated.

4.1.1.1 Value-at-Risk (VaR)

The VaR or confidence level technique, represents the minimum loss incurred within a

given time horizon if one of the (1 − α)% worst-case scenarios occurs. Consider the loss

random variable X, then,

VaRα(X) = inf{x ∈ R | P[X ≤ x] ≥ α}. (4.1.1)

This risk measure has a blind spot and is not sufficient to understand the worst possible

scenarios. The worst scenarios are located on the right tail of the loss distribution, and

it is what the insurer should be most concerned about. The VaR fails to satisfy the

sub-additivity property and thus, is not a coherent risk measure.

4.1.1.2 Tail Value-at-Risk (TVaR) or Expected shortfall (ES)

The Tail Value-at-Risk (TVaR)1 is defined as the expected loss of the worst (1−α)% cases

and thus, its equation is related to the VaR (4.1.1), as it can be seen in the following,

TVaRα(X) =
1

1− α

∫ 1

α

V aRu(X)du. (4.1.2)

The TVaR is meant to correct for the blind spot in the VaR by providing more insight of

the behavior in the right tail of the loss distribution, thus, it reflects better the possibility

1For a continuous random variable the TVaR and the Conditional Tail Expectation (CTE) (mentioned

in Chapter 1 by OSFI capital requirements) are equal.
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of extreme losses which have small probabilities of occurring because it takes into account

outcomes beyond any chosen threshold. Furthermore, the TVaR complies with the four

properties established by Artzner et al. (1999), making it a coherent risk measure.

4.1.1.3 Capital allocation

The capital allocation problem as explained by McNeil et al. (2005) consists on having

several lines of business where we calculate the overall risk capital and then, we wish

to assign a portion of the overall risk capital into each individual line of business. In

mathematical notation, we have an insurance portfolio with d lines of business represented

by a random vector {X1, X2, . . . , Xd}. The overall risk capital has the form %(X), where

X =
∑d

i=1Xi and % is a risk measure like the VaR described in (4.1.1) or the TVaR

described in (4.1.2), and then, we wish to allocate properly a portion or weight of %(X)

into each line of business. Thus, for simplicity we denote the weights u = {u1, . . . , ud}

and we define the mapping f : Λ ⊂ Rd → R, with the following form:

f%,X(u) = %

 d∑
i=1

uiXi

 . (4.1.3)

Definition 4.1.2. (Tasche, 2008) Let % be a risk measure that satisfies the positive ho-

mogeneity property and f% be continuously differentiable on Λ, then, the Euler capital

allocation principle is the mapping,

%Euler(Xi|X) =
∂f%

∂ui
(1, . . . , 1). (4.1.4)

Theorems 4.1.1 and 4.1.2 stated in what follows are consequences of Definition 4.1.2 and

are the most common capital allocation approaches for the VaR and TVaR because these

methods have two desirable economic properties. These properties are the full allocation

property, i.e,
∑d

i=1 %(Xi|X) = %(X) and the RORAC (Return on Risk Adjusted Capital)

compatible property (refer to Tasche (2008) for more details).
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Theorem 4.1.1. VaR contribution. Let % be the value-at-risk with equation (4.1.1) sat-

isfying the Euler capital allocation principle, then, the capital allocation for Xi is given

by,

E[Xi|X = VaRα(X)]. (4.1.5)

Proof. Refer to Tasche (2000).

Theorem 4.1.2. TVaR contribution. Let % be the tail value-at-risk with equation (4.1.2)

satisfying the Euler capital allocation principle, then, the capital allocation for Xi is given

by,

E[Xi|X ≥ VaRα(X)]. (4.1.6)

Proof. Refer to McNeil et al. (2005).

For more capital allocation techniques refer to McNeil et al. (2005).

4.1.2 Multivariate risk measures

The HCM presented in Section 2.3.3 enables to generate simulations of the unpaid claim

liabilities or as we renamed it in this section, the loss distribution, which by construction,

accounts for the dependence of the lines of business that make up the insurance portfolio.

The univariate risk measures presented in Section 4.1.1 allow to individually evaluate the

risk associated with each line of business and by analyzing the sum (as in Section 4.1.1.3)

we can allocate capital and obtain a diversification benefit if the risk measure % satisfies

the subadditivity property. In this section, we present some multivariate risk measures.

Specifically, due to the bivariate approach in the HCM, we describe bivariate risk mea-

sures that consider the dependence of the lines of business to provide additional financial

security such as the lower and upper orthant VaR presented in Cossette et al. (2016).

The additional security provided by the multivariate approach for a risk adverse entity

would be a favorable thing in terms of reserving and/or calculating the risk adjustment

for non-financial risks. In a multivariate setting, risk measures can be defined in several

ways due to partial ordering.
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In the following, we describe the bivariate lower and upper orthant VaR introduced

in Embrechts and Puccetti (1996), with a capital allocation motivation as described

in Cossette et al. (2013). Consider a bivariate random vector X = (X1, X2) with

marginal cumulative distribution functions FX1 , FX2 , marginal survival distribution func-

tions F̄X1 , F̄X2 , joint cumulative distribution function FX and joint survival distribution

function F̄X . With the same notation as Cossette et al. (2013), we denote for a fixed x1,

x2 → Fx1(x2) = FX(x1, x2) and x2 → F̄x1(x2) = F̄X(x1, x2). Then, the lower orthant

VaR is given by,

VaRα(X) =
{(
x1, F

−1
x1

(α)
)
, x1 ≥ VaRα(X1)

}
, (4.1.7)

or equivalently

VaRα(X) =
{(
F−1x2

(α), x2
)
, x2 ≥ VaRα(X2)

}
,

where F−1xi
(α) = inf{t ∈ R | Fxi(t) ≥ α}, and thus, FX

(
x1, F

−1
x1

(α)
)

= FX

(
F−1x2

(α), x2
)

=

α. The VaRα curve can be interpreted as the threshold that protectsX at level α, meaning

that events above this curve are considered tail events Mailhot and Mesfioui (2016). The

bivariate upper orthant VaR at confidence level α is denoted by the set,

VaRα(X) =
{(
x1, F̄

−1
x1

(1− α)
)
, x1 ≤ VaRα(X1)

}
, (4.1.8)

or equivalently

VaRα(X) =
{(
F̄−1x2

(1− α), x2
)
, x2 ≤ VaRα(X2)

}
,

where F̄−1xi
(α) = inf{t ∈ R|F̄xi(t) ≤ α}. The VaRα can be interpreted as the curve that

protects the joint survival probability of X at level α. The following example is carried

throughout the current section and the following Section 4.1.2.1 to visualize graphically

the bivariate risk measures.

Example 1 Consider X1 ∼ Exponential(0.2), X2 ∼ Exponential(0.4), confidence level

α = 95% and a Clayton copula (refer to Appendix B.1 for more information on the

Clayton copula) with dependence parameter θ = 2. Then, the univariate, bivariate lower

orthant and bivariate upper orthant VaR can be visualized as follows,
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Figure 4.1: Univariate VaRα, bivariate lower and upper orthant VaR for Example 1.

Figure 4.1 has 10, 000 observations from the Clayton copula in the background just for di-

dactic purposes. The risk measures displayed are the theoretical values by using equations

(4.1.1), (4.1.7) and (4.1.8).

To improve the understanding of the bivariate lower and upper orthant VaR and show a

very interesting application, in what follows we relate them to a ruin probability as done

in Cossette et al. (2013). Consider two lines of business (X1, X2) with initial allocated

reserves u1 and u2, respectively. We denote the ruin probabilities of line i for the next

period as,

Ψor(u1, u2) = P

[
2⋃
i=1

Ruini

]
, Ψand(u1, u2) = P

[
2⋂
i=1

Ruini

]
, (4.1.9)

where Ruini is defined as the next period aggregate claims Si minus the corresponding

premium income pi being larger than the initial reserves, or in mathematical notation

Ruini = {Si − pi > ui}. Then, we fix the confidence level α and assume fixed premium

incomes such that pi < V aRα(Si). Consequently, we express the set of initial reserves(
u
(or)
1 , u

(or)
2

)
such that,

Ψor(u1, u2) = 1− α coincides with VaRα(S1 − p1, S2 − p2). (4.1.10)
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The interpretation of equations (4.1.9) and (4.1.10) is that either S1 or S2 do not surpass

their respective (1 − α)% largest value. On the other hand, we express the set of initial

reserves
(
u
(and)
1 , u

(and)
2

)
such that,

Ψand(u1, u2) = α coincides with VaRα(S1 − p1, S2 − p2). (4.1.11)

Equations (4.1.9) and (4.1.11) mean that both S1 and S2 do not surpass the level α. For

examples and more details refer to Cossette et al. (2013).

Analogous to the univariate case, the bivariate upper and lower orthant VaR do not

provide information about the tail of the joint distribution X, thus, in what follows we

describe the bivariate upper and lower orthant TVaR as the conditional expectation of a

set as done in Cossette et al. (2016). The bivariate lower orthant TVaR is a set composed

of two curves of the form,

TVaRα,X(X) =
(
(x1,TVaRα,x1

(X)), (TVaRα,x2
(X), x2)

)
, (4.1.12)

where

TVaRα,xi
(X) = E

[
Xj|Xj > F−1xi

(α), Xi ≤ xi
]
, xi ≥ VaRα(Xi), i, j = 1, 2 (i 6= j).

The TVaRα,xi
(X) is the expectation of the random variable under study Xj, if it exceeds

its lower orthant VaR curve at level α, but remains below xi ∈ [VaRα(Xi),∞). Thus, if

the line of business Xj surpasses the lower orthant VaR, TVaRα,xi
(X) ensures that both

Xi and Xj are at least protected up to the level α as stated in Cossette et al. (2016). The

two curves that compose the bivariate lower orthant TVaR are observed for Example 1

in the following figure.
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Figure 4.2: Set of two curves composing the bivariate lower orthant TVaRα,X(X) for

Example 1.

Analogous to the lower orthant, the bivariate upper orthant TVaR is a set composed of

two curves of the form,

TVaRα,X(X) =
(
(x1,TVaRα,x1(X)), (TVaRα,x2(X), x2)

)
, (4.1.13)

where

TVaRα,xi(X) = E
[
Xj|Xj > F̄−1xi

(1− α), Xi ≥ xi
]
, xi ≤ VaRα(Xi), i, j = 1, 2 (i 6= j).

The TVaRα,xi(X) is the expectation of Xj, if it exceeds its upper orthant VaR curve at

level 1− α, but remains below xi ∈ [0,VaRα(Xi)]. Thus, if Xj exceeds the upper orthant

VaR, the TVaRα,xi(X) ensures with probability 1−α that both Xi and Xj are above the

threshold. The two curves that compose the bivariate upper orthant TVaR are observed

for Example 1 in the following figure.
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Figure 4.3: Set of two curves composing the bivariate upper orthant TVaRα,X(X) for

Example 1.

4.1.2.1 Capital allocation based on multivariate risk measures

In Section 4.1.1.3, we describe the capital allocation problem in the univariate setting.

For bivariate risk measures, capital allocation becomes fundamental since we have a set

of curves from which we have to select a single couple according to a certain criteria to

satisfy the capital requirement or the risk adjustment depending on the objective. We

focus on two criterion described in Cossette et al. (2013) for the lower and upper orthant

VaR and in Mailhot and Mesfioui (2016) for the lower and upper orthant TVaR. The two

criterion are the proportional allocation method and the orthogonal projection method.

Furthermore, we seek to extend the proportional allocation method to the TVaR with a

practical application.

From Figure 4.1, we can observe that the univariate VaR for X1 and X2 serve as a

boundary for the bivariate upper and lower orthant VaR (refer to Cossette et al. (2013)

for a proof). Thus, the orthogonal projection VaR, mathematically, seeks to minimize

the euclidean distance from the curve to the two boundaries, but in our context, the

interpretation is to find the closest couple to the stand-alone basis while accounting for
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dependence. Thus, we have the following optimization problem,

min
x1>VaRα(X1)

(x1 − VaRα(X1))
2 + (F−1x1

(α)− VaRα(X2))
2. (4.1.14)

We denote as x∗1 the argument that minimizes expression (4.1.14). Thus, the couple(
x∗1, F

−1
x∗1

(α)
)

is the optimal couple using the orthogonal projection for the bivariate lower

orthant VaR. Analogously, to obtain the optimal couple for the upper orthant VaR we

replace F−1x1
(α) with F̄−1x1

(1− α) in (4.1.14) subject to values of x1 < VaRα(X1). The or-

thogonal projection method relies on the assumption that the VaRα(X) curve (VaRα(X),

respectively) is convex (concave).

The idea for the orthogonal projection of the VaR can be used for the TVaR as done in

Mailhot and Mesfioui (2016). In Figure 4.2 and 4.3 it can be seen that the VaRα(X1)

and TVaRα(X2) serve as boundaries for the lower and upper orthant TVaR of x1 (refer to

Mailhot and Mesfioui (2016) for a proof). Thus, the orthogonal projection for the lower

orthant TVaR is modified from the VaR in the following way,

min
xi>VaRα(Xi)

(xi − VaRα(Xi))
2 + (TVaRα,xi

(X)− TVaRα(Xj))
2, i, j = 1, 2 (i 6= j).

(4.1.15)

After finding the optimal values (x∗1, x
∗
2) that solve the two optimization problems (4.1.15),

the optimal couple is given by,

TVaRα,x∗(X) =
(

TVaRα,x∗2
(X),TVaRα,x∗1

(X)
)
. (4.1.16)

The method is analogous for the bivariate upper TVaR.

The second method is the proportional allocation method described in Cossette et al.

(2013) for the VaR. Its advantage is that it considers the possible difference of scale be-

tween the lines of business by selecting the couples that intersect with the linear equation

x1 = VaRα(X1)
VaRα(X2)

x2 where VaRα(X1)
VaRα(X2)

is the ratio measuring the difference in scales between X1

and X2. Thus, the optimization problem for the bivariate lower VaR is given by,

min
x1>VaRα(X1)

x1 − VaRα(X1)

VaRα(X2)
F−1x1

(α)

2

. (4.1.17)
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Similar to the orthogonal projection method, as stated in Cossette et al. (2013) the solu-

tion relies on the convexity of the bivariate lower orthant VaR (concavity for the respective

upper orthant VaR) and the argument which minimizes (4.1.17) provides the optimal cou-

ple
(
x∗1, F

−1
x∗1

(α)
)

. Respectively, for the bivariate upper orthant VaR we replace F−1x1
(α)

with F̄−1x1
(1− α) subject to values of x1 < VaRα(X1).

In this thesis, we seek to extend the proportional allocation method to the TVaR since

we consider of the utmost importance to consider the tail events of the joint distribution

of the random vector X. Similarly to the optimization problem with the VaR, we now

seek to find the intersection with the linear equation x1 = TVaRα(X1)
TVaRα(X2)

x2, where the slope

of the line homogenizes the scale in the data through the quotient of the univariate tail

value-at-risks. Thus, the minimization problem for the bivariate lower orthant TVaR is

given by,

min
x1>VaRα(X1)

x1 − TVaRα(X1)

TVaRα(X2)
TVaRα,x1

(X)

2

. (4.1.18)

To obtain the optimal couple we rely on the convexity of the bivariate lower orthant TVaR

and respectively, on the concavity of the bivariate upper orthant TVaR. Consequently,

the argument x∗1 minimizing (4.1.18) is found by solving the following equation,

d

dx1
TVaRα,x1

(X) =
TVaRα(X1)

TVaRα(X2)
. (4.1.19)

Yielding the optimal couple,(
x∗1,TVaRα,x∗1

(X)
)

=

(
x∗1,

TVaRα(X2)

TVaRα(X1)
x∗1

)
. (4.1.20)

The minimization problem in (4.1.18) is then repeated for the curve TVaRα,x2
(X) to find

the optimal couple given by,

TVaRα,x∗(X) =
(

TVaRα,x∗2
(X),TVaRα,x∗1

(X)
)
. (4.1.21)

The process is analogous for the bivariate upper TVaR subject to the restriction of x1 <

VaRα(X1).
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Figure 4.4: Univariate and bivariate VaRα and TVaRα intersection with proportional

allocation line for Example 1.

In Figure 4.4 we continue with Example 1 where we can observe with straight lines the

univariate VaRα (in purple) for X1 and X2, the TVaR (in darkgreen) for X1 and X2 and

the proportional allocation line (in red) x1 = VaRα(X1)
VaRα(X2)

x2 which for this example happens

to be the same as x1 = TVaRα(X1)
TVaRα(X2)

x2, although this is not always the case. Then, we have

the bivariate lower and upper VaR (in black) and the bivariate lower and upper TVaR

(in darkgreen). Furthermore, in the black box at the center of the graph we highlight

with red points the intersections of all the given curves which are further explained in the

following Figure 4.5.
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Figure 4.5: Zoom in of black box in Figure 4.4 to visualize intersection between univariate

and bivariate risk measures with the proportional allocation line for Example 1.

Figure 4.5 is of the utmost importance because it shows empirically the ordering of the op-

timal couples when considering the proportional allocation method. Using the traditional

stand-alone method the optimal couples are represented by the intersection of the univari-

ate value-at-risk (VaRα(X1),VaRα(X2)) or if the insurer decides to consider the tail events,

the intersection of the tail value-at-risk (TVaRα(X1),TVaRα(X2)). If the insurer consid-

ers dependence between the lines of business without considering tail events and wants to

protect the joint survival probability up to level α, then the optimal couple with the pro-

portional allocation method is
(
x∗1, F̄

−1
x∗1

(1− α)
)

and when considering the tail events, the

optimal reserving amounts are
(
TVaRα,x∗2

(X),TVaRα,x∗1
(X)

)
. Analogously, if the insurer

wants to protect the portfolio X with a confidence level α then, the optimal threshold

with the proportional allocation method is
(
x∗1, F

−1
x∗1

(α)
)

and more conservatively, when

considering the tail events the optimal couple is
(

TVaRα,x∗2
(X),TVaRα,x∗1

(X)
)

.

Constructing the proportional allocation line (observed in red in Figure 4.5) allows to
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have a set of 6 possible reserving couples accounting for dependence, tail events, joint

probability of survival or the threshold that protects the whole portfolio. Thus, its a

tool providing the entity and the actuary with a risk management problem which can be

solved according to the entity’s view of risk as established by IFRS 17 in Chapter 1.

4.2 Cost of capital method

Another way of determining the risk adjustment for non-financial risk is using the cost of

capital method described in IAA (2018), where the risk adjustment is the present value

of the future cost of capital associated with the unpaid claim liabilities. The amount of

capital is determined considering the probability distribution of future cash flows, however,

it is not necessary since such amounts are not defined based on regulatory capital. The

risk adjustment is calculated as,

Risk adjustment =

n∑
t=1

rt · Ct
(1 + dt)t

, (4.2.1)

where,

• Ct is the assigned capital amount for the period ending at time t,

• rt is the selected cost of capital rate for period ending at time t, and

• dt is the selected discount rate at time t, reflecting a yield curve, if appropriate.

The amount of capital Ct, considered in this thesis, is the difference between the amount

from the probability distribution associated with the selected confidence level α and the

expected value. Thus, for a non-life insurance liability Xt at time t and risk measure % at

level α, the amount of capital is given by,

Ct = %α(Xt)− E[Xt].

The main advantage of the cost of capital method is the simplicity with which an actu-
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ary can explain the method to management and contrary to the quantile techniques (in

Section 4.1.1 and 4.1.2), it considers the cost of bearing the uncertainty in the liabilities

through the cost of capital rate. But, as mentioned in Section 1.1.2.5, in the end, the risk

adjustment has to be converted to a confidence level. Moreover, this technique requires

additional assumptions over the cost of capital rate which is not an easy task due to the

long-term nature of the unpaid claim liabilities.
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Chapter 5

Numerical Application

This chapter contains details on the data analysis which led to the model presented in

Chapter 3 under the General Model measurement of IFRS 17 and the capital requirements

set by OSFI, described in Chapter 1. The dataset used is provided by Eckler Ltd and

corresponds to data from the Canadian automobile industry. All calculations are done

with R, some specific packages are used and are mentioned in their specific section and

furthermore, each statistical test is evaluated at a 95% confidence level. The dataset can be

purchased online through the General Insurance Statistical Agency (GISA) and consists of

two different P&C insurance lines (Reports AUTO7001 and AUT07002) for three regions

in Canada, making a total of six lines of business to model. The lines of business are

personal auto (PA) and commercial auto (CA) for the province of Ontario (ON), Alberta

(AB) and Atlantic Canada (ATL)1. The incremental incurred claim amounts and earned

premiums are not disclosed for confidentiality reasons.

Loss and Expense (L&E) semestrial claim amounts are available for each dataset from the

first semester of 1997 (denoted from now on as 1997-1 and correspondingly, 1997-2 for the

second semester) to the second semester of 2017. General notes on the historical claims

are available starting from 2003-1 and thus, only fifteen years of information are taken into

1Atlantic Canada is made up of four provinces: Prince Edward Island, New Brunswick, Nova Scotia

and Newfoundland and Labrador.
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account. It is important to note that the Memorandum for the Appointed Actuary of a

P&C company OSFI (2017) establishes that for the Appointed Actuary’s Return specified

in subsection 667(2) of the Insurance Companies Act Government of Canada (1991), the

Appointed Actuary should assess the change in the unpaid claim liabilities for all lines of

business for 10 years of data or move towards the 10 year standard. Furthermore, in the

actuarial literature it is a common practice to analyze data with run-off triangles using

the 10 year standard. Although that is the standard practice, in the following analysis,

the industry aggregates are analyzed (the sum for each insurer of a given province) and

thus, it is assumed that a large insurance company is being assessed which consequently

has actual experience that surpasses the 10 year standard. Therefore, the semestrial data

for 15 years of experience is modeled for demonstration purposes. For a specific company

replicating the presented model, the data could be stored and modeled every four months

and be equivalent to the size of the loss triangle in this analysis.

5.1 Descriptive statistics

After constructing the run-off triangle with incremental incurred claims as in Table 2.1

and calculating the loss ratios for each accident year and development lag, we deal with

a loss triangle of 30 × 30 (I = J = 30) making up for a total of actual experience with

465 cells where our goal is to estimate the corresponding 435 unpaid claim liabilities.

In Figure 5.1 we can observe the empirical distribution of the loss ratios through the

histograms. The personal auto line has higher loss ratios than for the commercial auto

line. Furthermore, the concentration of zeros is higher for the province of AB and ATL

compared to ON, highlighting the size of the auto insurance industry being larger for the

latter.
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Figure 5.1: Histograms of loss ratios for the 6 lines of business.

Figure 5.2: Behavior of the time series of the loss ratios by accident year for the automobile

industry of Ontario.

Figure 5.2 shows the slow convergence of the loss ratios to zero for the whole Ontario

automobile industry. Even after 10 years (lag 20), the loss ratios are considerably different

than zero, confirming the decision to model with 15 years of data. Another conclusion

we can draw from Figure 5.2 is the higher volatility observed for the commercial line as
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compared to personal auto.

5.2 Marginal model

We assume that every loss ratio for line of business k = {1, 2, 3, 4, 5, 6} corresponding

respectively to {PA ON, CA ON, PA AB, CA AB, PA ATL, CA ATL}, is of the form,

Y
(k)
i,j |Xi,j ∼ TWp(k)(µ

(k)
i,j , φ

(k)
j ), (5.2.1)

where the covariates Xi,j are the latent variables accident semester i and development

lag j. Furthermore, for each line of business and accident year we have the following

covariance matrix V
(k)
i = A

(k)
i

1/2
Ri(ρ

(k))A
(k)
i

1/2
. The mean model and dispersion sub-

model parameters including correlation {β(k),γ(k), ρ(k)} are estimated with the two-step

estimation method introduced in Section 2.2.7.1. The estimated parameters for the six

lines of business are shown in Appendix A.

The goodness-of-fit tests to assess the distributional assumptions on the response variable

with the respective log-link function along with the correlation test are shown in the

following Table 5.1.

ON ON AB AB ATL ATL

PA CA PA CA PA CA

K-S 0.21 0.69 0.08 0.29 0.47 0.04

A-D 0.25 0.37 0.10 0.11 0.31 0.07

L-B 0.00 0.54 0.00 0.18 0.86 0.11

Table 5.1: Goodness-of-fit and correlation test: p-values for marginal models.

The goodness-of-fit tests of Table 5.1 are performed on the estimated cumulative distri-

bution functions of the loss ratios which are calculated through the following formula,

Û
(k)
i,j = F (Yi,j; µ̂

(k)
i,j , φ̂

(k)
j , p̂(k)), (5.2.2)
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where F is the cumulative distribution function of a Tweedie random variable with mean

µ̂
(k)
i,j , dispersion φ̂

(k)
j and index parameter p̂(k) for all values of i, j and k. To evaluate

the cumulative distribution function of a Tweedie distribution, the package tweedie con-

structed from the research of Tweedie (1984); Jørgensen (1987, 1997); Smyth and Verbyla

(1999) is used. Then, the p-values from Table 5.1 are calculated under the assumption

that the Û
(k)
i,j are independent observations with distribution U(0, 1) in spite of the covari-

ance structure as discussed in Section 2.2.7.2. Both K-S and A-D tests assessing the fit

in the center and tails of the distributions respectively, are satisfactory for the six lines of

business. The goodness-of-fit with equation (5.2.2) is shown in Figure 5.3 for the personal

auto line of Ontario given that it is the line with the highest financial impact of the insur-

ance portfolio as seen in Section 5.4. The Ljung-Box test performed on the uncorrelated

residuals calculated with equation (2.2.49) is satisfactory for four out of the six lines of

business. For personal auto in Ontario and Alberta, the AR(1) assumption is insufficient

and could be extended to account for higher lags but in order to maintain a parsimonious

model and the assumptions equal for all lines of business, the residuals remain correlated.

A graphical contrast between the correlated residuals computed through equation (2.2.44)

before the GEE approach and the uncorrelated residuals obtained with equation (2.2.49)

after using GEE is shown for the commercial auto line of Alberta in Figure 5.4.
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Figure 5.3: Goodness-of-fit measured through the Anderson-Darling and Kolmogorov-

Smirnov test for the personal auto line of Ontario before the GEE approach (first row)

and after the GEE approach (second row).

Figure 5.4: Time series of residuals before (first row) and after (second row) using GEE

for the commercial auto line of Alberta.
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5.3 Hierarchical copula model

The fitting of copulas and statistical tests performed in this section are done with help

from the copula package. It is important to mention that Ontario, Alberta and Atlantic

Canada are provinces with privately owned insurers, meaning they have to operate with

a lower loss ratio relative to public regimes Devlin (2017). Moreover, the three provinces

are regulated under the Canadian legislation, and thus, the risk aggregation technique by

Burgi et al. (2008) described in Section 2.3.3 is a reasonable approach because of their

shared characteristics. The first decision to account for the diversification benefit is to

consider the dependence between personal and commercial auto for the same province as

stated in Chapter 3. In the first column of Figure 5.5 and Figure 5.6 we have a marginal

dependence contrast, in the residuals plot we observe the dependence once the marginal

effects (temporal effects and correlation) have been removed and in the third column, we

observe the empirical copula for the province of Ontario and Alberta, respectively.

Figure 5.5: Personal auto vs Commercial auto for Ontario

Figure 5.6: Personal auto vs Commercial auto for Alberta
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For the province of Alberta, a stronger dependence can be observed as compared to On-

tario. In the residuals plot of Figure 5.6, the cloud of points has an observable stronger

positive dependence. Before assigning a copula to each province, we test for indepen-

dence through the value of Kendall’s τ and testing if its statistically different than zero.

Additionally, a Cramér-von Mises test with 1000 simulations of the statistic Sn under

independence relying on the empirical copula process as in Genest and Rémillard (2004).

Province Kendall’s τ p-value

ON 0.102 0.000

AB 0.188 0.000

ATL 0.058 0.058

Cramér-von Mises

0.007

0.000

0.073

Table 5.2: Independence tests by province. The Cramér-von Mises column shows the

p-values obtained.

In Table 5.2 we can observe the three provinces have a Kendall’s τ that is statistically

significant different than zero but the independence test using the Cramér-von Mises is

not rejected for Atlantic Canada. To assess whether the independence copula is a good

assumption for Atlantic Canada, an additional test is performed with 100 simulations of a

product copula with help from the package TwoCop as in Genest and Rémillard (2008)

resulting in a p-value of 0.11 confirming the hypothesis H0 : Cn = Π, where Π is the

independence copula.
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Figure 5.7: Comparison of empirical copula for Alberta vs rank-based simulations of

different copula families.

Through visual comparisons as the one presented for Alberta in Figure 5.7 and satisfactory

goodness-of-fit tests based on 500 parametric bootstraps of the Cramér-von Mises test,

the following copulas were selected.

Province
Copula

family

Dependence

parameters

Standard deviation

parameter
p-value

ON t ν = 8, ρ = 0.166 0.050 0.59

AB t ν = 5, ρ = 0.290 0.049 0.77

ATL Independence - - -

Table 5.3: Goodness-of-fit for copula models by province.

The residuals are summed in order to continue with the bivariate semi-parametric estima-
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tion approach for the HCM. Three permutations of pairs are available for the second level

of the hierarchy: Alberta-Ontario, Alberta-Atlantic Canada or Ontario-Atlantic Canada.

Alberta and Atlantic Canada have the stronger dependence as measured by Kendall’s τ

with a value of 0.147 and moreover, they share characteristics as using common factors for

pricing and equal possible minimum liabilities limits as mentioned in Devlin (2017). Ad-

ditionally, for a same subject, prices are more alike between Alberta and Atlantic Canada

than compared to Ontario, possibly related to population size and density.

Risk

aggregation

Copula

family

Dependence

parameters

Standard deviation

parameter
p-value

AB+ATL t ν = 4, ρ = 0.228 0.050 0.39

Table 5.4: Goodness-of-fit for the second level of dependence: Alberta and Atlantic

Canada.

In Table 5.4 the dependence reflected by the risk aggregation of Alberta and Atlantic

Canada is stronger than the dependence within the risks in the province of Ontario.

Residuals are summed again for Alberta and Atlantic Canada and the same dependence

analysis, copula selection and estimation techniques are applied in the last dependence

level to merge the province of Ontario, but the independence test shows,

Risk aggregation Kendall’s τ p-value

ON+AB+ATL 0.016 0.59

Cramér-von Mises

0.204

Table 5.5: Independence tests in the last node of the hierarchical copula model.

From Table 5.5, we can conclude there is independence between Ontario and the aggre-

gation of Alberta and Atlantic Canada, therefore, a product copula is assumed for the

highest level of our HCM. The estimation stage of the hierarchical copula model is over,

and it can be represented with the following graphical structure,
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ON+AB+ATL

ON

PA CA

AB+ATL

AB

PA CA

ATL

PA CA

Figure 5.8: HCM structure by province.

Π

t8

PA CA

t4

t5

PA CA

Π

PA CA

Figure 5.9: HCM structure by copula

family.

5.4 Risk assessment and capital requirements

With the marginals from Section 5.2 and the HCM structure in Figure 5.9 we can proceed

to generate copula samples from the lower triangle using the Iman-Conover reordering

algorithm presented in Section 2.4.1 in order to compute the capital requirements and the

risk adjustment for non-financial risks. Inverting a Tweedie distribution is not a trivial

task, thus, to accelerate the simulations, the code of the tweedie package is used along

with help from the Rcpp and parallel packages.

The simulation goes as follows,

1. Generate 100,000 copula samples from the HCM in Figure 5.9.

2. Apply appropriate inverse transformations from the fitted Tweedie marginals.

3. Multiply each loss ratio by the premium of the respective accident year to obtain

the unpaid claim liabilities.
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Figure 5.10: Historical data vs historical data with one simulation of loss ratios for per-

sonal auto in Atlantic Canada.

Figure 5.11: Historical data vs historical data with one simulation of loss ratios for com-

mercial auto in Atlantic Canada.

In Figure 5.10 and 5.11, the historical data is contrasted with a plot showing one simu-

lation (in red) drawn from the HCM for personal auto and commercial auto in Atlantic
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Canada, respectively. Modeling with a DGLM the marginal distributions captured the

different volatilities observed in the data and forecasted the loss ratios accordingly. After

obtaining the 100,000 simulations of the unpaid claim liabilities for i+ j > J + 1 we can

proceed to calculate risk measures as shown in Table 5.6.

Capital

allocation

ON ON AB AB ATL ATL
Sum

PA CA PA CA PA CA

VaR
SILO - 95.24 6.99 18.03 1.96 8.73 0.72 131.67

HCM - 95.19 6.98 18.01 1.96 8.73 0.72 131.59

TVaR

SILO - 95.63 7.03 18.12 1.98 8.77 0.73 132.26

HCM - 95.61 7.02 18.10 1.98 8.77 0.73 132.21

SILO Euler 95.54 6.69 17.43 1.81 8.42 0.65 130.55

HCM Euler 95.52 6.73 17.41 1.82 8.42 0.65 130.54

Table 5.6: Univariate VaR and TVaR at α = 99% in billions (CAD) for the six lines of

business.

Table 5.6 shows the VaR and TVaR at a confidence level of α = 99% with 100,000 simu-

lations of the reserves. The SILO method stands for single line of business as commonly

known in the actuarial literature and is obtained by simulating each line of business in-

dependently, i.e. using the marginal distributions without accounting for any form of

dependence within the insurance portfolio. For the TVaR, the traditional Euler capi-

tal allocation principle presented in Section 4.1.1.3 is obtained by summing across all

business lines and then allocating capital to each line. In this example, the Euler capital

allocation principle is shown for demonstration purposes but should not be selected as the

reserve amount since we are dealing with insurance lines from different provinces. Table

5.6 shows the diversification benefit obtained from using the HCM presented in Chapter

3 compared to the SILO method by resulting in lower risk measures, as expected, since

the simulation of the reserve using the SILO method do not consider any diversification
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within the insurance portfolio. The diversification benefit is equal to $82.8 million (CAD)

with the VaR, $53.6 million with the TVaR (CAD) without capital allocation techniques

and $7.4 million (CAD) using the Euler capital allocation principle. To calculate the risk

adjustment we need to subtract the expected value of the reserves from the numbers in

Table 5.6 resulting in the following:

ON ON AB AB ATL ATL
Sum

PA CA PA CA PA CA

VaR
SILO 2.79 0.28 0.67 0.13 0.28 0.06 4.20

HCM 2.74 0.27 0.65 0.13 0.28 0.06 4.12

TVaR
SILO 3.18 0.31 0.76 0.15 0.32 0.07 4.80

HCM 3.16 0.31 0.75 0.15 0.32 0.07 4.75

Table 5.7: Risk adjustments corresponding to Table 5.6 for the univariate VaR and TVaR

at α = 99% in billions (CAD) for the six lines of business.

Furthermore, if the capital allocation is pursued under a bivariate approach, because

allocating capital through the aggregation of risks on different jurisdictions is deemed

inappropriate, we can exploit measuring the insurance risks with bivariate risk measures

taking advantage of the bivariate copulas at each node specified under the HCM. In

Figure 5.12 the simulations of the t-copula for the province of Alberta under the HCM

are shown along with the univariate risk measures and the bivariate upper and lower

TVaR. Furthermore, P1 and P2 are the optimal couples under the proportional allocation

method for the TVaR. The values for all optimal couples can be observed in Table 5.8.
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Figure 5.12: 100,000 Simulations of the reserves for the province of Alberta under the

HCM. Univariate VaR (purple dotted lines) and TVaR (green straight lines) along with

bivariate lower and upper orthant TVaR (green curved lines). Optimal couples shown

with red dots.

From Table 5.8, any combination of optimal couples can be chosen as risk measures.

For example, the traditional modeling scheme is to select either the univariate VaR or

TVaR for each province which would ignore the dependence when measuring the risk

associated with the joint loss distribution. In what follows, an example is given for

each province with different couples to explain the possible justifications for selecting

bivariate risk measures. Nonetheless, we recommend to the appointed actuary to select

a homogeneous approach across the insurance portfolio to keep the capital selection as

objective as possible. For Ontario, we could select the orthogonal couple of the bivariate

upper TVaR because the insurer wants to protect the joint survival probability of both

lines simultaneously exceeding the threshold with probability 1− α while accounting for

the size of the personal auto line which is the largest for the whole portfolio through the
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orthogonal approach. For Alberta, we could select the proportional optimal couple for the

bivariate lower orthant TVaR (P2 in Figure 5.12) due to the strong dependence observed

for this province and we want to protect proportionally the joint probability of both

lines not exceeding the threshold while accounting for tail events. For Atlantic Canada,

we could select the univariate VaR given that the dependence and tail events (due to

independence copula) are not as significant as to be considered for the risk measurements.

The combination of these three couples makes a total of $4.3 billion (CAD) corresponding

to a smaller adjustment of risk compared to the univariate TVaR as seen in Table 5.7. The

risk adjustment calculated with the optimal couple using the orthogonal method for the

upper VaR in Table 5.8 is negative due to the fact that personal auto in Alberta is more

than six times the volume of commercial auto. This difference in proportions is causing

the orthogonal method to put more weight to the personal auto line in the optimization

problem seen in equation (4.1.14). Although covering both lines of business is useful from

a probability of ruin perspective, capital can not be negative, thus, we discard this specific

couple from the possible selections of capital.
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Risk measure Optimal couple
ON ON AB AB ATL ATL

PA CA PA CA PA CA

VaR Univariate (2.74, 0.27) (0.65, 0.13) (0.28, 0.06)

VaR Orthogonal (2.79, 0.36) (0.67, 0.16) (0.29, 0.07)

VaR Proportional (3.06, 0.29) (0.74, 0.14) (0.33, 0.06)

VaR Orthogonal (2.57, -0.02) (0.58, 0.05) (0.25, 0.00)

VaR Proportional (1.64, 0.19) (0.41, 0.10) (0.09, 0.04)

TVaR Univariate (3.16, 0.31) (0.75, 0.15) (0.32, 0.07)

TVaR Orthogonal (3.20, 0.39) (0.77, 0.17) (0.33, 0.08)

TVaR Proportional (3.29, 0.32) (0.77, 0.15) (0.34, 0.07)

TVaR Orthogonal (2.98, 0.06) (0.68, 0.07) (0.29, 0.02)

TVaR Proportional (1.85, 0.21) (0.46, 0.11) (0.11, 0.05)

Table 5.8: Risk adjustments calculated through bivariate risk measures in billions (CAD)

under different risk assumptions at a confidence level α = 99% for the HCM.

As an alternative from the quantile methods, in the following we use the cost of capital

method presented in Section 4.2 to calculate the risk adjustment for non-financial risks.

To use the cost of capital method, we need assumptions for the cost of capital rate and

the discount rate. In practice, the rates should vary with time but in this thesis, the

analysis is over the whole automobile industry for three provinces in Canada instead of a

single entity. Therefore, the cost of capital rate is entity specific and for demonstration

purposes we assume a constant cost of capital rate of rt = 8%. Moreover, modeling the

discount rate is out of the scope of this research and thus, we assume a constant discount

rate of dt = 2%. We used the cost of capital method with the risk measure % being the

univariate TVaR at a confidence level α = 99% to account for tail events.
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Period E[X] TVaRα Ct Cost Cost
(1+dt)t

2018-1 13.43 14.40 0.97 0.08 0.08

2018-2 11.80 12.54 0.74 0.06 0.06

2019-1 10.52 11.03 0.51 0.04 0.04

2019-2 9.33 9.71 0.38 0.03 0.03

2020-1 8.12 8.43 0.31 0.02 0.02

2020-2 6.94 7.20 0.26 0.02 0.02

2021-1 5.83 6.05 0.22 0.02 0.02

2021-2 4.83 5.03 0.20 0.02 0.01

2022-1 3.96 4.15 0.20 0.02 0.01

2022-2 3.22 3.42 0.19 0.02 0.01

2023-1 2.62 2.81 0.19 0.02 0.01

2023-2 2.14 2.32 0.18 0.01 0.01

2024-1 1.75 1.91 0.16 0.01 0.01

2024-2 1.44 1.59 0.15 0.01 0.01

2025-1 1.19 1.33 0.14 0.01 0.01

Period E[X] TVaRα Ct Cost Cost
(1+dt)t

2025-2 0.99 1.11 0.11 0.01 0.01

2026-1 0.83 0.93 0.10 0.01 0.01

2026-2 0.70 0.79 0.10 0.01 0.01

2027-1 0.59 0.67 0.09 0.01 0.00

2027-2 0.49 0.57 0.08 0.01 0.00

2028-1 0.41 0.48 0.08 0.01 0.00

2028-2 0.34 0.41 0.07 0.01 0.00

2029-1 0.28 0.34 0.06 0.01 0.00

2029-2 0.22 0.27 0.05 0.00 0.00

2030-1 0.17 0.22 0.05 0.00 0.00

2030-2 0.13 0.17 0.04 0.00 0.00

2031-1 0.09 0.12 0.03 0.00 0.00

2031-2 0.06 0.09 0.03 0.00 0.00

2032-1 0.03 0.06 0.03 0.00 0.00

Table 5.9: Cost of capital method disclosed by accident year in billions (CAD) for personal

auto in Ontario assuming a cost of capital rate rt = 8% and discount rate dt = 2%.

In Table 5.9 the procedure to calculate the risk adjustment is shown for the personal

auto line of Ontario. The risk adjustment is respectively the sum of the discounted costs

which totals to $395 million (CAD). The risk adjustment for non-financial risks using this

method is shown for all lines of business in Table 5.10 along with a comparison when the

cost of capital rate is rt = 10% and with undiscounted cost of capital, i.e. dt = 0%, to

make the data comparable with the risk measures from Table 5.8.
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Province Line
Risk

adjustment

Equivalent

α

rt = 8%

dt = 2%

ON PA 395 64.74%

ON CA 50 69.28%

AB PA 106 66.30%

AB CA 24 69.62%

ATL PA 45 66.82%

ATL CA 11 68.89%

dt = 0%

ON PA 457 65.49%

ON CA 60 69.96%

AB PA 122 67.01%

AB CA 29 70.61%

ATL PA 54 67.41%

ATL CA 13 69.67%

Risk

adjustment

Equivalent

α

rt = 10%

493 68.18%

62 73.61%

132 70.06%

30 73.88%

57 70.67%

13 73.06%

571 69.05%

75 74.33%

153 70.82%

36 74.97%

68 71.26%

16 73.82%

Table 5.10: Risk adjustment for non-financial risks displayed in millions (CAD) for the six

lines of business and equivalent confidence level for the VaR with two different assumptions

for the cost of capital rate rt and discount rate dt.

In Table 5.10 we disclose the confidence level α equivalent to calculating the risk adjust-

ment through the VaRα as specified by IFRS 17 described in Section 1.1.2.5. In this

specific example, the TVaR at a 99% confidence level is used with two different assump-

tions over the cost of capital rate and the discount rate which resulted in a smaller risk

adjustment than using risk measures (see Table 5.7 and Table 5.8). In Canada, if the

risk adjustment is computed through the cost of capital method, the insurance entity has

to make sure the total amount of the liability does not fall below the supervisory target

capital requirement set by OSFI, discussed in Section 1.2. Modifying the assumptions ac-

cordingly to the entity’s view of risk might result in a larger risk adjustment than with the

risk measures but the important conclusion is drawn from understanding the difference

between these methods. The cost of capital method takes into account the specific cost of
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capital for the insurance entity which can vary across companies and as shown in Table

5.10, a 2% increase in the cost of capital rate can increase the risk adjustment significantly.

Furthermore, using risk measures as done in Table 5.8 considers the possible tail events

in each province directly through the measurement of risk and depending on the couple

selected, additional financial security can be obtained for the insurance portfolio.
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Conclusion

In this thesis, we developed a model for the assessment of non-financial risks of a P&C

insurer complaint with the new International Financial Reporting Standards (IFRS 17).

A numerical application is presented with automobile data for three provinces from the

Canadian insurance industry which simultaneously has to comply with the regulator’s

(OSFI) capital requirements.

The Tweedie family provides a clever method to fit aggregate insurance claims even when

the number of claims is not recorded or is unreliable and moreover, through a transforma-

tion of the parameters it is linked to the classical Compound Poisson-Gamma distribution.

Generalized linear modeling for the marginal effects is a common practice in the industry,

hence, the same approach is used in this thesis. Moreover, in scenarios where the volatility

of the data is significant or due to long development of claims, a double generalized linear

model is a powerful tool to solve the problem. Long development of claims could carry

along correlated data which left unchecked, would change the ranks of the residuals and

consequently, the dependence analysis. Thus, the autoregressive lag through generalized

estimating equations just adds one parameter to be estimated and solves the problem in

most scenarios.

IFRS 17 seeks to globally homogenize financial reports for insurance companies making of

the utmost importance to spread the possible techniques currently available to measure

the risk adjustment for non-financial risks required to measure an insurance portfolio

while complying with the risk adjustment characteristics and objective. In this thesis, the

diversification benefit is obtained with a semi-parametric HCM and through multivariate
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risk measures when aggregation is deemed not appropriate. Although there exist several

possible ways to account for dependence in an insurance portfolio, the bivariate approach

simplifies understanding through visual representations of the joint distribution and its

risk measures.
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Deheuvels, P. (1979). La fonction de dépendence empirique et ses propriétés. un test non

paramétrique. Bulletin Royal Belge de l’Académie des Sciences, 65:274–292.

Derendinger, F. (2015). Copula-based hierarchical risk aggregation. Master’s thesis, Swiss

Federal Institute of Technology Zurich, Zurich, Switzerland.

Devlin, R. A. (2017). A comparison of automobile insurance regimes in canada. https:

//bit.ly/2RAwuo5.

Dunn, P. K. and Smyth, G. K. (2004). Series evaluation of tweedie exponential dispersion

model densities. Statistics and Computing, 15(4):267–280.

Embrechts, P., Lindskog, F., and J. Mcneil, E. (2001). Modelling dependence with cop-

ulas and applications to risk management. Handbook of Heavy Tailed Distributions in

Finance, 8.

105

https://bit.ly/2TFVpDP
https://bit.ly/2TFVpDP
https://bit.ly/2RAwuo5
https://bit.ly/2RAwuo5


Embrechts, P. and Puccetti, G. (1996). Bounds for functions of multivariate risks. Journal

of Multivariate Analysis, 97(2):526–547.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation proce-

dure of dependence parameters in multivariate families of distributions. Biometrika,

82(3):543–552.

Genest, C. and Rémillard, B. (2004). Tests of independence and randomness based on the

empirical copula process. Sociedad de Estad́ıstica e Investigación Operativa, 13(2):335–

369.

Genest, C. and Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-

fit testing in semiparametric models. Annales de l’Institut Henri Poincaré, 44(6):1096–
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Appendix A

Estimated marginal parameters

The standard deviation of the parameters is shown in parenthesis.

No. Parameter PA ON PA ON CA ON CA ON PA AB PA AB CA AB CA AB PA ATL PA ATL CA ATL CA ATL

1 Intercept -1.55 (0.00) -1.80 (0.00) -1.05 (0.01) -1.12 (0.01) -1.40 (0.01) -1.48 (0.01)

2 AY = 2003-2 -0.13 (0.00) 0.03 (0.00) 0.01 (0.00) -0.14 (0.00) -0.10 (0.00) -0.07 (0.00)

3 AY = 2004-1 -0.29 (0.00) -0.24 (0.00) -0.21 (0.00) -0.36 (0.00) -0.27 (0.00) -0.29 (0.00)

4 AY = 2004-2 -0.10 (0.00) -0.27 (0.00) -0.12 (0.00) -0.10 (0.00) -0.09 (0.00) -0.07 (0.00)

5 AY = 2005-1 -0.23 (0.00) -0.40 (0.00) -0.21 (0.00) -0.42 (0.00) -0.10 (0.00) -0.48 (0.00)

6 AY = 2005-2 -0.06 (0.00) 0.04 (0.00) -0.12 (0.00) -0.24 (0.00) 0.05 (0.00) -0.07 (0.00)

7 AY = 2006-1 -0.11 (0.00) -0.23 (0.00) -0.26 (0.00) -0.37 (0.00) -0.17 (0.00) -0.34 (0.00)

8 AY = 2006-2 0.09 (0.00) 0.00 (0.00) -0.01 (0.00) -0.07 (0.00) 0.01 (0.00) -0.38 (0.00)

9 AY = 2007-1 0.02 (0.00) -0.16 (0.00) -0.31 (0.00) -0.42 (0.00) -0.19 (0.00) -0.54 (0.00)

10 AY = 2007-2 0.08 (0.00) 0.10 (0.00) -0.11 (0.00) -0.19 (0.00) -0.02 (0.00) -0.33 (0.00)

11 AY = 2008-1 -0.02 (0.00) -0.07 (0.00) -0.25 (0.00) -0.45 (0.00) -0.23 (0.00) -0.47 (0.00)

12 AY = 2008-2 0.09 (0.00) 0.36 (0.00) -0.13 (0.00) -0.29 (0.00) -0.25 (0.00) -0.39 (0.00)

13 AY = 2009-1 0.06 (0.00) 0.18 (0.00) -0.38 (0.00) -0.84 (0.00) -0.21 (0.00) -0.59 (0.00)

14 AY = 2009-2 0.27 (0.00) 0.16 (0.00) -0.20 (0.00) -0.51 (0.00) 0.01 (0.00) -0.54 (0.00)

15 AY = 2010-1 0.16 (0.00) 0.03 (0.00) -0.53 (0.00) -0.61 (0.00) -0.10 (0.00) -0.57 (0.00)

16 AY = 2010-2 0.15 (0.00) 0.09 (0.00) -0.23 (0.00) -0.66 (0.00) 0.01 (0.00) -0.12 (0.00)

17 AY = 2011-1 -0.08 (0.00) -0.12 (0.00) -0.44 (0.00) -0.60 (0.00) -0.18 (0.00) -0.64 (0.00)

18 AY = 2011-2 0.00 (0.00) 0.00 (0.00) -0.18 (0.00) -0.34 (0.00) 0.01 (0.00) -0.06 (0.00)

19 AY = 2012-1 -0.13 (0.00) -0.06 (0.00) -0.29 (0.00) -0.63 (0.00) -0.16 (0.00) -0.73 (0.00)

20 AY = 2012-2 -0.03 (0.00) 0.03 (0.00) -0.09 (0.00) -0.21 (0.00) 0.13 (0.00) -0.45 (0.00)

21 AY = 2013-1 -0.13 (0.00) -0.14 (0.00) -0.26 (0.00) -0.24 (0.00) -0.15 (0.00) -0.36 (0.00)

22 AY = 2013-2 0.06 (0.00) 0.02 (0.00) -0.02 (0.00) -0.30 (0.00) 0.17 (0.00) 0.00 (0.00)

23 AY = 2014-1 -0.10 (0.00) -0.06 (0.00) -0.25 (0.00) -0.63 (0.00) -0.09 (0.00) -0.07 (0.00)

24 AY = 2014-2 0.07 (0.01) 0.18 (0.00) 0.06 (0.00) -0.25 (0.00) 0.07 (0.00) -0.03 (0.00)

25 AY = 2015-1 -0.03 (0.01) -0.09 (0.00) -0.13 (0.01) -0.48 (0.00) 0.05 (0.00) -0.17 (0.00)

26 AY = 2015-2 0.13 (0.01) 0.12 (0.01) 0.05 (0.01) -0.43 (0.01) 0.31 (0.00) -0.05 (0.01)

27 AY = 2016-1 -0.02 (0.01) -0.09 (0.01) -0.18 (0.01) -0.66 (0.01) 0.09 (0.00) -0.31 (0.01)

28 AY = 2016-2 0.09 (0.02) 0.02 (0.01) 0.02 (0.01) -0.33 (0.01) 0.16 (0.01) -0.11 (0.01)

29 AY = 2017-1 -0.12 (0.02) -0.15 (0.01) -0.27 (0.02) -0.47 (0.02) 0.01 (0.01) -0.12 (0.02)

30 AY = 2017-2 0.15 (0.02) 0.13 (0.02) -0.06 (0.05) -0.17 (0.09) 0.20 (0.05) 0.03 (0.04)

Table A.1: Mean model - Accident year effects.
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No. Parameter PA ON PA ON CA ON CA ON PA AB PA AB CA AB CA AB PA ATL PA ATL CA ATL CA ATL

31 DL = 2 -0.33 (0.00) -0.24 (0.00) -0.63 (0.01) -0.46 (0.01) -0.60 (0.01) -0.47 (0.00)

32 DL = 3 -0.55 (0.00) -0.44 (0.00) -1.21 (0.01) -1.14 (0.01) -0.90 (0.01) -0.81 (0.01)

33 DL = 4 -0.61 (0.00) -0.43 (0.00) -1.36 (0.01) -1.30 (0.01) -0.98 (0.01) -0.87 (0.01)

34 DL = 5 -0.61 (0.00) -0.37 (0.00) -1.43 (0.01) -1.37 (0.01) -1.05 (0.01) -0.94 (0.01)

35 DL = 6 -0.65 (0.00) -0.38 (0.00) -1.51 (0.01) -1.49 (0.01) -1.15 (0.01) -0.99 (0.01)

36 DL = 7 -0.71 (0.00) -0.43 (0.00) -1.56 (0.01) -1.55 (0.01) -1.24 (0.01) -1.07 (0.01)

37 DL = 8 -0.82 (0.00) -0.50 (0.00) -1.66 (0.01) -1.66 (0.01) -1.35 (0.01) -1.20 (0.01)

38 DL = 9 -0.97 (0.00) -0.63 (0.00) -1.77 (0.01) -1.78 (0.01) -1.49 (0.01) -1.30 (0.01)

39 DL = 10 -1.14 (0.00) -0.78 (0.00) -1.90 (0.01) -1.94 (0.01) -1.67 (0.01) -1.46 (0.01)

40 DL = 11 -1.34 (0.00) -0.96 (0.00) -2.08 (0.01) -2.14 (0.01) -1.84 (0.01) -1.62 (0.01)

41 DL = 12 -1.56 (0.00) -1.15 (0.00) -2.25 (0.01) -2.37 (0.01) -2.02 (0.01) -1.75 (0.01)

42 DL = 13 -1.78 (0.00) -1.42 (0.00) -2.46 (0.01) -2.61 (0.01) -2.22 (0.01) -1.91 (0.01)

43 DL = 14 -2.02 (0.00) -1.68 (0.00) -2.68 (0.01) -2.79 (0.01) -2.42 (0.01) -2.14 (0.01)

44 DL = 15 -2.25 (0.00) -1.91 (0.00) -2.89 (0.01) -3.01 (0.01) -2.62 (0.01) -2.21 (0.01)

45 DL = 16 -2.45 (0.00) -2.11 (0.00) -3.15 (0.01) -3.24 (0.01) -2.82 (0.01) -2.40 (0.01)

46 DL = 17 -2.64 (0.00) -2.34 (0.00) -3.39 (0.01) -3.39 (0.01) -3.05 (0.01) -2.70 (0.01)

47 DL = 18 -2.84 (0.00) -2.60 (0.00) -3.58 (0.01) -3.83 (0.01) -3.25 (0.01) -3.14 (0.01)

48 DL = 19 -2.99 (0.00) -2.77 (0.00) -3.76 (0.01) -4.03 (0.01) -3.49 (0.01) -3.39 (0.01)

49 DL = 20 -3.15 (0.00) -2.79 (0.00) -3.98 (0.01) -4.23 (0.01) -3.63 (0.01) -3.45 (0.01)

50 DL = 21 -3.33 (0.00) -3.03 (0.00) -4.22 (0.01) -4.42 (0.01) -3.74 (0.01) -3.91 (0.01)

51 DL = 22 -3.48 (0.00) -3.25 (0.00) -4.51 (0.01) -4.74 (0.01) -3.95 (0.01) -4.11 (0.01)

52 DL = 23 -3.63 (0.00) -3.46 (0.00) -4.70 (0.01) -4.89 (0.01) -4.08 (0.01) -4.15 (0.01)

53 DL = 24 -3.74 (0.00) -3.72 (0.00) -5.10 (0.01) -5.05 (0.01) -4.34 (0.01) -4.67 (0.01)

54 DL = 25 -3.88 (0.00) -3.78 (0.00) -5.37 (0.01) -4.96 (0.01) -4.69 (0.01) -5.07 (0.01)

55 DL = 26 -4.03 (0.00) -3.88 (0.00) -5.82 (0.01) -5.22 (0.01) -4.74 (0.01) -4.95 (0.01)

56 DL = 27 -4.15 (0.00) -4.58 (0.00) -5.83 (0.01) -5.28 (0.01) -5.08 (0.01) -6.56 (0.01)

57 DL = 28 -4.25 (0.00) -4.46 (0.00) -5.84 (0.01) -9.87 (0.01) -5.09 (0.01) -6.80 (0.01)

58 DL = 29 -4.23 (0.00) -4.55 (0.00) -6.09 (0.01) -13.40 (0.01) -5.62 (0.01) -5.73 (0.01)

59 DL = 30 -4.57 (0.00) -4.67 (0.00) -6.16 (0.01) -13.48 (0.01) -5.72 (0.01) -12.12 (0.01)

Table A.2: Mean model - Development Lag effects.
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No. Parameter PA ON PA ON CA ON CA ON PA AB PA AB CA AB CA AB PA ATL PA ATL CA ATL CA ATL

60 Intercept -4.80 (0.28) -5.78 (0.27) -4.29 (0.27) -2.94 (0.27) -4.53 (0.27) -4.80 (0.28)

61 DL = 2 0.56 (0.39) -1.36 (0.39) -0.89 (0.39) -2.08 (0.39) -2.05 (0.39) -0.68 (0.39)

62 DL = 3 0.58 (0.39) -1.75 (0.40) -1.53 (0.39) -2.79 (0.40) -3.11 (0.39) -1.05 (0.40)

63 DL = 4 -0.16 (0.40) -1.72 (0.40) -1.32 (0.39) -2.46 (0.39) -3.43 (0.40) -1.03 (0.40)

64 DL = 5 -0.87 (0.40) -1.81 (0.41) -1.55 (0.40) -2.79 (0.40) -4.14 (0.41) -2.76 (0.44)

65 DL = 6 -1.33 (0.41) -2.02 (0.41) -2.00 (0.40) -3.01 (0.40) -4.71 (0.42) -2.34 (0.42)

66 DL = 7 -1.65 (0.41) -2.20 (0.42) -3.15 (0.42) -4.35 (0.44) -4.91 (0.43) -2.19 (0.42)

67 DL = 8 -2.47 (0.43) -2.46 (0.43) -3.53 (0.44) -3.92 (0.43) -4.68 (0.43) -1.87 (0.42)

68 DL = 9 -3.23 (0.46) -1.76 (0.42) -3.36 (0.43) -3.44 (0.42) -4.05 (0.42) -1.19 (0.42)

69 DL = 10 -2.88 (0.45) -1.72 (0.43) -2.86 (0.43) -2.53 (0.42) -3.26 (0.42) -1.00 (0.42)

70 DL = 11 -2.21 (0.44) -1.54 (0.43) -2.72 (0.43) -2.40 (0.43) -2.94 (0.42) -0.73 (0.43)

71 DL = 12 -1.50 (0.44) -0.55 (0.43) -2.52 (0.44) -2.07 (0.43) -2.46 (0.43) -0.38 (0.43)

72 DL = 13 -0.77 (0.44) -0.35 (0.44) -2.03 (0.44) -1.72 (0.44) -2.56 (0.44) -0.50 (0.44)

73 DL = 14 -0.43 (0.45) -0.48 (0.45) -1.58 (0.45) -1.40 (0.45) -2.04 (0.44) 0.00 (0.45)

74 DL = 15 -0.11 (0.46) -0.66 (0.46) -1.83 (0.46) -1.29 (0.45) -2.01 (0.45) 0.28 (0.46)

75 DL = 16 0.36 (0.47) -0.23 (0.47) -1.89 (0.47) -0.98 (0.46) -1.93 (0.46) -0.07 (0.47)

76 DL = 17 0.04 (0.48) 0.13 (0.48) -1.45 (0.48) -0.89 (0.48) -1.87 (0.48) -0.20 (0.48)

77 DL = 18 -0.08 (0.50) 0.64 (0.49) -1.26 (0.49) -1.53 (0.49) -1.82 (0.49) -0.47 (0.49)

78 DL = 19 0.22 (0.51) 0.43 (0.51) -1.46 (0.51) -0.97 (0.50) -2.27 (0.50) -0.33 (0.51)

79 DL = 20 -0.03 (0.53) 0.81 (0.52) -1.50 (0.53) -0.66 (0.52) -2.42 (0.52) 0.06 (0.53)

80 DL = 21 0.48 (0.55) 0.16 (0.54) -1.05 (0.55) -0.65 (0.54) -2.51 (0.54) 0.27 (0.55)

81 DL = 22 0.47 (0.57) 0.49 (0.57) -0.70 (0.57) -0.36 (0.57) -2.41 (0.57) 0.82 (0.57)

82 DL = 23 1.06 (0.60) 0.66 (0.60) -0.50 (0.60) -0.50 (0.60) -2.30 (0.60) 0.95 (0.60)

83 DL = 24 1.25 (0.64) 0.98 (0.64) -0.24 (0.64) -0.23 (0.64) -1.45 (0.64) 0.64 (0.64)

84 DL = 25 0.80 (0.69) 0.51 (0.69) -0.46 (0.69) -0.07 (0.69) -1.43 (0.69) 0.25 (0.69)

85 DL = 26 1.39 (0.76) 0.01 (0.76) -1.05 (0.76) 0.08 (0.76) -1.92 (0.76) 0.66 (0.76)

86 DL = 27 1.33 (0.86) -1.81 (0.86) -1.27 (0.86) 0.60 (0.86) -2.21 (0.86) -0.95 (0.86)

87 DL = 28 0.27 (1.04) -3.19 (1.04) -1.56 (1.04) -0.97 (1.04) -2.57 (1.04) -0.64 (1.04)

88 DL = 29 0.71 (1.44) -3.10 (1.45) -4.10 (1.47) -2.46 (1.44) -5.21 (1.45) 0.22 (1.44)

89 DL = 30 1.80 (6.33) -8.96 (6.33) -8.67 (6.33) 0.02 (6.33) -9.00 (6.33) -2.17 (6.33)

Table A.3: Dispersion submodel - Development lag effects.

Correlation PA ON CA ON PA AB CA AB PA ATL CA ATL

ρ 0.80 0.67 0.72 0.68 0.75 0.69

Table A.4: Correlation parameter ρ estimated using GEE.

Index parameter PA ON CA ON PA AB CA AB PA ATL CA ATL

p 1.900 1.200 1.500 1.500 1.215 1.200

Table A.5: Index parameter p for the Tweedie distribution.
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Appendix B

Other copula families

B.1 Archimedean Copulas

One of the main advantages of this copula family is that Archimedean copulas can be

written in closed-form. In contrast with elliptical copulas, Archimedean copulas are able

to capture lower and upper tail dependencies and not just radial symmetry McNeil et al.

(2005). They allow for positive or negative association, one of the primary reasons for its

popularity in applications in insurance, finance and medical statistics Shi and Frees (2011).

Clayton, Frank and Gumbel-Hougaard copulas are famous examples of Archimedean cop-

ulas.

Definition B.1.1. Archimedean copulas Nelsen (2006). Let the copula generator ϕ be a

continuous, strictly decreasing function ϕ : [0, 1]→ [0,∞], such that ϕ(1) = 0, then C is

an Archimedean copula if and only if ϕ is convex. The copula C has the form,

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)). (B.1.1)

With help from equation (B.1.1) we can summarize the most common Archimedean cop-

ulas in a bivariate setting with their copula generator ϕ.
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Copula family Generator ϕθ(t) Parameter domain Independence

Clayton 1
θ
(t−θ − 1) θ ∈ [−1,∞) θ → 0

Frank − ln
(
e−θt−1
e−θ−1

)
θ ∈ (−∞,∞) θ → 0

Gumbel-Hougaard (− ln t)θ θ ∈ [1,∞] θ = 1

Table B.1: Common Archimedean copula families and some of their properties.

Table B.1 is constructed from McNeil et al. (2005).

B.2 Plackett copula

Definition B.2.1. For a random vector (X, Y ), the Plackett copula, see Plackett (1965),

with dependence parameter θ > 0, has the form,

C(u, v) =
2θuv

B +
√
B2 − 4uvθ(θ − 1)

, (B.2.1)

where B = 1 + (θ − 1)(u+ v).

The Plackett copula in (B.2.1) only exists in a bivariate setting. It was proposed by

Plackett (1965) but the closed-form was found by Mardia (1967). The Plackett copula

was constructed to satisfy the following properties,

• If θ → 0, then C → W , the counter-monotonic copula.

• If θ = 1, then C = Π, the product copula and thus, stochastic independence.

• If θ →∞, then C →M , the comonotonic copula.
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