Publications

Search
Author [ Title(Desc)] Type Year
A
Narayanan, N. , & Chou, C. P. . (2009). Alleviation of Proteolytic Sensitivity To Enhance Recombinant Lipase Production in Escherichia coli. Applied and Environmental Microbiology, 75, 5424-5427. 2009_alleviation_of_proteolytic_sensitivity_to_enhance_recombinant_lipase_production_in_escherichia_coli.pdf
Westbrook, A. , Scharer, J. , Moo-Young, M. , Oosterhuis, N. , & Chou, C. P. . (2014). Application of a two-dimensional disposable rocking bioreactor to bacterial cultivation for recombinant protein production. Biochemical Engineering Journal, 88, 154-161.
Westbrook, A. W. , Ren, X. , Moo-Young, M. , & Chou, C. P. . (2018). Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis. Biotechnology and Bioengineering, 115, 1239-1252. 2018_application_of_hydrocarbon_and_perfluorocarbon_oxygen_vectors_to_enhance_heterologous_production_of_hyaluronic_acid_in_engineered_bacillus_subtilis.pdf
Chou, C. P. , Wang, W. C. , & Lin, M. I. . (2000). An approach for enhancing heterologous production of Providencia rettgeri penicillin acylase in Escherichia coli. Biotechnology Progress, 16, 315-318.
Narayanan, N. , Hsieh, M. Y. , Xu, Y. L. , & Chou, C. P. . (2006). Arabinose-induction of lac-derived promoter systems for penicillin acylase production in Escherichia coli. Biotechnology Progress, 22, 617-625.
B
Miscevic, D. , Mao, J. - Y. , Mozell, B. , Srirangan, K. , Moo-Young, M. , & Chou, C. P. . (2021). Bio-based production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli. Applied Microbiology and Biotechnology, 105, 1435-1446 . 2021_bio-based_production_of_poly3-hydroxybutyrate-co-3-hydroxyvalerate_with_modulated_monomeric_fraction_in_escherichia_coli.pdf
Srirangan, K. , Pyne, M. E. , & Chou, C. P. . (2011). Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresource Technology, 102, 8589-8604. 2011_biochemical_and_genetic_engineering_strategies_to_enhance_hydrogen_production_in_photosynthetic_algae_and_cyanobacteria.pdf
Lin, W. J. , Kuo, B. Y. , & Chou, C. P. . (2001). A biochemical engineering approach for enhancing production of recombinant penicillin acylase in Escherichia coli. Bioprocess and Biosystems Engineering, 24, 239-247.
Srirangan, K. , Liu, X. J. , Westbrook, A. , Akawi, L. , Pyne, M. E. , Moo-Young, M. , & Chou, C. P. . (2014). Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Applied Microbiology and Biotechnology, 98, 9499-9515. 2014bi2.pdf
Xu, Y. , Zhang, L. , Yao, W. , Yedahalli, S. S. , Brand, S. , Moo-Young, M. , & Chou, C. P. . (2009). Bioprocess development for production, purification, and structural characterization of recombinant hCD83ext as a potential therapeutic protein. Protein Expression and Purification, 65, 92-99.
Srirangan, K. , Orr, V. , Akawi, L. , Westbrook, A. , Moo-Young, M. , & Chou, C. P. . (2013). Biotechnological advances on Penicillin G acylase: Pharmaceutical implications, unique expression mechanism and production strategies. Biotechnology Advances, 31, 1319-1332. 2013_biotechnological_advances_on_penicillin_g_acylase_pharmaceutical_implications_unique_expression_mechanism_and_production_strategies.pdf
Chou, C. P. . (2023). Biotechnology, "Intellectual Properties", and "Human Rights". Contact Dr. Chou for the preprint.
C
Mao, J. - Y. , Miscevic, D. , Unnikrishnana, B. , Chua, H. - W. , Chou, C. P. , Chang, L. , Lin, H. - J. , et al. (2022). Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. Journal of Colloid and Interface Science, 608, 1813-1826. 2022_carbon_nanogels_exert_multipronged_attack_on_resistant_bacteria_and_strongly_constrain_resistance_evolution.pdf
Xu, Y. L. , Weng, C. L. , Narayanan, N. , Hsieh, M. Y. , Anderson, W. A. , Scharer, J. M. , Moo-Young, M. , et al. (2005). Chaperone-mediated folding and maturation of the penicillin acylase precursor in the cytoplasm of Escherichia coli. Applied and Environmental Microbiology, 71, 6247-6253. 2005_chaperone-mediated_folding_and_maturation_of_penicillin_acylase_precursor_in_the_cytoplasm_of_escherichia_coli.pdf
Xu, Y. L. , Rosenkranz, S. , Weng, C. L. , Scharer, J. M. , Moo-Young, M. , & Chou, C. P. . (2006). Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli. Applied Microbiology and Biotechnology, 72, 529-536.
Pyne, M. E. , Moo-Young, M. , Chung, D. E. A. , & Chou, C. P. . (2015). Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli. Applied and Environmental Microbiology, 81, 5103-5114. 2015_coupling_the_crispr_cas9_system_with_lambda_red_recombineering_enables_simplified_chromosomal_gene_replacement_in_escherichia_coli.pdf
Xu, Y. L. , Hsieh, M. Y. , Narayanan, N. , Anderson, W. A. , Scharer, J. M. , Moo-Young, M. , & Chou, C. P. . (2005). Cytoplasmic overexpression, folding, and processing of penicillin acylase precursor in Escherichia coli. Biotechnology Progress, 21, 1357-1365.
D
Lin, W. J. , Huang, S. W. , & Chou, C. P. . (2001). DegP-coexpression minimizes inclusion-body formation upon overproduction of recombinant penicillin acylase in Escherichia coli. Biotechnology and Bioengineering, 73, 484-492. 2001_degp-coexpression_minimizes_inclusion_body_formation_upon_overproduction_of_recombinant_penicillin_acylase_in_escherichia_coli.pdf
Sukhija, K. , Pyne, M. , Ali, S. , Orr, V. , Abedi, D. , Moo-Young, M. , & Chou, C. P. . (2012). Developing an Extended Genomic Engineering Approach Based on Recombineering to Knock-in Heterologous Genes to Escherichia coli Genome. Molecular Biotechnology, 51, 109-118.
Zhong, L. Y. , Srirangan, K. , Scharer, J. , Moo-Young, M. , Fenner, D. , Crossley, L. , Honeyman, C. H. , et al. (2011). Developing an RNase-free bioprocess to produce pharmaceutical-grade plasmid DNA using selective precipitation and membrane chromatography. Separation and Purification Technology, 83, 121-129.

Pages