Evaluating COVID-19 Vaccine Efficacy Using Kaplan–Meier Survival Analysis
Abstract
:1. Introduction
2. Survival Analyses in Epidemiological Contexts
2.1. The Kaplan–Meier Method
2.2. Application of the Kaplan–Meier Method
3. Methods: Modeling Vaccinated Ontarians
- Period 1 (“Delta period”): 77,220 possible persons, 5 July 2021 to 12 August 2021 [inclusive],
- Period 2 (“Omicron period”): 21,658 possible persons, 16 November 2021 to 24 December 2021 [inclusive].
- is defined as the start of a given period (either 5 July or 16 November 2021),
- is defined as the date at which a person received their last vaccine dose,
- An observed test date occurs at any given number of days following (defined as ),
- The duration of vaccination for any given person is calculated as .
4. Results
5. Discussion
5.1. The Role of Variants of Concern
5.2. Validation
6. Limitations of the Study
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahase, E. Vaccinating the UK: How the covid vaccine was approved, and other questions answered. BMJ 2020, 371, m4759. [Google Scholar] [CrossRef] [PubMed]
- Vilches, T.N.; Zhang, K.; Van Exan, R.; Langley, J.M.; Moghadas, S.M. Projecting the impact of a two-dose COVID-19 vaccination campaign in Ontario, Canada. Vaccine 2021, 39, 2360–2365. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.F.; Schmidt, P.; Witte, A.D. Survival analysis: A survey. J. Quant. Criminol. 1991, 7, 59–98. [Google Scholar] [CrossRef]
- Snider, B.; McBean, E.A. Improving Urban Water Security through Pipe-Break Prediction Models: Machine Learning or Survival Analysis. J. Environ. Eng. 2020, 146, 04019129. [Google Scholar] [CrossRef]
- Parsa, H.G.; Self, J.; Sydnor-Busso, S.; Yoon, H.J. Why Restaurants Fail? Part II—The Impact of Affiliation, Location, and Size on Restaurant Failures: Results from a Survival Analysis. J. Foodserv. Bus. Res. 2011, 14, 360–379. [Google Scholar] [CrossRef]
- Rabbani, M.A.; Habib, H.B.; Islam, M.; Ahmad, B.; Majid, S.; Saeed, W.; Shah, S.M.A.; Ahmad, A. Survival analysis and prognostic indicators of systemic lupus erythematosus in Pakistani patients. Lupus 2009, 18, 848–855. [Google Scholar] [CrossRef]
- Cole, S.R.; Hudgens, M.G. Survival analysis in infectious disease research: Describing events in time. AIDS 2010, 24, 2423–2431. [Google Scholar] [CrossRef]
- Kenah, E. Contact intervals, survival analysis of epidemic data, and estimation of R0. Biostatistics 2011, 12, 548–566. [Google Scholar] [CrossRef]
- Kenah, E.; Britton, T.; Halloran, M.E.; Longini, I.M. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees. PLoS Comput. Biol. 2016, 12, e1004869. [Google Scholar] [CrossRef]
- Henderson, R.; Jones, M.; Stare, J. Accuracy of point predictions in survival analysis. Stat. Med. 2001, 20, 3083–3096. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Motakis, E.; Ivshina, A.; Kuznetsov, V. Data-driven approach to predict survival of cancer patients. IEEE Eng. Med. Biol. Mag. 2009, 28, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Scanniello, G. Source code survival with the Kaplan Meier. In Proceedings of the 2011 27th IEEE International Conference on Software Maintenance (ICSM), Williamsburg, VA, USA, 25–30 September 2011; pp. 524–527. [Google Scholar] [CrossRef]
- Tang, Y. Some new confidence intervals for Kaplan-Meier based estimators from one and two sample survival data. Stat. Med. 2021, 40, 4961–4976. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.T.; Neely, J.G.; Paniello, R.C.; Voelker, C.C.J.; Nussenbaum, B.; Wang, E.W. A practical guide to understanding Kaplan-Meier curves. Otolaryngol. Neck Surgery Off. J. Am. Acad. Otolaryngol.-Head Neck Surg. 2010, 143, 331–336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Satten, G.A.; Datta, S. The Kaplan–Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average. Am. Stat. 2001, 55, 207–210. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Prentice, R.L. The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Woodroofe, M. Estimating a Distribution Function with Truncated Data. Ann. Stat. 1985, 13, 163–177. [Google Scholar] [CrossRef]
- Turnbull, B.W. The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data. J. R. Stat. Soc. Ser. B (Methodol.) 1976, 38, 290–295. [Google Scholar] [CrossRef]
- Jager, K.J.; van Dijk, P.C.; Zoccali, C.; Dekker, F.W. The analysis of survival data: The Kaplan–Meier method. Kidney Int. 2008, 74, 560–565. [Google Scholar] [CrossRef]
- Campigotto, F.; Weller, E. Impact of informative censoring on the Kaplan-Meier estimate of progression-free survival in phase II clinical trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 27. [Google Scholar] [CrossRef]
- Shen, Y.; Cai, J. Maximum of the Weighted Kaplan-Meier Tests with Application to Cancer Prevention and Screening Trials. Biometrics. J. Int. Biom. Soc. 2001, 57, 837–843. [Google Scholar] [CrossRef]
- Stel, V.S.; Dekker, F.W.; Tripepi, G.; Zoccali, C.; Jager, K.J. Survival Analysis I: The Kaplan-Meier Method. Nephron Clin. Pract. 2011, 119, c83–c88. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Irastorza, G.; Egurbide, M.V.; Pijoan, J.I.; Garmendia, M.; Villar, I.; Martinez-Berriotxoa, A.; Erdozain, J.G.; Aguirre, C. Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. Lupus 2006, 15, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, B.; Lotan, R.; Kalkstein, N.; Peretz, A.; Perez, G.; Ben-Tov, A.; Chodick, G.; Gazit, S.; Patalon, T. Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat. Commun. 2021, 12, 6379. [Google Scholar] [CrossRef] [PubMed]
- Abu-Raddad, L.J.; Chemaitelly, H.; Ayoub, H.H.; Tang, P.; Hasan, M.R.; Coyle, P.; Yassine, H.M.; Benslimane, F.M.; Al-Khatib, H.A.; Al-Kanaani, Z.; et al. Protection offered by mRNA-1273 versus BNT162b2 vaccines against SARS-CoV-2 infection and severe COVID-19 in Qatar. medRxiv 2021. [Google Scholar] [CrossRef]
- Zheutlin, A.; Ott, M.; Sun, R.; Zemlianskaia, N.; Rubel, M.; Hayden, J.; Neri, B.; Kamath, T.; Khan, N.; Schneeweiss, S.; et al. Durability of Protection against COVID-19 Breakthrough Infections and Severe Disease by Vaccines in the United States. medRxiv 2022. [Google Scholar] [CrossRef]
- Laubereau, B.; Hermann, M.; Schmitt, H.J.; Weil, J.; Von Kries, R. Detection of delayed vaccinations: A new approach to visualize vaccine uptake. Epidemiol. Infect. 2002, 128, 185–192. [Google Scholar] [CrossRef]
- Pass, R.F.; Zhang, C.; Evans, A.; Simpson, T.; Andrews, W.; Huang, M.L.; Corey, L.; Hill, J.; Davis, E.; Flanigan, C.; et al. Vaccine Prevention of Maternal Cytomegalovirus Infection. N. Engl. J. Med. 2009, 360, 1191–1199. [Google Scholar] [CrossRef]
- Barman, M.P.; Rahman, T.; Bora, K.; Borgohain, C. COVID-19 pandemic and its recovery time of patients in India: A pilot study. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1205–1211. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y.; Wang, F.; Ren, H.; Zhang, S.; Shi, X.; Yu, X.; Dong, K. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001343. [Google Scholar] [CrossRef]
- Vasquez-Peddie, A. Omicron: Some Provinces Face COVID-19 Test Backlogs. 2021. Available online: https://www.ctvnews.ca/health/coronavirus/some-provinces-face-covid-19-pcr-testing-backlogs-amid-omicron-surge-1.5721812 (accessed on 20 July 2024).
- Tavilani, A.; Abbasi, E.; Kian Ara, F.; Darini, A.; Asefy, Z. COVID-19 vaccines: Current evidence and considerations. Metab. Open 2021, 12, 100124. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern. medRxiv 2021. [Google Scholar] [CrossRef]
- Fontanet, A.; Cauchemez, S. COVID-19 herd immunity: Where are we? Nat. Rev. Immunol. 2020, 20, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Vogel, L. An early look at Omicron. Can. Med Assoc. J. 2022, 194, E58. [Google Scholar] [CrossRef] [PubMed]
- Goel, M.K.; Khanna, P.; Kishore, J. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res. 2010, 1, 274. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Tenforde, M.W.; Rhoads, J.P.; Gaglani, M.; Ginde, A.A.; Douin, D.J.; Olson, S.M.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; et al. Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) Vaccines in Preventing COVID-19 Hospitalizations among Adults without Immunocompromising Conditions—United States, March–August 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1337–1343. [Google Scholar] [CrossRef]
- Puranik, A.; Lenehan, P.J.; Silvert, E.; Niesen, M.J.; Corchado-Garcia, J.; O’Horo, J.C.; Virk, A.; Swift, M.D.; Halamka, J.; Badley, A.D.; et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv 2021. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Pfizer vaccine efficacy was 52% after first dose and 95% after second dose, paper shows. BMJ 2020, 371, m4826. [Google Scholar] [CrossRef]
- Rashedi, R.; Samieefar, N.; Masoumi, N.; Mohseni, S.; Rezaei, N. COVID-19 vaccines Mix-and-match: The concept, the efficacy and the doubts. J. Med. Virol. 2021, 94, 1294–1299. [Google Scholar] [CrossRef]
- Goldman, R.D. Myocarditis and pericarditis after COVID-19 messenger RNA vaccines. Can. Fam. Physician Med. Fam. Can. 2022, 68, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J. Med. Virol. 2021, 94, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Sjölander, A. A Cautionary Note on Extended Kaplan–Meier Curves for Time-varying Covariates. Epidemiology 2020, 31, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Brockman, M.A.; Mwimanzi, F.; Lapointe, H.R.; Sang, Y.; Agafitei, O.; Cheung, P.K.; Ennis, S.; Ng, K.; Basra, S.; Lim, L.Y.; et al. Reduced Magnitude and Durability of Humoral Immune Responses to COVID-19 mRNA Vaccines Among Older Adults. J. Infect. Dis. 2021, 225, 1129–1140. [Google Scholar] [CrossRef]
- Howard, J. A Fourth COVID-19 Shot Might be Recommended This Fall, as Officials ‘Continually’ Look at Emerging Data; CNN Health: Atlanta, GA, USA, 2022. [Google Scholar]
Doses | Vaccines under Consideration | ||||
---|---|---|---|---|---|
1 | Pfizer (1) | Moderna (1) | AstraZeneca (1) | - | - |
2 | Pfizer (2) | Moderna (2) | AstraZeneca (2) | AZ (1) + Pfizer (1) | AZ (1) + Moderna (1) |
3 | Pfizer (3) | Moderna (3) | - | - | - |
Vaccine | Branded Name | Name Used in This Study | Vaccine Type | Ages Eligible for Receipt (January 2022) |
---|---|---|---|---|
Pfizer-BioNTech’s COVID-19 Vaccine (BNT162b2) | Comirnaty | Pfizer | mRNA | 5 and older [37] |
Moderna’s COVID-19 Vaccine (mRNA-1273) | Spikevax | Moderna | mRNA | 12 and older [38] |
Two Doses (Delta Period) | Three Doses (Omicron Period) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Vaccine | All Ages | Under 20 | 20 to 39 | 40 to 64 | 65 and Older | All Ages | Under 20 | 20 to 39 | 40 to 64 | 65 and Older |
Pfizer | 59,061 | 14,583 | 18,660 | 16,537 | 9281 | 19,213 | - | 6500 | 7643 | 4843 |
Moderna | 18,159 | 1188 | 7936 | 6079 | 2956 | 2445 | - | 405 | 855 | 1176 |
Age Group | Delta Period | Omicron Period |
---|---|---|
Under 20 | 0.47 | – |
20 to 39 | 0.07 | 0.04 |
40 to 64 | 0.06 | 0.30 |
65 and Older | 0.07 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilal, W.; Chislett, M.G.; Wu, Y.; Snider, B.; McBean, E.A.; Yawney, J.; Gadsden, S.A. Evaluating COVID-19 Vaccine Efficacy Using Kaplan–Meier Survival Analysis. BioMedInformatics 2024, 4, 2117-2132. https://doi.org/10.3390/biomedinformatics4040113
Hilal W, Chislett MG, Wu Y, Snider B, McBean EA, Yawney J, Gadsden SA. Evaluating COVID-19 Vaccine Efficacy Using Kaplan–Meier Survival Analysis. BioMedInformatics. 2024; 4(4):2117-2132. https://doi.org/10.3390/biomedinformatics4040113
Chicago/Turabian StyleHilal, Waleed, Michael G. Chislett, Yuandi Wu, Brett Snider, Edward A. McBean, John Yawney, and Stephen Andrew Gadsden. 2024. "Evaluating COVID-19 Vaccine Efficacy Using Kaplan–Meier Survival Analysis" BioMedInformatics 4, no. 4: 2117-2132. https://doi.org/10.3390/biomedinformatics4040113
APA StyleHilal, W., Chislett, M. G., Wu, Y., Snider, B., McBean, E. A., Yawney, J., & Gadsden, S. A. (2024). Evaluating COVID-19 Vaccine Efficacy Using Kaplan–Meier Survival Analysis. BioMedInformatics, 4(4), 2117-2132. https://doi.org/10.3390/biomedinformatics4040113