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Abstract

The physics based simulators used as the current state of the art in predicting wild
fires have been found to be difficult to set up and operate, very slow, requiring
large amounts of computational resources and high quality data sets, having an
inherent bias that does not generalize and rendering low accuracies. In this regard
there is a critical need for alternate tools that can augment or replace these physics
based simulators. We demonstrate an approach that uses Reinforcement Learning
for predicting the spread of wild fires over the next few days and/or months based
on the the physical conditions of the landscape, the intensity and the location of
the wild fire at present. The fire is modelled as the agent in this Markov Decision
Process setting where it is designed to make a spread choice based on the physical
conditions surrounding it. The agent learns to weight the relative importance
of different environmental variables as it trains using copious amounts of data.
This is a direct contrast to the physics based simulators where a large amount
of expert rules are used to model the physical laws. We have run our suggested
setting on real and synthetic fires and noted its specific advantages. We have
also studied a particular fire simulation system and recognized its advantages and
deficiencies. We propose that the approaches using recent advances in Artificial
Intelligence techniques should be used in combination with the existing physics
based simulators to entail more accurate and easy to use fire prediction models.

1 Introduction

Wild fires are becoming one of the most dangerous natural disasters in many countries. These are
not seasonal in nature anymore and have become a perennial problem. The problem is escalating
quickly. From the 1980s to 2015 the number of acres burned has grown from two million a year to
eight million a year [1]. 2018 has particularly been a bad fire year, with wild fires raging in regions
like British Columbia (Canada) [15] and California (United States) [3]. Wild fire prediction systems
built on the physics based and/or rule based processes are the current state of the art in performing fire
simulation and risk assessment. Many different types of fire simulators have been proposed and used
in the wild fire modelling and prediction literature over the last few years. In-spite of this fact, wild
fire researchers and practitioners have not been able to converge on a single comprehensive model
of the fire behavior [16]. The authors in [11] evaluate some of the state of the art fire simulators
using real wild fire datasets in Iran. The accuracy of most methods are reported to be around 50%.
The major factors that must be improved for obtaining better accuracy estimates are reported to be
availability of good quality input data, theoretical basis of the fire behaviour model and the fire growth
algorithm which need to be improved. In [2], the authors survey the most popular fire behaviour
models and conclude that there are very few or no fire behaviour models that can be easily used for
risk assessment and fuel management in case of wild fires and the existing fire behaviour models all
have distinct and complex data input and output formats, that are not easily available. The authors
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(a) Schematic of the state and actions

Figure 1: Forest Wildfire Satellite Data Domain: A schematic of the wildfire motion domain at a
particular state and timestep. The red (dark) cells are on fire, the green (light) are not on fire, the dark
circle indicates the current cell or agent being spread by the policy. The arrows around the dark circle
indicates the action choices possible. The white circle indicates that other cells will be considered for
spread. The arrows from the white circle indicates that there is a strong wind blowing towards North
and the north action is the most likely action choice for these cells (effect of wind).

in [6] analyze contemporary fire modelling systems like FARSITE and NEXUS and demonstrate a
significant under prediction bias in the simulations of fire modelling systems. The reasons for this
bias in the designed expert rules of the systems are shown to come from incompatibility in model
linkages, use of wrong fire rate spread models and uncalibrated custom fuel models. Thus, these
models are build based on the most common fire and forest types in North America, which do not
generalize well to all regions in North America and the rest of the world too. A wide range of sources
for uncertainties in contemporary wild fire management systems in summarized in [26].

Our approach involves modelling the fire into an agent that determines the best direction to move
based on the surrounding conditions. The agents explore/train using readily available real and
synthetic fire data sets and do not depend on expert knowledge which makes it flexible with respect to
the study area. The wildfire spreading problem is modelled into a Markov Decision Process (MDP),
which is subsequently solved using existing and new Reinforcement Learning (RL) algorithms to get
a fire spread policy. This approach is a "Top - Down" approach as the agent is given the complete fire
burning scenario for the entire study area which it uses to learn the fire spread policy on individual
pixels (small subsets) of the data. On the other hand the fire simulation systems in practice today have
a "bottom up" approach where they have a predefined fire spread policy, that is applied to individual
pixels to determine the overall burning areas in the study area given the ignition points. Upon initial
experiments we have determined that the two approaches are complementary and have good potential
to be combined with each other. An RL agent has been attempted in spatial process before [9] where
the author states that MDPs and RL being commonly used for representing and solving sequential
decision making problems under uncertainty is a good fit for tackling problems like forest fires. But
the analysis stop at a simulation level itself. We have used real data sets from wild fire events to make
a comprehensive analysis of the approach. Unsupervised approaches have also been tried in this
domain where the results showed better performances than modern fire danger prediction systems
in Australia [20]. This approach can take the dynamic nature of variables into account and work
with unlabeled data, but it needs huge amounts of high resolution good quality data to be successful.
Further, this only predicts the relative levels of risk of different regions in the study area, but does not
provide a detailed fire spread policy to augment the existing systems like our proposed method.

2 Reinforcement learning Model and Experiments

Reinforcement learning [24] is an area of Machine Learning where the agent learns to act in an
environment by exploring action choices in distinct states and receiving subsequent rewards. Rewards
are not strong labels given to the agent, but a weak signal on how good or bad it did. The agent aims
to learn an optimal policy that maximizes its rewards in the given scenario. Reinforcement Learning
is being used in our research, for this domain due to several reasons. The first reason being that
learning agents have never been used to understand the spread dynamics of complex natural processes
using real world events. The second reason is that RL has recently shown superior performances
in several domains and the wild fire domain seems like a natural extension to such domains with
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(a) Satellite - Optical Image (b) Satellite - Thermal Image

(c) A3C (d) MCTS-A3C

Figure 2: Results for an experiment that involve predicting forward in a wild fire setting. Performances
of A3C and MCTS-A3C are shown along with the optical and thermal images from landsat.

increased complexity. For the forest fire spread problem, an RL approach can be a possible solution as
the fire is influenced by the environment (direction of spread) and it also influences the environment
(phenomenon of burning) which is a requirement in any RL set up [23].

Our model is described in some of our earlier publications [10] and [22]. We define a Markov
Decision Process (MDP) < S,A, P,R > where the set of states S describes any location on the
landscape and where the ‘agent’ taking actions is a fire spreading across the landscape. A state s ∈ S
corresponds to the state of a cell in the landscape (x, y, te, l, w, d, rh, r, i) where x, y are the grid
coordinates of the cell, te is the temperature at the particular time and location and l is the land cover
type of the cell derived from satellite images (values include: water, vegetation, built up, bare land,
other), w is wind speed, d is wind direction, rh is relative humidity, i is the fireline intensity of fire at
a cell as defined in [12], and r is the average amount of the rainfall at the spatial coordinates during
the time of study. These variables are considered to be the most contributing factors to fire spread
as they are the primary variables in the Canadian Forest fire weather index as specified in [5]. The
action a ∈ A indicates the direction the fire at a particular cell ‘chooses’ to move: North, North-West,
North-East, South, South-West, South-East, East or West or to stay put. The reward function R maps
a cell state to a continuous value in the range [-1,1]. We have two stages of reward assignment. The
first stage is locally based and is contingent on the land cover of the cell on which the fire decides to
spread. This function scores spread choices in proportion to flammability of a cell (Veg: 0.5, Water =
-1, urban = -0.1, empty land = 0.05, Other = 0). The second stage is globally based on ground truth
information. Figure 1 shows a schematic of the domain. The transition dynamics for the problem
(for model based approaches) is derived from the physical dynamics of important state variables
in this environment. The primary data sets for our problem came from medium resolution Landsat
satellite images. The secondary data sources include Canada wildfire information portal and sources
mentioned in [17].

Experiments using this model involved predicting the location of a fire a few days into the future given
its current location, predicting the path of a fire and transferring the learned policy to a different fire in
a similar region. We studied the performances of different types of RL algorithms and the results are
summarized in [22]. We also tried a Gaussian Process supervised learning algorithm [19] to serve as
a baseline. This was chosen as Gaussian Process have been known to perform well in problems with
a spatial structure [4]. Tree based search techniques using roll out policy (Monte Carlo Tree search
[13]) and actor critic based deep learning algorithms (A3C [14]) had particular advantages in different
kinds on experiments. We also designed an algorithm, "MCTS-A3C" by a novel combination of these
algorithms that had the unique advantages of both Tree Search and Actor Critic models [21]. Figure
2 shows some results that we obtained for a particular experiment that involves predicting forward
the movement of fire given its ignition and landscape conditions. The results in figure 2 shows some
chosen important algorithms, out of all the ones we tried. We have also displayed the corresponding
satellite images from Landsat to give an idea of the performances. The red in the output image
corresponds to true positives, the blue represents false positives, the white is false negatives and black
is true negatives. For the same experiment in figure 2 the accuracy values obtained are summarized
in table 1. The custom defined MCTS-A3C gives far better results on this experiment as compared
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Algorithm GP VI PI QL MCTS A3C MCTS-A3C

Avg Accuracy 50.8% 25.4% 38.2% 10.4% 60.2% 53.2% 90.8%

Table 1: Average Accuracy for each algorithm on an experiment involving predicting forward in a
wild fire setting. The algorithms are Gaussian Processes (GP), Value Iteration (VI), Policy Iteration
(PI), Q Learning (QL), Monte Carlo Tree search (MCTS), Asynchronous Advantage Actor Critic
(A3C) and MCTS-A3C which is a custom designed [21].

to the other pre-existing state of the art RL algorithms. We have also performed experiments using
simulated fire data sets and made comparisons of the RL approach to that of a popular wild fire
simulation system (BP3 [18]) [21]. We have based our accuracy comparisons and reported results
predominantly on real fire experiments.

3 Current and Future Work

With regards to our current research focus, we are making metric comparisons between the perfor-
mances of our RL approach and additional state of the art wild fire simulator systems. The results
with BP3 wild fire prediction system indicated that BP3 had advantages in experiments where the
available data samples were error prone and sufficient data samples were not available. Further,
we observed that BP3 did quite well in small scale experiments where the study area was in the
order of a few kilometers. The RL approach did quite well in experiments with sufficient amounts
of good quality data samples and in experiments were the study area is quite large (in the order of
few thousand kilometers) [21]. Furthermore, for large study areas, BP3 which follows a cell by cell
approach take a prohibitively large amount of time to execute completely. Thus, there is a clear
indication here that a potential combination of the two distinct approaches, namely RL and BP3,
would lead to a better prediction model overall.

The different wild fire simulation systems we are considering follows different simulation models as
elaborated in [16]. In particular we are focusing on FARSITE [8] which is one of the most widely
used physics based simulator for industrial applications. The algorithm that we are considering takes
the form of having a global agent that decides to independently choose between the RL policy or a
physics-based/rule-based simulator policy based on the given state information, previous experience
and situation being modelled. The approach is similar to that demonstrated before in the robotics and
transfer learning domains as explained in [25] and [27] where the problem was much simpler due to
being a smaller domain. A confidence measure is defined and associated with the RL policy. The
agent chooses to follow the RL policy if it is confident of the policy due to sufficient exploration on
similar scenarios. Otherwise, it follows the physics based policy and uses these actions to refine the
RL policy. This approach helps the RL policy to be improved faster by targeted exploration instead
of random exploration. Additionally, the execution time is reduced and accuracy improved due to
less reliance on the physics based policy.

4 Conclusions

In our paper, we have put forth a novel approach for utilizing RL in learning wildfire spread dynamics.
The most important advantage of our method against the contemporary fire simulators is that it does
not suffer from the errors due to biases in expert rules towards fires in North America as elaborated
in [7]. Our approach is universal and can be used in any region given availability of sufficient data.
As the fire policy is learned by the agent, most uncertainties as described in [26] are also avoided.
The intersection between the decision making tools of Artificial Intelligence, the pattern recognition
tools of Machine Learning and the challenging datasets of sustainability domains offer a rich area for
research. For the machine learning community our approach opens up new sets of challenging and
plentiful data sets for learning patterns of spatial change over time in the form of spatially spreading
wildfires and a platform for experimenting with new Deep RL approaches on a challenging problem
with high social impact. For the wild fire researchers and practitioners, our approach would give a
more robust and accurate system for wild fire prediction. We also hope that our work can lead to
development of a comprehensive way of integrating Deep Learning and RL approaches to support
the tasks of prediction, dynamics model learning and decision making in many different problems
with SSP structure like floods, urban sprawl and disease spread studies.
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