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ABSTRACT 
 

Workers’ fatigue is a significant problem in physically 

demanding occupations. Physical fatigue is known to result in 

the inability to maintain proper posture and working technique. 

Consequently, workers lose their ability to safely and effectively 

perform their duties. Thus, understanding the physical demands 

of labor-intensive work is of great importance in protecting 

workers’ safety, and maintaining productivity. Current fatigue 

assessments methods, including surveys and questionnaires, are 

subjective and lack reliability. Objective fatigue assessments 

based on physiological data are more reliable, however they are 

cumbersome to implement in real work conditions. There is a 

need for an objective fatigue assessment method that can monitor 

physical fatigue with minimal intrusion. The goal of this study 

was to investigate whether jerk, the time-derivative of 

acceleration, can be used to objectively detect physical fatigue. 

A pilot study on masons was conducted to determine if physical 

fatigue can be detected by changes in jerk values. Ten 

participants performed a bricklaying task using forty-five 

concrete masonry units (CMU). Seven body segments, namely 

the hands, forearms, upper arms, and pelvis, were selected for 

placement of IMU sensors to measure the segment accelerations. 

Jerk was calculated from the measured acceleration via 

numerical differentiation. Characteristic values of the jerk at the 

beginning and end of the bricklaying task were obtained to 

represent the rested and fatigued states. They were then 

compared for significant differences. Jerk values calculated from 

the IMU sensors located on the upper arms and pelvis showed 

significant differences between rested and fatigued states. The 

results of this pilot study indicate that the characteristic jerk can 

be used to detect physical fatigue, however caution must be taken 

in selecting sensor locations to reduce the influence of spurious 

signals. 

INTRODUCTION  
 

Physical fatigue is defined as a decrease in the ability to 

generate force due to vigorous and or sustained physical activity.  

Physical fatigue may lead to short-term outcomes such as 

increased risk of accidents, and long-term adverse outcomes 

such as chronic fatigue syndrome, burnout syndrome, and 

increased risk of ergonomic hazards such as work-related 

musculoskeletal disorders (WMSD) [1]. The adverse effects of 

fatigue on workers’ safety, health, and productivity is widely 

accepted, however, there is no consensus on quantitative 

techniques used to assess fatigue levels or establish acceptable 

limits. The human body also exhibits physical fatigue in several 

ways. Consequently, researchers have approached the detection 

of physical fatigue and measure of physical demands in a 

multitude of ways. Due to the lack of a gold standard for fatigue 

measurement, assessments are usually tailored to the task in 

which fatigue is being studied [2]. Thus, there is a clear need for 

objective fatigue assessments that can be easily implemented for 

a variety of work tasks. Understanding worker fatigue and task 

demands will aid the development of improved work procedures 

and methods, and adjustments to work-rest cycles and work 

expectations.  

 

Fatigue can be measured using objective or subjective 

assessment methods. Objective measures of fatigue focus on 

physiological processes and subjective measures focus on self-

report assessments. Previous studies on fatigue measurement 

commonly use subjective measures including questionnaires or 

surveys. Self-report assessments have been shown to be highly 

variable between workers of different ethnic and socioeconomic 

backgrounds who have their own definitions and experiences of 

fatigue [3]. To overcome the limitations of self-report 

assessments concerned with their degree of accuracy and 
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reliability, many researchers measure physiological processes. 

These processes include heart rate, oxygen consumption, EMG 

activity, and energy expenditure. However, they are often 

cumbersome and impractical to implement in real work 

conditions. Moreover, physiological and behavioral factors such 

as age, physical fitness, body weight, and smoking habits have 

also been found to significantly influence changes in 

physiological processes [4]. An alternative to objective measures 

of fatigue based on physiological processes is to use kinematic 

data collected by motion capture systems.   

 

Optoelectronic measurement systems are accepted as gold-

standards for non-invasive analysis of body motion within 

research settings. However, these systems are costly, require a 

large installation space, and require extensive post-processing. 

They are also cumbersome to the wearer and may inhibit natural 

motion. The recent development of inertial measurement units 

(IMUs) enable the automatic and continuous collection of whole 

body motion data. IMUs integrate accelerometers, 

magnetometers and gyroscopes sensors to measure acceleration, 

velocity, and orientation of body segments. Wearable IMU-based 

motion sensors are wireless, non-intrusive, versatile, and less 

costly compared to other methods of motion tracking and 

provide a more plausible solution for body motion capture. Thus, 

IMU-based sensors have high potential to be used as a field-

based fatigue assessment method.  

 

The authors propose the use of IMU-based sensors to 

objectively measure physical fatigue. Physical fatigue has been 

linked to a reduction in motor control which is commonly 

assessed using a jerk metric. Based on the kinematic data 

collected by the IMUs, jerk, the first time-derivative of 

acceleration, can be conveniently calculated. Jerk is often used 

in the medical field to assess motor control and motion 

smoothness and differentiate between healthy and pathological 

people suffering from diseases such as low back pain, stroke, and 

Parkinson’s disease. However, jerk metrics have not been widely 

studied in occupational settings to detect motor control 

impairments due to physical fatigue. Moreover, only few studies 

have examined the feasibility of using IMU-based sensors to 

detect changes in jerk values from a rested to a fatigued state. 

Therefore, this study aims to investigate the feasibility of using 

a jerk assessment based on kinematic data to objectively detect 

physical fatigue. To test the feasibility, the authors conducted a 

pilot study on indoor masonry work that involve physically 

demanding tasks. In the test, motion data was collected from ten 

participants completing a bricklaying task using IMU-based 

motion capture suits.  

LITERATURE REVIEW 
 

Motion Smoothness and Physical Fatigue 

 

Fatigue is a contributing factor to diminished motor control, 

reduced strength capacity, decreased productivity, poor quality 

of work, and loss of motivation and attentiveness [5]. Repetitive 

lifting has been found to lead to muscular fatigue and, hence, 

reduced motor performance and motor control. This is expected 

to increase loads on the low back and result in injury [6]. Thus, 

metrics used to assess motor control have the potential to be used 

to assess physical fatigue.  

 

Motion smoothness is a characteristic of healthy and well-

performed movements [7]. In literature, motion smoothness 

metrics are used to assess motor performance and control. 

Motion smoothness metrics are based on kinematic data such as 

number of peaks in the velocity profile, ratio between the 

maximum and the mean velocity during the movement, [8] and 

jerk [9]. Van Dieën et al. examined if fatigue affects the 

execution of repetitive lifting of a barbell using an optoelectronic 

system. The mean squared jerk at each joint was used as an 

indicator of motion smoothness. It was found that the group 

averages of jerk increased in all joints including the ankle, knee, 

hip, and lumbosacral joint. This was attributed to the change in 

the timing of muscle activation in the presence of fatigue to 

maintain pace [10]. Maman et al. examined the use of wearable 

sensors to detect physical fatigue occurrence in simulated 

manufacturing tasks. Predictive features of fatigue, which 

included wrists and hip jerk, were found to be strongly indicative 

of participants experiencing physical fatigue [1]. These fatigue 

assessment studies required their participants to complete tasks 

using a particular technique and at a predetermined pace. This 

would likely lead to the neglect of sub-movements performed in 

real work conditions and result in an inaccurate representation of 

worker behavior and the task.  

 

Case Study on Masonry Work 

 

In the construction industry, physical fatigue is an 

occupational hazard as it increases the incidences of injuries and 

accidents at the workplace. Among construction trades, masonry 

work involves a number of repeated manual lifting with heavy 

materials. The job duties of bricklayers require them to work in 

awkward and repetitive postures, prolonged hours, and in harsh 

on-site condition. Thus, bricklayers may suffer from physical 

fatigue which results in increased risks of injury. The 

Construction Safety Association of Ontario [11] found that 62% 

of over-exertion injuries among bricklayers are back injuries, 

with an additional 35% being upper extremity injuries. 

Consequently, this paper focuses on the upper body and trunk 

motion during a bricklaying task. With the advent of wireless 

IMUs, it has become possible to continuously collect the motion 

data required for fatigue assessment in real work conditions. 

Thus, a pilot study on masonry work was conducted to evaluate 

the feasibility of using IMU-based sensors or other wireless 

accelerometers to detect physical fatigue.  
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METHODS 
 

Bricklaying Task 

 

The experiment was conducted at the Canadian Masonry 

Design Center (CMDC) in Mississauga, Ontario in an indoor 

facility. Ten male bricklayers with varying levels of experience 

were recruited. Each participant was instructed to complete a 

pre-built lead wall using forty-five concrete masonry units 

(CMUs), Figure 1. The CMUs were Type “A” concrete units, 

each weighing 16.6 kg with dimensions of 390 x 190 x 100 mm. 

 

The entire bricklaying task consisted of forty-five lifts. Each 

‘lift’ consists of the lifting, moving, and laying down of a CMU. 

The participants were instructed to complete the task as they do 

on a worksite. The CMUs were placed in three piles 

approximately one meter away from the lead wall. Two panels 

of mortar were positioned between the three pallets. Figure 2 

shows the experimental layout and a participant completing the 

bricklaying task.  

 

 
FIGURE 1. PRE-BUILT LEAD WALL TO BE COMPLETED 

FROM SECOND TO SIXTH COURSE 

 

 

 
 

FIGURE 2. COMPLETION OF LEAD WALL BY PARTICIPANT 

 

Instrumentation 

 

The full-body kinematics of the participants were collected 

using wireless IMU-based motion capture suits, Perception 

Neuron [12] for the duration of the bricklaying task. The suit is 

composed of seventeen IMU sensors, each comprised of a three-

axis accelerometer, three-axis gyroscope, and three-axis 

magnetometer. The sampling rate is set to 125 frames per second. 

Two camcorders were used to capture the task on video. The 

videos were only used to segment the lifting activities in the data 

processing phase.  

 

Motion Data Collection and Data Processing  

 

The motion suits were calibrated to each participant before 

commencing with his task. The participants used an alignment 

wire to help align the courses during the task. Motion and video 

data were collected continuously until the wall was completed. 

Following the experiment, the motion data collected from the 

IMU suits were exported as calculation (.calc) files containing 

the angular velocity and linear acceleration of all body segments 

over the duration of the bricklaying task. The calculation files 

were segmented to individual lifts and converted to .mat files for 

data processing.  

 

Seven body segments, namely the hands, forearms, upper 

arms, and pelvis, were selected for jerk analysis. It was 

hypothesized that segments of the upper limbs would be suitable 

for fatigue detection since bricklaying requires larger motions, 

more forceful contractions, and higher precision from the upper 

limbs. The pelvis was selected due to frequent torso bending 

which may result in lower back muscle fatigue. Alwasel et al. 

found that bricklaying tasks result in elevated muscle activity in 

the upper limbs but does not change the lower limbs motions 

significantly over the duration of the task [13]. Thus, the pelvis 

and upper limb segments were hypothesized to provide the best 

targets for fatigue detection.   

 

The magnitude of each body segment acceleration was 

calculated from its Cartesian components listed in the calculation 

file. The resultant acceleration was filtered using a low-pass 

Butterworth filter with a 10 Hz cut-off frequency to remove high 

frequency noise. Jerk was calculated as the time-derivative of the 

acceleration magnitude. The jerk of the dominant hand, forearm, 

upper arm, and pelvis are shown in Figure 3 as functions of time 

during the first and last lifts completed by one participant. 

 

The jerk was averaged during the first five lifts of the 

bricklaying task to represent each participant’s characteristic jerk 

in ‘rested’ state Jr and during last five lifts to represent the 

characteristic jerk in ‘fatigued’ state Jf. The first and last five 

blocks laid during those lifts are shown in Figure 1. The average 

jerk values of the rested and fatigued states were then compared.  

RESULTS AND DISCUSSION 
 

For each of the seven candidate body segments, the mean 

and standard deviation of the characteristic jerk values Jr and Jf 

of the ten participants were calculated. In addition, unpaired t-

test (two-sided, p < 0.05) was deployed to compare among the 

characteristic jerk values Jr and Jf of the ten participants. Table 1 
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lists the computed mean, standard deviation, and p-value for 

each of the seven segments.   

 

 
 

 
 

 
 

 

FIGURE 3. SAMPLE JERK VALUES DURING THE FIRST 
AND LAST LIFTS 

 

The results show an increase in the mean jerk between the 

first five (Jr)Ave and last five (Jf)Ave lifts for all seven body 

segments. This indicates that a detectable difference exists 

between jerk in rested and fatigued states. However, two out of 

the ten participants showed a decrease in the characteristic jerk 

of the fatigued state compared to the characteristic jerk of the 

rested state. This may be due to variation in the physical 

conditioning of the participants. It is hypothesized that the 

bricklaying task did not induce fatigue in those participants.  

 

The differences between the characteristic jerk of rested and 

fatigued states were significant for the dominant (p < 0.043) and 

non-dominant (p < 0.006) upper arms and pelvis (p < 0.0003). 

The differences between the characteristic jerk of rested and 

fatigued states were not significant for the both hands and 

forearms. Thus, the results show that the upper arm and pelvis 

are more suitable locations for placement of sensors to monitor 

fatigue as opposed to the hands and forearms.  

 

The standard deviation of the characteristic jerk for both 

rested and fatigued states was found to drop as the body 

segments was located farther away from the hands. It was also 

found to be lower for the non-dominant than the dominant 

segment, except for the fatigued forearms. These results correlate 

well with the t-test results. They indicate that the spurious 

accelerations caused by impacts during mortar handling raise the 

noise floor of the hands acceleration signal, which is further 

amplified by numerical differentiation to obtain the jerk. The 

spurious accelerations diminish as the impact travels along body 

segments towards the trunk. Romero et al. [14] reported that 

impact forces diminish as they travel along the human body away 

from the point of impact due to dampening. The drop in spurious 

accelerations, in turn, reduces the noise floor of the jerk as the 

segment distance from the hands increase, reaching a minimum 

at the trunk. This is indicated by the elevated standard deviation 

of the hands jerk and the drop in the standard deviation as the 

segment distance from the hands increase to reach a minimum at 

the trunk. Similarly, as the noise floor drops, the change in jerk 

from rested state to fatigued state becomes more significant for 

the farther segments from the impacts, namely the upper arms 

and trunk. For this reason, care must be taken when selecting the 

locations of IMU for fatigue monitoring.  

 

Another important finding is that the difference between the 

rested Jr and fatigued Jf characteristic jerk for the non-dominant 

upper arm was more significant than that of the dominant upper 

arm. are greater for the non-dominant than the dominant upper 

arm. This is possibly a result of a lower level of spurious 

accelerations due to impacts, and thus a lower noise floor, on the 

non-dominant side than the dominant side. 
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Table 1. MEANS, STANDARD DEVIATIONS, p-VALUES OF 
THE CHARACTERISTIC JERK [g/s] IN RESTED AND 

FATIGUED STATES  
 

Body Segment 
First 5 Lifts 

(g/s) 

Last 5 Lifts 

(g/s) 
p value 

Hand Dominant 2.82 ± 1.17 2.98 ± 1.26 0.509 

 Non-dominant 2.40 ± 0.88 2.63 ± 0.94 0.203 
     

Forearm Dominant 2.38 ± 0.81 2.58 ± 0.83 0.214 

 Non-dominant 2.08 ± 0.80 2.40 ± 0.85 0.06 
     

Upper arm Dominant 1.67 ± 0.53 1.88 ± 0.47 0.043* 

 Non-dominant 1.59 ± 0.46 1.82 ± 0.37 0.006* 
     

Pelvis  0.98 ± 0.24 1.19 ± 0.32 0.0003* 

The body segment data provided is the mean ± SD for all participants. 

*Significant difference (p < 0.05) between the rested and fatigued 

characteristic jerk. 

 

CONCLUSIONS 
 

The current study tested the feasibility of using the jerk 

values obtained from wearable IMU sensors for the detection of 

physical fatigue. A repetitive bricklaying task was selected as a 

pilot study. The results from the study indicate that the jerk 

values derived from IMU sensors can be used to detect physical 

fatigue in a non-controlled environment. The experimental result 

demonstrated that the upper arms and pelvis are the optimal 

sensor locations to detect physical fatigue during bricklaying. On 

the other hand, the IMUs located at the hands and forearms do 

not show a significant difference in jerk value which is probably 

due to an elevated noise floor in the recorded acceleration due to 

repeated impact events during mortar handling.  

 

We conclude that while jerk can detect fatigue, it is sensitive 

to the level of the noise floor in the underlying acceleration 

signal. Care should be taken to attach the accelerometer(s) in 

question to a body segment(s) active in the task at hand while 

being as far as possible from shocks and impacts. Using the 

acceleration of a non-dominant limb may also enhance jerk 

detection of fatigue. 

 

Jerk appears to be a useful metric for developing warning 

systems against high levels of physical fatigue, designing better 

work schedules, and other methods to improve workers' health 

and safety. Furthermore, the proposed approach uses only one or 

a few wireless motion sensors, which allows for on-site detection 

of physical fatigue in a practical manner without technical 

sophistication. The low cost and simplicity of deploying the 

proposed method opens the doors for physical fatigue detection 

variety of work tasks. Further study will investigate the use of 

jerk in other labor-intensive trades (e.g. carpentry work).  
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