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5. Permutation Groups

5.1. Basic Definitions. A function on a set A which is one-to-one (injective) and onto
(surjective) will be called a bijective function. Recall from Subsection 1.3 that given a set
A, we can consider the set {α : A → A | α is bijective} which has a product on it given
by composition of functions. This set equipped with this product is then a group. We will
henceforth call bijective functions on a non-empty set “permutations”.

Definition 5.1.1. Let A be a (non-empty) set. A permutation of A is a bijective function
from A to A. A permutation group of a set A is a set of permutations of A that forms a group
under function composition.

Let us look at some elementary examples of permutations. The set A can be any set, but
our focus will be on finite sets.

Example 5.1.2. Let A = {1, 2, 3, 4}. Define α : A→ A as

α(1) = 2, α(2) = 3, α(3) = 1, α(4) = 4.

This can also be written in array form as

α =

[
1 2 3 4
2 3 1 4

]
.

Let us see how to compose two functions on A in this representation. Let β(1) = 2, β(2) =
1, β(3) = 4, β(4) = 3. Then

β =

[
1 2 3 4
2 1 4 3

]
.

The products βα and αβ are given by βα =

[
1 2 3 4
1 4 2 3

]
and αβ =

[
1 2 3 4
3 2 4 1

]
.

We note straightaway that the product given by function composition is not commutative.

We now give an example of a permutation group.

Example 5.1.3. Let S3 denote the set of all bijective functions from {1, 2, 3} to itself. Then
it is an easy computation to see that the cardinality of S3 is 3! = 6. We list the elements out
explicitly, using the same array form as above.

S3 =
{
ε =

[
1 2 3
1 2 3

]
, α =

[
1 2 3
2 3 1

]
, α2 =

[
1 2 3
3 1 2

]
,

β =

[
1 2 3
1 3 2

]
, αβ =

[
1 2 3
2 1 3

]
, α2β =

[
1 2 3
3 2 1

]}
.

Here ε denotes the identity permutation. Note that α3 = ε = β2 and that βα = α2β.
1
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The permutation group S3 is called the symmetric group of degree 3.

Definition 5.1.4. Let A = {1, 2, . . . , n} and Sn denote the group of all permutations of A,
equipped with function composition. Elements of Sn have the following array form

α =

[
1 2 · · · n

α(1) α(2) · · · α(n)

]
.

Sn is called the symmetric group of degree n.

It is clear that |Sn | = n!.

Exercise 5.1.5. For n ≥ 3, Sn is non-Abelian.

5.2. Cycle Notation. Let α ∈ S6 be given by

α =

[
1 2 3 4 5 6
2 1 4 6 5 3

]
.

We can write α as products of so-called cycles in the following way:

(1, 2)(3, 4, 6)(5).

An expression of the form (a1, a2, . . . , am) is called a cycle of length m or an m-cycle.

The permutation β =

[
1 2 3 4 5 6
5 3 1 6 2 4

]
can be expressed as (1, 5, 2, 3)(4, 6).

It is easily checked that αβ = (1, 5)(2, 4, 3)(6) and βα = (1, 3, 6)(2, 5)(4).
Often, a cycle with a single entry is omitted and it is understood that the point in question

is fixed (for example, 6 in αβ and 4 in βα). The identity ε is often written as a single cycle,
say (1).

5.3. Properties of Permutations. We now formally show that any finite permutation can
be written as a product of disjoint cycles.

Theorem 5.3.1. Every permutation of a finite set can be written as a cycle or as a product
of disjoint cycles.

Proof. Let α be a permutation on A = {1, 2, . . . , n}. Choose a11 ∈ A and let a12 = α(a11), a
1
3 =

α(a12) = α2(a11), . . . until we arrive at a11 = αm1(a11) for some m1. Such an m1 must surely
exist as the sequence a11, α(a11), . . . takes values in the finite set A. To be precise, we must have
i < j ∈ N0 such that αi(a11) = αj(a11), so that a11 = αj−i(a11). We express this relationship
among a11, . . . , a

1
m1

as the cycle (a11, . . . , a
1
m1

) and write α = (a11, . . . , a
1
m1

) · · · . If all the

entries of A are not exhausted, select a21 ∈ A such that a21 does not belong to the cycle
already considered. Repeat the same process as before to get a cycle (a21, . . . , a

2
m2

). We claim
that this cycle and the previously constructed cycle have no elements in common. Indeed, if
αi(a11) = αj(a21) for some i, j ∈ N0, then αi−j(a11) = a21, which contradicts the criterion for
choosing a21. We continue building disjoint cycles in this manner until the (finitely many)
elements of A run out, so that we get for some k ∈ N and m1, . . . ,mk ∈ N,

α = (a11, . . . , a
1
m1

)(a21, . . . , a
2
m2

) · · · (ak1, . . . , akmk
).

�

We next show that disjoint cycles commute.

Theorem 5.3.2. If the pair of cycles α = (a1, . . . , am) and β = (b1, . . . , bn) have no entries
in common, then αβ = βα.
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Proof. Suppose α and β are permutations of S = {a1 . . . , am, b1, . . . , bn, c1 . . . , cs} where the
ci-s are left fixed by α and β. We will show that αβ(x) = βα(x) for all x ∈ S.

First, suppose x = ci for some i. Then αβ(ci) = α(ci) = ci = β(ci) = βα(ci).
If x = ai for some i, then αβ(ai) = α(ai) = ai+1 = β(ai+1) = βα(ai), with the under-

standing that am+1 = a1. Similarly, αβ(bi) = α(bi+1) = bi+1 = β(bi) = βα(bi) with the
understanding that bn+1 = b1. �

We now show that the order of a permutation can be determined from the lengths of disjoint
cycles whose product is the permutation.

Theorem 5.3.3. The order of a permutation of a finite set written in disjoint cycle form is
the least common multiple of the lengths of the cycles.

Proof. Note that any cycle of length n has order n. We will call the elements c1, . . . , cs that
appear in a permutation γ = (c1, . . . , cs) symbols. Suppose that α and β are disjoint cycles
of length m and n, and let k = lcm(m,n). Then αk = ε = βk. Now (αβ)k = αkβk = ε as
α and β commute by Theorem 5.3.2. Let t be the order of αβ. By Corollary 4.1.5, t divides
k. Now, (αβ)t = αtβt = ε, so αt = β−t. As α and β are disjoint cycles, there is no common
symbol that appears in both. Hence, the same is true of αt and β−t as raising a cycle to a
power does not introduce any new symbols. Hence the equality of αt and β−t means that we
must have αt = ε = β−t, so that m and n both divide t, by another application of Corollary
4.1.5. Hence, the least common multiple k of m and n also divides t so that k = t. That
is, |αβ | = lcm(m,n). The argument can now be extended to any finite product of disjoint
cycles. �

2-cycles, which are also called transpositions, are of particular importance.

Theorem 5.3.4. Every permutation in Sn for n ≥ 2 is a product of 2-cycles.

Proof. The identity can be written as ε = (1, 2)(2, 1). By Theorem 5.3.1, we know that every
permutation can be written as a product of disjoint cycles as follows:

(a1, . . . , am)(b1, . . . , bn) · · · (c1, . . . , cs).

It is easily verified that this can be written as

(a1, am)(a1, am−1) · · · (a1, a2)(b1, bn)(b1, bn−1) · · · (b1, b2) · · · (c1, cs)(c1, cs−1) · · · (c1c2).

�

It is worth noting that the decomposition above is not unique. For example, the cycle
(1, 2, 3, 4, 5) can be expressed as both (1, 5)(1, 4)(1, 3)(1, 2) and (5, 4)(5, 2)(2, 1)(2, 5)(2, 3)(1, 3).

Lemma 5.3.5. If ε = β1β2 · · ·βr, where the βi-s are 2-cycles, then r is even.

Proof. Clearly, r 6= 1 as a 2-cycle cannot be the identity ε. If r = 2, we are done. Let us thus
suppose that r > 2 and assume that the result is true for all s < r. Suppose the rightmost
2-cycle is (a, b). The product βr−1βr can be expressed in one of the following forms for some
symbols c, d in the set on which the permutation is considered. For each of the cases below,
we express the product of cycles on the left hand side as a product of cycles on the right hand
side in such a way that a does not occur in the rightmost cycle.
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(a, b)(a, b) = ε

(a, c)(a, b) = (a, b)(b, c)

(b, c)(a, b) = (a, c)(c, b)

(c, d)(a, b) = (a, b)(c, d).

In the first case, we can delete the terms βr−1βr so that ε = β1 · · ·βr−2 and then r − 2 is
even by the induction hypothesis, so r is even.

In all the other cases, we replace the form of βr−1βr by what is given on the right hand
side above. Repeat the same process for the pair of terms βr−2βr−1 so that we either get a
product of (r − 2) cycles equal to ε or the rightmost occurrence of a in the 2-cycles is in the
third-last term. We can now continue this process to arrive at the situation that either an
(r − 2) product of 2-cycles is the identity, or that the only occurrence of a is in the left-most
cycle. The latter is impossible, as the identity fixes a. Hence only the former is possible,
namely that a product of (r − 2) cycles is equal to ε. Hence, by (strong) induction, r − 2 is
even, and r is even.

�

Theorem 5.3.6. If a permutation α can be expressed as a product of an even (odd) number
of 2-cycles, then every decomposition of α into a product of 2-cycles must have an even
(respectively, odd) number of 2-cycles.

Proof. Suppose α = β1 · · ·βr = γ1 · · · γs for r, s ∈ N. Then ε = γ1 · · · γsβ−1r · · ·β−11 =
γ1 · · · γsβr · · ·β1. By Lemma 5.3.5, s + r is even, so s, r are both odd or both even. Note
that we used here that the inverse of a 2-cycle is itself. �

The above theorem allows us to make the following definition.

Definition 5.3.7. A permutation that can be expressed as a product of an even (odd) number
of 2-cycles is called an even (respectively, odd) permutation.

Theorem 5.3.8. The set of even permutations in Sn forms a subgroup of Sn. It is denoted
by An and called the alternating group of degree n.

Proof. The identity ε belongs to An by Lemma 5.3.5. It is clear that a 2-cycle is its own
inverse. Hence the inverse of an even permutation is also even. Finally, clearly the product
of two even permutations is even. �

Theorem 5.3.9. For n ≥ 2, |An | = n!
2 .

Proof. For each odd permutation α, the permutation (1, 2)α is even and (1, 2)α 6= (1, 2)β
when α 6= β. Thus the number of even permutations is greater than or equal to the number of
odd permutations. Similarly if α is even, the permutation (1, 2)α is odd and (1, 2)α 6= (1, 2)β
if α 6= β. Hence the number of odd permutations is greater than or equal to the number of

even permutations. So, indeed, these numbers must be equal and each is equal to |Sn |
2 . So

|An | = n!
2 .

�

5.4. Dihedral Groups. We look at a particular type of permutation groups called dihedral
groups. We are interested in the so-called symmetries of the regular polygon with n sides,
n ≥ 3. These are bijections from the polygon onto itself such that the orientation is preserved.
They consist of rotational and reflection symmetries.

Let us start by considering the example of an equilateral triangle.
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2

3

1

In its resting state, the vertices a, b, c are in the positions 1, 2, and 3 respectively.

b

c

a

On applying one of our symmetries, the resulting figure must look the same, and only
the labels may change. It is clear then that the rotational symmetries are given by rotating
(counterclockwise) by 0, 2π3 and 4π

3 .

For example, rotating by 2π
3 sends the vertex a to the position 2, vertex b to position 3 and

vertex c to position 1.
So we get the resulting figures on rotating by 0, 2π3 and 4π

3 respectively:

b

c

a

a

b

c
c

a

b

What about the reflection symmetries? This is achieved by reflecting about the three
bisectors of the triangle, and we get the following figures:

c

b

a
a

c

b
b

a

c

Let us formalize how to write the above symmetries in the array form and cycle form
discussed for permutations. For example, we write rotation by 2π

3 as

r1 =

[
1 2 3
2 3 1

]
,

as vertex a is now in the 2nd place, vertex b in the 3rd place and vertex c in the 1st place.
The first row of the above array records the initial positions of the vertices respectively, and
the second row the final positions. In cycle form, clearly r1 = (1, 2, 3).

Let us now write the permutation given by reflection about the bisector passing through
the vertex in the first position:

s0 =

[
1 2 3
1 3 2

]
,

as a stays in position 1 and b and c interchange positions. Clearly, in cycle form s0 = (2, 3).
We now list the above figures in cycle form

{r0 = (1), r1 = (1, 2, 3), r2 = (1, 3, 2), s0 = (2, 3), s1 = (1, 2), s2 = (1, 3)},
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and note that there are 6 = 2(3) such symmetries. We are now ready to define dihedral
groups more formally.

For n ≥ 3, consider the regular n-polygon in R2. It has 2n symmetries, namely n rotations
rk (counter-clockwise) by 2πk

n for k = 0, 2, . . . , n−1, and n reflections sl about the axis passing

through πl
n for l = 0, . . . , n− 1. There are 2n such symmetries in total. The key point is that

the set {r0, . . . , rn−1, s0, . . . , sn−1} forms a group under the product given by composition of
maps.

Let us form the multiplication table for the symmetries of the regular 3-gon, that is, the
equilateral triangle considered above.

r0 r1 r2 s0 s1 s2
r0 r0 r1 r2 s0 s1 s2
r1 r1 r2 r0 s1 s2 s0
r2 r2 r0 r1 s2 s0 s1
s0 s0 s2 s1 r0 r2 r1
s1 s1 s0 s2 r1 r0 r2
s2 s2 s1 s0 r2 r1 r0

Let us verify this in cycle notation for r2s1 for example:

r2s1 = (1, 3, 2)(1, 2) = (2, 3) = s0.

We will now define the dihedral group Dn of order 2n abstractly. It is the set Dn =
{r0, . . . , rn−1, s0, . . . , sn−1} with products given by:

(1) rirj = r(i+j mod n), risj = s(i+j mod n), sirj = s(i−j mod n), sisj = r(i−j mod n).

Let us look briefly at the case n = 4, that is, we consider the symmetries of a square.

a

bc

d

S0

S2

S1S3

Then D4 = {r0, r1, r2, r3, s0, s1, s2, s3} where ri denotes the (counter-clockwise) rotation by
2πi
4 and si denoted the reflection about the axis passing through πi

4 . The corresponding axes
are marked on the figure as Si.

Let us write the elements of D4 in array form:
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r0 =

[
1 2 3 4
1 2 3 4

]
= (1) = ε

r1 =

[
1 2 3 4
2 3 4 1

]
= (1, 2, 3, 4)

r2 =

[
1 2 3 4
3 4 1 2

]
= (1, 3)(2, 4)

r3 =

[
1 2 3 4
4 1 2 3

]
= (1, 4, 3, 2)

s0 =

[
1 2 3 4
2 1 4 3

]
= (1, 2)(3, 4)

s1 =

[
1 2 3 4
3 2 1 4

]
= (1, 3)

s2 =

[
1 2 3 4
4 3 2 1

]
= (1, 4)(2, 3)

s3 =

[
1 2 3 4
1 4 3 2

]
= (2, 4)

As an exercise, verify that the elements of D4 as presented in cycle form satisfy the relations
of Equation (1).

See below a pictorial representation of the symmetries of a regular octagon.

Figure 1. Jim.belk, Public domain, via Wikimedia Commons

As an exercise, write the elements of D8 and find their array and cycle forms too.
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