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1. Preliminaries

We recap some preliminaries that will be used widely in this course.

1.1. Well-Ordering Principle and Mathematical Induction.

Axiom 1.1.1 (Well-Ordering Principle). Every non-empty set of positive integers has a least
element.

The principle of induction will commonly be used to prove results in this course. Let’s look
at two forms of mathematical induction.

Theorem 1.1.2 (First Principle of Induction). Let S be a set of integers containing a. Sup-
pose S has the property that whenever some integer n ≥ a belongs to S, then n + 1 ∈ S also
holds. Then S contains every integer greater than or equal to a.

In some cases, the following equivalent form of the principle of induction may be more
useful.

Theorem 1.1.3 (Second/ Strong Principle of Induction). Let S be a set of integers containing
a. Suppose S has the property that whenever each integer m with a ≤ m ≤ n belongs to S,
then n+ 1 ∈ S also holds. Then S contains every integer greater than or equal to a.

1.2. Equivalence Relations.

Definition 1.2.1. An equivalence relation on a set S is a subset R ⊂ S × S satisfying the
following properties:

(i) (a, a) ∈ R for all a ∈ S (reflexive);

(ii) (a, b) ∈ R =⇒ (b, a) ∈ R (symmetric);

(iii) (a, b) ∈ R, (b, c) ∈ R =⇒ (a, c) ∈ R (transitive).

For each a ∈ S, the set

[a] = {x ∈ S | (a, x) ∈ R}
is called the equivalence class of a.

Definition 1.2.2. A partition of a set S is a collection of non-empty disjoint subsets of S
whose union is S.

Theorem 1.2.3. The equivalence classes of an equivalence relation on a set S constitute a
partition of S. Conversely, for any partition P of S, there is an equivalence relation whose
equivalence classes are the elements of P .
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1.3. Functions.

Definition 1.3.1. A function ϕ from a set A to a set B is a rule that assigns to each element
a of A exactly one element of B.

A function ϕ : A→ B is called

(i) injective or one-to-one or 1− 1 if ϕ(a1) = ϕ(a2) =⇒ a1 = a2.
(ii) surjective or onto if for every b ∈ B, there exists a ∈ A with ϕ(a) = b.

Suppose A,B and C are sets and ϕ : A → B and ψ : B → C are functions. Then we can
define the composition of ϕ and ψ as

ψϕ(a) = ψ(ϕ(a)) (a ∈ A).

Proposition 1.3.2. Suppose A,B,C,D are sets and α : A → B, β : B → C, γ : C → D are
functions. Then the following hold:

(i) γ(βα) = (γβ)α;

(ii) If α and β are 1− 1, then so is βα;

(iii) If α and β are onto, then so is βα;

(iv) If α is 1−1 and onto, then there exists a function α−1 : B → A such that α−1α(a) =
a ∀a ∈ A and αα−1(b) = b ∀b ∈ B.

Hence, given a set A, we can consider the set {α : A→ A | α is one-to-one and onto} which
has a product on it given by composition of functions. This is an important example that we
will return to when we consider permutation groups.

1.4. Basic Number Theory.

Definition 1.4.1. Let m,n ∈ Z. Then we say that m divides n, and write m|n if there exists
k ∈ Z such that n = km. The integer m is called a divisor of n.

Theorem 1.4.2. Let a, b, c ∈ Z.
(i) If a|b and b|c, then a|c,
(ii) If a|b and a|c, then a|(bx+ cy) for all x, y ∈ Z.

(iii) If a|b and b 6= 0, then | a | ≤ | b |.

Theorem 1.4.3 (Division Algorithm). If a, b are integers and b > 0, then there exist unique
integers q and r such that a = qb + r and 0 ≤ r < b. The integers q and r are called the
quotient and remainder respectively.

Definition 1.4.4. The greatest common divisor of two non-zero integers a and b is the largest
of all common divisors of a and b, and is denoted by gcd(a, b). If gcd(a, b) = 1, then a and b
are called relatively prime.

Theorem 1.4.5. For any non-zero integers a and b, there exist integers s and t such that
gcd(a, b) = as+ bt. Moreover, gcd(a, b) is the smallest positive integer of the form as+ bt.

Corollary 1.4.6. If a and b are relatively prime, there exist integers s and t such that
as+ bt = 1.

Corollary 1.4.7 (Euclid’s Lemma). If p is a prime that divides ab, then p divides a or p
divides b.
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Proof. If p 6 |a, then gcd(a, p) = 1. Hence by Corollary 1.4.6 there exist s, t ∈ Z such that
at + ps = 1. Multiplying both sides by b, we get bat + bps = b. As p divides both terms on
the left hand side, it divides the sum, and thus p|b. �

Theorem 1.4.8 (Fundamental Theorem of Arithmetic). Every integer greater than 1 is a
prime or a product of primes. This product is unique, except for the order in which factors
appear.

1.5. Modular Arithmetic. Let n be a fixed positive integer. If a, b ∈ Z, we say that a is
congruent to b modulo n and write

a ≡ b mod n,

if n divides (a− b).

Theorem 1.5.1. Let n ∈ N and R = {(a, b) | a ≡ b mod n}. Then R is an equivalence
relation.

Proof. Let a, b, c ∈ Z.

(i) a ≡ a mod n as n|0.

(ii) a ≡ b mod n =⇒ n|(a− b) =⇒ n|(b− a) =⇒ b ≡ a mod n.

(iii) a ≡ b mod n, b ≡ c mod n =⇒ n|(a − b) and n|(b − c), hence n|(a − b) + (b − c),
that is, n|(a− c) so that a ≡ c mod n.

�

Definition 1.5.2. Let n ∈ N. The congruence class modulo n of the integer a is the set
[a] := {x ∈ Z | x ≡ a mod n}.

Definition 1.5.3. Let n ∈ N. The integers modulo n, denoted by Zn is the set of n congruence
classes

Zn := {[0], [1], . . . , [n− 1]}.

We can define two operations on Zn, addition and multiplication as follows:

[a] + [b] = [a+ b], [a][b] = [ab].

Theorem 1.5.4. For [a], [b], [c] ∈ Zn we have

(i) [a] + [b] = [b] + [a], [a][b] = [b][a] (commutativity);

(ii) ([a] + [b]) + [c] = [a] + ([b] + [c]), ([a][b])[c] = [a]([b][c]) (associativity);

(iii) [a]([b] + [c]) = [a][b] + [a][c] (distributivity);

(iv) [a] + [0] = [a] = [0] + [a] (additive identity);

(v) [a][1] = [1][a] = [a] (multiplicative identity);

(vi) [a] + [−a] = [−a] + [a] = 0 (additive inverse).

Theorem 1.5.5. Let n ∈ N and [a] ∈ Zn. Then [a] has a multiplicative inverse if and only if
gcd(a, n) = 1.

Proof. Suppose there exists [s] ∈ Zn such that [a][s] = [1]. This means that as ≡ 1
mod n =⇒ 1 = as+ nt for some t ∈ Z. By Theorem 1.4.5, this means that gcd(a, n) = 1.
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Conversely, suppose gcd(a, n) = 1. By Theorem 1.4.5, there exist s, t ∈ Z such that
1 = as+ nt. Hence as ≡ 1 mod n, so that [s] is a multiplicative inverse of [a].

�

Henceforth we will write Zn as {0, 1, . . . , n − 1} and drop the square brackets when it is
clear that we consider 1, . . . , n as elements of Zn rather than of Z.

2. Groups

In this section, we give the definition of a group, some examples of groups, and finally
consider some basic properties of groups.

2.1. Basic Definitions.

Definition 2.1.1. Let G be a set. A binary operation on G is a function that assigns to each
ordered pair of elements of G a unique element of G.

The convention used is to denote the unique element resulting from an ordered pair (a, b)
as ab. In some cases, we write a+ b if the binary operation is an addition.

Example 2.1.2.

(i) Addition, multiplication and subtraction on Z are all binary operations. What about
division?

(ii) Addition and multiplication on Zn.

Definition 2.1.3. A set G together with a binary operation on G is called a group if the
following hold:

(i) Associativity: (ab)c = a(bc) for all a, b, c ∈ G.

(ii) Existence of identity: There is an element e ∈ G such that ae = ea = a for all a ∈ G.

(iii) Existence of inverse: For each a ∈ G, there is an element b ∈ G such that ab = ba = e.

Note that the existence of an identity element implies that a group must be non-empty;
further, the existence of a binary operation implies that that a group G must be closed under
the operation. In addition, if ab = ba for all a, b ∈ G, then G is called abelian or commutative.

Example 2.1.4.

(i) (Z,+), (Q,+), (R,+) are all abelian groups under usual addition.

(ii) (Q+, ·) and ({1,−1, i,−i}, ·) ⊂ C are abelian groups under usual multiplication.

(iii) Mn(C), the set of n× n matrices with complex entries, equipped with the operation
of matrix addition is an abelian group.

(iv) Zn = {0, 1, . . . , n− 1} under addition mod n is an abelian group.

(v) GL(n,R), the set of n× n matrices with non-zero determinant, is a non-abelian (for
n > 1) group under matrix multiplication. It is called the general linear group of
degree n.

(vi) SL(n,R), the set of n× n matrices with determinant 1, is a non-abelian (for n > 1)
group under matrix multiplication. It is called the special linear group of degree n.
Note that SL(n,R) ⊂ GL(n,R).

For n > 1, define the set U(n) := {m ∈ N | m < n and gcd(m,n) = 1}.



PMATH 336: INTRODUCTION TO GROUP THEORY WITH APPLICATIONS NOTES FOR WEEK 1 5

Proposition 2.1.5. For n > 1, U(n) is a group under multiplication modulo n.

Proof. First, we show that U(n) is closed under multiplication modulo n, that is, if m1,m2 ∈
U(n), then (m1m2) mod n ∈ U(n). Indeed, we have that gcd(mi, n) = 1 for i = 1, 2. Hence,
by Theorem 1.4.5, there exist xi, yi such that mixi + nyi = 1 for i = 1, 2. This gives that
mixi ≡ 1 mod n for i = 1, 2, and hence m1m2(x1x2) ≡ 1 mod n. This gives finally that
gcd(m1m2, n) = 1, so that m1m2 mod n ∈ U(n).

The associativity of multiplication mod n was mentioned in part (ii) of Theorem 1.5.4
(prove it!). Clearly, 1 ∈ U(n) plays the part of the identity element. Finally, the existence of
an inverse for each a ∈ U(n) follows from Theorem 1.5.5.

�

Hence {1, 3} = U(4) is a group under multiplication modulo 4.

Exercise 2.1.6. Prove that {0, 1, 2, 3} is not a group under multiplication modulo 4.

Exercise 2.1.7. Prove that the set {1, 2, . . . , n− 1} is a group under multiplication mod n if
and only if n is a prime.

2.2. Elementary Properties of Groups.

Theorem 2.2.1 (Uniqueness of identity). There exists a unique element e ∈ G such that
ae = ea = a for every a ∈ G.
Proof. The existence of an element e is guaranteed by the definition of a group. Suppose e
and f are both identity elements. Then e = ef = f . �

Theorem 2.2.2 (Uniqueness of inverse element). For each a ∈ G, there exists a unique
element b ∈ G such that ab = ba = e.

Proof. Suppose there exist b, c ∈ G such that ab = ba = e and ac = ca = e. Then c = ce =
c(ab) = (ca)b = eb = b.

�

We thus write the unique inverse of an element a ∈ G as a−1.

Theorem 2.2.3 (Cancellative property). Let a, b, c ∈ G. Then ba = ca =⇒ b = c and
ab = ac =⇒ b = c.

Proof. Suppose ba = ca. Then multiplying both sides on the right by the inverse of a gives
b = c, so we have right cancellativity. Left cancellativity follows similarly. �

The associative property means that we can unambiguously write the product

a · · · · · a︸ ︷︷ ︸
n times

as an for n ∈ N. For n < 0, we take an to be the (−n)-fold product of a−1 and a0 := e.

In general, it is not true in a non-abelian group G that (ab)n = anbn for a, b ∈ G and n ∈ Z.
However, we have the following result that expresses the inverse of a product as a reversed
product of inverses.

Theorem 2.2.4. Let G be a group and a, b ∈ G. Then (ab)−1 = b−1a−1.

Proof. The proof follows in a straightforward way by verifying that (ab)b−1a−1 = e =
b−1a−1ab. �
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