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6. Isomorphisms

6.1. Definition and examples of isomorphisms.

Definition 6.1.1. A homomorphism ϕ from a group G equipped with a product · to another
group G with product ? is a mapping that preserves the group operation. i.e.,

ϕ(a · b) = ϕ(a) ? ϕ(b), ∀a, b ∈ G.

While we have explicitly written the symbols for the products in G and G above, we often
will simply write ϕ(ab) = ϕ(a)ϕ(b), where it is understood that the product of a and b on the
left hand side is in G and the product of ϕ(a) and ϕ(b) on the right is in G.

We will have more to say about homomorphisms later, but at the moment we will discuss
a special kind of homomorphism called an isomorphism.

Definition 6.1.2. An isomorphism from a group G to a group G is a homomorphism which
is one-to-one and onto. In this case, we say that the groups G and G are isomorphic and
write G ∼= G.

We note that it is implicit in the existence of a bijection (which is also multiplicative)
between G and G that G and G have the same order. Let us reiterate that to prove that two
groups are isomorphic, we must show the existence of a well-defined function between the two
sets, which is bijective and preserves the group structure.

We will consider some examples, and show what we promised when looking at cyclic groups,
namely that cyclic groups can be completely characterized up to isomorphism.

Example 6.1.3.

(i) Let G be the group of real numbers with addition and G be the set of positive real
numbers with multiplication. Then G and G are isomorphic under the mapping
ϕ(x) = 2x. Let us check that ϕ is indeed an isomorphism. First ϕ(x + y) = 2x+y =
2x2y = ϕ(x)ϕ(y) so it is indeed a group homomorphism. Suppose 2x = 2y, then
log2 2x = log2 2y so that x = y. Hence ϕ is injective. Finally, that it is surjective
follows by noting that for every positive real number y, x = log2(y) is the pre-image
of y under ϕ.

(ii) A cyclic group of infinite order is isomorphic to Z. Let G = 〈a〉. Define ϕ : G→ Z by
φ(ak) = k. Then ϕ is well-defined (check this!) and an isomorphism as the following
hold:
(a) ϕ(akal) = ϕ(ak+l) = k+ l = ϕ(ak) +ϕ(al), so ϕ is a homomorphism (recall that

the group operation in Z is addition!);
(b) ϕ(ak) = ϕ(al) =⇒ k = l =⇒ ak = al, so ϕ is injective;
(c) For each k ∈ Z, the element ak ∈ G is mapped to k under ϕ, so ϕ is surjective.
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(iii) A finite cyclic group 〈a〉 of order n is isomorphic to Zn under the mapping ϕ(ak) = k
mod n. The mapping ϕ is well-defined because ak = al in a cyclic group of order n
implies that n divides k − l. It is an isomorphism as the following hold:
(a) ϕ(akal) = ϕ(ak+l) = k+ l mod n = k mod n+ l mod n = ϕ(ak) +ϕ(al), so ϕ

is a homomorphism (recall that the group operation in Zn is addition mod n);
(b) ϕ(ak) = ϕ(al) =⇒ k mod n = l mod n =⇒ n|(k − l), so by Theorem 4.1.3,

ak = al. Hence ϕ is injective;
(c) For each k ∈ Zn, the element ak ∈ G is mapped to k under ϕ, so ϕ is surjective.

(iv) U(10) and U(5) are both isomorphic to Z4. Recall that U(10) = {1, 3, 7, 9} = 〈3〉 and
U(5) = {1, 2, 3, 4} = 〈3〉, so both groups are cyclic of order 4 and hence isomorphic
to Z4 by (iii).

(v) Let G = SL(2,R), the simple linear group of 2 × 2 real matrices with determinant
equal to 1. Let M ∈ SL(2,R) and define ϕM from G to itself by ϕM (A) = MAM−1

for A ∈ G. As the determinant is multiplicative, MAM−1 does indeed belong to G
for each A ∈ G. We will show that ϕM is indeed an isomorphism of G into itself.
(a) ϕM (AB) = MABM−1 = MAM−1MBM−1 = ϕM (A)ϕM (B), so ϕM is a group

homomorphism.
(b) Suppose ϕM (A) = ϕM (B). Then MAM−1 = MBM−1, so A = B follows by

left and right cancellation. So ϕM is one-to-one.
(c) Let B ∈ G. Then A = M−1BM ∈ G and ϕM (A) = MM−1BMM−1 = B, so ϕ

is onto.
The mapping ϕM is called conjugation by M .

Let us now consider some non-examples.

Example 6.1.4.

(i) The mapping from R with addition to itself given by ϕ(x) = x3 is not an isomorphism.
ϕ is one-to-one and onto but not a group homomorphism as it is not true that
(x+ y)3 = x3 + y3 for all x, y ∈ R.

(ii) Two groups of the same order need not be isomorphic. For example, consider U(10) =
{1, 3, 7, 9} and U(12) = {1, 5, 7, 11} both of which are of order 4. Note that U(10) is
cyclic with generators 3 and 7, but U(12) is not cyclic. In fact, for each x ∈ U(12),
x2 = 1. Suppose that ϕ is a group homomorphism from U(10) onto U(12). Then

ϕ(9) = ϕ(3 · 3) = ϕ(3)ϕ(3) = 1,

and

ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1) = 1,

as the square of every element in U(12) is 1. But this means ϕ cannot be injective.
So U(10) � U(12). Indeed, we will show in Theorem 6.3.2 that if two groups are
isomorphic and one is cyclic, then the other must also be cyclic. This condition is of
course not satisfied in this example.

(iii) There is no isomorphism from Q, the group of rational numbers with addition, to
Q∗, the group of non-zero rational numbers under multiplication. If ϕ were a group
isomorphism from Q onto Q∗, there would exists some rational number a such that
ϕ(a) = −1. Then

−1 = ϕ(a) = ϕ(
a

2
+
a

2
) = ϕ(

a

2
)ϕ(

a

2
) =

(
ϕ(
a

2
)
)2
.

However, the square of a rational number cannot be equal to −1.
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6.2. Cayley’s Theorem. The main goal of this week is to show that any group is isomorphic
to a permutation group. This is known as Cayley’s theorem. It gives a concrete realization
of any group as a group of permutations.

Theorem 6.2.1 (Cayley’s Theorem). Every group is isomorphic to a group of permutations.

Proof. Let G be a group. For g ∈ G, define Lg : G→ G by

Lg(x) = gx, ∀x ∈ G.
That is, for each g ∈ G, Lg is the function of left multiplication by g on G. Then Lg is a

permutation on G, that is, it is a one-to-one, onto mapping from G to itself. Verify that each
Lg is actually bijective!

Let G = {Lg | g ∈ G}. We will define an operation on G that makes it a group. As G is a
set consisting of functions, the obvious operation to define on it is function composition. We
will show that G is indeed a group with this operation.

• For g, h ∈ G, LgLh(x) = Lg(hx) = g(hx) = (gh)x = Lghx. Hence function composi-

tion is a binary operation on G, that is, G is closed under the operation of function
composition.
• Let g, h, k ∈ G. Then Lg(LhLk) = (LgLh)Lk follows by associativity of function

composition.
• Le is the identity element of G, where e is the identity of G.
• For each g ∈ G, Lg−1 is the inverse of Lg.

Hence we have shown that G is a group. We will now show that there exists an isomorphism
ϕ from G onto G. Define ϕ : G→ G in the obvious way as

ϕ(g) = Lg, g ∈ G.
We will complete our proof by showing that ϕ is indeed an isomorphism. We have already
shown that Lgh = LgLh, so that ϕ(gh) = ϕ(g)ϕ(h). Suppose Lg = Lh. Then in particular,
Lg(e) = Lh(e), so that ge = he, that is, g = h. Hence ϕ is one-to-one. By the definition of

G, it is clear that ϕ is onto. Hence we have shown that G is isomorphic to the group G of
permutations of left multipliers on G. G is called the left regular representation of G. �

6.3. Properties of Isomorphisms.

Theorem 6.3.1. Suppose that ϕ is an isomorphism from a group G onto a group G with
identity elements denoted by eG and eG respectively. Then the following properties hold.

(i) ϕ carries the identity of G to G, that is, ϕ(eG) = eG.
(ii) For each n ∈ Z and a ∈ G, ϕ(an) = (ϕ(a))n . In particular, ϕ(a−1) = ϕ(a)−1.

(iii) For a, b ∈ G, ab = ba if and only if ϕ(a)ϕ(b) = ϕ(b)ϕ(a).
(iv) G = 〈a〉 if and only if G = 〈ϕ(a)〉.
(v) | a | = |ϕ(a) | for all a ∈ G.

(vi) For k ∈ Z and b ∈ G, the equation xk = b has the same number of solutions in G as
does the equation yk = ϕ(b) in G.

(vii) If |G | is finite, then G and G have exactly the same number of elements of every
order.

Proof. (i) eGϕ(eG) = ϕ(eG) = ϕ(eG · eG) = ϕ(eG)ϕ(eG). By cancellation, ϕ(eG) = eG.
(ii) For positive integers n ∈ N, we prove ϕ(an) = ϕ(a)n by induction. Of course, the

result is true for n = 1, 2. Suppose it is true for k ∈ N, that is, ϕ(ak) = ϕ(a)k.
Then ϕ(ak+1) = ϕ(aka) = ϕ(ak)ϕ(a) = ϕ(a)kϕ(a) = ϕ(a)k+1. For n = 0, we already
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have the equality ϕ(eG) = eG. For n < 0, note that eG = ϕ(eG) = ϕ(ana−n) =
ϕ(an)ϕ(a−n) = ϕ(an)ϕ(a)−n by the observation for the positive integer case. Hence
ϕ(an) = ϕ(a)n in this case also.

(iii) ab = ba ⇐⇒ ϕ(ab) = ϕ(ba) ⇐⇒ ϕ(a)ϕ(b) = ϕ(b)ϕ(a) by the injectivity and
multiplicativity of ϕ.

(iv) Suppose G = 〈a〉, then certainly 〈ϕ(a)〉 ≤ G. On the other hand, for any g ∈ G,
there exists g ∈ G = 〈a〉 such that ϕ(g) = g. The element g must be of the form ak

for some k ∈ Z, hence g = ϕ(ak) = ϕ(a)k ∈ 〈ϕ(a)〉.
The converse implication- that if G is cyclic, then so is G- is left as an exercise.

(v) If ϕ(a)m = eG for m ∈ N and m is the smallest such positive integer, then ϕ(am) =

eG = ϕ(eG) so that am = eG by injectivity of ϕ. Suppose ak = eG for some smaller

positive integer than m, then ϕ(a)k = eG, a contradiction. Hence | a | = |ϕ(a) |.
(vi) Suppose gk = b for some g ∈ G, then ϕ(g)k = ϕ(gk) = ϕ(b), so that ϕ(g) is a solution

of the equation yk = ϕ(b) in G. Conversely, if gk = ϕ(b) and let g ∈ G be the
unique pre-image of g under ϕ. Then ϕ(gk) = ϕ(g)k = gk = ϕ(b), so that gk = b by
injectivity.

(vii) This follows by (v).
�

The failure of one of the above properties can be used to show that certain groups are not
isomorphic. For example, C∗ and R∗, non-zero complex and real numbers respectively with
multiplication, can be seen to be non-isomorphic as the equation x4 = 1 has four solutions in
C∗ but only two in R∗.

Theorem 6.3.2. Suppose that ϕ is an isomorphism from a group G onto a group G. Then

(i) ϕ−1 is an isomorphism from G onto G.
(ii) G is Abelian if and only if G is Abelian.

(iii) G is cyclic if and only if G is cyclic.
(iv) If K is a subgroup of G, then ϕ(K) = {ϕ(k) | k ∈ K} is a subgroup of G.
(v) If K is a subgroup of G, then ϕ−1(K) = {g ∈ G | ϕ(g) ∈ K} is a subgroup of G.

(vi) ϕ(Z(G)) = Z(G).

Proof. (i) We show that ϕ−1 is a group homomorphism. Let x, y ∈ G. Then there
exist a, b ∈ G such that x = ϕ(a), y = ϕ(b). Hence ϕ−1(xy) = ϕ−1(ϕ(a)ϕ(b)) =
ϕ−1(ϕ(ab)) = ab = ϕ−1(x)ϕ−1(y). It is left as an exercise to show that ϕ−1 is a
bijection.

(ii) This follows from (iii) of Theorem 6.3.1.
(iii) This follows from (iv) of Theorem 6.3.1.
(iv) Clearly eG = ϕ(eG) ∈ ϕ(K) so ϕ(K) is non-empty. Suppose ϕ(k1), ϕ(k2) ∈ ϕ(K),

then ϕ(k1)ϕ(k2)
−1 = ϕ(k1k

−1
2 ) ∈ ϕ(K) as k1k

−1
2 ∈ K. Hence ϕ(K) is a subgroup.

(v) This follows from (i) and (iv).
(vi) This follows from (iii) of Theorem 6.3.1.

�

6.4. Automorphisms.

Definition 6.4.1. An isomorphism from a group G onto itself is called an automorphism.

Example 6.4.2. Define ϕ : C → C by ϕ(a + bi) = a − bi, where C is the set of complex
numbers with addition. Then ϕ is an automorphism.
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Definition 6.4.3. Let G be a group and a ∈ G. The function ϕa defined on G by ϕa(g) =
aga−1 for all g ∈ G is called the inner automorphism of G induced by a.

Actually, we have already seen an example of an inner automorphism via the conjugation
mapping in (v) of Example 6.1.3.

Exercise 6.4.4. Prove that an inner automorphism of a group is actually an automorphism.

Example 6.4.5. Let us consider the example of an inner automorphism induced by r1 (ro-
tation counterclockwise by π

2 ) in D4, the dihedral group of order 8. Recall that r−1
1 = r3. We

get the following:

x
ϕr17→ r1xr

−1
1

r0
ϕr17→ r1r0r

−1
1 = r1r0r3 = r0

r1
ϕr17→ r1r1r

−1
1 = r1

r2
ϕr17→ r1r2r

−1
1 = r1r2r3 = r2

r3
ϕr17→ r1r3r

−1
1 = r1r3r3 = r3

s0
ϕr17→ r1s0r

−1
1 = r1s0r3 = s2

s1
ϕr17→ r1s1r

−1
1 = r1s1r3 = s3

s2
ϕr17→ r1s2r

−1
1 = r1s2r3 = s0

s3
ϕr17→ r1s3r

−1
1 = r1s3r3 = s1

Notation 6.4.6. The set of automorphisms of a group G is denoted by Aut(G) and the set
of inner automorphisms by Inn(G).

Theorem 6.4.7. For a group G, Aut(G) and Inn(G) are groups under the operation of
function composition.

Proof. We prove the theorem for inner automorphisms. The automorphism case is left as an
exercise. Suppose ϕa, ϕb are inner automorphisms induced by a, b ∈ G. Then ϕaϕb(x) =
ϕa(bxb

−1) = a(bxb−1)a−1 = (ab)x(ab)−1 = ϕab(x), that is, the inner automorphism induced
by ab. Hence we have closure of the set under the given operation. Associativity follows by
the associativity of composition of functions. Clearly, ϕe is the identity, and the inverse of ϕa
is ϕa−1 . �

Example 6.4.8.

(i) We compute Inn(D4). On first glance, Inn(D4) = {ϕr0 , ϕr1 , ϕr2 , ϕr3 , ϕs0 , ϕs1 , ϕs2 , ϕs3},
but we will go through the list to ensure that there are no repetitions.

Let us write the multiplication table for D4 to make this a little easier.

r0 r1 r2 r3 s0 s1 s2 s3
r0 r0 r1 r2 r3 s0 s1 s2 s3
r1 r1 r2 r3 r0 s1 s2 s3 s0
r2 r2 r3 r0 r1 s2 s3 s0 s1
r3 r3 r0 r1 r2 s3 s0 s1 s2
s0 s0 s3 s2 s1 r0 r3 r2 r1
s1 s1 s0 s3 s2 r1 r0 r3 r2
s2 s2 s1 s0 s3 r2 r1 r0 r3
s3 s3 s2 s1 s0 r3 r2 r1 r0
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Our first observation is that for any y ∈ Z(G), ϕy = ϕr0 which is the iden-
tity automorphism. Note from the table that r0, r2 ∈ Z(D4). Hence ϕr2 = ϕr0 .
Also, ϕr3(x) = r3xr

−1
3 = r1r2xr

−1
2 r−1

1 = r1xr
−1
1 = ϕr1(x). Similarly, as s0 = r2s2

and s1 = r2s3, we have ϕs0 = ϕs2 and ϕs1 = ϕs3 , so we are now left with only
ϕr0 , ϕr1 , ϕs0 , ϕs1 . We claim that these are distinct maps. As an exercise, for each
pair of inner automorphisms from {ϕr0 , ϕr1 , ϕs0 , ϕs1}, find y ∈ D4 such that the
two automorphisms differ on y. For example, for ϕr1 and ϕs1 choose y = r1 as
s1r1s

−1
1 = s1r1s1 = s1s2 = r3, whereas r1r1r

−1
1 = r1, so that ϕr1(r1) 6= ϕs1(r1).

(ii) We now show how to compute Aut(Z10). Let α ∈ Aut(Z10). Then by the group
homomorphism property, α is completely determined by its value at 1, as α(l) =
α(l(1)) = lα(1). As 1 is an element of order 10, by (v) of Theorem 6.3.1, for α to
be an isomorphism, α(1) must also be an element of order 10. By Corollary 4.1.10
applied to Z10, we have | k | = | 1 | = 10 if and only if gcd(10, k) = 1, hence k = 1, 3, 7
or 9. Hence we can choose α(1) to be one of these four possible values. Depending
on our choice, let us denote the corresponding mappings by α1, α3, α7 or α9. we will
now show that each of these mappings αk is indeed an automorphism.

As α1(k) = kα1(1) = k, α1 is the identity automorphism. What about the re-
maining αk? For each k, x mod 10 ≡ y mod 10 =⇒ kx mod 10 ≡ ky mod 10 as
gcd(k, 10) = 1. Hence each αk is well-defined. It is clearly a group homomorphism as
αk(a+ b) = k(a+ b) mod 10 = ka+ kb mod 10 = αk(a) +αk(b) mod 10. As k is a
generator of Z10 for each k with gcd(k, 10) = 1 (again, by Corollary 4.1.10), each αk
is onto. Why is it one-to-one? Suppose αk(a) = αk(b), then ka ≡ kb mod 10 which
implies 10 divides k(b− a). But gcd(k, 10) = 1 =⇒ 10|(b− a) so a ≡ b mod 10.

Now that we have determined the set Aut(Z10), let us write its multiplication table:

α1 α3 α7 α9

α1 α1 α3 α7 α9

α3 α3 α9 α1 α7

α7 α7 α1 α9 α3

α9 α9 α7 α3 α1

This table probably looks familiar. Indeed we have αk1αk2 = αk1k2 mod 10 for each
k1, k2. It is in fact exactly in parallel to the multiplication table of U(10). This is
not a coincidence, and we tackle this in the next theorem.

Theorem 6.4.9. For each n ∈ N, Aut(Zn) is isomorphic to U(n).

Proof. Any automorphism α is determined by the value of α(1). As α(1) must have order
equal to the order of 1 which is n, it can take values in U(n) by Corollary 4.1.10. Define
the map T : Aut(Zn) → U(n) by T (α) = α(1). As α is uniquely determined by α(1), T is a
one-to-one mapping.

To prove that T is onto, let k ∈ U(n). Let αk ∈ Aut(Zn) be the map such that αk(1) = k (it
is an automorphism for the reason outlined in Example 6.4.8 (ii)). Then of course T (αk) = k.

Finally, we show that T is a group homomorphism. Let α, β ∈ Aut(Zn). Then
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T (αβ) = αβ(1) = α (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
β(1) times

= α(1) + α(1) + · · ·+ α(1)︸ ︷︷ ︸
β(1) times

= α(1)β(1)

= T (α)T (β).

�
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