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INSTRUCTOR: ARUNDHATHI KRISHNAN

10. Group Homomorphisms

10.1. Definitions and examples. We have already studied isomorphisms in some detail. We
now consider group homomorphisms and find that they also encode important information
about groups. We build up to the first isomorphism theorem, a fundamental result in the
study of any algebraic structures.

Definition 10.1.1. A homomorphism ϕ from a group G to a group G is a mapping from G
into G such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G.

We now define an important set associated to a group homomorphism.

Definition 10.1.2. The kernel of a homomorphism ϕ : G→ G is the set {x ∈ G | ϕ(x) = eG}.
It is denoted by Kerϕ.

Let us now consider some examples of homomorphisms and their kernels.

Example 10.1.3.

(i) ϕ : GL(2,R)→ R∗ defined as ϕ(A) = detA is a group homomorphism with Kerϕ =
SL(2,R).

(ii) ϕ : R∗ → R∗ defined as ϕ(x) = |x | is a homomorphism with Kerϕ = {1,−1}.
(iii) Let R[x] be the group of real polynomials in one variable, with pointwise addition.

Then ϕ : R[x]→ R[x] defined as ϕ(f) = f ′ (the first derivative) is a group homomor-
phism with Kerϕ given by the set of constant polynomials.

(iv) ϕ : Z → Zn given by ϕ(m) = m mod n is a group homomorphism with Kerϕ =
nZ = 〈n〉.

(v) ϕ : R∗ → R∗ given by ϕ(x) = x2 is a group homomorphism with Kerϕ = {1,−1}.
(vi) ϕ : (R,+)→ (R,+) defined as ϕ(x) = x2 is not a homomorphism as (x+y)2 6= x2+y2

in general.

We notice that the kernels of the homomorphisms given above are subgroups. This is not
a coincidence as we will see in the following theorem.

10.2. Properties of homomorphisms.

Theorem 10.2.1. Let ϕ : G → G be a homomorphism, g ∈ G and eG, eG be the identity

elements of G and G respectively.

(i) ϕ(eG) = eG.
(ii) ϕ(gn) = [ϕ(g)]n ∀n ∈ Z.

(iii) If | g | is finite, then |ϕ(g) | divides | g |.
(iv) Kerϕ is a subgroup of G.
(v) ϕ(a) = ϕ(b) if and only if aKerϕ = bKerϕ.
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(vi) If ϕ(g) = g′, then ϕ−1(g′) = {x ∈ G | ϕ(x) = g′} = gKerϕ.

Proof. The proofs of (i) and (ii) are just as in the corresponding results (Theorem 6.3.1) for
isomorphisms- you can check that bijectivity was not used in the proof!

For (iii), note that if gn = eG, then ϕ(g)n = ϕ(gn) = ϕ(eG) = eG by parts (i) and (ii). For
part (iv), note that eG ∈ Kerϕ, so the kernel is non-empty. Further, if x, y ∈ Kerϕ, then
ϕ(xy−1) = ϕ(x)ϕ(y)−1 = eG, so the kernel is a subgroup.

For part (v), note that ϕ(a) = ϕ(b) ⇐⇒ ϕ(a−1b) = eG ⇐⇒ a−1b ∈ Kerϕ ⇐⇒
aKerϕ = bKerϕ.

Finally, for part (vi), note that if h ∈ gKerϕ, then h = gk for some k ∈ Kerϕ, so
that ϕ(h) = ϕ(gk) = ϕ(g)ϕ(k) = g′, so gKerϕ ⊆ ϕ−1(g′). Suppose x ∈ ϕ−1(g′) so that
ϕ(x) = g′ = ϕ(g). By part (v), this implies that xKerϕ = gKerϕ, so that x ∈ gKerϕ, and
we have ϕ−1(g′) ⊆ gKerϕ. �

Group homomorphisms preserve the binary operation structure of groups, hence it is natural
that they preserve certain properties of groups as seen in the following theorem.

Theorem 10.2.2. Let ϕ be a homomorphism from G to G and H be a subgroup of G. Then

(i) ϕ(H) = {ϕ(h) | h ∈ H} is a subgroup of G.
(ii) If H is cyclic, then ϕ(H) is cyclic.

(iii) If H is Abelian, then ϕ(H) is Abelian.
(iv) If H is a normal subgroup of G, then ϕ(H) is a normal subgroup of ϕ(G).
(v) If |Kerϕ | = n, then ϕ is an n-to-1 mapping from G onto ϕ(G).

(vi) |ϕ(H) | divides |H |.
(vii) If K is a subgroup of G, then ϕ−1(K) = {k ∈ G | ϕ(k) ∈ K} is a subgroup of G.

(viii) If K is normal, then ϕ−1(K) is normal.
(ix) If ϕ is onto and Kerϕ = {eG}, then ϕ is an isomorphism from G to G.

Proof. The proofs of (i), (ii) and (iii) are just as in Theorem 6.3.2. For part (iv), let ϕ(h) ∈
ϕ(H) and ϕ(g) ∈ ϕ(G). Then ϕ(g)ϕ(h)ϕ(g)−1 = ϕ(ghg−1) ∈ ϕ(H) as H is normal.

For part (v), note that for g′ = ϕ(g) ∈ ϕ(G), ϕ−1(g′) = gKerϕ, so
∣∣ϕ−1(g′) ∣∣ = | gKerϕ | =

|Kerϕ | = n.
For part (vi), set ϕH = ϕ|H , the restriction of ϕ to the subgroup H. Then ϕH : H → ϕ(H)

is an onto homomorphism. Suppose |KerϕH | = t, then by part (v), ϕH is a t-to-1 mapping.
Hence t |ϕ(H) | = |H |, so |ϕ(H) | divides |H |.

For part (vii) first note that eG ∈ ϕ−1(K), so it is non-empty. Suppose x, y ∈ ϕ−1(K).
then ϕ(xy−1) = ϕ(x)ϕ(y)−1 ∈ K as K is a subgroup. Hence ϕ−1(K) is a subgroup.

For part (viii), let k ∈ ϕ−1(K) and x ∈ G. Then ϕ(xkx−1) = ϕ(x)ϕ(k)ϕ(x)−1 ∈ K as K is
normal and ϕ(k) ∈ K. Hence xkx−1 ∈ ϕ−1(K).

Part (ix) clearly follows from part (v). �

An immediate consequence of (vii) and (viii) of Theorem 10.2.2 is the following important
result.

Corollary 10.2.3. Let ϕ : G → G be a group homomorphism. Then Kerϕ is a normal
subgroup of G.

Let us consider some applications of Theorems 10.2.1 and 10.2.2.
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Example 10.2.4.

(i) Let ϕ : C∗ → C∗ be given by ϕ(x) = x4. Then Kerϕ = {1,−1, i,−i} and ϕ is a 4-to-1
mapping. Then by (vi) of Theorem 10.2.1, ϕ−1(2) = 4

√
2 Kerϕ = { 4

√
2,− 4
√

2, 4
√

2i,− 4
√

2i}.
(ii) Consider ϕ : Z12 → Z12 given by ϕ(x) = 3x. Then Kerϕ = {0, 4, 8} and as 2 ∈

ϕ−1(6), ϕ−1(6) = 2 + Kerϕ = {2, 6, 10}. Also note that |ϕ(2) | = | 6 | = 2, which
divides 6 = | 2 |. Let K = {0, 6}. Then ϕ−1(K) = {0, 2, 4, 6, 8, 10} (which is a
subgroup of Z12).

(iii) We determine all homomorphisms from Z12 to Z30. Any homomorphism is completely
determined by its action on the generator 1 ∈ Z12. To be precise, if ϕ(1) = a, then
ϕ(x) = xa. Now | a | = |ϕ(1) | divides | 1 | = 12. We also have that | a | divides 30.
Hence | a | = 1, 2, 3 or 6. This gives that a = 0 (with order 1), 15 (with order 2), 10
or 20 (with order 3) or 5 or 25 (with order 6).

10.3. First isomorphism theorem. The following theorem is a fundamental result in ab-
stract algebra that relates the structure of the kernel and the image of a homomorphism via
a quotient group. It causes a systematic collapse of a group to a simpler but closely related
group.

Theorem 10.3.1. Let ϕ : G → G be a group homomorphism. Then the mapping ψ from
G�Kerϕ→ ϕ(G) given by ψ(gKerϕ) = ϕ(g) is an isomorphism. That is,

G�Kerϕ
∼= ϕ(G).

Proof. We will show that ψ is a well-defined isomorphism. By Theorem 10.2.1, gKerϕ =
hKerϕ if and only if ϕ(g) = ϕ(h), so ψ is well-defined and injective. It is clearly onto
ϕ(G). It remains to show that ψ is multiplicative. This is true as ψ ((gKerϕ)(hKerϕ)) =
ψ(ghKerϕ) = ϕ(gh) = ϕ(g)ϕ(h) = ψ(gKerϕ)ψ(hKerϕ). �

Theorem 10.3.1 is illustrated by the following diagram:

G ϕ(G)

G�Kerϕ

ϕ

γ ψ

Here the map γ : G → G�Kerϕ given by γ(g) = gKerϕ is called the natural or canonical

map from G onto G�Kerϕ (verify that it is indeed onto). The relationship between the three

maps in the figure is as follows:
ψγ = ϕ.

The diagram is said to be commutative as taking the route from G to ϕ(G) remains the same
through the direct route (the right arrow ϕ) and the “longer route” (take the bottom-right
arrow first and then the top arrow: γ followed by ψ).

Corollary 10.3.2. If ϕ : G→ G is a homomorphism and |G | is finite, then |ϕ(G) | divides
|G |.

Proof. The result follows as |G |
|Kerϕ | =

∣∣∣G�Kerϕ

∣∣∣ = |ϕ(G) |. �
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We illustrate 10.3.1 with some examples.

Example 10.3.3.

(i) Consider ϕ : D4 → D4 given by ϕ(r0) = ϕ(r2) = r0, ϕ(r1) = ϕ(r3) = s0, ϕ(s0) =
ϕ(s2) = r2, ϕ(s1) = ϕ(s3) = s2. Then ϕ is a homomorphism with Kerϕ =

{r0, r2}. Now ψ : D4�Kerϕ → ϕ(D4) = {r0, r2, s0, s2} given by ψ(r0 Kerϕ) =

r0, ψ(r1 Kerϕ) = s0, ψ(s0 Kerϕ) = r2, ψ(s1 Kerϕ) = s2 is an isomorphism.
(ii) Recall the map ϕ : Z → Zn in part (iv) of Example 10.1.3 given by ϕ(m) = m

mod n. We saw that Kerϕ = 〈n〉. The map ϕ is clearly onto Zn (verify!). Hence by

Theorem 10.3.1, Z�〈n〉 ∼= Zn.

(iii) Let H be a subgroup of G. Recall the subgroups N(H) = {x ∈ G | xHx−1 = H}
(the normalizer of H) and C(H) = {x ∈ G | xhx−1 = h ∀h ∈ H} (the centralizer of
H). Recall also that C(H) ≤ N(H). Define χ : N(H)→ Aut(H) by χ(g) = ϕg, the
inner automorphism induced by g. Then χ is a homomorphism. To verify this, first
note that for all h ∈ H, ϕg(h) = ghg−1 ∈ H because g ∈ N(H). Further, we have
already seen that ϕgh = ϕgϕh, so χ is a homomorphism. To find the kernel of χ, note
that ϕg = ϕe (the identity in Aut(H)) if and only if ghg−1 = ehe−1 for all h ∈ H,
that is, ghg−1 = h for all h ∈ H. This is precisely the criterion for g ∈ C(H), so

Kerχ = C(H). Hence, by Theorem 10.3.1, N(H)�C(H) is isomorphic to a subgroup

of Aut(H). This is sometimes called the N�C theorem.
(iv) We illustrate an application of the N/C theorem. Let G be a group of order 35. We

will show that G is cyclic. Every non-identity element of G has either order 5, 7 or
35. Now, not all elements can have order 5, as elements of order 5 appear in groups
of 4 (as if x has order 5, so does x2, x3 and x4) and 4 does not divide 35 − 1 = 34.
Similarly, all elements cannot have order 7 as these elements appear in groups of 6,
which also does not divide 34. Hence G has both elements of order 7 and 5.

Hence G has a subgroup of order 7, say H. We claim that H is the only subgroup

of order 7, for if K ≤ G with |K | = 7 and K 6= H, then |HK | = |H ||K |
|H∩K | = 7×7

1 = 49

which is impossible in a group of order 35 (Note: |H ∩K | = 1 as it cannot have
order 7). Hence, for all a ∈ G, aHa−1 = H, so that N(H) = G. Now as |H | = 7,
H is cyclic and thus Abelian. Hence H ≤ C(H). This implies that 7 divides the
order of C(H) and as |C(H) | divides 35, either |C(H) | = 7 or |C(H) | = 35. In

the first case,
∣∣∣N(H)�C(H)

∣∣∣ = 35
7 = 5. But this quotient group must be isomorphic

to a subgroup of Aut(Z7) ∼= U(7) (Theorem 6.4.9) which has order 6, and of course,
5 does not divide 6. On the other hand, if C(H) = G, then taking x = hk with h
a non-identity element of H (and hence of order 7) and k ∈ G with order 5 gives
|x | = |hk | = 35 as h and k commute and h and k have orders 7 and 5 respectively.

We end the lecture with an important result which gives the converse of the statement “the
kernel of a homomorphism is a normal subgroup”.

Theorem 10.3.4. Every normal subgroup N of a group G is the kernel of a homomorphism

of G. Namely, N = Ker γ for γ : G→ G�N given by γ(g) = gN .

Proof. Clearly, γ is well-defined. It is multiplicative as γ(gh) = (gh)N = gNhN = γ(g)γ(h)
for g, h ∈ G. The kernel of γ is given by {g ∈ G | gN = N} which is precisely equal to
{g ∈ G | g ∈ N} = N . �



PMATH 336: INTRODUCTION TO GROUP THEORY WITH APPLICATIONS NOTES FOR WEEK 9 5

References

[1] Chapter 10. Gallian, Joseph. Contemporary abstract algebra. Nelson Education, 2012.


	10. Group Homomorphisms
	10.1. Definitions and examples
	10.2. Properties of homomorphisms
	10.3. First isomorphism theorem

	References

