
PMATH 336: INTRODUCTION TO GROUP THEORY WITH

APPLICATIONS

NOTES FOR WEEK 8

INSTRUCTOR: ARUNDHATHI KRISHNAN

9. Normal Subgroups

9.1. Definitions and Examples.

Definition 9.1.1. A subgroup H of a group G is called a normal subgroup of G if aH = Ha
for all a ∈ G. This is denoted by H E G.

Theorem 9.1.2. A subgroup H of G is normal if and only if xHx−1 ⊆ H for all x ∈ G.

Proof. If H is normal, then for each x ∈ G and h ∈ H, xh = h′x for some h′ ∈ H. Hence
xhx−1 = h′ ∈ H, so that xHx−1 ⊆ H.

For the converse, suppose xHx−1 ⊆ H for all x ∈ G. Then for each h ∈ H, there exists
h′ ∈ H such that xhx−1 = h′, so that xh = h′x and xH ⊆ Hx. On the other hand, as
x−1 ∈ G, for each h ∈ H, there exists h′′ ∈ H such that x−1hx = h′′, so that hx = xh′′ and
Hx ⊆ xH. �

Remark 9.1.3.

(i) Every subgroup of an Abelian group is normal.
(ii) The center Z(G) of a group is normal (verify!).
(iii) The normalizer N(H) of a subgroup H of G is defined as

N(H) = {x ∈ G | xHx−1 = H}.

We have seen (in Assignment 1) that N(H) is a subgroup of G. It is immediate from
the definition of N(H) that H is a normal subgroup of N(H).

(iv) The alternating group An of even permutations is a normal subgroup of Sn for each
n.

(v) Every subgroup of Dn consisting only of rotations is normal. To see this, note that
sr = r−1s for every rotation r and reflection s, and that rotations commute.

(vi) If a group G has a unique subgroup H of some finite order, then H is normal in G. To
see this, observe that for any g ∈ G, gHg−1 is a subgroup of G and

∣∣ gHg−1 ∣∣ = |H |.
(vii) The group SL(2,R) is a normal subgroup of GL(2,R).

9.2. Quotient Groups. One of the primary reasons normal subgroups are of interest is that
they can be used to create new groups. This is because the set of left (or right) cosets of a
normal subgroup H in G is itself a group.

Theorem 9.2.1. Let G be a group and let H be a normal subgroup of G. The set of all

(left) cosets of H in G denoted by G�H := {aH | a ∈ G} is a group under the operation
(aH)(bH) = abH.
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Proof. We first show that the operation is well-defined. Suppose aH = a′H and bH = b′H.
Then there exist h1, h2 ∈ H such that a′ = ah1 and b′ = bh2, so that

a′b′H = ah1bh2H = ah1bH

= ah1Hb as H is normal

= aHb = abH as H is normal.

Clearly eH is the identity and a−1H is in the inverse of aH for each a ∈ G. Finally, as-
sociativity follows because for a, b, c ∈ G, (aHbH)cH = (abH)(cH) = (ab)cH = a(bc)H =
aH(bcH) = aH(bHcH). �

Actually, for the above group operation to be well-defined, H must be a normal subgroup of
G. To see this note that for any h ∈ H, hH = eH = H. Hence for a ∈ G, eHaH = eaH = aH
is the same as hHaH = haH, so that aH = haH for every h ∈ H. This gives by part (vi) of
Lemma 7.1.3 that a−1ha ∈ H, so we have that a−1Ha ⊆ H for every a ∈ G. This means that
H is normal.

Theorem 9.2.1 allows us to define the following group.

Definition 9.2.2. Let H be a normal subgroup of a group G. Then the group G�H is called
the quotient group of G by H.

Clearly, the order of the quotient group G�H is the number of left cosets of H in G, which
is the index of H in G, given by |G : H |. If the order of G is finite, and H is normal, then∣∣∣G�H ∣∣∣ =

|G |
|H |

. (1)

Remark 9.2.3. Note that for a normal subgroup H of G, and g ∈ G, | gH | can denote both

the order of the coset gH in the quotient group G�H and the cardinality of the coset gH,
and these two numbers need not be equal. It will generally be clear from the context what
we mean!

Example 9.2.4.

(i) Let 4Z = {0,±4,±8, . . .}. Then Z�4Z consists of the left cosets of 4Z in Z, given by

0 + 4Z = 4Z = {0,±4,±8, . . .},
1 + 4Z = {1, 5, 9, . . . ;−3,−7,−11, . . .},
2 + 4Z = {2, 6, 10, . . . ;−2,−6,−10, . . .},
3 + 4Z = {3, 7, 11, . . . ;−1,−5,−9, . . .}.

We next write the “multiplication table” for Z�4Z (keep in mind that the operation
in Z is addition!).

0 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z
0 + 4Z 0 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z
1 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z 0 + 4Z
2 + 4Z 2 + 4Z 3 + 4Z 0 + 4Z 1 + 4Z
3 + 4Z 3 + 4Z 0 + 4Z 1 + 4Z 2 + 4Z

It follows then that Z�4Z ∼= Z4, and of course, the order of the quotient group is 4.

It is not hard to show that for any n ∈ N, taking nZ = {0,±n,±2n, . . .}, Z�nZ ∼=
Zn.
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(ii) Consider the subgroupK = {r0, r2} of the dihedral groupD4. We have already seen in
part (iii) of Example 7.1.2 that r0K = r2K, r1K = r3K, s0K = s2K and s1K = s3K.

K is a normal subgroup of D4 and the quotient group D4�K = {K, r1K, s0K, s1K}
with multiplication table:

K r1K s0K s1K
K K r1K s0K s1K
r1K r1K K s1K s0K
s0K s0K s1K K r1K
s1K s1K s0K r1K K

This table can be written as follows:

r0 r2 r1 r3 s0 s2 s1 s3
r0 r0 r2 r1 r3 s0 s2 s1 s3
r2 r2 r0 r3 r1 s2 s0 s3 s1
r1 r1 r3 r2 r0 s1 s3 s2 s0
r3 r3 r1 r0 r3 s3 s1 s0 s2
s0 s0 s2 s3 s1 r0 r2 r3 r1
s2 s2 s0 s1 s3 r2 r0 r1 r3
s1 s1 s3 s0 s2 r1 r3 r0 r2
s3 s3 s1 s2 s0 r3 r1 r2 r0

The above table is simply the multiplication table of D4 but arranged in a way

that corresponds to the multiplication table of D4�K. In Gallian’s words, we see that
the formation of a quotient group causes a systematic collapse of the elements of G.
That is, all the elements in the coset of H containing a reduce to a single element

aH in G�H.

9.3. Applications of Quotient Groups. Quotient groups are useful as they often give
useful information about the group itself. Moreover, if the group is finite, then the order of
a quotient group is smaller than that of the group itself, and this can be handy in induction
arguments as will be illustrated in Cauchy’s Theorem 9.3.4 below.

We first consider an example.

Example 9.3.1. We have already seen that the alternating group A4 has no subgroups of
order 6 in Remark 7.2.8. We will give another proof using quotient groups.

Suppose H is a subgroup of A4 of order 6. Our first claim is that H is a normal subgroup.
In fact, we show that for any group G, a subgroup H with index 2 must be normal.

To see this, let a ∈ G. If a ∈ H, then of course aH = H = Ha. On the other hand, if
a /∈ H, then aH and Ha are both the sets of elements of G that do not belong to H, hence
they are equal to each other. Hence H is normal.

We can thus consider the quotient group A4�H which must have order 2. Hence, for every

α ∈ A4, α
2H = (αH)2 = H so that α2 ∈ H for each α ∈ A4. But its can be verified that A4

has 9 distinct elements of the form α2, whereas H was assumed to have order 6. Hence, we
arrive at a contradiction, and there can be no subgroups of A4 of order 6.

Theorem 9.3.2. Let G be a group and Z(G) be the center of G. If G�Z(G) is cyclic, then

G is Abelian.
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Proof. G is Abelian if and only if G = Z(G). We will show that G�Z(G) = {Z(G)} and this

implies that G = Z(G).

By the hypothesis of cyclicity, G�Z(G) = 〈gZ(G)〉 for some g ∈ G. Let a ∈ G. Then

aZ(G) = (gZ(G))i = giZ(G) for some i ∈ Z. Hence a = giz for some z ∈ Z(G). As
z, g ∈ C(g) (where C(g) is the centralizer of g which is a subgroup), we also have a ∈ C(g).
Hence ag = ga. But the element a was chosen arbitrarily, hence g commutes with a for all

a ∈ G, that is, g ∈ Z(G), so that gZ(G) = Z(G) and G�Z(G) = {Z(G)}.
�

Actually, the above proof shows that if G�H is cyclic for any subgroup H of Z(G), then G
is Abelian.

A consequence of Theorem 9.3.2 is that if G is not Abelian, then G�Z(G) is not cyclic. In

particular, suppose G has order pq, where p and q are primes. Suppose e 6= a ∈ Z(G), then
|Z(G) | is either p or q by Lagrange’s theorem. By another application of Lagrange’s theorem,

this means that
∣∣∣G�Z(G)

∣∣∣ is q or p, so that G�Z(G) is cyclic (see Corollary 7.2.5). Hence G

must be Abelian or Z(G) = {e}.

Theorem 9.3.3. For any group G, G�Z(G)
∼= Inn(G)

Proof. For g ∈ G, define T (gZ(G)) := ϕg, where ϕg is the inner automorphism given by
ϕg(x) = gxg−1, ∀x ∈ G. We will show that T is a well-defined isomorphism.

We have gZ(G) = hZ(G) if and only if h−1g ∈ Z(G). Now, for each x ∈ G, ϕg(x) = ϕh(x)
if and only if gxg−1 = hxh−1 if and only if h−1gx = xh−1g for each x ∈ G which is true if
and only if h−1g ∈ Z(G), that is, if and only if gZ(G) = hZ(G). Hence ϕ is well-defined and
one-to-one. T is clearly onto Inn(G) as every inner automorphism is of the form ϕg for some
g ∈ G.

Finally, we observe that ϕgϕh(x) = g(hxh−1)g−1 = (gh)x(gh)−1 = ϕgh(x) for each x ∈ G.
Hence T (gZ(G)hZ(G)) = T (ghZ(G)) = ϕgh = ϕgϕh = T (gZ(G))T (hZ(G)), so that T is a
group homomorphism, and indeed, an isomorphism. �

Theorem 9.3.4 (Cauchy’s theorem for Abelian groups). Let G be a finite Abelian group and
let p be a prime that divides the order of G. Then G has an element of order p.

Proof. The proof is by induction on |G |. Suppose |G | = 2. Then G = {e, a} and a must
have order 2.

Suppose the result is true for all Abelian groups with order less than |G |. Suppose x is
some element of G with order m > 1. Then m = qn for some prime q, so that |xn | = q. This
implies that G must have elements of prime order. Now, if q = p we are done. Suppose q 6= p

and let G = G�〈xn〉. Then G is Abelian as it is a quotient of an Abelian group. Further, as∣∣G ∣∣ = |G |
q and q 6= p, the prime p divides

∣∣G ∣∣. As
∣∣G ∣∣ < |G |, by the induction hypothesis,

there exists y ∈ G such that the order of the coset y〈xn〉 is p.
Now yp〈xn〉 = (y〈xn〉)p = 〈xn〉. Hence yp ∈ 〈xn〉. If yp = e, we are done. Otherwise as

〈xn〉 has order q, (yp)q = e = (yq)p, so the element yq has order p. �

9.4. Connection to Direct Products. Last week we showed that the internal direct prod-
uct of subgroups of a group is isomorphic to their external direct product. We will consider
some consequences of this. One strength of the external direct product is that its order is
simply the product of the orders of the constituent groups.
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Theorem 9.4.1. Every group of order p2, where p is a prime, is isomorphic to Zp2 or Zp⊕Zp.

Proof. Let |G | = p2. If G has an element of order p2, then G is cyclic and hence isomorphic
to Zp2 . If not, then every non-identity element of G must have order p. We claim that for each
a ∈ G\{e}, the subgroup 〈a〉 is normal. Suppose it is not normal, then there exists b ∈ G with
bab−1 /∈ 〈a〉. Then 〈a〉 and 〈bab−1〉 are distinct subgroups of order p. Since 〈a〉 ∩ 〈bab−1〉 is a
subgroup of both groups, it must be the trivial subgroup {e}. This gives us that the distinct
left cosets of 〈bab−1〉 in G are 〈bab−1〉, a〈bab−1〉, a2〈bab−1〉, . . . , ap−1〈bab−1〉. The element b−1

must belong to one of these cosets, that is, b−1 = ai(bab−1)j = aibajb−1 for some integers i
and j. But this implies that aibaj = e which gives that b = a−i−j ∈ 〈a〉, a contradiction as
bab−1 /∈ 〈a〉. Hence 〈a〉 is normal.

This means that for x 6= y ∈ G, both of order p, 〈x〉 × 〈y〉 is isomorphic to 〈x〉 ⊕ 〈y〉, and
hence is a subgroup of G of order p2. This means that G = 〈x〉 × 〈y〉 ∼= Zp⊕Zp, as promised.

�

An immediate consequence of Theorem 9.4.1 is the following.

Corollary 9.4.2. If |G | = p2 where p is a prime, then G is Abelian.
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