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APPLICATIONS
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INSTRUCTOR: ARUNDHATHI KRISHNAN

7. Cosets and Lagrange’s Theorem

7.1. Cosets.

Definition 7.1.1. Let G be a group and H be a non-empty subset of G. For any a ∈ G,
the set {ah | h ∈ H} is denoted by aH. Similarly, Ha denotes the set {ha | h ∈ H} and
aHa−1 the set {aha−1 | h ∈ H}. If H is a subgroup of G, aH is called the left coset of H in
G containing a, and Ha is called the right coset of H in G containing a.

Example 7.1.2.

(i) Let G = S3, H = {(1), (1, 3)}. The left cosets of H in S3 are:

(1)H = H

(1, 2)H = {(1, 2)(1), (1, 2)(1, 3)} = {(1, 2), (1, 3, 2)}
(1, 3, 2)H = {(1, 3, 2), (1, 3, 2)(1, 3)} = {(1, 3, 2), (1, 2)}

(1, 3)H = {(1, 3), (1, 3)(1, 3)} = {(1, 3), (1)} = H

(2, 3)H = {(2, 3), (2, 3)(1, 3)} = {(2, 3), (1, 2, 3)}
(1, 2, 3)H = {(1, 2, 3), (1, 2, 3)(1, 3)} = {(1, 2, 3), (2, 3)}.

(ii) Let G = Z9 and H = {0, 3, 6}. The cosets of H in Z9 are:

0 +H = {0, 3, 6} = 3 +H = 6 +H

1 +H = {1, 4, 7} = 4 +H = 7 +H

2 +H = {2, 5, 8} = 5 +H = 8 +H.

(iii) Let G = D4 and H = {r0, r2}. The cosets of H in D4 are:

r0H = {r0, r2} = H

r1H = {r1, r1r2} = {r1, r3}
r2H = {r2, r2r2} = {r2, r0} = H

r3H = {r3, r3r2} = {r3, r1}
s0H = {s0, s0r2} = {s0, s2}
s1H = {s1, s1r2} = {s1, s3}
s2H = {s2, s2r2} = {s2, s0}
s3H = {s3, s3r2} = {s3, s1}

In the example above, it is clear that cosets need not be subgroups, and that cosets of a
subgroup H corresponding to different elements a, b ∈ G can be the same.
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Lemma 7.1.3. Let H be a subgroup of G and let a, b ∈ G. Then

(i) a ∈ aH.
(ii) aH = H ⇐⇒ a ∈ H.

(iii) (ab)H = a(bH) and H(ab) = (Ha)b.
(iv) aH = bH ⇐⇒ a ∈ bH.
(v) aH = bH or aH ∩ bH = ∅.

(vi) aH = bH ⇐⇒ a−1b ∈ H.
(vii) | aH | = | bH |.

(viii) aH = Ha ⇐⇒ H = aHa−1.
(ix) aH is a subgroup of G if and only if a ∈ H.

Proof. (i) As H is a subgroup, e ∈ H and so a = ae ∈ aH.
(ii) a ∈ H implies that ah ∈ H for each h ∈ H, so aH ⊆ H. On the other hand, a ∈ H

implies that a−1 ∈ H, so h = a(a−1h) ∈ aH for all h ∈ H, and hence H ⊆ aH.
Conversely, suppose that aH = H. Then a = ae ∈ aH = H.

(iii) By associativity, (ab)h = a(bh) and h(ab) = (ha)b for all h ∈ H. Hence the given
equalities of sets hold.

(iv) Suppose aH = bH. Then a = ae ∈ aH = bH. Conversely, suppose a ∈ bH. Then
a = bh1 for some h1 ∈ H and aH = (bh1)H = b(h1H) = bH by parts (ii) and (iii).

(v) If c ∈ aH ∩ bH, then by part (iv), aH = cH = bH.
(vi) aH = bH if and only if H = a−1bH, which by part (ii) holds if and only a−1b ∈ H.
(vii) The map ah → bh from aH to bH is one-to-one and onto, and hence the two sets

have the same cardinality.
(viii) aH = Ha if and only if aHa−1 = Haa−1 = H.

(ix) If a ∈ H, then by part (ii), aH = H, which is of course a subgroup of G. Conversely,
suppose aH is a subgroup. Then e ∈ aH so that eH ∩ aH 6= ∅. By part (v)
aH = eH = H, so a ∈ H by part (ii).

�

We note that properties (i), (v) and (vii) of Lemma 7.1.3 imply that a group G can be
partitioned into distinct cosets of equal cardinality, and indeed the relation a ∼ b if and only if
aH = bH is an equivalence relation that partitions G into equivalence classes given by distinct
cosets. The subgroup H is often thus chosen in such a way as to partition the group in some
desirable way. For example, consider H = SL(2,R) ≤ G = GL(2,R) and its cosets. For any
matrix A ∈ GL(2,R), the coset AH consists of all matrices with the same determinant as A
(verify this!).

7.2. Lagrange’s Theorem.

Theorem 7.2.1. If G is a finite group and H is a subgroup of G, then |H | divides |G |. The

number of distinct left (right) cosets of H in G is |G ||H | .

Proof. Let a1H, . . . , arH denote the distinct left cosets of H in G. Then for each a ∈ G,
aH = aiH for some i, and a ∈ aH = aiH. Thus each a ∈ G belongs to a coset aiH
so that G = a1H ∪ . . . ∪ arH. This union is disjoint by part (v) of Lemma 7.1.3, hence
|G | = | a1H |+ · · ·+ | arH | = r |H | (by part (vii) of Lemma 7.1.3). Hence |H | divides |G |
and further, |G ||H | is equal to the number of left cosets of H in G.

�

Definition 7.2.2. The index of a subgroup H in G is the number of distinct left cosets of H
in G, denoted by |G : H |.
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A straightforward corollary of Lagrange’s Theorem 7.2.1 is the following.

Corollary 7.2.3. If G is a finite group and H is a subgroup of G, then |G : H | = |G |
|H | .

Corollary 7.2.4. In a finite group, the order of each element of the group divides the order
of the group.

Proof. Let G be a finite group and a ∈ G. Then 〈a〉, the cyclic subgroup generated by a, is a
subgroup of G, hence | a | = | 〈a〉 | divides the order of G. �

Corollary 7.2.5. A group of prime order is cyclic.

Proof. Let G have prime order, say p and e 6= a ∈ G. Then by Lagrange’s Theorem 7.2.1,
| 〈a〉 | divides |G | = p, hence | 〈a〉 | = p or 1. As a 6= e, 〈a〉 must have order p, which implies
that it is the whole group G. �

Corollary 7.2.6. Let G be a finite group and let a ∈ G. Then a|G | = e.

Proof. By Corollary 7.2.4, there exists n ∈ N such that n | a | = |G |. Hence a|G | = an| a | =
e. �

Corollary 7.2.7 (Fermat’s Little Theorem). For every integer a and every prime p, ap

mod p = a mod p.

Proof. There exist integers m and r with 0 ≤ r < p such that a = pm + r, that is, a
mod p ≡ r. So it suffices to prove that rp mod p ≡ r. If r = 0, the result is true. Assume
that r ∈ {1, 2, . . . , p−1} = U(p). Then by Corollary 7.2.6, rp−1 mod p ≡ 1. (We also showed
this (Euler’s Theorem) in Question 1 of Assignment 2.) Hence rp mod p ≡ r. �

Remark 7.2.8. The converse of Lagrange’s theorem is false. Consider A4 the alternating
group of degree 4. Then |A4 | = 4!

2 = 12. But A4 has no subgroups of order 6.
To see this, an easy computation gives that S4 has 8 elements of order 3 and as they are all

3-cycles, they are even permutations and belong to A4. Now, suppose that A4 has a subgroup
of order 6. Let a be an element of order 3 and suppose a /∈ H. Then A4 = H ∪ aH so that
a2 ∈ H or a2 ∈ aH. If a2 ∈ H, then a = a4 ∈ H, a contradiction. On the other hand,
a2 ∈ aH implies that a2 = ah for some h ∈ H, so a ∈ H, a contradiction So it must be true
that a ∈ H for every a with order 3. But this implies that 8 elements belong to a subgroup
of order 6, which is absurd.

This shows that unlike in a cyclic group, a finite group of order n need not have a subgroup
of order k if k divides n (compare with Theorem 4.2.1).

Theorem 7.2.9. For two finite subgroups H and K of a group, let HK = {hk | h ∈ H, k ∈
K}. Then |HK | = |H ||K |

|H∩K |

Proof. On first glance, the set HK has |H | |K | products, but they may not all be distinct.
That is, we may have hk = h′k′ with h 6= h′ ∈ H and k 6= k′ ∈ K.

For each t ∈ H ∩K, hk = h(tt−1)k = (ht)(t−1k) ∈ HK as ht ∈ H and t−1k ∈ K. Hence
each group element in HK is represented by at least |H ∩K | products in HK. On the other
hand, suppose hk = h′k′. Then h′−1h = k′k−1 = t ∈ H ∩ K, so h = h′t and k = k′t−1

with t ∈ H ∩K. Thus each element in HK is represented by exactly |H ∩K | products, and

|HK | = |H ||K |
|H∩K | . �

Example 7.2.10. A group of order 75 can have at most one subgroup of order 25. Suppose
H,K are subgroups of order 25. Then as H∩K is a subgroup of H (or K), |H ∩K | divides the
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order of H (or K) so that |H ∩K | is 1, 5, or 25. The choices 1 and 5 lead to |HK | = |H ||K |
|H∩K |

equal to 625 and 125 respectively which gives a contradiction as the cardinality of HK must
be less than or equal to the order of the group. Hence we must have |H ∩K | = 25, so that
H ∩K = H = K.

Theorem 7.2.11 (Classification of Groups of order 2p). Let G be a group of order 2p, where
p is a prime greater than 2. Then G is isomorphic to Z2p or Dp.

Proof. If G has an element a of order 2p, then G ∼= 〈a〉, that is, G is cyclic of order 2p and is
isomorphic to Z2p by Example 6.1.3 (iii).

If there is no element of order 2p in G, then by Corollary 7.2.4, any non-identity element
of G must have order 2 or p. If every non-identity element of G has order 2, then G is
Abelian (why?). In this case, the set {e, a, b, ab} is closed and contains all inverses, hence
it is a subgroup of order 4 of G, which is a contradiction as by Lagrange’s theorem, any
subgroup of G must have order 2 or p. Hence, some element a ∈ G must have order p. Let
b ∈ G \ 〈a〉. Then | b | = 2 or p. By another application of Lagrange’s theorem, | 〈a〉 ∩ 〈b〉 |
divides | 〈a〉 | = p and 〈a〉 6= 〈b〉 implies that | 〈a〉 ∩ 〈b〉 | = 1. If | b | = p, then by Theorem

7.2.9, | 〈a〉〈b〉 | = p2

1 = p2 > 2p = |G |, as p > 2. This is impossible, hence it must hold
that | b | = 2. Thus, altogether, we have shown that any element outside 〈a〉 must have order
2. Further, note that e, a, a2, . . . , ap−1 and b, ab, a2b, . . . , ap−1b are all distinct elements of G.
Since there are 2p such elements and |G | = 2p, they must be all the elements of G.

Consider the element ab. As it does not belong to 〈a〉, it must have order 2. Hence
ab = (ab)−1 = ba−1. This relation will determine the multiplication table of G.

Recall the dihedral group Dp of order 2p for p ≥ 3. Choose a rotation of order p (for example
r1) and any reflection (say, s2). Then every element of D2p can be written as products of
these two elements (verify this!). The set {r1, s2} is said to generate the group G. Further,
r1s2 = s3 and s2r

−1
1 = s2rp−1 = s2−p+1 mod p = s3 so that r1s2 = s2r

−1
1 .

In G (and Dp), the multiplication table is completely determined by the relation ab = ba−1

as we have the following:

akal = ak+l mod p, ak(alb) = ak+l mod pb,

(alb)ak = ba−lak = bak−l mod p = al−k mod pb, (akb)(alb) = akb2a−l = ak−l mod p

Hence G ∼= Dp via the isomorphism ϕ(aqbr) = rq1s
r
2, q = 0, . . . , p− 1 and r = 0, 1. �

Corollary 7.2.12. The group S3 is isomorphic to D3.

Proof. The group S3 is of order 6 = 2(3) and it is not cyclic. Hence it must be isomorphic to
D3 by Theorem 7.2.11. �

7.3. An application to permutation groups.

Definition 7.3.1. Let G be a group of permutations of a set S. For each i ∈ S, let stabG(i) =
{ϕ ∈ G | ϕ(i) = i}. The set stabG(i) is called the stabilizer of i in G.

Exercise 7.3.2. stabG(i) is a subgroup of G.

Definition 7.3.3. Let G be a group of permutations of a set S. For each i ∈ S, let orbG(i) =
{ϕ(i) | ϕ ∈ G}. The set orbG(i) is a subset of S called the orbit of i under G.

Example 7.3.4. Let the group G be given by

G = {(1), (1, 3, 2)(4, 6, 5)(7, 8), (1, 3, 2)(4, 6, 5), (1, 2, 3)(4, 5, 6), (1, 2, 3)(4, 5, 6)(7, 8), (7, 8)}.
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Then

orbG(1) = {1, 3, 2} stabG(1) = {(1), (7, 8)}
orbG(2) = {2, 1, 3} stabG(2) = {(1), (7, 8)}
orbG(3) = {3, 2, 1} stabG(3) = {(1), (7, 8)}
orbG(4) = {4, 6, 5} stabG(4) = {(1), (7, 8)}
orbG(5) = {5, 4, 6} stabG(5) = {(1), (7, 8)}
orbG(6) = {6, 5, 4} stabG(6) = {(1), (7, 8)}
orbG(7) = {7, 8} stabG(7) = {(1), (1, 3, 2)(4, 6, 5), (1, 2, 3)(4, 5, 6)}
orbG(8) = {8, 7} stabG(8) = {(1), (1, 3, 2)(4, 6, 5), (1, 2, 3)(4, 5, 6)}

Theorem 7.3.5 (Orbit Stabilizer). Let G be a finite group of permutations of a set S. Then
for any i ∈ S, |G | = | orbG(i) | | stabG(i) |.

Proof. We know by Lagrange’s theorem that |G |
| stabG(i) | gives the number of left cosets of

stabG(i) in G. We will give a one-to-one correspondence between the left cosets of stabG(i)
and the elements in the orbit of i.

Define T (ϕ stabG(i)) = ϕ(i). To see that T is well-defined, note that if α stabG(i) =
β stabG(i), then α−1β ∈ stabG(i) so that (α−1β)(i) = i. This gives that α(i) = β(i), so T is
well defined.

Next we show that T is one-to-one. Suppose α(i) = β(i), then (α−1β)(i) = i, so α−1β ∈
stabG(i). This implies that α stabG(i) = β stabG(i) establishing that T is one-to-one.

Finally we show that T is onto. Let j ∈ orbG(i), then j = α(i) for some α ∈ G. Hence
j = α(i) = T (α stabG(i)).

Altogether, we have shown that there exists a bijection between the left cosets of stabG(i)

and the orbit of i, hence |G |
| stabG(i) | = | orbG(i) |. �

7.4. Rotation group of a cube.

Example 7.4.1. Let G be the rotation group of a cube. What is |G |? We can view G as a
group of permutations on the set {1, 2, 3, 4, 5, 6} as any rotation must carry a face of the cube
to a face of the cube.

Let us fix the face corresponding to 1, say and use the Orbit-Stabilizer theorem. There
exists a rotation that carries face 1 to each of the faces 1, 2, 3, 4, 5, 6, hence | orbG(i) | = 6.
The rotations that fix face 1 are given by rotations of 0, π2 , π,

3π
2 about the line perpendicular

to face 1 passing through the center of the cube. Hence | stabG(i) | = 4. Altogether, |G | =
| orbG(1) | | stabG(1) | = 6× 4 = 24.

Theorem 7.4.2. The group of rotations of a cube is isomorphic to S4.

Proof. We proved in the example above that |G | = 24. We will show that G maps to a
subgroup of S4, hence must be equal to S4 as it has the same cardinality.

To each rotation of the cube, we associate an element of S4. In particular, a cube has
4 diagonals and the rotation group induces a group of permutations on the four diagonals.
Labelling the diagonals a, b, c, d, we see that there is a π

2 rotation that yields the permutation
α = (1, 2, 3, 4) (see figure 1 below) and a π

2 rotation that yields β = (1, 4, 2, 3).
Hence the group of permutations of the diagonals induced by the rotations of the cube

contains the 8 element subgroup {ε, α, α2, α3, β2, β2α, β2α2, β2α3} and also the element αβ
which has order 3. Hence the order of the group of permutations of the diagonals induced by
the rotations of the cube is a multiple of 8 and 3, hence must be 24. Hence G ∼= S4. �
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Figure 1. The rotation yielding the permutation α
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