Unquantized anomalies in topological semimetals

Anton Burkov

$\widehat{?}$ PERIMETER

Gravity and Emergent Gauge Fields in Condensed Matter, April 13, 202 I

Thanks

Lei Gioia Yang (Waterloo/Perimeter)

Manisha Thakurathi (Waterloo/IIT-Delhi)

Chong Wang (Perimeter)

Dan Sehayek (Waterloo)

Outline

Unquantized anomalies in topological semimetals.

3D Fractional Quantum Hall effect in magnetic Weyl semimetals.
arxiv:2 103.0984 |
PRB I02, II5I59 (2020)
PRB IOI, 235 I68 (2020)
PRL I24, 096603 (2020)

What is topological about topological semimetals?

What is topological about topological semimetals?

- Typically talk about topological invariants in momentum space.

$$
\frac{1}{2 \pi} \int \boldsymbol{\Omega}(\mathbf{k}) \cdot d \mathbf{S}=C \quad \text { 童 }
$$

What is topological about topological semimetals?

- This picture relies on noninteracting band eigenstates and is not applicable with interactions.

What is topological about topological semimetals?

- This picture relies on noninteracting band eigenstates and is not applicable with interactions.
- A more general picture is in terms of response: for example anomalous Hall effect in magnetic Weyl semimetals.

What is topological about topological semimetals?

- This picture relies on noninteracting band eigenstates and is not applicable with interactions.
- A more general picture is in terms of response: for example anomalous Hall effect in magnetic Weyl semimetals.
- But other kinds of topological semimetals don't have any obvious "topological" response.

What is topological about topological semimetals?

- But other kinds of topological semimetals don't have any obvious "topological" response.
- Does it mean that they are not really "topological" in any sense once interactions are included?

What is topological about topological semimetals?

- But other kinds of topological semimetals don't have any obvious "topological" response.
- Does it mean that they are not really "topological" in any sense once interactions are included?

No, but the responses are more subtle.

Magnetic Weyl semimetal

$$
\begin{aligned}
\hbar & =c=e=1 \\
\sigma_{x y} & =\frac{1}{2 \pi} \frac{2 Q}{2 \pi}
\end{aligned}
$$

Wiedemann-Franz law: $\quad \kappa_{x y}=\sigma_{x y}\left(\frac{\pi^{2} k_{B}^{2} T}{3}\right)$

Magnetic Weyl semimetal

$$
\sigma_{x y}=\frac{1}{2 \pi} \frac{2 Q}{2 \pi}
$$

$$
S=-\frac{i \sigma_{x y}}{2} \int d \tau d^{3} r \epsilon_{z \mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}
$$

chiral anomaly

- Not invariant under large gauge transformations:

$$
A_{0} \rightarrow A_{0}+\partial_{\tau} \chi \quad \int_{0}^{\beta} \partial_{\tau} \chi=2 \pi \quad S \rightarrow S+i 2 Q L_{z} n
$$

Magnetic Weyl semimetal

$$
S=-\frac{i \sigma_{x y}}{2} \int d \tau d^{3} r \epsilon_{z \mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}
$$

- Not invariant under large gauge transformations:

$$
A_{0} \rightarrow A_{0}+\partial_{\tau} \chi \quad \int_{0}^{\beta} \partial_{\tau} \chi=2 \pi \quad S \rightarrow S+i 2 Q L_{z} n
$$

- In the absence of Fermi surface (excluded by filling) this makes Weyl nodes necessary.

Magnetic Weyl semimetal

$$
S=-\frac{i \sigma_{x y}}{2} \int d \tau d^{3} r \epsilon_{z \mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}
$$

- 2π flux line carries fractional charge per unit cell:

Magnetic Weyl semimetal

- 2π flux line carries fractional charge per unit cell:

$$
\nu=\frac{2 Q}{2 \pi / d}=\frac{Q_{U(1)}}{N_{z}}
$$

- This is a more "topological" property than Hall conductivity since Hall conductivity contains a length scale:

$$
\sigma_{x y}=\frac{1}{2 \pi} \frac{2 Q}{2 \pi}=\frac{\nu}{2 \pi d}
$$

- Unlike Hall conductivity, this is also generalizable to other topological semimetals.

Topological term

$$
S=-i \frac{1}{2} \frac{\nu}{2 \pi d} \int d \tau d^{3} r \epsilon_{z \mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}
$$

- Consider deformed crystal: $\quad \frac{1}{d} \rightarrow \frac{1}{d}\left(\delta_{\mu z}-\partial_{\mu} u_{z}\right)$

Cortijo et al.
Pikulin et al.
Grushin et al.

Topological term

$$
S=-i \frac{1}{2} \frac{\nu}{2 \pi d} \int d \tau d^{3} r \epsilon_{z \mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}
$$

- Consider deformed crystal: $\frac{1}{d} \rightarrow \frac{1}{d}\left(\delta_{\mu z}-\partial_{\mu} u_{z}\right)$
- Account for the fact that atomic position is only defined modulo primitive translation:

$$
\partial_{\mu} u_{z} \rightarrow \partial_{\mu} u_{z}+z_{\mu} \quad \int_{C} \partial_{\mu} u_{z}=n
$$

Nissinen \& Volovik
Song et al.
Manjunath \& Barkeshli

Topological term

- Focus on topological part of the action, which involves only gauge fields:

$$
S=-\frac{i}{2} \frac{\nu}{2 \pi} \int z \wedge A \wedge d A
$$

- V is charge per unit cell on the 2π flux line.
$\int_{z} z=N_{z}$ number of unit cells along z.
$\int_{x, y, t} z \quad$ shear of the periodic boundary conditions in x, y, t along z.
$\int_{C} z=n \quad$ number of dislocation lines enclosed by C .

Generalization to Dirac semimetal

$$
\begin{aligned}
& C d_{3} A s_{2} \\
& N a_{3} B i
\end{aligned}
$$

- Pair of Dirac nodes on a rotation axis, protected by C4 symmetry.
- Topological term should involve $\mathrm{U}(\mathrm{I})$, translation, and rotation gauge fields.

Lowest Landau level

- Can infer topological term by examining rotation operator eigenvalues in the LLL.

$$
\begin{aligned}
& R_{4}=e^{\frac{i \pi}{4}} e^{-\frac{i \pi}{4}\left(2-\sigma^{z}\right) s^{z}} \\
& C_{4 \uparrow}=e^{i 0} \quad C_{4 \downarrow}=e^{i \pi}
\end{aligned}
$$

$$
Q_{C_{4}}=\pi \nu N_{z} \frac{B L_{x} L_{y}}{2 \pi}
$$

$$
\nu=\frac{2 Q}{2 \pi / d}
$$

Topological term

Can infer topological term by examining rotation operator eigenvalues in the LLL.

$$
\begin{gathered}
Q_{C_{4}}=\pi \nu N_{z} \frac{B L_{x} L_{y}}{2 \pi} \\
S=-i \frac{\nu}{2} \int z \wedge c_{4} \wedge d A
\end{gathered}
$$

- Rotation gauge field accounts for local rotations of the coordinates:

Topological term

- Can infer topological term by examining rotation operator eigenvalues in the LLL.

$$
\begin{gathered}
Q_{C_{4}}=\pi \nu N_{z} \frac{B L_{x} L_{y}}{2 \pi} \\
S=-i \frac{\nu}{2} \int z \wedge c_{4} \wedge d A
\end{gathered}
$$

- Temporal component of c4 couples to the rotation charge.
- For any $x y$-cycle enclosing a $\pi / 2$ disclination line in the z-direction:

$$
\int_{C_{x y}} c_{4}=1
$$

Topological term

$$
S=-i \frac{\nu}{2} \int z \wedge c_{4} \wedge d A
$$

- At low energies Dirac semimetal may be viewed as a time-reversed pair of Weyl semimetals:

$$
S=-i \frac{\nu}{4 \pi} \int z \wedge\left(A+\pi c_{4}\right) \wedge d\left(A+\pi c_{4}\right)+i \frac{\nu}{4 \pi} \int z \wedge\left(A+0 c_{4}\right) \wedge d\left(A+0 c_{4}\right)
$$

Topological term

$$
S=-i \frac{\nu}{2} \int z \wedge c_{4} \wedge d A
$$

- Not invariant under gauge transformation:

$$
\begin{gathered}
c_{4} \rightarrow c_{4}+4 \alpha \quad \alpha \in \mathbb{Z} \\
S \rightarrow S+4 \alpha \pi i \nu N_{z} n
\end{gathered}
$$

- This makes gapless Dirac points necessary, except for certain values of V .

Charge on disclination

$$
S=-i \frac{\nu}{2} \int z \wedge c_{4} \wedge d A
$$

- A nontrivial consequence is that disclination along z direction carries a noninteger charge per unit cell:

$$
Q_{U(1)}=\frac{\nu}{2} N_{z}
$$

This is in general incompatible with a trivial insulator.

TR-invariant Weyl semimetal

Minimal model is obtained by breaking rotations and inversion in a type-I Dirac semimetal.

Lowest Landau levels

- Nonzero total momentum:

$$
P_{z}=\pi \nu N_{z} \frac{B L_{x} L_{y}}{2 \pi} \quad \nu=\frac{2 Q \delta Q d^{2}}{\pi^{2}}
$$

Topological term

$$
\begin{gathered}
P_{z}=\pi \nu N_{z} \frac{B L_{x} L_{y}}{2 \pi} \\
S=-i \frac{\nu}{2} \int z \wedge d z \wedge A
\end{gathered}
$$

- Temporal component of z couples to the total momentum.

Charge on dislocation

$$
S=-i \frac{\nu}{2} \int z \wedge d z \wedge A
$$

- Charge on a screw dislocation along z:

$$
Q_{U(1)}=\frac{\nu}{2} N_{z}
$$

Unquantized anomalies and interactions

- Unquantized anomalies imply gapless modes with weak interactions.
- Does this remain true when the interactions are not weak?
- Interactions may always simply tune the coefficient of the anomaly term to a trivial value, need to fix the coefficient to make this question nontrivial.
- Can we gap out Weyl nodes in magnetic Weyl semimetal while keeping the Hall conductivity fixed?

3D Fractional Quantum Hall Effect

Fractional Quantum Hall Effect in Weyl Semimetals
Chong Wang $\odot,^{1}$ L. Gioia, ${ }^{2,1}$ and A. A. Burkov ${ }^{2}$
${ }^{1}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
${ }^{2}$ Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
© (Received 8 July 2019; accepted 11 February 2020; published 6 March 2020)

- Chiral anomaly turns out to be consistent with a gapped fractionalized state at one particular value of the Weyl node separation.

Vortex condensation

- Induce fully gapped superconductivity in Weyl semimetal.
- Destroy SC coherence by condensing vortices while keeping the pairing gap: this produces an insulator (superconductor to insulator transition).
- Chiral anomaly places strong restrictions on the procedure and prohibits a simple insulator, has to have topological order.

Weyl superconductor

- BCS: pairing k and $-k$ states, i.e. internodal pairing.

Weyl superconductor

- FFLO (Fulde-Ferrell-Larkin-Ovchinnikov): pairing states on the opposite side of each Weyl point, i.e. intranodal pairing.

BCS pairing

- Weak BCS pairing can not open a gap, since the two chiralities are not mixed by the pairing term:

$$
\begin{gathered}
H=v_{F} \sum_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} \tau^{z} \boldsymbol{\sigma} \cdot \mathbf{k} c_{\mathbf{k}}+\Delta \sum_{\mathbf{k}}\left(c_{\mathbf{k} R}^{\dagger} i \sigma^{y} c_{-\mathbf{k} L}^{\dagger}+h . c .\right) \\
\psi_{\mathbf{k}}=\left(c_{\mathbf{k} R \uparrow}, c_{\mathbf{k} R \downarrow}, c_{-\mathbf{k} L \downarrow}^{\dagger},-c_{-\mathbf{k} L \uparrow}^{\dagger}\right) \\
H=\sum_{\mathbf{k}} \psi_{\mathbf{k}}^{\dagger}\left(v_{F} \boldsymbol{\sigma} \cdot \mathbf{k}+\Delta \tau^{x}\right) \psi_{\mathbf{k}}
\end{gathered}
$$

Meng \& Balents
Bednik, Zyuzin, AAB

FFLO pairing

- FFLO does open a gap, but breaks translational symmetry:

$\Delta(\mathbf{Q}) \sim \sum_{\mathbf{k}}\left\langle c_{\mathbf{Q}+\mathbf{k}}^{\dagger} c_{\mathbf{Q}-\mathbf{k}}^{\dagger}\right\rangle$
carries momentum 2 Q .
$\varrho(\mathbf{Q}) \sim \Delta^{*}(-\mathbf{Q}) \Delta(\mathbf{Q}) \quad$ carries momentum 4Q.

FFLO pairing

$$
\varrho(\mathbf{Q}) \sim \Delta^{*}(-\mathbf{Q}) \Delta(\mathbf{Q})
$$

carries momentum 4Q.

This breaks translational symmetry, unless $\mathbf{Q}=\mathbf{G} / 4$

- In other words, FFLO does not break translational symmetry when Weyl node separation is exactly half the reciprocal lattice vector.

Majorana surface state

- Fermi arc becomes Majorana surface mode, which occupies twice the momentum interval of the Fermi arc, i.e. 4Q.

$$
\kappa_{x y}=\sigma_{x y}\left(\frac{\pi^{2} k_{B}^{2} T}{3}\right)=\frac{1}{4 \pi}\left(\frac{\pi^{2} k_{B}^{2} T}{3}\right)
$$

Vortex condensation in FFLO state

- n-fold vortex ($\Phi=n h c / 2 e$) in FFLO paired state: get n chiral Majorana modes in the vortex core.

$$
\epsilon_{p}\left(k_{z}\right)=\epsilon_{F}\left(1-\frac{2 p}{n+1}\right)+v_{F} k_{z} . \quad p=1, \ldots, n .
$$

Callan \& Harvey
Jackiw \& Rossi

Vortex condensation in FFLO state

- Any even number 2 n of Majorana vortex modes may be combined into n ID Weyl fermion modes, which are gapped out by pairing:

Vortex condensation in FFLO state

- Any even number 2 n of Majorana vortex modes may be combined into n ID Weyl fermion modes, which are gapped out by pairing:

$$
H=v_{F} \sum_{k_{z}}\left[k_{z} c_{k_{z}}^{\dagger} \tau^{z} c_{k_{z}}+\Delta\left(c_{k_{z}}^{\dagger} i \tau^{y} c_{-k_{z}}^{\dagger}+\text { h.c. }\right) / 2\right]
$$

An odd number of Majorana modes can not be eliminated without breaking translational symmetry, thus
a fundamental SC vortex may not be condensed.

$$
\Phi=\frac{h c}{2 e}=\pi \quad \hbar=c=e=1
$$

Vortex condensation in FFLO state

- A double vortex does not have Majorana modes, but may still not be condensed.
- This follows from the fact that the insulating state we want to obtain must preserve the chiral anomaly, i.e. must have a Hall conductivity of half conductivity quantum per atomic plane:

$$
\sigma_{x y}=\frac{1}{2 \pi} \frac{2 Q}{2 \pi}=\frac{1}{4 \pi}
$$

Vortex condensation in FFLO state

A vortex will induce a charge when intersecting an atomic plane:

A pair of such charges will have semion exchange statistics.

$$
\theta=2 \pi^{2} \sigma_{x y}=\frac{\pi}{2}
$$

Vortex condensation in FFLO state

- Following the same logic, quadruple vortices have bosonic statistics and thus may be condensed without breaking any symmetries.

This is an insulating state that preserves the chiral anomaly and does not break any symmetries.

$$
\sigma_{x y}=\frac{1}{2 \pi} \frac{2 Q}{2 \pi}=\frac{1}{4 \pi} \quad \kappa_{x y}=\sigma_{x y}\left(\frac{\pi^{2} k_{B}^{2} T}{3}\right)=\frac{1}{4 \pi}\left(\frac{\pi^{2} k_{B}^{2} T}{3}\right)
$$

Nontrivial generalization of FQHE to 3D

- In the presence of interactions, smooth evolution of the Hall conductivity with the magnetization in a Weyl semimetal may be interrupted by a half-quantized plateau.

BF theory of the 3D FQHE

- 2D FQHE: Chern-Simons theory.

Odd-denominator Laughlin state $\quad \nu=\frac{1}{2 q+1}$

$$
\mathcal{L}=i \frac{2 q+1}{4 \pi} \epsilon_{\mu \nu \lambda} b_{\mu} \partial_{\nu} b_{\lambda}+\frac{i e}{2 \pi} \epsilon_{\mu \nu \lambda} A_{\mu} \partial_{\nu} b_{\lambda}+i b_{\mu} j_{\mu}
$$

- Excitations are quasiparticles (vortices), which carry fractional charge and fractional statistics:

$$
Q=\frac{e}{2 q+1} \quad \theta=\frac{\pi}{2 q+1}
$$

BF theory of the 3D FQHE

$$
\mathcal{L}=\mathcal{L}_{f}\left(-a_{\mu}\right)+\frac{i}{2 \pi}\left(A_{\mu}+a_{\mu}+2 c_{\mu}\right) \epsilon_{\mu \nu \lambda \rho} \partial_{\nu} b_{\lambda \rho}-\frac{2 i}{4 \pi} \epsilon_{z \mu \nu \lambda} c_{\mu} \partial_{\nu} c_{\lambda}+i b_{\mu \nu} j_{\mu \nu}+i c_{\mu} j_{\mu}
$$

Neutral fermions (couple to a_{μ}).
Charged bosons (couple to $\mathrm{C} \mu$).
Vortex loops (couple to bur).

- a_{μ} is a Z_{2} gauge field, while c_{μ} is a Z_{4} gauge field.

Thakurathi \& AAB

BF theory of the 3D FQHE

$$
\mathcal{L}=\mathcal{L}_{f}\left(-a_{\mu}\right)+\frac{i}{2 \pi}\left(A_{\mu}+a_{\mu}+2 c_{\mu}\right) \epsilon_{\mu \nu \lambda \rho} \partial_{\nu} b_{\lambda \rho}-\frac{2 i}{4 \pi} \epsilon_{z \mu \nu \lambda} c_{\mu} \partial_{\nu} c_{\lambda}+i b_{\mu \nu} j_{\mu \nu}+i c_{\mu} j_{\mu}
$$

- Intersections of vortex loops with atomic planes are anyons.

Conclusions

- Topological semimetals may be characterized by unquantized (i.e. having tunable coefficients) anomalies.
- The anomalies may be expressed as topological terms, involving electromagnetic as well as crystal symmetry gauge fields.
- These topological terms describe fractional electric charges, induced on symmetry defects, such as flux lines, dislocations and disclinations.
- Chiral anomaly in a magnetic Weyl semimetal is consistent with a fully gapped fractionalized insulator, which is a nontrivial generalization of the fractional quantum Hall liquid to three dimensions.

