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Unquantized anomalies in topological semimetals.

3D Fractional Quantum Hall effect in magnetic Weyl
semimetals.
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What is topological about topological semimetals?

® But other kinds of topological semimetals don’t have any
obvious “topological” response.

® Does it mean that they are not really “topological” in any
sense once interactions are included?

° No, but the responses are more subtle.



Magnetic Wey| semimetal
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Magnetic Wey| semimetal
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Magnetic Wey| semimetal
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® Not invariant under large gauge transformations:

p
Ag — Ag + 0-x / O, X = 27 S%S—FZQQLZTL
0

® |n the absence of Fermi surface (excluded by filling) this makes
Weyl nodes necessary.



Magnetic VWeyl semimetal
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® 2riflux line carries fractional charge per unit cell:
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Magnetic VWeyl semimetal

® Influx line carries fractional charge per unit cell:
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® This is a more “topological” property than Hall conductivity
since Hall conductivity contains a length scale:
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® Unlike Hall conductivity, this is also generalizable to other
topological semimetals.



Topological term
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Topological term

1 v
' 3
® Consider deformed crystal: i (0,2 — Opuy)

® Account for the fact that atomic position is only defined
modulo primitive translation:

O, u, — Oyu, + 2, / O, =n
C

Nissinen & Volovik Song et al. Manjunath & Barkeshli



Topological term

® Focus on topological part of the action, which involves

only gauge fields:
Y
S = 2 NANdA
2 2m

® V is charge per unit cell on the 211 flux line.

/ 2z = N, number of unit cells along z.

z

/ %z shear of the periodic boundary conditions in x,y,t along z.
T,yY,t

/ Z =N number of dislocation lines enclosed by C.
C



Generalization to Dirac semimetal
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® Pair of Dirac nodes on a rotation axis, protected by C4 symmetry.

° Topological term should involve U(), translation, and
rotation gauge fields.



Lowest Landau level

e Can infer topological term by examining rotation operator
eigenvalues in the LLL.
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Topological term

e Can infer topological term by examining rotation operator
eigenvalues in the LLL.

BL,L,

27
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S = i;/Z/\C4/\dA

® Rotation gauge field accounts for local rotations of the
coordinates:

C4



Topological term

e Can infer topological term by examining rotation operator
eigenvalues in the LLL.

BL,L,
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QC’4 — WVNZ

S = i;/z/\c4/\dA

® Temporal component of c4 couples to the rotation charge.

® For any xy-cycle enclosing a TV2 disclination line in the z-direction:
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Topological term

S = ig/z/\c4/\dA

® At low energies Dirac semimetal may be viewed
as a time-reversed pair of Weyl semimetals:

§=_i zA(A+m4)Ad(A+m4)+¢4i/zA(A+oc4)Ad(A+oc4)
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Topological term

S = zg 2 Neqg NdA

® Not invariant under gauge transformation:

cs — Cq4 + 4o o € 7

S — S +4amivN.n

This makes gapless Dirac points necessary, except for
certain values of v.



Charge on disclination

S = ig/z/\c4/\dA

® A nontrivial consequence is that disclination along z direction
carries a noninteger charge per unit cell:

vV
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° This is in general incompatible with a trivial insulator.



TR-invariant VWeyl semimetal

Minimal model is obtained by breaking rotations and
inversion in a type-l Dirac semimetal.
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Lowest Landau levels
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® Nonzero total momentum:
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Topological term
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® Temporal component of z couples to the total momentum.



Charge on dislocation

S = ig/z/\dz/\A

® Charge on a screw dislocation along z:
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Unquantized anomalies and interactions

® Unquantized anomalies imply gapless modes with weak
Interactions.

® Does this remain true when the interactions are not weak?

® [Interactions may always simply tune the coefficient of the
anomaly term to a trivial value, need to fix the coefficient
to make this question nontrivial.

e Can we gap out Weyl nodes in magnetic VWeyl semimetal
while keeping the Hall conductivity fixed?



3D Fractional Quantum Hall Effect

PHYSICAL REVIEW LETTERS 124, 096603 (2020)

Fractional Quantum Hall Effect in Weyl Semimetals

Chong Wang ,' L. Gioia,”" and A. A. Burkov®
YPerimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3Gl, Canada
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® Chiral anomaly turns out to be consistent with a
gapped fractionalized state at one particular value
of the Weyl node separation.



Vortex condensation

° Induce fully gapped superconductivity in Veyl
semimetal.

® Destroy SC coherence by condensing vortices while
keeping the pairing gap: this produces an insulator
(superconductor to insulator transition).

® Chiral anomaly places strong restrictions on the
procedure and prohibits a simple insulator, has to
have topological order.



Weyl superconductor

® BCS: pairing k and -k states, i.e. internodal pairing.
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Weyl superconductor

® FFLO (Fulde-Ferrell-Larkin-Ovchinnikov): pairing
states on the opposite side of each Weyl point, i.e.
intranodal pairing.
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BCS pairing

® Weak BCS pairing can not open a gap, since the two
chiralities are not mixed by the pairing term:

H =vp Z CLTZO' ke, +A Z(CLRiaycT_kL + h.c.)
k k
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Meng & Balents Bednik, Zyuzin,AAB



FFLO pairing

® FFLO does open a gap, but breaks translational
symmetry:

A(Q) ~ Zk<cg+kcg_k>

carries momentum 2Q.

Q(Q) ™ A*(—Q)A(Q) carries momentum 4Q.



FFLO pairing

0(Q) ~ A" (-Q)A(Q)
—Q Q
k
carries momentum 4Q.
° This breaks translational symmetry, unless Q = G /4

® |n other words, FFLO does not break translational
symmetry when Weyl node separation is exactly
half the reciprocal lattice vector.



Majorana surface state

Fermi arc becomes Majorana surface mode, which occupies

twice the momentum interval of the Fermi arc, i.e. 4Q.
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Vortex condensation in FFLO state

® n-fold vortex (P=nhc/2e) in FFLO paired state: get n
chiral Majorana modes in the vortex core.

Callan & Harvey
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Vortex condensation in FFLO state

® Any even number 2n of Majorana vortex modes may be
combined into n | D Weyl fermion modes, which are
gapped out by pairing:




Vortex condensation in FFLO state

® Any even number 2n of Majorana vortex modes may be
combined into n | D Weyl fermion modes, which are
gapped out by pairing:

H =vp Z[kzc};z’rzckz + A(c,iziTycT_kz + h.c.)/2]
k-

° An odd number of Majorana modes can not be
eliminated without breaking translational symmetry, thus
a fundamental SC vortex may not be condensed.
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Vortex condensation in FFLO state

® A double vortex does not have Majorana modes, but
may still not be condensed.

® This follows from the fact that the insulating state we
want to obtain must preserve the chiral anomaly, i.e.
must have a Hall conductivity of half conductivity
quantum per atomic plane:

12Q 1
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Vortex condensation in FFLO state

® A vortex will induce a charge when intersecting an
atomic plane:

° A pair of such charges will have semion exchange
statistics.

T
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Vortex condensation in FFLO state

o Following the same logic, quadruple vortices have
bosonic statistics and thus may be condensed without
breaking any symmetries.

° This is an insulating state that preserves the chiral
anomaly and does not break any symmetries.
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Nontrivial generalization of FQHE to 3D
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® |n the presence of interactions, smooth evolution of the Hall
conductivity with the magnetization in a Weyl semimetal may
be interrupted by a half-quantized plateau.



BF theory of the 3D FQHE

e 2D FQHE: Chern-Simons theory.

: : 1
Odd-denominator Laughlin state 1 =
2q + 1
2q+1 1€ o
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® Excitations are quasiparticles (vortices), which carry
fractional charge and fractional statistics:
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BF theory of the 3D FQHE

1 21 o L
L = ﬁf(_au) + %(AM + a, + QC,LL)E,W/)\paub)\p — Eez,w/)\c,u@uc)\ + Zb,ul/]pw + LCuJu

° Neutral fermions (couple to ay).
° Charged bosons (couple to cp).
° Vortex loops (couple to buv).

® auis a Z2 gauge field, while cuis a Z4 gauge field.

Thakurathi & AAB



BF theory of the 3D FQHE

21

L = »Cf(_a',u) + _(A,u + a, + 2C,u)€,uz/)\payb)\p — EGZ/U/AC,LLaZ/C)\ + Zb,ul/.],ul/ + 1C )
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® |[ntersections of vortex loops
with atomic planes are
anyons.




Conclusions

Topological semimetals may be characterized by unquantized (i.e.
having tunable coefficients) anomalies.

The anomalies may be expressed as topological terms, involving
electromagnetic as well as crystal symmetry gauge fields.

These topological terms describe fractional electric charges,
induced on symmetry defects, such as flux lines, dislocations and
disclinations.

Chiral anomaly in a2 magnetic Weyl semimetal is consistent with a
fully gapped fractionalized insulator, which is a nontrivial
generalization of the fractional quantum Hall liquid to three
dimensions.



