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This study explores the potential of large language models (LLM)-based 
tools, specifically GPT-4 – a state-of-the-art language processing model - to 
assist in the analysis of verbal protocols of design. We focus on Eris' 
taxonomy, a well-established framework that classifies questions asked by 
participants in a design-focused task according to three broad categories: 
low-level, deep reasoning, and generative design questions. Using a large 
dataset of pre-classified questions from design review meetings, a series of 
experiments test GPT-4’s capability in the categorization task and evaluate 
how different factors influence its precision. Results indicate that GPT-4 
matches performance by human coders – a promising result for design 
researchers who can benefit from this tool with little prior natural language 
processing expertise. Overall, findings offer insights into the strengths and 
limitations of LLMs in this context and suggest directions for future research 
into the use of LLM-based tools in qualitative analyses of design activity.  

Introduction 

Protocol analysis [1] is a widely utilized method for studying cognitive 
processes. It holds particular significance in the context of research into 
design activity, where it has been used widely to study people’s thinking and 
behavior while engaged in design tasks, as well as for evaluating the effect 
of supports and interventions on the design process. For example, recent 
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reviews describe broad use of protocol analysis in studying conceptual 
design [2], problem framing [3], and design learning [4].  

At a high level, the approach involves three main activities: capturing 
video and audio recording of participants engaged in a design activity, 2) 
transcribing of participants’ verbalizations, and 3) segmenting and coding 
the transcripts to generate data which is analyzed to extract insight. All three 
stages have traditionally presented challenges for researchers [5], however, 
over the decades, technological developments have significantly improved 
the efficiency and effectiveness of this process. For example, the ubiquity 
of digital cameras and the ease with which virtual meetings can be held and 
recorded have facilitated more and better data collection. Similarly, digital 
transcription services, which are increasingly AI-driven, have significantly 
lowered the cost and time of producing high-quality transcripts. Finally, 
advances in natural language processing (NLP) have enabled new and more 
efficient ways to analyze verbal protocols of design (e.g., [6], [7], [8]).  

More recently, Large Language Models (LLMs) have shown promise for 
revolutionizing the way researchers analyze and interpret textual data [9], 
[10]. Powered by advanced NLP techniques, LLMs can comprehend and 
generate human-like text, offering researchers a versatile means of exploring 
and understanding qualitative information. These models, often pre-trained 
on vast corpora of diverse language data, can capture intricate linguistic 
nuances, making them particularly adept at uncovering underlying patterns, 
sentiment, and context within qualitative data [11].  

As we delve deeper into the landscape of language models, one standout 
example is ChatGPT (Chat Generative Pre-trained Transformer), a 
conversational variant of LLMs built by OpenAI. Its ability to engage in 
dynamic and context-aware conversations opens new avenues for 
researchers to interact with and explore qualitative data in a more 
conversational manner. ChatGPT relies on a pre-trained generative language 
model that generates responses by identifying patterns provided by the user 
as input [12]. Hence, the language model essentially assigns probabilities to 
each word within a vocabulary that could follow a specified input sequence. 
These word embeddings [13] are developed through artificial neural 
networks, learning a probability distribution from provided texts in an 
unsupervised manner, i.e., without the need for additional human input or 
labeling. The production of the output sequence considers the tokens from 
the input sequence, their positions, and the previously generated output. This 
process is referred to as autoregressive generation [14]. Large sets of 
training data are required to train these LLMs. As these models have grown 
in sophistication and depth, their ability to generate coherent and 
contextually relevant text has advanced significantly.   
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GPT variants (e.g., GPT-3.5, GPT-4) are now being tested in various 
inductive and deductive qualitative analyses applications with moderate 
success. For example, Hamilton et al. [15] explore the use of ChatGPT for 
performing thematic analysis on interview data and found some overlap 
between human and AI-generated themes. Similarly, De Paoli [16] show 
how GPT3.5 can be used to partially replicate the steps in inductive thematic 
analysis prescribed by Braun and Clarke [17]. Xiao et al. [18] explore LLM 
for deductive analyses and use GPT-3 in conjunction with an expert-drafted 
codebook to complete a coding task and report “fair to substantial 
agreement” with expert results.  Early reports suggest that AI performs 
better on deductive than inductive analyses [19]. 

Aims and scope 

This research is broadly motivated by the goal of determining the extent to 
which LLMs can assist in the process of analyzing verbal protocols of 
design. This study, specifically, aims to address this aim in the context of 
one existing framework for analyzing verbal protocols of design: Eris’ [20] 
question asking taxonomy. Eris’ interest in studying question asking in 
design is based on the premise that question asking during designing 
influences how designers think, including how they think creatively, make 
decisions, and learn [20, p. 11]. His working definition of a question in a 
design context is “a verbal utterance related to the design tasks at hand that 
demands an explicit verbal and/or nonverbal response” [20, p. 36]. His 
taxonomy builds on prior existing taxonomies of question asking, primarily 
work by Lehnert [21] and Graesser [22], [23] and classifies questions into 
one of three broad categories:  
• Low-Level Questions (LLQs), where the asker is seeking clarification or 

obtaining missing information (e.g., “Is this manual pushing or motor 
pushing?”) 

• Deep Reasoning Questions (DRQs), where the asker is seeking to 
establish causal explanations of phenomena (e.g., “How was the candy 
being ejected from your machine?”) The premise of DRQs, as in the case 
of LLQs, is that the answer to the question exists and is known by the 
question receiver.  

• Generative Design Questions (GDQs), where the asker is seeking to 
generate different alternative known and unknown options for how to 
address a goal or obstacle (e.g., “How do we animate this?”). 

Within each of these broader categories, there are several clearly defined 
sub-categories (see appendix in [24]). This taxonomy provides a useful lens 



4                                        Sakib, Hurst & Safayeni 

 

for uncovering patterns of convergent (LLQ, DRQ) and divergent (GDQ) 
thinking in design and has been widely used as a coding scheme of verbal 
protocols of design, to study various phenomena and processes including 
idea generation [24], design reviews [25] [26], peer feedback [27], and the 
role of expertise in feedback [28]. Further, the deductive nature of the coding 
task was judged to be well-suited to the GPT tool.  

Within this scope, the research question this study seeks to answer is:  
How accurately can GPT-4 (latest GPT variant in January 2024) classify 
questions in verbal protocols of design according to Eris’ (2004) taxonomy?  

Method 

Dataset 

The study employed a dataset from a prior publication [28]. In that research, 
teams of two to three students enrolled in a graduate engineering design 
program met with their tutor weekly over six weeks to discuss a term-long 
design project, where they were challenged to design an enhanced automatic 
candy-wrapping machine for a small manufacturer of sweets. Audio 
recordings of each session were transcribed with an AI-based tool (Otter) 
and manually checked to ensure quality. Then, two research assistants 
independently identified and coded questions in the transcripts using Eris’ 
[20] taxonomy. Any coding disagreements were resolved with the assistance 
of a third, more experienced, researcher. The dataset (Table1) consisted of 
a total of 31 transcribed tutoring sessions, with each speaker’s utterances 
labelled and timestamped. In addition, all question utterances (2203 in total) 
were identified and coded (labelled) as LLQ, DRQ, or GDQ. 

Dataset 

At the time of this study (January 2024), GPT-4 was the latest iteration in 
OpenAI's lineup of generative pre-trained transformers, representing an 
improvement not only in its scale but also in its underlying architecture and 
capabilities. The experiments were carried out utilizing the official Python 
Library for the OpenAI chat completion API [29]. GPT-4 provides text 
outputs in response to its inputs which are also referred to as "prompts". The 
prompt is divided into two segments: system message and user message. 
The system message is used to set the behavior or context for the 
conversation. It helps set the tone for the interaction and provides high-level 
context that the model can use to better understand the user's intent or the 
desired outcome. On the other hand, user messages are the inputs or prompts 
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given by the user to the model. GPT-4 Turbo [30] model was used for all 
the experiments. 

Table 1 Dataset characteristics. For each session (S) and group (G), we include 
session length in mins and (words), and distribution of questions by category – LLQ, 
DRQ, GDQ. E.g., the cell S1, G1 denotes first session details for group 1: 67.50 
minutes, 6472 words, and the question distribution – 95 LLQ, 9 DRQ and 25 GDQ 

  S1  S2  S3  S4  S5  S6  

G1  
67.50  
(6472)  

38.03 
(1945)  

20  
(255)  94.93 (10299)  72.90  

(4852)  n/a  
[95, 9, 25]  [45,7, 11]  [5, 1, 5]  [131,11, 44]  [77, 8, 23]  

G2  
65.37  

(19369)  
72.22  

(21112)  
66  

(18991)  
83.93  

(28539)  
73.92  
(9191)  n/a  

[51, 0, 32]  [55, 2, 36]  [50, 5, 42]  [70,4,36]  [49, 5, 20]  

G3  
45.80  

(10712)  
23.58  
(2346)  

38.22  
(5187)  

31.20  
(3838)  

30.07  
(3110)  n/a  

[54, 6, 13]  [27,1, 8]  [36,6,18]  [26,8,15]  [29, 4, 11]  

G4  
50.45  

(26600)  
66.92  

(21760)  
66.58  
(8994)  

58.27  
(4048)  

72.17  
(21551)  n/a  

[60, 15, 12]  [68,1, 22]  [64, 15, 8]  [45,15,4]  [58, 13, 25]  

G5  
99.15  

(13690)  
50.52  
(3364)  

66.13  
(3392)  

78.10  
(8241)  

70.45  
(14274)  

68.68  
(7454)  

[29, 1, 28]  [25,5, 10]  [23, 2, 13]  [26,3,17]  [22,14, 19]  [17,2,19]  

G6  
42.62  
(2023)  

38.30  
(1878)  

22.82  
(269)  

10.75  
(382)  

11.75  
(559)  n/a  

[38, 5, 2]  [17,1, 13]  [11, 2, 1]  [12,2,2]  [7, 1, 2]  
 

The system message (shown below) provided an overview of the chosen 
taxonomy, including both high-level definitions of each of the major 
categories (LLQ, DRQ, GDQ), as well as definitions and examples of each 
of the sub-categories, copied from Appendix 1 in [24].   
 

You are an expert in protocol analysis of design activity. You can perform analysis of the 
textual data and are able to label question utterances according to Eris’ (2004) taxonomy. 
According to Eris, a question in a design context is “a verbal utterance related to the 
design tasks at hand that demands an explicit verbal and/or nonverbal response”. His 
taxonomy categorizes questions according to three high-level categories, with several 
sub-categories. The categories with examples are shown below:  
Low Level Questions    
Low-level questions are primarily information-seeking questions and they are formulated 
when the questioners want clarification about a given topic/event or are trying to obtain 
missing information.  Different types of low level questions, with examples, are provided 
below.  
<LLQ types and examples from Appendix 1 of Cardoso et al., 2016>  

 Deep Reasoning Questions (DRQ)   
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Low-level (LLQ) and Deep Reasoning Questions (DRQ) share the common premise that 
a specific answer, or a specific set of answers, exists. As the purpose of these questions is 
either to seek for information (i.e. low level questions) or to establish causal explanations 
of phenomenon (i.e. deep reasoning questions), they facilitate convergent thinking 
processes. Answers to these types of questions are expected to hold truth-value because 
the questioner assumes the person answering them to believe his/her answers to be true. 
Different types of Deep Reasoning Questions, with examples, are provided below.  
<DRQ types and examples from Appendix 1 of Cardoso et al., 2016>  
Generative Design Questions (GDQ)   
Questions that are raised in design situations can operate quite differently from low-level 
or deep reasoning questions. Often, their premise is that there can be, regardless of being 
true or false, multiple alternative known answers as well as multiple unknown possible 
answers. The questioner's intention is to disclose the alternative known answers, and to 
generate the unknown possible ones. Such questions are characteristic of divergent 
thinking, where the questioner attempts to move away from the facts to the possibilities 
that can be generated from them.  There are five GDQ categories:  
<GDQ types and examples from Appendix 1 of Cardoso et al., 2016>   

 
The system was further fine-tuned through the seed and temperature 
settings. The seed setting [31] ensures that the system will make a best effort 
to sample deterministically, such that repeated requests with the same seed 
and parameters should return the same result. However, determinism is not 
guaranteed due to the frequent updates made to model configurations and 
system settings by OpenAI. The temperature setting [32] controls the 
variation in the output text generation. A higher temperature (e.g., 0.8) leads 
to more random and diverse responses, while a lower temperature (e.g., 0.2) 
produces more deterministic and focused outputs. The seed was set to a 
constant number across all the experiments and the temperature was set to 0 
so that the model would adhere closely to the input instructions and generate 
output with minimal variation. The user prompts varied with each 
experiment and expected outcomes. 

Tasks 

A series of experiments were conducted to gradually determine the 
effectiveness of GPT-4 in labelling questions. Figure 1 describes the overall 
workflow comprising the four experiments, including high-level objectives 
and main findings. Experiment 1 aimed to determine a baseline performance 
of the classification task, with and without a training set. Experiment 2 
aimed to clarify the impact of the size of the training set on performance. 
Given the probabilistic nature of GPT’s performance, Experiment 3 
examined the impact of running experiment multiple times. Finally, in a 
series of three parts (a-c), Experiment 4 explored the impact of context 
surrounding a question on classification performance. Each experiment and 
their results are detailed in the following section. 
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Fig. 1 Overview of experiments (E) 

Experiments and results 

Experiment 1 

Experiment 1 aimed to provide a baseline of GPT-4’s effectiveness in 
labelling questions and of the value of training data in this task.  In the first 
condition, a training set was given consisting of 90 stand-alone human-
labelled questions, uniformly distributed between LLQ, DRQ, and GDQ 
types. In the second condition, no labelled examples (training set) were 
provided. The classification task was conducted on a new set of 30 question 
utterances (testing set). Testing set questions were randomly selected from 
the data, and uniformly distributed between LLQ, DRQ, and GDQ types. 
Both sets were sampled from all the sessions combined. The prompt was: 

 
Classify each of the questions below, delimited by with triple backticks, using the 
taxonomy proposed by Eris. Label each question with one of the three categories: Low-
level questions, Deep Reasoning Questions, or Generative Design Questions. Delimit the 
label with triple backticks. State your reasoning for the assigned label. Format the result 
as a markdown table.   
``` <test set>```  
To help you categorize the questions above, here are some examples delimited by triple 
backticks, each line contains an example that has two segments - question and category 
separated by colon (:)   
<training set>  
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Table 2 contrasts the results of the labelling task under the two conditions 
(without and with training) with the human-labelled set. GPT-4 generated 
labels aligned more closely with the human labels when a training set was 
provided (83% alignment) compared to when it was not (60% alignment). 
As such, all future labelling tasks (Experiments 2 to 4) use a training set.  

Table 2 Experiment 1 results. Labels assigned by: “H” → Human; “GPT/woT” → 
GPT-4, without a training set; “GPT/wT” → GPT-4, with a training set 

Testing set: question number and utterance  H 
GPT 
/woT 

GPT 
/wT 

1. So how do you know how much do?  DRQ LLQ DRQ 
2. …what are the possible contributors?  GDQ GDQ GDQ 
3. Why would you put that on there if you could swap in the new 
roll in a minute?  DRQ DRQ DRQ 
4. What about cleats, right cleated conveyor cleats?  GDQ GDQ GDQ 
5. But so it's full 15 or whatever, probably right?  LLQ LLQ LLQ 
6. Could you take the candy and slide it on the wrapper?  LLQ GDQ GDQ 
7. Why would I do that?  DRQ DRQ DRQ 
8. How they wrap candy currently?  DRQ LLQ DRQ 
9. How does the very last one behave?  GDQ LLQ DRQ 
10. But this whole thing has to rotate, right?  LLQ LLQ LLQ 
11. So when they're wrapping in one of these candies, have you seen 
the whole process?  LLQ LLQ LLQ 
12. Yeah, but I think, isn't it the same?  GDQ LLQ LLQ 
13. So is the main assumption right now that the wrapper will stick?  LLQ LLQ LLQ 
14. How are you going to intersection things that are exactly the 
same…?  GDQ GDQ GDQ 
15. How are you going to keep rolling and pulling it?  GDQ GDQ GDQ 
16. How was the candy being ejected from your machine.  DRQ LLQ DRQ 
17. Can I do this stuff?  LLQ LLQ LLQ 
18. Makes sense? Right?  LLQ LLQ LLQ 
19. What kind of processes out there now?  DRQ LLQ DRQ 
20. Because these paper will come on to the stage right?  LLQ LLQ LLQ 
21. …Why did you put grid?  DRQ DRQ DRQ 
22. What function is providing?  DRQ LLQ LLQ 
23. What's gonna happen?  GDQ DRQ GDQ 
24. So what's happening here at the end of this conveyor belt, tell 
me a little bit more …What would happen in terms of how this thing 
gets pushed in the plastic?  DRQ LLQ DRQ 
25. …What is the purpose of this box?  DRQ LLQ LLQ 
26. And is this manual pushing? Or .. a motor pushing?  LLQ LLQ LLQ 
27…How are you going to then finalize the closure?  GDQ GDQ GDQ 
28. So how do we animate this?  GDQ GDQ GDQ 
29. Or is it something that we can outsource to a company?  GDQ LLQ GDQ 
30. Do you want to a machine to produce 15 to 20 pieces of candy 
per min and currently they're doing what is it?  LLQ LLQ LLQ 
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We further scrutinized the five questions (6, 9, 12, 22, and 25) for which the 
GPT-4-assigned labels didn’t match the human label. For those questions, 
the authors believe that the GPT-4-assigned labels are correct when 
considering the question in isolation, as written. The discrepancy may be 
due to several reasons, beyond a simple deficiency in the tool or a mistake 
in the labelling by the human. In making their judgement, the human coders 
are also considering the larger context of the conversation, including what 
is discussed prior to the question, and the answer that immediately follows 
it. The impact of context is further explored in Experiment 4. 

Experiment 2 

Experiment 2 sought to determine the effect of the size of the training set on 
the accuracy of labelling by GPT-4. The labelling task described in 
Experiment 1 was repeated under different conditions of the size of training 
set, which was varied from 0 (i.e., no training) to 300 pre-labelled questions, 
in increments of 30. The testing set was kept constant and identical to the 
one in Experiment 1. Note that the cases of training sets of sizes 0 and 90 
correspond to the exact cases tested in Experiment 1. Table 3 presents the 
results of the labelling task for each question, and for each training-set size 
condition. Overall, it appears that while a training set improves alignment 
with human-generated labels, no accuracy improvements are achieved when 
the size is increased past 90 questions. 

Table 3 Experiment 2 results 

 Size of training set, in number of pre-labelled questions 
 0 30 60 90 120 150 180 210 240 270 300 
Alignment (%) 60 67 83 83 80 83 83 73 70 73 83 

Experiment 3 

Although utilizing a set seed and temperature is expected to produce 
consistent output, GPT-4 responses can still differ due to the inherent 
nondeterministic nature of the model [33]. Experiment 3 sought to 
determine the sensitivity of the results across multiple “runs” of the 
experiment. Using the training set sizes of 60 and 90, as determined from 
Experiment 2, the labelling task was repeated once again, independently run  
50 times, for each case. Table 4 presents the aggregated labelling results, by 
question type. For example, a score of 0.5 indicates that GPT-4 assigned that 
label in half of the 50 runs. Any GPT- 4 labels that do not align with the 
human label are highlighted in red. In the case of “split” labels, if one of the 
two labels matches the human label, they are highlighted in orange.  
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Table 4 Experiment 3 results 

   Human label  GPT, training w/60 Qs  GPT, training w/90 Qs  

   LLQ  DRQ  GDQ  LLQ  DRQ  GDQ  LLQ  DRQ  GDQ  
Q1  1        1        1        
Q2        1        1        1  
Q3     1        1        1     
Q4        1        1        1  
Q5  1        1        1        
Q6  1           0.24  0.76        1  
Q7     1        1        1     
Q8     1        1     1        
Q9        1     1        1     

Q10  1        0.86  0.14     1        
Q11  1           1     1        
Q12        1  1        1        
Q13  1        0.62  0.38     1        
Q14        1     0.48  0.52        1  
Q15        1     0.48  0.52        1  
Q16     1        1        1     
Q17  1        1        1        
Q18  1        1        1        
Q19     1        1     1        
Q20  1        1        1        
Q21     1        1        1     
Q22     1     0.66  0.34     1        
Q23        1     0.34  0.66     1     
Q24     1        1        1     
Q25     1     0.66  0.34     0.78  0.22     
Q26  1           1     1        
Q27        1     0.48  0.52        1  
Q28        1        1        1  
Q29        1        1        1  
Q30  1        1        1        

 
The results demonstrate the probabilistic nature of the labelling, with many 
questions being labelled differently on different runs. Of note is that the 
uncertainty is much larger in the task with the smaller training set (resulting 
in 9 questions with split labels) compared to the task with the larger training 
set (resulting in only 1 question with a split label). It was thus determined 
that while the labelling accuracy was the same with the training sets of 60 
and 90 in Experiment 2, this experiment demonstrated that the larger 
training set of 90 pre-labelled questions provides more robust results across 
multiple runs of the experiment. 
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Experiment 4 

In all experiments described so far, the labelling task was focused on 
questions isolated from their context in the conversation. Yet, human coders 
use the context of the conversation to make judgements for the appropriate 
labels, including both the discussion before a question is posed, and the 
response immediately after. The goal of Experiment 4 was to determine 
whether GPT-4 can also use context in the labelling task, and whether this 
results in labels that are more similar to those assigned by humans. 

Experiment 4a 

In this experiment, the entire conversation in the session was used for 
context in both training and testing sets. The training set consisted of the 
entire transcript of one complete session (G1, S1), with the questions in the 
transcript identified, and their human-assigned labels provided. The testing 
set consisted of the entire transcript of a separate session (G1, S2), with the 
questions (but not their labels) identified. The training and test set were 
selected from the same group of participants (G1), so that GPT-4 could learn 
not only from the labelled examples, but also the participants’ speaking 
styles. The exact user prompt in Experiment 4a was: 
 

Classify all the questions identified in the conversation below, using the taxonomy 
proposed by Eris. Label each question with one of the three categories: Low-level 
questions, Deep Reasoning Questions, or Generative Design Questions, and present the 
results in JSON format that contains only questions and labels. Each question is identified 
and kept inside a square bracket `[]` at the end of an utterance. Each line (separated by 
newline character "\n") represents an utterance from a person in the conversation. There 
can be multiple questions from a single utterance. Label as you go through the 
conversation. In determining an appropriate label, consider the context of the 
conversation, including what has been discussed before the question, and the response 
that follows it. Here is the conversation -  
```<test set>```  
To help you classify the questions, an example is given below which is a similar discussion 
between multiple subjects on the same topic. In this example, each line contains an 
utterance from a person in the conversation. The lines are separated by the newline 
character "\n". The appropriate question is identified and kept inside a square bracket 
and a label can be found on that question inside parentheses. If there are multiple 
questions from a single utterance, then those questions and associated labels are listed 
inside the square brackets separated by a comma. The example -  
```<training set>```  

 
The experiment produced unexpected results. Although the prompt has clear 
instructions to label all the identified questions in the testing set, GPT-4 
failed to do so. Moreover, some of the GPT-4-labelled questions in the result 
were mixed up with the questions provided in the training set. 
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Experiment 4b 

Next, to address the limitations of the previous attempt, a different 
experiment was designed. The idea in the new experiment was to provide 
GPT-4 a smaller “chunk” of context surrounding the question. It was hoped 
that this chunk of context would improve the labelling accuracy.    

In the new experiment, the training set consisted of examples of “chunks” 
of text from different sessions. Each chunk contained a labelled question, 
with a specified amount of text both immediately before and after it. 
Initially, it was believed that including one to two utterances before and after 
the question would be appropriate. An utterance was defined as any text 
uttered by a participant, located between two turn-taking activities in the 
conversation. However, it was later determined that given the large variety 
of the length of utterances (which could vary from one word to several 
paragraphs in length), a different approach was needed. Thus, instead, 
approximately 50-80 words were included both before and after each 
question in such a way that complete sentences were included.  

Two different versions of the training set were used: one with 60, and one 
with 90 pre-labelled questions. In both cases, these were the same 60/90 
questions used in Experiment 3. The testing set comprised of similarly 
constructed chunks of text, enveloping the same 30 questions used in 
Experiments 1-3. The following user prompt was used: 
 

Classify the question within the 30 conversation segments listed below, using the 
taxonomy proposed by Eris. Label each question with one of the three categories: Low-
level questions, Deep Reasoning Questions, or Generative Design Questions—and 
present the results in JSON format that contains both questions and labels. Each question 
is identified and kept inside a square bracket `[]` at the end of an utterance. Each line 
represents an utterance from a person in the conversation. In determining an appropriate 
label, consider the context of the conversation, including what has been discussed before 
the question, and the response that follows it.  
``` <test set> ```  
To help you classify the questions, here are some examples. 60 discussion segments 
between multiple subjects separated using <example> tag are provided below. In these 
examples, each line contains an utterance from a person in the conversation. The 
appropriate question is identified and kept inside a square bracket just like before 
followed by the label for that question inside parentheses.  
<training set>  

 
In both cases with training set sizes of “chunks” surrounding 60 and 90 
questions, 14 to 16 of the 30 GPT-4 generated labels were incorrect, 
resulting in a significantly degraded performance compared to the case when 
no context “chunks” around the questions was provided.   
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Experiment 4c 

Given the challenges in the previous two attempts, the experimental task 
was further paired down. Specifically, Experiment 4c sought to determine if 
the label accuracy could be improved by providing GPT-4 the utterance that 
immediately follows the question. The reasoning was that when humans 
perform the labelling task, they are trained to use the answer to a question 
for important clues about the intention of the question.   

Using the same training sets (sizes 60 and 90) that were used in 
Experiment 2, the labelling task was repeated once again on the same test 
set of 30 questions, with one key difference: for both the training and test 
sets, GPT-4 was also provided with the utterance that immediately followed 
the question, which was presumed to contain the response to the question. 
An utterance is defined here exactly as described in Experiment 4b. The 
following user prompt was used: 
 

Classify the question within the 30 conversation segments listed below, using the 
taxonomy proposed by Eris. Label each question with one of the three categories: Low-
level questions, Deep Reasoning Questions, or Generative Design Questions—present the 
results in JSON format that contains both questions and labels. Also, State your reasoning 
for the assigned label. Each question is identified and kept inside a square bracket `[]`. 
Each line (separated by newline character "\n") represents an utterance from a person in 
the conversation. In determining an appropriate label for the question, consider the 
utterance that follows it in the conversation, which is provided in the following line.  
```<test set>```  
To help you classify the questions, here are some examples. 90 discussion segments 
between multiple subjects are provided below which are separated using <example> tag. 
In each example, the first line contains the question kept inside a square bracket just like 
before followed by the label for that question inside parentheses. The second line provides 
the utterance that follows the question in the conversation. The lines are separated by the 
newline character "\n".  
<training set>  

    
The experiment results are presented in Table 5, which contrasts the label 
assignments in this experiment (“GPT, answer provided”) to those in 
Experiment 2 (“GPT, answer NOT provided”), as well as to the human-
assigned labels. It is observed that supplying GPT-4 with the answer to the 
question results in worse alignment with human-generated labels, compared 
to not providing the answer. While increasing the training set size from 60 
to 90 questions results in improved alignment (50% to 60%), it still falls 
significantly below the performance when the question answers are not 
provided (83% alignment). 
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Table 5 Experiment 4c results 
  Human  GPT, answer NOT provided  GPT, answer provided  
  60 training  90 training  60 training  90 training  

Q1  DRQ  DRQ  DRQ  LLQ  LLQ  
Q2  GDQ  GDQ  GDQ  LLQ  GDQ  
Q3  DRQ  DRQ  DRQ  DRQ  DRQ  
Q4  GDQ  GDQ  GDQ  LLQ  LLQ  
Q5  LLQ  LLQ  LLQ  LLQ  LLQ  
Q6  LLQ  GDQ  GDQ  LLQ  GDQ  
Q7  DRQ  DRQ  DRQ  DRQ  DRQ  
Q8  DRQ  DRQ  DRQ  LLQ  LLQ  
Q9  GDQ  DRQ  DRQ  DRQ  DRQ  
Q10  LLQ  LLQ  LLQ  LLQ  LLQ  
Q11  LLQ  LLQ  LLQ  LLQ  LLQ  
Q12  GDQ  LLQ  LLQ  LLQ  LLQ  
Q13  LLQ  LLQ  LLQ  LLQ  LLQ  
Q14  GDQ  GDQ  GDQ  LLQ  GDQ  
Q15  GDQ  GDQ  GDQ  LLQ  GDQ  
Q16  DRQ  DRQ  DRQ  LLQ  LLQ  
Q17  LLQ  LLQ  LLQ  LLQ  LLQ  
Q18  LLQ  LLQ  LLQ  LLQ  LLQ  
Q19  DRQ  DRQ  DRQ  LLQ  LLQ  
Q20  LLQ  LLQ  LLQ  LLQ  LLQ  
Q21  DRQ  DRQ  DRQ  DRQ  DRQ  
Q22  DRQ  LLQ  LLQ  LLQ  LLQ  
Q23  GDQ  GDQ  GDQ  LLQ  DRQ  
Q24  DRQ  DRQ  DRQ  LLQ  LLQ  
Q25  DRQ  LLQ  LLQ  LLQ  LLQ  
Q26  LLQ  LLQ  LLQ  LLQ  LLQ  
Q27  GDQ  GDQ  GDQ  LLQ  GDQ  
Q28  GDQ  GDQ  GDQ  GDQ  GDQ  
Q29  GDQ  GDQ  GDQ  GDQ  GDQ  
Q30  LLQ  LLQ  LLQ  LLQ  LLQ  

Alignment (%)  n/a  83  83  50  60  

Discussion 

As LLMs become more sophisticated and ubiquitous, researchers have 
rightly begun to ponder how ChatGPT and other technologies will shape 
qualitative research [34]. This research was motivated by the broader aims 
of exploring how LLMs could be used in analyzing verbal protocols of 
design. Specifically, in this paper, our research question was to determine 
the extent to which the most recent variant of ChatGPT (GPT-4) could 
accurately classify question utterances according to Eris’s [20] taxonomy.   
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The study took advantage of a large pre-existing dataset comprised of a 
large corpus of over 2200 human-classified question utterances, which also 
included the complete transcripts of the dialogues in which the questions 
were uttered. The study was comprised as a series of careful experiments 
that sought to understand the nuances of using GPT-4 for performing this 
classification. The following subsections highlight study findings, including 
limitations, implications and opportunities for future research. 

Classification accuracy and sensitivity   

Experiment 1 tested GPT-4’s baseline performance in this classification 
task. GPT-4 was provided with a system message that described the 
classifications scheme (the meaning of the LLQ, DRQ, and GDQ categories 
and the sub-categories within each, with examples). The classification task 
consisted of assigning each of the randomly selected 30 questions to one of 
the three categories (but not to their subcategories). Without any further 
training, GPT-4 achieved an alignment of 60% with the human-assigned 
categories. However, when given 90 additional examples of human-labelled 
questions (or training data), GPT-4’s performance reached an alignment of 
83%. Importantly, where there was misalignment, there was ambiguity in 
the correct classification for the question. For example, the two different 
human coders had disagreed about the correct category in the initial coding, 
or the current authors disagreed with the human-assigned category. Thus, 
GPT-4 arguably provided more accurate labels than the human coders. 
Experiment 2 sought to further test GPT-4’s sensitivity to the training set 
size. Results from this experiment suggest that GPT-4 can perform this task 
and maintain adequate alignment with human labels with a fairly limited 
training dataset (a mere 60 pre-labelled questions). Experiment 3 examined 
the sensitivity of the classification across a different dimension – the number 
of “runs” of a classification task. Indeed, the results demonstrated the 
probabilistic nature of GPT-4’s labelling, with many questions being 
labelled differently on different runs. Consistency across different runs was 
improved with a larger training set. 

Four additional “sensitivity” aspects could be further investigated in 
future studies. First, while we experimented with different sizes of the 
training set (up to 300 pre-labelled questions), it would be useful to explore 
how the results might vary with larger-sized testing sets (beyond the 30 that 
were used in all experiments in this study). Second, given GPT-4's 
sensitivity to prompt changes, we ponder how varying the order of labelled 
questions in training data affects results across different runs (e.g., in 
Experiment 3). Third, future studies could test sensitivity to the origin of the 
training set data. In this study, training and test data were sourced from the 
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same original dataset (though without overlap), but how would the results 
differ if the training set originated from a different study? Finally, although 
the classification task was only tested on the three broader question 
categories, it would be useful to investigate GPT-4's performance at the  sub-
category level.  

Overall, the results of Experiments 1-3 suggest that GPT-4 can classify 
questions according to Eris’ taxonomy with impressive accuracy in terms of 
alignment with the human-sourced labels. Importantly, GPT-4 completed 
the task (labelling 30 new questions in the test set) with varying runtime 
from half a minute to a few minutes, depending on the total input size and 
output formatting. This efficiency stands in contrast to the time-intensive 
nature of protocol analysis, especially when dealing with large datasets. 

The role of context in the question classification task   

When human coders perform the identification and classification of 
questions, they are instructed to take into consideration both the question 
and the context in which the question is asked for clues [20, p. 99]. This 
includes what the participants have discussed earlier and how the question 
receiver responds to the question. Experiment 4 explored the impact of 
providing additional context to GPT-4 (varying from providing the entire 
session transcript to just the utterance immediately following the question) 
on the alignment with human-determined labels.   

The results indicate that providing any additional context not only does 
not improve but can also degrade performance. The model failed to label 
questions and even confused questions from the training and testing sets. 
This observation of the relationship between context window and 
performance aligns with recent findings [35], [36], which indicate that long 
input contexts are not utilized properly by current LLMs and ChatGPT. 
Curry et al.’s [35] experience mirrors our own: ChatGPT seems to “conflate 
and modify data, likely owing to its probabilistic approach to synthesis and 
its goal to produce content, regardless of the input”.   

This finding prompts the need for further investigation into the factors 
contributing to this decrease in effectiveness. Additionally, future research 
could examine the concept of "context" in the context of NLP. Defining 
context with precision is imperative for advancing the understanding of its 
influence on model performance. For instance, if using the raw session 
transcript as context might confuse GPT-4, a future study could investigate 
whether summarizing the context before the classification task (perhaps 
through a separate GPT-4 task) could enhance performance. 

A related expansion of the classification task involves training GPT-4 to 
identify question utterances, in addition to classifying them according to the 
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taxonomy. This is also a context-specific task, as question utterances are not 
always clearly denoted in transcripts with a question mark; the context 
around an utterance (and if reviewing the video recording, the tone) informs 
the human researcher if an utterance is posed as a question. 

Broader considerations in using LLMs in design protocol analysis   

Recent advancements in AI, specifically LLMs, show great potential but 
using them in design research require consideration that LLMs are not 
inherently generalizable and need custom training to be task-specific, as 
evidenced by prior studies [18] and our own. Despite improvements in 
context awareness and nuanced text generation, LLMs still struggle with 
precise contextual understanding, especially with specialized language 
across different disciplines.   

While GPT-4 is a highly advanced LLM, it often "hallucinates," 
producing plausible but incorrect or irrelevant information, which could 
degrade information quality [37]. To address this issue, researchers suggest 
a range of strategies, including feedback mechanisms, accessing external 
information, and early refinement during LLM development. Some notable 
works are Retrieval-Augmented Generation [38], Knowledge Retrieval 
[39], and CoNLI [40]. Prompt engineering is also crucial, as evidenced by 
our study's use of specifically developed prompts based on official 
guidelines [41]. However, these may not always be the most effective. As 
noted by Wei et al. [42], there is potential to refine prompts further to elicit 
better responses from LLMs, suggesting that more effective prompt versions 
could yield superior results. Also, using LLMs like GPT for qualitative 
analysis may introduce bias as they learn language from their training data 
[43]. This can lead to biased insights, or ignoring marginalized groups' needs 
[44], potentially resulting in designs that exclude or alienate some users.  

Design researchers looking to use GPT in other protocol analysis 
applications need to also consider that these models are frequently updated 
(with no detailed logs), enhancing performance but complicating the 
replicability and comparability of research over time. Proprietary algorithms 
and datasets restrict independent verification and pose challenges in 
assessing biases and ethical concerns on training materials. Finally, the 
GPT-4 API is not free to use and could be unaffordable for researchers with 
limited resources, especially when dealing with very large datasets. Since 
GPT is not open source, it may lead some researchers to prefer alternative 
open-source LLMs. 
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Conclusion 

A series of experiments have demonstrated that GPT-4 can effectively 
categorize stand-alone question utterances using Eris' question-asking 
taxonomy. The study underscores the potential of LLMs to enhance 
qualitative analysis in design research, by reducing the time and resources 
required for manual coding, while requiring minimal NLP expertise on the 
part of the researcher. The findings highlight both the strengths and 
limitations of LLMs, suggesting that while they hold promise, further 
refinement and understanding of their application in complex analytical 
tasks such as verbal protocol analysis are necessary.   
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