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Abstract

This paper presents a probabilistic polynomial-time reduction of
the discrete logarithm problem in the general linear group GL(n, q)
to the discrete logarithm problem in some small extension fields of
Fq.

1 Introduction

The Diffie-Hellman key exchange [6] is a protocol whereby two entities A
and B can, by a sequence of transmissions over a public channel, agree
upon a secret cryptographic key. The method is as follows. A and B first
choose a (multiplicatively written) finite abelian group G and some element
α ∈ G. A then selects a random integer a and transmits αa to B. B in
turn selects a random integer b and transmits αb to A. Both A and B can
then determine αab, which is their shared secret key.

An eavesdropper C monitoring the transmission between A and B would
know G, α, αa, and αb. The parameters G and α should be chosen so that
it is computationally infeasible for C to then determine αab. Certainly, if C
could compute either a or b, then C could determine αab. The problem of
determining a given α and β = αa is called the discrete logarithm problem in
G. The integer a, which is unique if restricted to the range [0, order(α)−1],
is called the discrete logarithm of β to the base α. It is an open problem to
decide whether or not determining αab is equivalent to computing discrete
logarithms in G.

The best algorithms that are known for solving the discrete logarithm
problem in an arbitrary group G are the exponential square root attacks
(see [10]) that have a running time that is roughly proportional to the square
root of the largest prime factor of l, where l is the order of α. Consequently,
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if G and α are chosen so that l has a large prime factor, then these attacks
can be avoided.

Let Fq denote the finite field of order q, and let q = pm where p is
the characteristic of Fq. In [6], G = F∗q , the multiplicative group of Fq, was
proposed as a candidate for implementing the Diffie-Hellman key exchange.
There are probabilistic subexponential-time algorithms known for comput-
ing logarithms in Fq (see [5] for the case q a prime, [14] for the case where
p = 2, and [1] for the general situation). A subexponential-time algorithm
is an algorithm whose running time is

O
(
e(c+o(1)) zd(log z)1−d

)
,

where z is the input size, c is a constant, and 0 < d < 1. These algorithms
are an asymptotic improvement on the general algorithms mentioned in
the previous paragraph. For cryptographic purposes we are interested in
groups for which subexponential algorithms for the corresponding discrete
logarithm are not known. Additionally, for efficient and practical imple-
mentation, the group operation should be relatively easy to apply.

It was for these reasons that the group of non-singular matrices over
a finite field [15], the group of points on an elliptic curve ([8] and [12]),
the jacobian of a hyperelliptic curve defined over a finite field [9], and
the class group of an imaginary quadratic field [3] have been proposed
for cryptographic use. In [11] it was shown how the discrete logarithm
problem in the special class of matrices considered in [15] can be reduced
to the discrete logarithm problem in some extensions of the underlying
field. This paper extends these results to show how the discrete logarithm
problem in GL(n, q) can be reduced in probabilistic polynomial time to
the logarithm problem in small extensions of Fq. This demonstrates that
the group GL(n, q) offers no significant advantage over finite fields for the
implementation of cryptographic protocols whose security is based on the
difficulty of computing discrete logarithms in a group.

The remainder of the paper is organized as follows. Some basic results
from linear algebra are first reviewed in Section 2. Section 3 describes the
orders of elements in GL(n, q). In Section 4 we describe a polynomial-time
algorithm for computing the Jordan canonical form of a matrix. Section 5
presents the reduction. Finally, Section 6 makes some concluding remarks.

2 Background

We review some basic concepts from linear algebra. For more details the
reader is referred to Horn and Johnson [7].
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Let q = pm be a prime power. Fq will denote the finite field of order
q. The set of all n × n matrices with entries from Fq is denoted Mn(q).
The general linear group, denoted GL(n, q) or GL(n,Fq), is the set of all
non-singular n×n matrices over Fq under matrix multiplication. The order

of GL(n, q) is
∏n−1

i=0 (qn − qi).
Let A ∈Mn(Fq). The rank of A is denoted r(A) and the null space of A

is denotedN(A). The characteristic polynomial of A is pA(x) = det(A−Ix);
pA(x) is a polynomial of degree n in Fq[x]. Let E denote the splitting field
of pA(x) over Fq. The roots λ1, λ2, . . . , λh of pA(x) in E are the eigenvalues
of A. The (algebraic) multiplicity of an eigenvalue λ is the multiplicity of λ
as a root of pA(x). A Jordan block of order d corresponding to λ is a d× d
upper-triangular matrix of the form

Jd(λ) =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


A Jordan matrix is a direct sum of Jordan blocks. It is well known that for
every matrix A ∈ Mn(Fq) there exists a matrix Q ∈ GL(n,E) such that
Q−1AQ = JA, where

JA = Jn1
(λ1)⊕ Jn2

(λ2)⊕ · · · ⊕ Jns
(λs)

is a Jordan matrix, λ1, λ2, . . . , λs are the eigenvalues of A (not necessar-
ily distinct), and

∑s
i=1 ni = n. The Jordan matrix JA is unique up to

rearrangement of the component Jordan blocks and is called the Jordan
canonical form of A.

Let λ be an eigenvalue of A ∈ GL(n, q) of multiplicity m. Let c be
the smallest positive integer for which r(A − λI)c = r(A − λI)c+1; it is
certainly the case that c ≤ n. Then the number of Jordan blocks in JA
corresponding to λ is n − r(A − λI), and c is the size of the largest such
block. More completely, the number of Jordan blocks of size at least k in
JA corresponding to λ is r(A − λI)k−1 − r(A − λI)k (where (A − λI)0 is
defined to be I). It follows that the number of Jordan blocks of size exactly
k in JA corresponding to λ is

r(A− λI)k+1 − 2r(A− λI)k + r(A− λI)k−1.

If ν is a conjugate of λ, i.e., ν = λq
j

for some j, then ν is also an eigen-
value of A and there are an equal number of Jordan blocks of each size k
corresponding to λ and ν in JA.
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Let λ be an eigenvalue of A. A non-zero vector u is called a gen-
eralized eigenvector of rank t corresponding to λ if (A − λI)tu = 0 and
(A − λI)t−1u 6= 0. Let u be such a vector, and define the set of vectors
S = {u1, u2, . . . , ut} by

ut = u and ui = (A− λI)ui+1 for i = t− 1, . . . , 2, 1. (1)

Then ui is a generalized eigenvector of rank i corresponding to λ, and the
set S is linearly independent.

3 Orders of matrices in GL(n, q)

This section describes the orders of elements in GL(n, q). The results are
not new, and were proven by Niven [13] in 1948. The alternate proof
using the Jordan canonical form that is presented here will facilitate the
discussion for the remainder of the paper.

Lemma 1 The order of the Jordan block J = Jd(λ) is ord(λ)p{d}, where
p{d} denotes the smallest power of p greater than or equal to d.

Proof: Let s = ord(λ) and u = p{d} and note that gcd(s, u) = 1. It can
be shown that J l is an upper triangular matrix with (i, j)-entry equal to
λl−j+i

(
l

j−i
)

for 1 ≤ i ≤ j ≤ d. Thus J l = I if and only if λl = 1 and(
l
k

)
≡ 0 (mod p) for each 1 ≤ k ≤ d− 1.

Now, (1 + x)su = (1 + xu)s in Zp[x]. Comparing coefficients of xk yields(
su
k

)
≡ 0 (mod p), for each 1 ≤ k ≤ u − 1. Since λsu = 1, it follows that

Jsu = I and so ord(J)|su.
Suppose now that ord(J) = sw, where w is a divisor of u, w < u. Since
Jsw = I, we have

(
sw
k

)
≡ 0 (mod p) for each 1 ≤ k ≤ d− 1. In particular,(

sw
w

)
≡ 0 (mod p) since w ≤ d − 1. But equating coefficients of xw in

(1 + x)sw = (1 + xw)s yields
(
sw
w

)
≡ s (mod p) where s 6≡ 0 (mod p), thus

contradicting the previous statement. We conclude that ord(J) = su, as
required. �

Theorem 2 Let A ∈ GL(n, q). Let the distinct eigenvalues of A in E be
λ1, λ2, . . . , λh. Then the order of A is

ord(A) = lcm(ord(λ1), ord(λ2), . . . , ord(λh))p{t},

where t is the size of the largest Jordan block in JA.
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Proof: Let the Jordan canonical form of A be JA = J1⊕ J2⊕ · · · ⊕ Js and
let Q ∈ GL(n,E) be a matrix such that Q−1AQ = JA. Then

ord(A) = ord(JA) = lcm(ord(J1), ord(J2), . . . , ord(Js)).

The result now follows from Lemma 1. �

4 Computing the Jordan canonical form

An algorithm involving elements of GL(n, q) is a polynomial-time algo-
rithm if its running time is bounded by a polynomial in n and log q. The
classical techniques for matrix addition, multiplication and Gaussian elim-
ination take O(n2), O(n3) and O(n3) Fq-operations respectively, where an
Fq-operation takes O((log q)2) bit operations.

Let A ∈Mn(Fq). Let pA(x) be the characteristic polynomial of A, and
suppose that its factorization over Fq is pA(x) = fe11 fe22 · · · fess , where the
fi are distinct irreducible polynomials of degree mi in Fq[x]. Then the
smallest extension field containing all the eigenvalues of A is E = Fqk ,
where k = lcm(m1,m2, . . . ,ms).

The algorithms usually described in textbooks (for example [7]) for com-
puting the Jordan canonical form JA work in the field E. However, as the
following argument shows, the field E is very big in general, and hence the
algorithms are not polynomial-time algorithms. Suppose that mi is the ith

prime number, 1 ≤ i ≤ s, and each ei = 1. Let d = ms + 1. Then by
Corollary 1 of [16], we have

s < (1.3d)/(log d).

Hence

n =

s∑
i=1

mi < (1.3d2)/(log d) < 1.3d2,

and so d > 0.87
√
n. And, by Theorem 10 of [16], we have that for d ≥ 101,

k =

s∏
i=1

mi > e0.84d > e0.7
√
n.

To overcome the problem of k being too big, we do the computations
in the smaller extension fields Fqm1 , Fqm2 , . . ., Fqms in turn, instead of
working in the field Fqk .

Algorithm 1 (Computing the Jordan canonical form)
Input: A matrix A ∈ GL(n, q)
Output: The Jordan canonical form JA of A.
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1. Use the Hessenberg algorithm [4, page 55] to find the characteristic
polynomial pA(x) of A.

2. Find the factorization of pA(x) over Fq using, for example, Ben-Or’s
algorithm [2]: pA(x) = fe11 fe22 · · · fess , where each fi is an irreducible
polynomial of degree mi. Let the roots of fi in Fqmi be αij , 1 ≤
j ≤ mi. Note that we may conveniently represent the field Fqmi as
Fq[x]/(fi(x)). In this representation, we simply have αi1 = x, and

αij = xq
j−1

mod fi(x) for 2 ≤ j ≤ mi.

3. For i from 1 to s, do the following:

3.1 Set r0←n.

3.2 Compute (A−αi1I)l and rl = r(A−αi1I)l for l = 1, 2, . . . , c, c+1,
where c is the smallest positive integer such that rc = rc+1.

3.3 Let Ji1 be the direct sum of (rl+1 − 2rl + rl−1) Jordan blocks of
order l corresponding to αi1, 1 ≤ l ≤ c.

3.4 Let Jij be the same matrix as Ji1 but with αi1 replaced by αij ,
2 ≤ j ≤ mi.

3.5 Set Ji←Ji1 ⊕ Ji2 ⊕ · · · ⊕ Jimi .

4. Set JA←J1 ⊕ J2 ⊕ · · · ⊕ Js.

Theorem 3 Algorithm 1 takes expected polynomial time.

Proof: Hessenberg’s algorithm takes polynomial time, while Ben-Or’s al-
gorithm takes expected polynomial time. In each iteration of step 3, the
computations are performed in the field Fqmi . Since mi ≤ n, we have
log qmi ≤ n log q, and so each iteration of step 3 takes polynomial time.
Finally, since step 3 is iterated s times and s ≤ n, we see that the expected
running time of Algorithm 1 is bounded by a polynomial in n and log q. �

5 The reduction

The discrete logarithm problem in GL(n, q) is to find l, given matrices
A and B = Al in GL(n, q). We show how this problem can be reduced
in expected polynomial time to the problem of computing logarithms in
several small extension fields Fqmi .

Let the factorization of the characteristic polynomial pA(x) of A over
Fq be pA(x) = fe11 fe22 · · · fess , where deg(fi) = mi. Let λi be a root of fi
in Fqmi , and let t be the order of the largest Jordan block in JA. Then
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since all the roots of fi have the same order and Jordan block structure, by
Theorem 2 we have

ord(A) = lcm(ord(λ1), ord(λ2), . . . , ord(λs))p{t},

and l is uniquely determined modulo this number.
To determine l mod ord(λi) we find an eigenvector µi corresponding to

λi. If Qi is a non-singular matrix whose first column is µi, then the first
column of the matrix Q−1i AQi is (λi, 0, . . . , 0)T . Then

Di = Q−1i BQi = Q−1i AlQi = (Q−1i AQi)
l,

and so the (1, 1) entry of Di is λli. The quantity l mod ord(λi) can thus be
obtained by computing the logarithm of λli to the base λi.

If t > 1 then l mod p{t} is obtained as follows. Let λ be an eigenvalue of
A which has a corresponding Jordan block J of order t. Find a generalized
eigenvector µ of rank t corresponding to λ by solving (A − λI)ty = 0,
(A−λI)t−1y 6= 0. If Q is an invertible matrix whose first t columns are the
vectors u1, u2, . . . , ut defined by (1) then the first t columns of the matrix
Q−1AQ has the form [

J
0

]
.

Hence, the t× t submatrix in the upper left-hand corner of D = Q−1BQ is
J l. Now, if p{t} = p, then since the (1, 1) entry ofD is λl and the (1, 2) entry
of D is lλl−1, l mod p can be easily obtained. If p{t} ≥ p2, then p < t ≤ n
and p{t} < n2. In this case, let s = ord(λ), l′ = l mod s, and compute J l′ ,
J l′+s, J l′+2s, . . . until J l′+js = J l, in which case l mod p{t} = j.

A detailed description of the reduction is given below.

Algorithm 2 (Reduce the logarithm problem in GL(n, q) to the logarithm
problem in Fqmi , 1 ≤ i ≤ s.)
Input: Matrices A, B ∈ GL(n, q) with B = Al.
Output: The integer l.

1. Use the Hessenberg algorithm to find the characteristic polynomial
pA(x) of A.

2. Find the factorization of pA(x) over Fq: pA(x) = fe11 fe22 · · · fess , where
each fi is an irreducible polynomial of degree mi. Let the roots of fi
in Fqmi be αij , 1 ≤ j ≤ mi. Note that we may conveniently represent
the field Fqmi as Fq[x]/(fi(x)). In this representation, we simply have

αi1 = x, and αij = xq
j−1

mod fi(x) for 2 ≤ j ≤ mi.
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3. For i from 1 to s do the following:

3.1 Compute (A−αi1I)l and rl = r(A−αi1I)l for l = 1, 2, . . . , c, c+1,
where c is the smallest positive integer such that rc = rc+1.

3.2 Find an eigenvector µi corresponding to αi1 by solving (A −
αi1I)y = 0.

3.3 Construct a matrix Qi ∈ GL(n, qmi) whose first column is µi.

3.4 Compute Di←Q−1i BQi.

3.5 The (1, 1) entry of Di is αl
i1, and so one can find l modulo

ord(αi1) by solving a discrete logarithm problem in Fqmi .

4. Let t be the maximum of the c values found in step 3.1. If t > 1 then
do the following.

4.1 Let λ ∈ Fqm be an eigenvalue which has a corresponding Jordan
block of size t.

4.2 Find a basis B1 for N((A− λI)t−1).

4.3 Find a basis B2 for N((A− λI)t).

4.4 Hence find a vector u in B2 which is not in the subspace spanned
by B1. (u is a generalized eigenvector of rank t.)

4.5 Set ut←u, and uj←(A− λI)uj+1 for j = t− 1, . . . , 2, 1.

4.6 Construct a matrix Q ∈ GL(n, qm) whose first t columns are
u1, u2, . . . , ut.

4.7 Compute Q−1AQ and D←Q−1BQ.

4.8 The (1, 1) entry of D is λl and the (1, 2) entry of D is lλl−1. If
p{t} = p then first compute λl−1 as λl/λ, and then divide lλl−1

by λl−1 to obtain l mod p.

4.9 If p{t} ≥ p2 then let J be the t × t Jordan block in the upper
left-hand corner of Q−1AQ. Set s←ord(λ), l′←l mod s (which
was computed in step 3), and compute J l′ , J l′+s, J l′+2s, . . . until
J l′+js is equal to the t× t matrix in the upper left-hand corner
of D. Then l mod p{t} = j.

5. Find l mod ord(A) by using the generalized Chinese remainder theo-
rem.

Theorem 4 Algorithm 2 is an expected polynomial-time reduction of the
discrete logarithm problem in GL(n, q) to the discrete logarithm problem in
Fqmi , 1 ≤ i ≤ s.
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Proof: Hessenberg’s algorithm takes polynomial time, while Ben-Or’s al-
gorithm takes expected polynomial time. Each iteration of step 3 involves
linear algebra over Fqmi , where mi ≤ n. Since log qmi ≤ n log q and s ≤ n,
step 3 is a polynomial-time reduction. Finally, step 4 involves linear algebra
over Fqm , where m ≤ n. If p{t} ≥ p2, then p{t} < n2, and so the process

of computing J l′+js in step 4.9 is iterated at most n2 times. This proves
the statement of the Theorem. �

6 Conclusions

We have shown that the discrete logarithm problem in GL(n, q) is no more
difficult than the discrete logarithm problem in Fqn . Since the group oper-
ation in GL(n, q) is computationally more expensive than the group oper-
ation in Fqn , the former group offers no advantage over finite fields for the
implementation of cryptographic protocols whose security is based on the
difficulty of computing logarithms in a group.
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