Now, we wish to show that S pec (n) is also a maximal set w/ equivalence relation satisfying $7,2,3$.

It's clear thar 1 holds: this is just the fact that $X_{1}=0$.
Ok, so how do we check properties 2 and 3 ? We have to isolate how X_{k} and X_{k+1} behave. The trick here is to think of them as independer variables (and then impose relations later). Let $s_{i}=(i, i+1)$. Then we have $s_{i} X_{k} s_{i}=X_{k}$ if $k \neq i, i+1$, and $s_{k} x_{k} s_{k}=\sum_{i<k}(i, k+1)=X_{k+1}-s_{k}$. Alternately, $s_{k} X_{k+1}-x_{k} s_{k}=1$.

Def The degenerate affine Hecke algebrathis the algebra generated by $\mathbb{Z} S_{n}$ and $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ modulo the relations:

$$
s_{m} X_{k} s_{m}= \begin{cases}X_{k} & m \neq k, k+1 \\ x_{k+1}-s_{k} & m=k \\ X_{k-1}+s_{k} & m=k+1\end{cases}
$$

We have a surjectie map $H_{n} \rightarrow \mathbb{Z} \delta_{n}$ sending $S_{m} \mapsto S_{m}, X_{K} \mapsto X_{K}$. The kernel of the map is the 2 -sided ideal generated by X_{1}, (since modulo this ideal, we have $x_{2}=s_{1} x_{1} s_{1}+s_{1} \equiv s_{1}, x_{3}=s_{2} x_{2} s_{2}+s_{2} \equiv(13)+(13)$. In general,

$$
x_{k}=s_{k} s_{k-1}-\cdots s_{1} x_{1} s_{1} \cdots-s_{k}+s_{k-1}+s_{k-1} s_{k-2} s_{k-1}+s_{k-1} s_{k-2} s_{k-3} s_{k-2} s_{k-1}+\cdots
$$

Perhaps more inportatly, X_{k}, X_{k+1}, S_{k} satisfy relations of H_{2}, and X_{k}, X_{k+1}, X_{k+2}, and s_{k}, s_{k+1} the relations of H_{3}.

We call a representation of H_{n} unitary if it has an inner-product such that X_{i}, S_{i} are self adjoint. Mote that any rep of $\mathbb{C} S_{n}$ is unitary because any inner product invariant under S_{n} sends X_{k} to self-adjoint operators. Note, this implies the X_{k} is diagganalizable, and so all X_{k} 's are simultaneously diagonalizable.
Now, assure that V is an $S_{n}-r e \beta ~ V$ is a common eigenvector of the X_{k} 's and $\left(a_{11}, a_{n}\right)$ is the might. Then $\left\{v, s_{k} v\right\}$ span a subrep under the action of H_{2}.
Let $a=a_{k}, b=a_{k+1}$ be the eigenvalues of X_{k}, X_{k+1}.
This is a quoter of the tensor product $H_{2} \mathbb{C}\left[x_{k}, x_{k+1}\right] \mathbb{C} \cdot w$, where $X_{k} \cdot \omega=q w, X_{k_{1}} \cdot==\hbar \omega$ This is 2 -dimensional, spanud by $\omega, s_{k} w$. If this is unitary $w /\langle\omega, \omega\rangle=1$, then $\left\langle s_{k w}, s_{k} w\right\rangle=1$, and since $x_{k} \cdot s_{k} w=s_{k} x_{k+1} w-w=b \cdot s_{k} \omega-w$, we must have $a\left\langle\omega, s_{k} \omega\right\rangle=\left\langle x_{k} \omega, s_{k} \omega\right\rangle=\left\langle\omega, x_{k} s_{k} \omega\right\rangle=b\left\langle\omega, s_{k} \omega\right\rangle-1$ so $\quad(a-b)\left\langle\omega, s_{k} \omega\right\rangle=-1$.
$\left[\begin{array}{cc}\frac{1}{1} & \frac{1}{b-a} \\ b-a & 1\end{array}\right]$ defies an inner product iff $a \neq b, b \pm 1$.
Fartherrones any subrep is spanned by $w \pm s_{k} \omega$ (by s_{k}-invariance). We have

$$
\begin{array}{ll}
X_{k} \cdot\left(w+s_{k} w\right)=(a-1) w+b S_{k} w . & \left.X_{k+1} \mid w+s_{k} w\right)=(b+1) w+a s_{k} w \\
X_{k}\left(w-s_{k} w\right)=(a+1) w-b s_{k} w & X_{k+1} \cdot\left(w-S_{k} w\right)=(b-1) w-a s_{k} w .
\end{array}
$$

Thus $w \pm S_{k} w$ spans a sub iff $a=b \pm 1$. Otherwise we have a $2-d$ irrep.
This implies 2: if $a_{k}-a_{k+1} \notin\{1,0-1\}$, then $v, s_{k} v$ must be linearly independent, and $s_{k} v-\frac{1}{a_{k+1}-a_{k}} v$ is of weight $\left(a_{1}, \cdots, a_{k+1}, a_{k}, a_{k+2}, \ldots\right)$. It also gives us Sore of 3 : there is no nonzero unitarizable rep $w / a_{k}=a_{k+1}$; you rust have the full 2-d mp, and thar's not unitary. Note ass that if $a_{k}=a_{k+1} \pm 1$, then unotarity implies that v and $s_{k} v$ ane proportional Thus, the span of $\left\{s_{k} \vee \mid k=1, \ldots, n-1\right\}$ and \{v\} is spanned by denis of weight gotten by an admissible move. Inductively, Hs shows V_{3} spanned by such vectors.

One last thing to clack: that $(\ldots, a, a \pm 1, a, \ldots)$ is impossible. By our calls, a vector w/ this weight spans a line invariant under s_{k} and s_{k+1}. Since S_{3} only has two 1-d irreps, they must both act trivially or by -1 . But our calculations before show thar this requires $(a, a+1, a+2$) or (..., $a, a-1, a-2, \ldots)$, so the pattern above is impossible.

This shows $1,2,3$, so the wights of an irnep cornespord to content vectors of a Young diagram.

Furtlerrones the shows that the YD determines a unique $\mathbb{C} S_{n}$ module: it has a basis V_{T} for T the diffent tableaux, w/

$$
S_{k} V_{T}=\left\{\begin{array}{lll}
V_{s_{k} T}+\frac{1}{a_{k+1}-a_{k}} V_{T} & S_{k} T & \text { stine a tableau. } \\
V_{T} T & s_{k} T \text { breaks row cinditio. } \\
-V_{T} & s_{k} T \text { breaks column condition. }
\end{array}\right.
$$

Every irmep must be of this form. We know that the number of irreps is the number of partitions, so we must have an irnep for each YD.

Tho completes the proof of the theorem.

