_ m renovalele of _ m m not renovable.

Removing the box of lable n gives a bijection
(tableau w/ lk, ktd labled n3 <-> tableau of shape

$$X^{(2)}(\lambda_{1},...,\lambda_{k-1},\lambda_{k+1},\lambda_{k+1},\lambda_{k+1})$$

The offect on content vectors is just revolute the find c. Thus as an imp
of Sn-1, this eigenspice is V_{A} .
Cor. Res^{SU}_A = O V. Ind^{Sn} V. = O V.
Materia
Note: Ind^{Sn} V. = $CS_{N} O_{SN} V.$ This has endomorphism abov to a xnov, and if
A is gother from M by adding a box of content c, then V_A is de coursespace
of this endo. This gives another construction of V_A.
This means that (CSn-1, CSn) form a Gelfand pair: any CSn irrep restricted
to Sn-1, is a sum of difficult irreps. All multiplicitys 1.
There's also an abstract proof of this:
There's also an abstract proof of this:
There's also an abstract proof of this:
There A completely we have $C^{-2}_{N} e_{N}(V) = O$ Mate_{cj}(c) where cij is multiplicity.
If Shee A for first in from C is constrained if cij e (a) Sher all juit.
Brook Mis in Res^N V. Thus, then C is constrained if cij e (a) Sher all juit.
If A = CSn, B² CSm, then C is constrained.
F. C is algebra of sams Zengly such have $d_{2} a_{2} d_{3} d_{1}^{-1}$ for a substract of
the Sn in Res^N of the first interps is a substract of the same cif is material
Brook Mis is a an antiautonorphyse (Zayg) = Eagly, shee (gh V = hold is).
The distract of sams Zengly such have $d_{2} a_{3} d_{1}^{-1}$ shee $d_{3} d_{2} a_{3} d_{1}^{-1}$ shee $d_{3} d_{2} a_{3} d_{2} d_{2} d_{3} d_{3} d_{3} d_{3} d_{3} d_{3} d_{4} d_{4} d_{4} d_{5} d_{4} d_{4} d_{4} d_{5} d_{6} d_{7} d_{7}$