Fessing up．I messed up the formulas for how you act on irreps It＇s correct that $s_{K} V_{T}= \begin{cases}V_{T} & \text { 紧局 } \\ -V_{T} & \text { 圆 }\end{cases}$

But in the other case，somewhere between Verswk－O Kounkov，ny notes，and the board sore factors got dropped．I H_{3} correct that $V_{5 T}=S_{K} V_{T}-\frac{1}{a_{k+1}-a_{k}} V_{T}$ is a sioultaneans eigenvector w／correct eigenvalue．However：

$$
S_{K} V_{S_{k} T}=V_{T}-\frac{1}{a_{k}+\overline{1} a_{k}} S_{k} V_{T}=\left(1-\frac{1}{\left(a_{k+1}-a_{0}\right)^{2}}\right) V_{T}-\frac{1}{a_{k+1}-a_{k}} V_{S_{k} T}
$$

Not symmetric！Of course it isn＇t！V_{T} and $V_{S_{K} T}$ must be orthogonal，so

$$
\left\langle v_{T}, v_{T}\right\rangle=\left\langle s_{k} v_{T}, s_{k} v_{T}\right\rangle=\frac{1}{\left(a_{k+i} a_{k}\right)^{2}}\left\langle v_{+1} v_{T}\right\rangle+\left\langle v_{s_{k} T}, v_{s_{k} T}\right\rangle
$$

Thus $\left\langle v_{\xi_{k} T}, v_{s_{k} T}\right\rangle=1-\frac{1\left(a_{k+i}\right.}{\left(a_{k+1}-a_{k}\right)^{-}}$
2 solutions．break symmetry：$S_{K} V_{T}=\left\{\begin{array}{l}V_{T} \frac{\sqrt{k \mid k_{1}}}{\text { 圆 }} \\ -V_{T} \\ v_{s_{k} T}+\frac{1}{a_{k+1}-a_{k}} v_{T} \text { 四 } \\ \left(1-\frac{1}{\left(a_{k+1}-a_{k}\right)^{2}}\right) v_{S_{k} T}+\frac{1}{a_{k+1}-a_{k}} V_{T}\end{array}\right.$四

Note：these formulas define an S_{n} action on the formal span of tablean on a skew diagram：complenont of diagram μ inside of λ ．Reroted λ / μ ．Let $V_{\lambda / \mu}$ be formal span of tableaux w／the shape，w／te
 induced S_{n}－action．

Young swogroups A Young (or parabolic) subgroup of S_{n} is the subgroup that preserves the partition of $[1, n]$ into sub sets Y_{1}, \ldots, Y_{m}. Of course, the subgroup is isomorphe to $S_{\# H_{1}} \times S_{F_{Y_{2}}} X \cdots \times S_{\# Y_{m} \text {, }}$ and up to inner autorphson, this only depouds on the sizes \#Y: up to permutation. We can thus assume that $\lambda_{i}=$ H $_{i}$ give a partition. The resulting subgroup is often denoted $S_{\lambda} C S_{n}$. If we din't assume λ_{i} are ordered, these give a composition.
Then The restriction of V_{λ} to $S_{m} \times S_{n-m}$ is of the form
$\operatorname{ReS}_{S_{n \times S_{i n}}}^{S_{n}} V_{\lambda} \cong \oplus V_{\mu} V_{\lambda / \mu} \quad w / \mu$ ranging over $\mu t M$
If $\mu \not \subset \lambda$, then $V_{\lambda / m}=0$ by convention.
Pf Let $V_{\lambda}^{(M)}$ be the span all v_{s} where the first m entries have shape μ. Thus is isomorpare to $V_{m} \Delta V_{\lambda / m}$ as a $S_{n} \times s_{n-m}$-module as the formulas show.
More generally, Res $S_{n_{1}} V_{\lambda} \cong \oplus V_{\mu_{1}} \boxtimes V_{\mu_{2}}^{/ \mu_{1}} \Delta V_{\mu_{3 / \mu}}^{2} \boxtimes \nabla_{\cdots} V_{\lambda / \mu-1}$ where we sum over nested diagram's $\mu_{1} \subset \mu_{2} \subset \cdots / \mu c \mu_{1-1} \subset \lambda$, with μ_{i} / μ_{i-1} having ν_{i} boxes.

Lemma If λ / M is disconnected, $\lambda / \mu=\nu_{1} \cup \nu_{n}$, then $V_{\lambda / \mu}=$ Ind $S_{S_{V_{1}} \times S_{\psi \nu_{2}}} V_{\nu_{1}} \Delta V_{V_{2}}$
Pf. The span of tableaux wi $\left\{1, \ldots, \# y_{1}\right\rangle$ in ν_{1} and all other entries in ν_{2} is isonorphic to a copy of $V_{\nu_{1}} \boxtimes V_{\nu_{2}}$. This induces a map Ind $\rightarrow V_{\lambda / \mu}$, who is surjective, since these gays generate. This is an iso since dimensions are de sure: $\left(\begin{array}{ll}\| & \lambda / n \\ \# & y_{1}\end{array}\right) \cdot \operatorname{din} V_{v_{1}} \cdot \operatorname{din} v_{\nu_{2}}$.

