One other basic property: let λ / μ is a skew shape, and it contains a translate of the diagram of a partidon ν.

The Every irrep of S_{n} that is a sub rep of $V_{\lambda / \mu}$ is of the form $V_{\nu^{\prime}}$ w/ $\nu^{\prime}>\nu$.
Pf. Ja tableau on λ / γ s.t. v is filled by $\{k+1, \ldots, k+1 \nu)$. Pick any tableau on the diagram which consists of poxes eire eft or above top left corner of v. Let k be the number of boxes in this subdiagram. We can then fill $\nu \omega / \quad\{k+1, \ldots, k+\# \nu)$, and then continue Consider the span of V_{T} where T agrees w this tableau off v. As a rep of $S_{(1, \ldots, 1, *(1, \ldots 1)}$, this is just V_{v}. Thus, we have a surjective map Ind $s_{(1, \ldots, 1,+, 1, \ldots,}^{s i n}, V_{\nu} \longrightarrow V_{\lambda / \nu}$.

Frobenius reciprocal of formula from last tine:
Ind $S_{S_{k}} V_{\nu}=\bigoplus_{\nu>\gamma}^{*} V_{\nu^{\prime}} \Delta V_{\nu^{\prime \prime} / \nu}^{*}$ (where we ignore S_{n-k} action on latter)
important part for us is just when it is non-zero.
Lena $\left(V_{\lambda / \mu}\right)^{s_{n}}=\left\{\begin{array}{lc}\mathbb{C} & \text { if } \lambda / \mu= \\ 0 & \text { if } \lambda / \mu \supset 日 .\end{array}\right.$ In CST "totally
$\frac{\text { Pf }}{x}$ If λ / μ is totady disconnected, then $V_{\lambda / M}=$ Ind $_{S_{x}}$ (trio) x^{x} sis composition given by lengths of rows. This has $\left(V_{\lambda / \mu}^{x}\right)^{s_{n}{ }^{\prime s}}=\operatorname{Hom}_{s_{n}}\left(V_{\lambda / \mu} \text {, trio }\right)^{*} \cong$ Home $m_{s_{x}}(\text { trio, trim })^{x} \cong \mathbb{C}$.

Otherwise $\theta \subset \lambda / \mu$, so every simple appearing has at least two rows in its Young diagram, so $(V \nexists / \mathrm{mn}=0$.

