Lecture 1: Representations of the symmetric group I
The class is on combinatorics and representation theory. That's a slippery concept, since "combinatorics" can mean just about any thing. So, yoill be getting a very prejudiced view of how to thin bow the connections between these fields.

Combinatorial representation theory is more defined by what it's not than what it is. It reans were not going to use techniques from algebraic geometry or from analysis, and that points us toward certain kinds of problems. But it also means vire going to evaluate problems $w /$ an eye toward how interesting they ane for combinatoralists. For example de symmetric group is of great interest in combinatiles. Combinatorial poldems will tend to hare symmetric groups as symmetries, so nectar spaces ubose dineessions are interesting will tend to have S_{n} actions, so we can ask wot just about dimensions, but also about the underlying S_{n}-rep. For example, let $\mathbb{C}\left(x_{1}, \hookrightarrow x_{n}\right)$ be polys w/ abvions S_{n}-action. Let C be the quotied where we ad out by every positive degree S_{n} invariant polynowal $\left(x_{1}+\cdots+x_{n}, x_{1} x_{2}+x_{1} x_{3}+\cdots ;_{i} \sum_{i_{i}} x_{i} \cdots x_{i m}\right.$ is enough).

The This quotient is isompppbe to the regular representation as an S_{n}-rep. Q How does each individual degree decompose over Sn?

In order to answer a question like this, we need to first understand S_{n}-reps. That will be our first topic in this course: the connection between the representation theory of symmetric groups and young diagrams.

The (Frobewius-Young) The irreducible representations of $\mathbb{C} S_{n}$ ane in bijection $w /$ partitions of n (Young diagrams w / n-boxes.

Of course, this theorem can be upgraded in many diffener ways to answer questions about the representations: What are their dimensions? Characters. How are Hey related under induction and restriction? What if we replace \mathbb{C} by another field? So, our goal for the first part of this course is to prove the theorem; well do this in a way that facilitates answering all the other questions I mentioned. Then weill consider how de sane techrques carry over to other similar algebras, like Heck algebras, and $K L R$.

Of course, these answers ave interesting for representation theorists, but theyire also interesting for conbinatorialists. Often tines representation theory points the way to interesting things to count, or shows a not-obviously-positive (or integer) quantity is the dimension of a vector space, or gives us two ways of writing quantities that are hard to match combinatorially. So, as often happens, when two areas of math talk to each other, it's not just a one way street.

Inn going to attack the symmetric group using a nelatinely modern perspective, developed by Verswik and Okounkor. The key to making it all run is the observation that $\mathbb{Z} S_{n}$ has a surprisingly large commutative subalgebra:

Def Let $X_{k}=\sum_{i<k}(i k) \in \mathbb{Z} S_{n}$ for $k \leq n$. Note that this def is compatible w/ $S_{n} \longleftrightarrow S_{n+1}$, so we can leave n ow t of the notation.

Lemma X_{k} commutes $w \mathbb{C} S_{k-1, ~ p e r a n t a t i o n s ~ f i x i n g ~}\{k, \ldots, n\}$.
Proof Assure $\pi \in S_{k-1}$. Then $\pi X_{k} \pi^{-1}=\sum_{i<k}(\pi(i), k)=X_{k}$.
Lemma The subalgebra generated by $X_{k} k=1, \ldots, n$ in $\mathbb{Z} S_{n}$ is commutative Pf By previous lemma, if $k<l$, then X_{k} and X_{l} commute.

Whenever you have a commutative swoalgebra in a binger noncommutative algebra, you gain a new perspective on the representation theory of the alyelora On any $\mathbb{C} S_{n}$ representation, we have that X_{k} can be sunultaneonsly be made upper-triangular (actually, diagmalized). So, we can try to understand $\mathbb{C S}_{n}$ reps by what eigenvalues of $X_{1},-, X_{n}$ appear together and $w /$ what multipllatizes.

For example, on the trivial representations X_{k} acts by $k-1$. On the sign, it acts by $-k+1$. On le permutation rep $\left\{\left(x_{1},-, x_{n}\right) \mid \sum x_{i}=0\right\}$, we have an eigenbass given by $v_{l}=(1, \ldots, 1,-l)$ for $l=1, \ldots, n-1 . \quad X_{k} \cdot v_{l}=\left\{\begin{array}{ll}(k-1) \cdot v_{l} & l \geq k \\ -v_{l} & l+10 k\end{array}\right.$. Thus, you can tull $k-2 \quad k>l+1$ apart these 3 reps.

In the general case, we say that $\left(a_{11}, a_{n}\right)$ lies in the J-M spectrum of a representation if the is a vector v such that $X_{k} \cdot v=a_{k} v$ for all k.

Recall that a partition of n is a sequence $\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \cdots \geqslant \lambda_{l} \geqslant 0$ s.t. $\sum \lambda_{i}=n$, and the the Young diagram is a diggan w / λ_{1} boxes in one row, λ_{2} in next, etc. Whether "next" should read from top to bottom a vice versa is "English" vi." "Feat" notation. I'll use English. Thus $(5,4,2)$ has Y. D.

A Young tableau (often called Standard tableau)
 is a filling of boxes $w /\{1, \ldots, n\}$ which increases as we get further from top left corner.

We give boxes coordinates as $w /$ entries of matrices: (i, j) is the j th box from left in th row, counting from top. The "diagram" is often taken to mean pairs (i, j) w/ i, $j \in \mathbb{Z}>0$, and $j \leqslant \lambda_{i}$.

A tableau S is thus a bijection between this diagram and $\{1, \ldots, n\}$ such that $S(i+1, j)>S(i, j)$ and $S(i, j+i)>S(i, j)$.

1	2	4	5	7
3	6	10	11	
8	9			

a tableau

0	1	2	3	4
-1	0	1	2	
-2	-1			

The contents of boxes.

The content of a box is just j-i.
The content vector of a tableau is the contents of the boxes. listed in order given by the entries of the tableau. In the example above, the is $(0,1,-1,2,3,0,4,-2,-1,1,2)$.

Thy (VO) The bijection of representations and Young diagrams is uniquely characterized by the fact that V_{λ} for $\lambda_{1} \geq \cdots \geqslant \lambda_{l}$ has spectrum which is precisely the content rectors of young tableaux of shape λ. Each of the corresponding simultaneous (gewralizod) eigenspaces is dimension 1

Note that given a content vector, you can reconstruct Xe tableau one box at a tine. We often think of a tableau as a series of Yang diagrams, glen by the shape given by boxes w/ entry $s k$. The tableau conditions ane exactly the o the is always a Young diagram. Given the shape of entries $s k$, and contact of $k+1 s t$ box, there's only one place it can go. Thus, given a rep, you can reconstruct the YD from these eigenvalues. For perm, we have $(0, \ldots, k-1,-1, k, \ldots, n-2)$, which giles tableau x

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & \cdots & k & k+2 & \cdots-\mid n \\
\hline k+1 & & & \\
\hline
\end{array}
$$

